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Abstract: Breast cancer is the most common cancer in women, with a high incidence estimated to
reach 2.3 million by 2030. Triple-Negative Breast Cancer (TNBC) is the greatest invasive class of
breast cancer with a poor prognosis, due to the side-effects exerted by the chemotherapy used and
the low effectivity of novel treatments. In this sense, copper compounds have shown to be potentially
effective as antitumor agents, attracting increasing interest as alternatives to the usually employed
platinum-derived drugs. Therefore, the aim of this work is to identify differentially expressed proteins
in MDA-MB-231 cells exposed to two copper(II)-hydrazone complexes using label-free quantitative
proteomics and functional bioinformatics strategies to identify the molecular mechanisms through
which these copper complexes exert their antitumoral effect in TNBC cells. Both copper complexes
increased proteins involved in endoplasmic reticulum stress and unfolded protein response, as well
as the downregulation of proteins related to DNA replication and repair. One of the most relevant
anticancer mechanisms of action found for CuHL1 and CuHL2 was the down-regulation of gain-of-
function-mutant p53. Moreover, we found a novel and interesting effect for a copper metallodrug,
which was the down-regulation of proteins related to lipid synthesis and metabolism that could lead
to a beneficial decrease in lipid levels.

Keywords: breast cancer; molecular targets; metallodrugs; copper(II); proteomics

1. Introduction

Cancer is one of the main causes of death worldwide [1]. Breast cancer is the most
common cancer in women worldwide and one of the more frequent causes of prema-
ture mortality in the female population [2]. There are two types of breast cancer, ductal
and lobular, which are divided into invasive and in situ (non-invasive) types, with sev-
eral subtypes based on histology features. One of the most aggressive classes of breast
cancer is the Triple-Negative Breast Cancer (TNBC), which does not express estrogen,
progesterone, and HER-2 receptors [3]. For TNBC, the treatment options are limited to
chemotherapy, including anthracyclines (doxorubicin and epirubicin), taxanes (paclitaxel
and docetaxel), and capecitabine, as hormone or targeted therapy cannot be utilized [4].
Platinum chemotherapeutics such as carboplatin are also used [5]. Nevertheless, these
treatments present a low efficacy as they produce important adverse effects and a high
rate of metastatic recurrence [6]. Therefore, great efforts are dedicated to developing new
strategies using therapeutic agents to improve and optimize the treatment. To this end,
several metal-based drugs including palladium [7], ruthenium [8,9], and copper [10] were
designed and many of them displayed antitumor activity on breast cancer cells.
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In this sense, copper compounds offer a promising and innovative alternative to breast
cancer treatment. Interest in them arises from the knowledge that copper can play an important
role as a limiting factor in different aspects of tumor progression, such as growth, angiogenesis,
and metastasis [11]. Several copper compounds showed promising antitumor and anti-
metastatic properties on diverse kinds of solid tumors [12–14]. The main mechanisms of
action reported involve reactive oxygen species (ROS) generation, glutation (GSH) depletion,
proteasome inhibition, and DNA damage [15–19]. However, details of the cell signaling and
molecular mechanism of copper complexes are mainly still unanswered.

Proteomics is a very powerful research tool for cellular processes as it provides detailed
information of the fine alterations in cell homeostasis triggered by exposure to drugs.
Alterations in intracellular signaling and metabolic pathways may tell us which parts of
the cellular machinery are mainly affected by treatment, thus suggesting the most probable
biomolecular targets for the compound [20].

We have previously reported the synthesis, physicochemical characterization, and anti-
tumoral activity of two copper(II)-hydrazone complexes, [Cu(HL1)(H2O)](NO3). H2O and
[Cu(HL2)(H2O)2](NO3), or CuHL1 [21,22] and CuHL2 [23] for simplicity. In vitro studies
revealed a promising anticancer activity of both complexes against breast cancer cell lines,
including the TNBC line MDA-MB-231. Moreover, some possible action mechanisms were
demonstrated, such as DNA damage, ROS production, and proteasome inhibition [22,23].
However, the key signal pathways underlying the anticancer mechanism and the therapeutic
targets of CuHL1 and CuHL2 have not yet been well characterized. Therefore, this study was
initiated to identify differentially expressed proteins in MDA-MB-231 cells exposed to CuHL1
and CuHL2 treatment, using label-free quantitative proteomics and functional bioinformatics
strategies to identify the molecular mechanisms through which these copper complexes exert
their antitumoral effect in TNBC cells.

2. Results and Discussion
2.1. Synthesis and Characterization of the Copper Complexes

The compounds CuHL1 and CuHL2 (Figure 1) were obtained following the procedure
described in our previous works. They crystallize as complex cations with a +1 charge and
with nitrate as a counterion [21,23].
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Figure 1. Schematic representation of (a) CuHL1 and (b) CuHL2. Figure 1. Schematic representation of (a) CuHL1 and (b) CuHL2.

The corresponding hydrazone (H2L1: 2-acetylthiophene-2-hydroxy-3-methoxybenzoh
ydrazone and H2L2: 2-acetyl-4-methoxyphenyl-2-hydroxy-3-methoxybenzohydrazone)
coordinates to the metal as a monoanionic ligand (HL−), by deprotonation of the phenolic
oxygen, through the ONO chelating system. The coordination sphere of CuHL1 and CuHL2
is completed with one and two water molecules, respectively, according to the previously
reported crystallographic results.

In previous works, we have demonstrated their antitumoral activities against breast
cancer cells. Both complexes impaired cell viability in the sub-micromolar concentration
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range (0.5–2 µM) against breast cancer cell lines. Particularly, the IC50 values in the TNBC
cell line MDA-MB-231 are 1.6 ± 0.2 µM (CuHL1) and 1.6 ± 0.1 µM (CuHL2) [22,23].

2.2. Label-Free Mass Spectroscopy Quantification of Proteins Isolated from MDA-MB-231 Cells
following Treatment with CuHL1 and CuHL2

To explore the anticancer mechanism of CuHL1 and CuHL2, we conducted label-free
quantitative proteomics profiling.

Label-free quantification using the Orbitrap LC–MS/MS (Thermo ScientificTM, Waltham,
MA, USA) was able to identify proteins that are differentially expressed between cells treated
with CuHL1 or CuHL2 and untreated conditions. A total of 1656 and 1659 proteins were
identified for CuHL1- and CuHL2-treated cells, respectively. The resulting proteomic dataset
was filtered by fold-change differences and a significant p-value (Figure 2). From the CuHL1-
treated cells, a total of 69 proteins were identified to be differentially expressed when compared
with the untreated control (Table 1). Among these differentially expressed proteins, 28 proteins
were up-regulated and 41 proteins were down-regulated. As from the CuHL2-treated cells,
a total of 63 proteins were identified to be differentially expressed when compared with the
basal condition (Table 2). Among these differentially expressed proteins, 23 were up-regulated
and 40 were down-regulated by the treatment.
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Table 1. Differentially expressed proteins in CuHL1-treated MDA-MB.231 cells.

Gene Protein Fold-Change p-Value

HSPA1B Heat shock 70 kDa protein 1B 11.9067 0.0000

SRXN1 Sulfiredoxin-1 4.8384 0.0144

CSTF3 Cleavage stimulation factor subunit 3 4.3157 0.0128

THBS1 Thrombospondin-1 3.9412 0.0016

CHORDC1 Cysteine and histidine-rich domain-containing protein 1 3.8146 0.0028

BAG3 BAG family molecular chaperone regulator 3 3.7564 0.0058

SLC25A3 Phosphate carrier protein, mitochondrial 3.6397 0.0046

HSPH1 Heat shock protein 105 kDa 3.5744 0.0007
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Table 1. Cont.

Gene Protein Fold-Change p-Value

DNAJB1 DnaJ homolog subfamily B member 1 3.5735 0.0000

GCLM Glutamate–cysteine ligase regulatory subunit 3.4930 0.0005

SLC25A5 ADP/ATP translocase 2 3.2590 0.0085

ARF3 ADP-ribosylation factor 3 2.8776 0.0335

MAP1LC3B2 Microtubule-associated proteins 1A/1B light chain 3 beta 2 2.7896 0.0222

DDX21 Nucleolar RNA helicase 2 2.7624 0.0244

KTN1 Kinectin 2.6451 0.0302

MMP1 Interstitial collagenase 2.6260 0.0060

ACTC1 Actin, alpha cardiac muscle 1 2.5367 0.0247

FUS RNA-binding protein FUS 2.3718 0.0305

DNAJA1 DnaJ homolog subfamily A member 1 2.2815 0.0003

TECR Very-long-chain enoyl-CoA reductase 2.2753 0.0422

ARHGEF18 Rho guanine nucleotide exchange factor 18 2.1868 0.0453

RPL12 60S ribosomal protein L12 2.1825 0.0442

ZNF622 Zinc finger protein 622 2.1629 0.0360

RPL21 60S ribosomal protein L21 2.0765 0.0283

TOP2A DNA topoisomerase 2-alpha 2.0762 0.0075

RPS8 40S ribosomal protein S8 2.0729 0.0227

RPL7A 60S ribosomal protein L7a 2.0663 0.0055

RPL10 60S ribosomal protein L10 2.0453 0.0303

SDC4 Syndecan-4 −54.1800 0.0332

CYP51A1 Lanosterol 14-alpha demethylase −11.7752 0.0010

FADS2 Fatty acid-desaturase −8.9256 0.0007

ALG2 Alpha-1,3/1,6-mannosyltransferase ALG2 −8.8383 0.0036

RRM2 Ribonucleoside-diphosphate reductase subunit M2 −5.7327 0.0040

SMCHD1 Structural maintenance of chromosomes flexible hinge
domain-containing protein 1 −5.6365 0.0302

DPYD Dihydropyrimidine dehydrogenase [NADP(+)] −4.8430 0.0003

POLD1 DNA polymerase −4.4882 0.0165

NFKB2 Nuclear factor NF-kappa-B p100 subunit −4.2297 0.0051

IRF2BPL Probable E3 ubiquitin-protein ligase IRF2BPL −3.9927 0.0064

TP53 Cellular tumor antigen p53 −3.4861 0.0015

LDLR Low-density lipoprotein receptor (Fragment) −3.3732 0.0065

TMX1 Thioredoxin-related transmembrane protein 1 −3.3412 0.0015

PSMD4 26S proteasome non-ATPase regulatory subunit 4 −3.3016 0.0123

DNAAF5 Dynein axonemal assembly factor 5 −3.0889 0.0065

TST Thiosulfate sulfurtransferase −3.0300 0.0075

PXDN Peroxidasin homolog −3.0016 0.0003

OGFR Opioid growth factor receptor −2.9898 0.0177

ENG Endoglin −2.7407 0.0145

FAF1 FAS-associated factor 1 −2.5783 0.0183
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Table 1. Cont.

Gene Protein Fold-Change p-Value

MCM5 DNA replication licensing factor MCM5 −2.5649 0.0022

ADSS2 Adenylosuccinate synthetase isozyme 2 −2.4898 0.0118

GIPC1 PDZ domain-containing protein GIPC1 −2.4031 0.0494

ACO1 Cytoplasmic aconitate hydratase −2.3932 0.0013

PRPSAP2 Phosphoribosyl pyrophosphate synthase-associated protein 2 −2.3817 0.0099

DNAJA3 DnaJ homolog subfamily A member 3, mitochondrial −2.3163 0.0022

DLAT Dihydrolipoyllysine-residue acetyltransferase component of
pyruvate dehydrogenase complex, mitochondrial −2.3145 0.0009

SNX5 Sorting nexin-5 −2.2927 0.0082

PCK2 Phosphoenolpyruvate carboxykinase [GTP], mitochondrial −2.2247 0.0184

IGFBP7 Insulin-like growth factor-binding protein 7 −2.2145 0.0077

NDRG3 N-myc downstream-regulated gene 3 protein −2.1762 0.0005

KRT73 Keratin, type II cytoskeletal 73 −2.1747 0.0458

PC Pyruvate carboxylase, mitochondrial −2.1747 0.0187

CORO7 Coronin −2.1529 0.0035

POLDIP2 Polymerase delta-interacting protein 2 −2.1529 0.0011

ACOT2 Acyl-coenzyme A thioesterase 2, mitochondrial −2.1328 0.0021

MAP2K2 Dual-specificity mitogen-activated protein kinase kinase 2 −2.1182 0.0009

MAGED2 Melanoma-associated antigen D2 −2.1069 0.0476

IDH3A Isocitrate dehydrogenase [NAD] subunit alpha, mitochondrial −2.0820 0.0012

ALDH2 Aldehyde dehydrogenase, mitochondrial −2.0759 0.0003

SLC9A3R1 Na(+)/H(+) exchange regulatory cofactor NHE-RF1 −2.0756 0.0071

Table 2. Differentially expressed proteins in CuHL2-treated MDA-MB-231 cells.

Gene Protein Fold-Change p-Value

HSPA6 Heat shock 70 kDa protein 6 135.1126 0.0001
HSPA1B Heat shock 70 kDa protein 1B 12.4443 0.0000
SRXN1 Sulfiredoxin-1 4.7883 0.0157
BAG3 BAG family molecular chaperone regulator 3 4.4887 0.0045
G3BP2 Ras GTPase-activating protein-binding protein 2 3.6714 0.0310
THBS1 Thrombospondin-1 3.5660 0.0120

CHORDC1 Cysteine and histidine-rich domain-containing protein 1 3.5336 0.0057
FXR2 Fragile X mental retardation syndrome-related protein 2 3.4133 0.0198

SLC25A3 Phosphate carrier protein, mitochondrial 3.2324 0.0178
DNAJB1 DnaJ homolog subfamily B member 1 3.0959 0.0000
SLC25A5 ADP/ATP translocase 2 3.0855 0.0253

GCLM Glutamate–cysteine ligase regulatory subunit 2.8046 0.0024
ATAD3A ATPase family AAA domain-containing protein 3A 2.7501 0.0031

MMP1 Interstitial collagenase 2.7465 0.0051
MAP1LC3B2 Microtubule-associated proteins 1A/1B light chain 3 beta 2 2.7147 0.0338

HSPH1 Heat shock protein 105 kDa 2.7037 0.0038
SDHA Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial 2.2722 0.0472

DNAJA1 DnaJ homolog subfamily A member 1 2.2136 0.0003
ZNF622 Zinc finger protein 622 2.1139 0.0070
AKAP2 A-kinase anchor protein 2 2.0990 0.0117
TMCO1 Calcium-load-activated calcium channel 2.0869 0.0164
SLC3A2 4F2 cell-surface antigen heavy chain 2.0386 0.0031
AHSA1 Activator of 90 kDa heat shock protein ATPase homolog 1 1.9963 0.0228

SMCHD1 Structural maintenance of chromosomes flexible hinge domain-containing protein 1 −8.2820 0.0014
NFKB2 Nuclear factor NF-kappa-B p100 subunit −5.8093 0.0379
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Table 2. Cont.

Gene Protein Fold-Change p-Value

DPYD Dihydropyrimidine dehydrogenase [NADP(+)] −5.6316 0.0001
RRM2 Ribonucleoside-diphosphate reductase subunit M2 −5.2034 0.0018
FADS2 Acyl-CoA 6-desaturase −5.0562 0.0169

DNAAF5 Dynein axonemal assembly factor 5 −4.3873 0.0202
U2AF1 Splicing factor U2AF 35 kDa subunit −4.2363 0.0027
SDC4 Syndecan-4 −4.2206 0.0232

ACSL4 Long-chain-fatty-acid–CoA ligase 4 −3.7610 0.0026
CYP51A1 Lanosterol 14-alpha demethylase −3.6858 0.0032

TP53 Cellular tumor antigen p53 −3.6284 0.0005
GFM1 Elongation factor G, mitochondrial −3.4629 0.0032
LDLR Low-density lipoprotein receptor −3.2341 0.0284
OGFR Opioid growth factor receptor OS = Homo sapiens −3.2299 0.0139
RIN1 Ras and Rab interactor 1 −2.7981 0.0113
FAF1 FAS-associated factor 1 −2.6790 0.0022

MCM2 DNA replication licensing factor MCM2 −2.6450 0.0239
PCK2 Phosphoenolpyruvate carboxykinase [GTP], mitochondrial −2.6115 0.0004

SUMF2 Inactive C-alpha-formylglycine-generating enzyme 2 −2.5908 0.0432
HNRNPUL1 Heterogeneous nuclear ribonucleoprotein U-like protein 1 −2.5669 0.0440

PXDN Peroxidasin homolog −2.5552 0.0031
MCM3 DNA replication licensing factor MCM3 −2.5299 0.0332

DNAJA3 DnaJ homolog subfamily A member 3, mitochondrial −2.5193 0.0231
PACS1 Phosphofurin acidic cluster sorting protein 1 −2.4865 0.0405

POGLUT3 Protein O-glucosyltransferase 3 −2.3599 0.0119
SCYL1 N-terminal kinase-like protein −2.3123 0.0020
FASN Fatty acid synthase −2.2785 0.0382
VIM Vimentin −2.2682 0.0343

MCM5 DNA replication licensing factor MCM5 −2.2670 0.0021
TRIM28 Transcription intermediary factor 1-beta −2.2658 0.0431
CDC37 Hsp90 co-chaperone Cdc37 −2.2547 0.0236
YARS2 Tyrosine–tRNA ligase, mitochondrial −2.2501 0.0139
SMC2 Structural maintenance of chromosomes protein 2 −2.2447 0.0288
ITGB4 Integrin beta-4 −2.2163 0.0362
PTK7 Inactive tyrosine-protein kinase 7 −2.1469 0.0128

CORO7 Coronin −2.1154 0.0290
ACOT2 Acyl-coenzyme A thioesterase 2, mitochondrial −2.1016 0.0002

TBC1D9B TBC1 domain family member 9B −2.0811 0.0103
MYO18A Unconventional myosin-XVIIIa −2.0581 0.0201
CALM2 Calmodulin-2 −2.0396 0.0306

A comparative analysis of differentially expressed proteins between treatments showed 32 proteins in common.
Among down-regulated proteins, the treatments with CuHL1 and CuHL2 shared 18 proteins: TP53, MCM5, PCK2,
CORO7, ACOT2, OGFR, FAF1, LDLR, NFKB2, DPYD, DNAAF4, PXDN, RRM2, FADS2, CYP51A1, SMCHD1,
SDC4, and DNAJA3. Meanwhile, among up-regulated proteins, the complexes shared 14 proteins: HSPA1B,
HSPH1, DNAJB1, DNAJA1, CHORDC1, BAG3, ZNF622, THBS1, MAP1LC3B2, SLC25A3, GCLM, MMP1, SRXN1,
and SLC25A5.

2.3. Functional GO Enrichment Analysis

To better understand the biological characteristics of the differentially expressed
proteins, a set of bioinformatics tools were applied. First, the STRING enrichment analysis
was used to study whether any Gene Ontology (GO) categories were statistically enriched.
For each complex, two different lists containing the up-regulated and down-regulated
proteins were uploaded. The GO database classifies functions in organisms into three
categories: the involved biological process, the molecular function, and the cell component.
Figure 3 displays the obtained GO terms statistically over-represented (p-value ≤ 0.05 after
Benjamini correction). CuHL1 did not show enriched terms of molecular functions for
down-regulated proteins, while CuHL2 did not show enriched terms of the cell component
for up-regulated proteins.
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Among up-regulated proteins, the principal biological processes enriched for both
complexes were related to Heat Shock Proteins (HSPs) and co-chaperones: “Response
to unfolded protein”, “Response to heat”, and “Chaperone cofactor-dependent protein
refolding”. The proteins involved in these processes are HSPs and co-chaperones, mainly
from the HSP70 family (HSPA1B, HSPH1, HSPA6, BAG3, DNAJA1, and DNAJB1). In terms
of molecular function, mostly proteins assigned to the binding activity associated with
HSPs and co-factors could be found for CuHL1 and CuHL2.

An increase in HSP expression levels upon treatment with anticancer agents has
been reported. These proteins may participate in the stress response to drug-induced
damage [24]. HSPs are involved in protein folding and are generally expressed as a
reaction to endoplasmic reticulum stress. Cancer cells have enhanced ER stress due to
several characteristics, such as hypoxia, low nutrient availability, lactic acidosis, oxidative
stress, and increased replication and metabolism, which leads to increased protein folding
and accumulation of misfolded proteins. In response to ER stress, the Unfolded Protein
Response (UPR) is initiated [25]. The primary aim of UPR is to re-establish ER homeostasis
by increasing the protein-folding capacity [26]. Cancer cells up-regulate the UPR pathway
to increase their ability to survive under heightened ER stress. However, if the ER stress
is prolonged or acute, a terminal UPR program promotes cell death. In this sense, many
cancers with enhanced UPR can be hypersensitive to compounds that generate ER stress.
Chemotherapeutics can achieve UPR disruption via different mechanisms such as inhibition
of proteasome activity, oxidative stress, and alteration of ER Ca2+ storage. The clinically
approved bortezomib and carfilzomib are proteasome inhibitors that interfere with protein
degradation, enhancing ER stress. Moreover, ROS generation and proteasome inhibition are
reported as the main mechanisms of action of copper complexes [13]. Tardito et al. reported
a thioxotriazole copper(II) complex capable of inducing UPR via inhibition of the ubiquitin
proteasome system. Gene expression profiling showed that the complex up-regulated
genes related to the unfolded protein response. Functional analysis revealed an enrichment
of chaperone and unfolded protein binding categories [27]. We have previously reported
that CuHL1 inhibits proteasome activity [22] and that the proteomic analysis showed a
down-regulation of proteasome subunit PSMD4. On the other hand, we have determined
that CuHL2 induces a significant increment in the ROS levels [23]. These mechanisms
could lead to ER stress and accumulation of unfolded proteins that could explain the
up-regulation of HSPs with both complexes.

When we analyzed the down-regulated proteins, we found more differences in GO
terms between the two treatments. This is due to a lower proportion of common proteins
between CuHL1 and CuHL2 among down-regulated proteins. Shared proteins represent
44% and 45% of down-regulated proteins for CuHL1 and CuHL2, respectively. Meanwhile,
the shared up-regulated proteins represent 50% and 61% for CuHL1 and CuHL2, respec-
tively. The only biological process in common is the “Organic substance metabolic process”.
After CuHL1 treatment, down-regulated proteins were enhanced in other metabolic pro-
cesses, such as the “Small-molecule metabolic process”, “Oxidation–reduction process”,
and “Carboxylic acid metabolic process”.

On the other hand, CuHL2 presents biological processes related to DNA replication and
repair. This difference is replicated when we analyzed the Cellular Component. Proteins down-
regulated with CuHL2 are found in the “Chromosome telomeric region”, “CMG complex”,
and “MCM complex”, which are components related to DNA replication. In a previous work,
we demonstrated that CuHL2 is capable of interacting with DNA and cause damage [24].
This could be the reason for the inhibition of proteins related to DNA replication.

2.4. Protein–Protein Interaction Analysis

The STRING v11.5 database was used to perform Protein–protein interaction (PPI)
analysis to evaluate the interactions between the differentially expressed proteins in re-
sponse to treatment for both copper complexes. In these networks, the nodes represent
proteins, and the edges represent the interactions between the two proteins, whereby the
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line thickness between two nodes indicates the strength of data support. For all PPI net-
works, Markov Cluster Algorithm (MCL) clustering was performed to identify significant
protein–protein interaction clusters formed among differentially expressed proteins.

Figure 4 displays the networks generated for up-regulated proteins after treatment
with CuHL1 and CuHL2. In both networks, prominent interaction clusters were generated
containing HSPs and co-chaperones proteins: BAG3, CHORDC1, DNAJA1, DNAJB1,
HSPA1B, and HSPH1 for CuHL1; AHSA1, BAG3, CHORDC1, DNAJA1, DNAJB1, HSPA1B,
HSPA6, and HSPH1 for CuHL2. These clusters correlate with the enriched biological
processes found in GO analysis.

Both down-regulated networks (Figure 5) display TP53 as a central node. The TP53
tumor suppressor gene encodes the p53 protein, a transcription factor that is crucial for
proper control of cell cycle progression, senescence, apoptosis, DNA repair, and genome
maintenance among other important functions [28]. The TP53 gene is the most frequent
target for mutation in tumors, mutated in over half of all cancers [29]. Moreover, TP53
mutations are highly frequent and one of the key driving factors in triple-negative breast
cancer [30]. There are TP53 mutations that result in a “loss of function” that eliminates
the tumor suppressing effects of p53. However, many mutations to TP53 are “gain-of-
function” (GOF) mutations that can acquire oncogenic properties, augmented invasiveness,
metastasis, and recurrence of cancer [31,32]. The expression of mutant p53 in preclinical
breast cancer models showed a correlation with increased survival, migration, invasion,
and metastasis [30,32,33]. Most mutant p53s are expressed at very high levels in cancer cells,
so the degradation or inhibition of their activity can be considered promising therapeutic
mechanisms [34]. Particularly, MDA-MB-231 cells present a highly expressed GOF mutant
p53. It has been demonstrated that a reduction of mutant p53 can induce apoptosis in
MDA-MB-231 cells [35]. Therefore, the down-regulation of mutant p53 is one of the most
important antitumor mechanisms of action found for CuHL1 and CuHL2.
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treatment with (a) CuHL1 and (b) CuHL2 generated using the STRING v11.5 database. The thickness
of the line indicates the degree of confidence of the interaction. A variety of interaction sources
were included into the search strategy, such as text mining, experiment record, database record,
coexpression, neighborhood, gene fusion, and co-occurrence.

Another similarity in both down-regulated networks is the presence of clusters related
to lipid metabolism. Figure 4b presents a cluster form with CYP51A1, FADS2, and LDLR;
while the cluster in Figure 3d includes proteins ACOT2, ACSL4, CYP51A1, FADS2, FASN,
LDLR, and PCK2. Altered lipid metabolism is a recognized factor in cancer metabolism.
Tumor cells tend to increase the novo lipogenesis, lipid uptake, and storage, which leads to
an increment in source material for the biogenesis of cell membranes, as well as in energy
supplies via β-oxidation of fatty acids, and in an increase in the lipid signaling molecules
that mediate oncogenic pathways [36]. This lipid metabolism dysregulation helps to
promote tumor growth, metastatic spread, and therapy resistance [37]. The up-regulation of
lipogenic enzymes has been reported in several cancers including breast, prostate, colorectal,
ovarian, gastrointestinal, and lung cancer [38,39]. Consequently, targeting-altered lipid
metabolism pathways have been studied as a promising anticancer therapy.

One of the most down-regulated proteins after treatment with CuHL1 was Lanos-
terol 14-alpha demethylase (CYP51A1). This protein catalyzes one of the key steps in
cholesterol biosynthesis and is usually overexpressed in tumor cells [40]. In fact, Kerber
et al. demonstrated that de novo cholesterol synthesis was blocked when CYP51A1 was
knocked-out [41]. Furthermore, the presence of a lanosterol 14-alpha demethylase inhibitor
led to the induction of apoptosis in cancer cells [42]. In this sense, several pre-clinical and
clinical studies have focused on targeting cholesterol metabolism as a treatment for various
cancers [43]. The strategies include aiming for cholesterol biosynthesis pathways, as well
as the exogenous-sterol uptake. For example, current clinical trials have demonstrated
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the protective effect in breast cancer of drugs that inhibit the mevalonate pathway such as
statins and Zoledronate [44].

On the other hand, many cancer cells exhibit an overexpression of LDLR, which fa-
cilitates the rapid uptake of LDL cholesterol and contributes to the accumulation of lipid
components [45,46]. Thus, the downregulation or inhibition of LDLR affects cholesterol
uptake and could increase the efficacy of chemotherapeutic drugs. Guillaumond et al. demon-
strated that the shRNA silencing of LDLR reduced the cholesterol uptake and diminished
the proliferation of pancreatic cancer cells [47]. For breast cancer, Gallagher et al. showed
that elevated LDLR expression and high LDL levels are significant for tumor growth and
that silencing LDLR in TNBC cells increases cell death and reduces the growth of tumors [48].
Proteomics showed that LDLR was down-regulated after treatment with both complexes in
MDA-MB-231 cells. This TNBC cell line presents higher expression levels of LDLR compared
to the estrogen-receptor-positive MCF7, or the non-tumorigenic MCF-10A cell lines [48].

Other proteins related to lipid metabolism were down-regulated by CuHL1 and
CuHL2. They are key enzymes that participate in fatty acid metabolism, such as fatty acid
synthase (FASN), fatty acid desaturase (FADS2), and long-chain fatty acid synthase (ACSL4).
Fatty acid synthesis and palmitoleic acid generation are enhanced and play an essential role
in cancer growth [36]. FASN and ACSL4 are highly expressed in many cancers including
breast cancer [49,50], thus making them an attractive target for inhibiting cancer cell
proliferation. In this sense, Cui et al. showed that inhibiting FAS by inhibitors or shRNAs
induces apoptosis in breast cancer cells [51]. Another FASN inhibitor, Fasnall, was able to
inhibit breast cancer cell growth, induce apoptosis, and showed potent in vivo antitumor
activity against breast cancer, alone and combined with carboplatin [52]. Similarly, ACSL4
knockdown inhibited the cell proliferation of several cancer cell lines [53,54]. In breast
cancer, it was demonstrated that ACSL4 targeting increased the efficacy of Triacsin C, as
combined treatment with ACSL4 inhibition resulted in synergistic antitumor effects [55].
Overall, the down-regulation of these proteins by CuHL1 and CuHL2 could lead to a
beneficial decrease in lipid synthesis and metabolism, which is a novel and interesting
effect for a copper metallodrug.

CuHL1 presented a cluster in the down-regulated network that includes proteins also
related to cell metabolism, specifically associated with the tricarboxylic acid (TCA) cycle and
pyruvate metabolism. The cluster forms with all mitochondrial proteins: ACO1, ALDH2,
DLAT, IDH3A, PC, PCK2, and TST. This cluster correlates with the enriched metabolic
processes in GO functional analysis: “Small-molecule metabolic process”, “Oxidation–
reduction process”, and “Carboxylic acid metabolic process”. CuHL1 could generate the
inhibition of mitochondrial metabolism. Traditionally, “the Warburg effect” hypothesizes
that most cancer cells rely on aerobic glycolysis to engender the energy needed for cellular
activity, rather than mitochondrial oxidative phosphorylation [56]. However, recent studies
indicate that active mitochondrial metabolism is necessary for tumor growth as it provides
key metabolites for macromolecule synthesis and generates oncometabolites to sustain
the phenotype of cancer cells [57]. In particular, recent studies have shown that TNBCs
have an altered metabolic profile, characterized by the elevated uptake and utilization
of glucose, glutamine, and TCA cycle intermediates in addition to increased fatty acid
β-oxidation [58–60]. As a consequence, the down-regulating effect of CuHL1 on several
proteins related to mitochondrial metabolism could be beneficial for breast cancer therapy.

Moreover, Tsvetkov et al. recently defined a new copper-dependent form of regu-
lated cell death related to mitochondrial metabolism called cuproptosis. In this cell-death
mechanism, excess copper binds to lipoylated enzymes of the TCA cycle, resulting in
lipoylated protein aggregation that leads to proteotoxic stress and ultimately cell death [61].
One of the lipoylated proteins that can bind to copper is DLAT, which is down-regulated
after treatment with CuHL1. The decreased expression of DLAT could be the result of
protein oligomerization caused by copper binding. In fact, Zhou et al. reported a copper
nanoplatform that induces cuproptosis and generates the same down-regulating effect in
DLAT [62]. Furthermore, the proteotoxic stress caused by protein oligomerization leads
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to the induction of HSP70, whose expression is increased by both complexes. This could
indicate that CuHL1 is able to promote cuproptosis as a cell-death mechanism.

Another important cluster in the CuHL2 down-regulated network includes proteins
that participate in DNA replication: MCM2, MCM3, MCM5, RRM2, and SMC2. These pro-
teins are responsible for the related GO terms that were mentioned before. Nevertheless, in
this analysis, we found that CuHL1 also has a cluster formed with proteins that participate
in DNA replication: MCM5, POLD1, and POLDIP2. We have demonstrated, in in silico and
in vitro studies, that both complexes were able to interact with DNA and produce damage
in the macromolecule [22,23]. The down-regulation of minichromosome maintenance
(MCM) proteins is present in both CuHL1 and CuHL2 treatments. The MCM protein family
plays a key role in eukaryotic DNA replication. The MCM complex is a DNA replication
licensing factor that controls the once-per-cell cycle DNA replication [63]. Dysregulation
of the MCM complex has been associated with the occurrence and progression of many
tumors [64]. Moreover, overexpression of MCM has been detected in various cancer cells,
including breast cancer [65]. Additionally, CuHL1 presented a down-regulation of POLD1.
The DNA polymerase delta (POLD) family is involved in DNA replication and is an im-
portant mediator of DNA repair during chromosome replication [66]. Mutation in POLD
can be associated with cancer development and it was demonstrated that POLD1 is able
to affect cell cycle progression and promote cancer cell proliferation [67]. In breast cancer,
gene and protein expression levels of POLD1 are elevated [68]. Moreover, survival analysis
demonstrated an association of increased POLD1 levels with poor disease-free survival,
late-stage cases, and the presence of TNBC [69]. In this sense, several studies report that
the down-regulation of POLD1 in breast cancer cells suppressed cell cycle progression and
cell proliferation and promoted apoptosis [69,70].

In order to analyze the shared mechanisms of CuHL1 and CuHL2, we performed a
PPI network analysis utilizing only the common proteins between both treatments.

Figure 6a displays the network generated for the shared up-regulated proteins. The
interaction cluster generated includes HSPs and co-chaperone proteins: BAG3, CHORDC1,
DNAJA1, DNAJB1, HSPA1B, and HSPH1. This cluster demonstrates the shared mechanism
of ER stress and UPR induction for both complexes.
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Figure 6. Interaction network for shared proteins between CuHL1 and CuHL2. (a) Up-regulated
proteins; (b) Down-regulated proteins. Generated using the STRING v11.5 database. The thickness
of the line indicates the degree of confidence of the interaction. A variety of interaction sources
were included into the search strategy, such as text mining, experiment record, database record,
coexpression, neighborhood, gene fusion, and co-occurrence.

The down-regulated network (Figure 6b) presents the p53 central node. Moreover,
a cluster related to lipid and cholesterol metabolism is shown. The cluster includes the
proteins: LDLR, CYP51A1, and FADS2. This way, other shared mechanisms between
CuHL1 and CuHL2 include the down-regulation of GOF-p53 and proteins involved in
lipid metabolism.

2.5. Ingenuity Pathway Analysis

Finally, the ingenuity pathway analysis (IPA) bioinformatics tool was run to evaluate the
most affected canonical pathways after treatment with both complexes. The over-represented
canonical pathways are reported in Tables 3 and 4.

Table 3. Ingenuity canonical pathways associated with the differentially expressed proteins in
CuHL1-treated cells.

Canonical Pathways p-Value Proteins

EIF2 Signaling 4.78 × 10−6 ACTC1, MAP2K2, RPL10, RPL12, RPL21,
RPL7A, RPS8

Unfolded protein response 6.97 × 10−6 DNAJA1, DNAJA3, DNAJB1,
HSPA1A/HSPA1B, HSPH1

Induction of Apoptosis by HIV1 4.09 × 10−5 NFKB2, SLC25A3, SLC25A5, TP53

NRF2-mediated Oxidative
Stress Response 7.13 × 10−5 ACTC1, DNAJA1, DNAJA3,

DNAJB1, GCLM, MAP2K2

BAG2 Signaling Pathway 1.12 × 10−4 HSPA1A/HSPA1B, NFKB2, PSMD4, TP53

Aldosterone Signaling in
Epithelial Cells 1.39 × 10−4 DNAJA1, DNAJB1, HSPA1A/HSPA1B,

HSPH1, MAP2K2

Bladder Cancer Signaling 3.87 × 10−4 MAP2K2, MMP1, THBS1, TP53

Cell Cycle Control of
Chromosomal Replication 6.08 × 10−4 MCM5, POLD1, TOP2A
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Table 3. Cont.

Canonical Pathways p-Value Proteins

Protein Ubiquitination Pathway 1.30 × 10−3 DNAJA1, DNAJB1, HSPA1A/HSPA1B,
HSPH1, PSMD4

Ribonucleotide Reductase
Signaling Pathway 1.61 × 10−3 NFKB2, RRM2, THBS1, TP53

HIF1α Signaling 3.34 × 10−3 HSPA1A/HSPA1B, MAP2K2, MMP1, TP53

Apoptosis Signaling 3.61 × 10−3 MAP2K2, NFKB2, TP53

Autophagy 3.82 × 10−3 MAP1LC3B2, MAP2K2, NFKB2, TP53

HER-2 Signaling in Breast Cancer 4.56 × 10−3 ARF3, MAP2K2, NFKB2, TP53

Table 4. Ingenuity canonical pathways associated with the differentially expressed proteins in
CuHL2-treated cells.

Canonical Pathways p-Value Proteins

Unfolded protein response 1.28 × 10−7 DNAJA1, DNAJA3, DNAJB1, HSPA6,
HSPA1A/HSPA1B, HSPH1

Sirtuin Signaling Pathway 1.10 × 10−5 MAP1LC3B2, NFKB2, PCK2, SDHA, SLC25A5,
TP53, TRIM28

Induction of Apoptosis by HIV1 2.51 × 10−5 NFKB2, SLC25A3, SLC25A5, TP53

BAG2 Signaling Pathway 6.90 × 10−5 HSPA6, HSPA1A/HSPA1B, NFKB2, TP53

Aldosterone Signaling in
Epithelial Cells 7.73 × 10−5 DNAJA1, DNAJB1, HSPA6, HSPA1A/

HSPA1B, HASPH1

HIF1α Signaling 2.10 × 10−4 HSPA6, HSPA1A/HSPA1B, MMP1, TP53, VIM

Autophagy 2.50 × 10−4 CALM1, MAP1LC3B2, NFKB2, SLC3A2, TP53

LXR/RXR Activation 3.01 × 10−4 CYP51A1, FASN, LDLR, NFKB2

Cell Cycle Control of
Chromosomal Replication 4.24 × 10−4 MCM2, MCM3, MCM5

Ribonucleotide Reductase
Signaling Pathway 1.02 × 10−3 NFKB2, RRM2, THBS1, TP53

Immunogenic Cell Death
Signaling Pathway 1.69 × 10−3 HSPA6, HSPA1A/HSPA1B, NFKB2

PI3K/AKT Signaling 1.85 × 10−3 CDC37, ITGB4, NFKB2, TP53

NRF2-mediated Oxidative
Stress Response 3.41 × 10−3 DNAJA1, DNAJA3, DNAJB1, GCLM

Inhibition of Angiogenesis
by TSP1 3.55 × 10−3 THBS1, TP53

MYC-Mediated
Apoptosis Signaling 7.56 × 10−3 NFKB2, TP53

FAT10 Cancer Signaling Pathway 7.56 × 10−3 NFKB2, TP53

In correlation with the results of up-regulated proteins analysis, both complexes
displayed an alteration in stress-response pathways such as “Unfolded protein response”,
“NRF2-mediated oxidative stress response” [71], and “Autophagy”. The latter can be
positively stimulated by the UPR program because, under ER stress conditions, ER produces
several signals that stimulate autophagy [72]. Moreover, CuHL1 presented an enrichment
of the “Protein ubiquitination pathway” and “EIF2 signaling”, which is involved in one of
the UPR pathways [25].

Molecular pathways related to cell death were enhanced. Both complexes displayed
alterations in “Induction of Apoptosis by HIV1”. “Apoptosis signaling” was also altered by
CuHL1. Meanwhile, CuHL2 displayed an enhancement of “Immunogenic cell death” (ICD).
ICD is a form of cell death where the dying cancer cells stimulate immune cells to actively seek
and destroy them. ICD is characterized by the emission of a class of the danger-associated
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molecular patterns (DAMPs) family, which functions as “find me” and “eat me” signals
to the tumor-associated immune cells. The key DAMPs include the release of adenosine
triphosphate (ATP), high-mobility group protein B1 (HMBG1), and exposed molecules on
the outer membrane such as CRT (CRT) and heat-shock proteins (Hsp90 and Hsp70) [73]. In
this sense, both complexes have Hsp70 proteins as the most up-regulated protein. Moreover,
the ability of cancer therapies to induce ICD depends on their ability to induce ER stress and
ROS production. ROS-based ER stress is an essential component to trigger DAMPs expression
and the intracellular danger signaling pathways [74]. Redox stress induction is the principal
mode of action for several anticancer copper complexes. Kaur et al. reported a Cu(II) complex
with a Schiff base ligand that is capable of inducing ICD in breast cancer stem cells through
elevation of ROS levels and induction of ER stress [75].

Angiogenesis was another process affected by both complexes, as seen by the alter-
ation of “Inhibition of Angiogenesis by TSP1” and “HIFa signaling”. In this sense, CuHL1
presented a cluster in the down-regulated network (Figure 4b) related to vascular endothe-
lial growth factor (VEGF) signaling and angiogenesis, formed with proteins ENG, GIPC1,
IGFBP7, and SDC4. Angiogenesis is essential for breast cancer progression and dissem-
ination. Several molecular pathways are known to drive angiogenic switches in cancer
cells [76]. Hence, the inhibition of pro-angiogenic pathways is a promising therapeutic
alternative. There are numerous clinical and pre-clinical studies on targeting angiogenic
pathways in breast cancer [77].

Finally, DNA replication and repair pathways were also affected, as seen in the GO
functional analysis and PPI networks. Both complexes displayed an alteration of “Cell
cycle control of chromosomal replication” and “Ribonucleotide reductase (RR) signaling
pathway”. RR catalyzes the reduction of ribonucleotides to their corresponding deoxyri-
bonucleotides, so RR is essential for DNA replication and repair [78]. The expression of
subunit RRM2 is dysregulated in multiple cancer types, including breast cancer. Particu-
larly, the MDA-MB-231 cell line presents an increased expression of RRM2 [79].

3. Materials and Methods
3.1. Synthesis, Identification, and Preparation of CuHL1 and CuHL2

Both copper(II) compounds were obtained following the procedure defined in our
previous manuscripts [21,23].

Fresh stock 20 mM solutions of the complexes were prepared in dimethylsulfoxide
(DMSO) and forward-diluted according to the concentrations used in each experiment. The
maximum concentration of DMSO was maintained at 0.5% to avoid the toxic effects of this
solvent on the cells.

3.2. Cell Culture

MDA-MB-231 breast cancer cells were grown in Dulbecco’s modified Eagle’s medium
Nutrient Mixture F12 (DMEM F12) with 10% fetal bovine serum (FBS), 100 IU/mL of
penicillin, and 100 µg/mL of streptomycin at 37 ◦C in a 5% CO2 atmosphere.

3.3. Protein Sample Preparation

For sample preparation, MDA-MB-231 cells were seeded in a 6-well dish, allowed to
attach for 24 h, and treated with 1 µM of the complex at 37 ◦C. Triplicates of each condition
were used. Total protein was extracted from MG-63 cells after 24 h. Briefly, cells were
homogenized in RIPA lysis buffer containing a protease inhibitor cocktail. Then, total
protein was collected through centrifugation at 12,000× g for 20 min at 4 ◦C, and protein
concentration was determined using the BCA protein assay.

3.4. Protein Identification and Mass Spectrometry

Samples were sent to the Center for Chemical and Biological Studies by Mass Spec-
trometry (CEQUIBIEM) for Label-Free Quantification analysis. In brief, samples were
reduced with DTT, alkylated with iodoacetamide, and followed by trypsin digestion. Sam-
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ples were lyophilized by Speed Vac and resuspended in 0.1% trifluoroacetic acid. Then,
liquid chromatography was performed with the nanoHPLC Easy nLC 1000 (Thermo Sci-
entific, Waltham, MA, USA) coupled to a mass spectrometer with Orbitrap technology
(Thermo Scientific, Waltham, MA, USA), which allows separation and further identification
of the peptides.

Analysis of the spectra obtained by the mass spectrometer was performed using the
Proteome Discoverer search engine with the Homo sapiens database. For the search, the
following parameters were set: trypsin was used as the cleavage protease; two missed
cleavages were allowed; the precursor peptide mass tolerance was set at 10 ppm while
the fragment mass tolerance was 0.05 Da; carbamidomethylation (C) was set as a fixed
modification; the variable modification was set to oxidation; the minimum identification
criteria required a minimum of 2 peptides per protein.

Statistical analysis for differentially expressed proteins was performed using the
software Perseus v.1.6.6.0. The t-test was used to compare protein abundance averages
between treatment and control groups. Differentially expressed proteins were identified
when the t-test p value < 0.05 and there was an increase or decrease in the protein level of
2-fold or more.

3.5. Bioinformatics Analysis
3.5.1. Functional GO Enrichment Analysis

The differentially expressed proteins were used to perform Gene Ontology (GO) en-
richment analysis with the Search Tool for the Retrieval of Interacting Genes (STRING)
enrichment API method (https://string-db.org, accessed on 12 December 2022). For that,
the up- and down-regulated protein IDs were submitted for Homo sapiens and were cate-
gorized according to their molecular function, biological process, and cellular component.
For each of the different GO categories, the False Discovery Rate and Bonferroni-corrected
p-values were calculated.

3.5.2. Protein–Protein Interaction Analysis

The STRING v11.5 database was used to predict functional interactions between dif-
ferentially expressed proteins and to map the protein–protein interaction networks (http:
//string-db.org, accessed on 12 December 2022). Protein IDs were submitted into the multiple
protein analysis, and interaction sources were selected: text mining, experiments, databases,
co-expression, neighborhood, gene fusion, and co-occurrence. A default medium confidence
threshold (0.4) was used to define protein–protein interactions. MCL clustering (inflation
parameter 3) was applied to the analysis to identify protein groups with similar interactions.

3.5.3. Ingenuity Pathway Analysis

Pathway analysis was evaluated using Ingenuity Pathway Analysis (IPA). The dataset
for each complex, combining up-regulated and down-regulated proteins, was uploaded
into the QIAGEN IPA (QIAGEN Inc., Venlo, Netherlands) system for core analysis. IPA
was performed to identify the most significant canonical pathways. The significance values
(p-value) for the canonical pathways were calculated by the right-tailed Fisher’s Exact Test.

4. Conclusions

In this study, we conducted a label-free quantitative proteomic analysis of MDA-MB-
231 cells treated with CuHL1 and CuHL2 to provide insight into the molecular mechanism
of these copper complexes in TNBC cells. Bioinformatic and functional analysis revealed
similar modes of action between both complexes. CuHL1 and CuHL2 treatment generated
an increment of proteins involved in ER stress and UPR, as well as the down-regulation
of proteins related to DNA replication and repair. One of the most important antitumor
mechanisms of action found for CuHL1 and CuHL2 was the down-regulation of GOF-mutant
p53. Additionally, we found a novel and interesting effect for a copper metallodrug, which
was the down-regulation of proteins related to lipid synthesis and metabolism that could lead

https://string-db.org
http://string-db.org
http://string-db.org
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to a beneficial decrease in lipid levels. However, further functional studies are required to
understand the specific mechanisms underlying the antitumoral effects of CuHL1 and CuHL2.
It will be necessary to carry out experimental validations based on biochemical and other
functional experiments, which go beyond the aim of the present work.
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