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Abstract: Colorectal cancer (CRC) is one of the deadliest forms of cancer worldwide. CRC devel-
opment occurs mainly through the adenoma-carcinoma sequence, which can last decades, giving
the opportunity for primary prevention and early detection. CRC prevention involves different
approaches, ranging from fecal occult blood testing and colonoscopy screening to chemopreven-
tion. In this review, we discuss the main findings gathered in the field of CRC chemoprevention,
focusing on different target populations and on various precancerous lesions that can be used as
efficacy evaluation endpoints for chemoprevention. The ideal chemopreventive agent should be well
tolerated and easy to administer, with low side effects. Moreover, it should be readily available at a
low cost. These properties are crucial because these compounds are meant to be used for a long time
in populations with different CRC risk profiles. Several agents have been investigated so far, some of
which are currently used in clinical practice. However, further investigation is needed to devise a
comprehensive and effective chemoprevention strategy for CRC.
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1. Introduction

Colorectal cancer (CRC) is the second deadliest cancer and the third most common
malignancy worldwide [1]. Based on recent global trends, the incidence rate of CRC
is consistently growing and is expected to increase by 60% until 2030, reaching more
than 2.2 million new cases and 1.1 million deaths [2]. CRC carcinogenesis is a multiyear,
multistep, and multipath process characterized by progressive genetic alterations and
associated tissue damage [3]. More than thirty years ago, Fearon and Vogelstein proposed
the adenoma-carcinoma sequence model for CRC development, suggesting that decades
are needed for progression from adenoma to carcinoma and eventually to metastatization
(Figure 1A). Consistent with this model, histopathological and molecular data showed that
almost all colorectal carcinomas arise from adenomas, which continuously progress through
increases in size, dysplasia, and the acquisition of villous morphology [4]. Currently, it
is widely accepted that there are four different stages of colorectal tumorigenesis: early
adenoma, late adenoma, carcinoma, and metastatic cancer [4].

At the genomic level, colorectal tumorigenesis occurs through a sequence of genetic
alterations involving tumor suppressor genes (loss of APC at 5q, DCC at 18q, and TP53 at
17p) and oncogenes (such as mutations in KRAS at 12p) [4], which provides a framework
for the study of this complex process. Indeed, splitting up CRC development into separate
steps offers a window of opportunity for effective prevention [5]. While fecal occult
blood tests and colonoscopy remain the gold standard for CRC prevention [6], interest
in chemoprevention has been growing in recent years. The term chemoprevention was
first coined in 1976 [7] and was defined as the use of a natural or synthetic substance to
delay the time of cancer onset, reverse the process of carcinogenesis or prevent tumor
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recurrence and metastasis (Figure 1B) [8,9]. Nevertheless, finding compounds capable of
successfully preventing CRC turned out to be very difficult [9], and new agents are needed
to treat clinically evaluable precancerous lesions as well as the entire colon epithelial sheet
at risk [10].
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Figure 1. CRC tumorigenesis and chemoprevention. (A) Schematic representation of the adenoma-
carcinoma sequence, which includes the progression steps, such as aberrant crypt foci (ACF) and
adenoma lesions, that are used as endpoints in clinical trials to evaluate potential chemopreventive
agents. (B) Chemopreventive agents are natural and synthetic compounds intended to delay cancer
onset, reverse the carcinogenesis process, and prevent tumor recurrence and metastasis. The ideal
chemopreventive agent should be well tolerated, safe, easy to administer, and readily available
at low cost. Moreover, chemopreventive agents should be tailored to individuals at high (carriers
of genetic syndromes predisposing to CRC, such as Lynch syndrome, all different types of FAP
syndrome, MUTYH-associated polyposis, Peutz-Jeghers syndrome, juvenile polyposis syndrome,
Cowden syndrome, and hamartoma tumor syndrome, patients with diabetes mellitus), moderate
(subjects with a prior diagnosis of colonic adenoma or a family history of CRC), or average (general
population, with particular concern for non-Hispanic Black men and individuals with an unhealthy
diet) risk of developing CRC (B). Created with Biorender.com.

2. Precancerous Colorectal Lesions

The identification of significant endpoints that can be used in clinical trials is crucial
to devise an effective chemoprevention strategy. During the early steps of CRC tumori-
genesis, colon epithelial cells begin to show uncontrolled proliferation, which results in
the formation of aberrant crypt foci (ACF), followed by the development of a polyp and,
subsequently, an adenoma (Figure 1A). ACF are thus the earliest neoplastic lesions in CRC
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carcinogenesis and can be hyperplastic or dysplastic [11]. Hyperplastic ACF are larger
and longer than adjacent normal colonic mucosa, and their luminal opening is serrated
and slightly elevated from the surrounding tissue. On the other hand, dysplastic ACF are
characterized by hypercellularity with abnormal nuclear features such as hyperchromatism
and loss of polarity. Moreover, dysplastic ACF stains are positive for PCNA and Ki67 more
extensively at the upper and middle crypt compartments compared to hyperplastic ACF
and are believed to be precursor lesions of adenomas [11].

As a further step in the adenoma-carcinoma sequence, cells with high WNT activity
emerge from ACF and evolve into a tubular or tubule-villous polyp. The uncontrolled pro-
liferation of a polyp subsequently leads to the development of an early adenoma [12]. These
commonly asymptomatic lesions are frequently found during colonoscopy screening [13].
The transformation rate of adenomas to carcinomas is about 0.25% per year. The size of
the adenoma is crucial in this process as cancer arises from 1% of adenomas < 1 cm, 10%
of adenomas between 1 cm and 2 cm, and 50% of adenomas larger than 2 cm. Moreover,
the malignant potential of an adenoma is also related to its growth pattern and grade of
dysplasia [13].

It is widely recognized that the risk of developing invasive cancer increases with the
progression of precancerous lesions, even if not all ACF or adenomas progress to CRC [10].
Interestingly, there is a clear correlation between molecular mutations and histological
phenotype. Indeed, mutation of APC was determined to be an early event occurring before
the development of an adenoma, while mutation of TP53 was identified as a late event
denoting the transition from adenoma to carcinoma [10].

3. Target Populations for Chemoprevention

Identifying target populations at average, moderate, and high risk of developing
adenomas and hence CRC is an important step in the investigation and implementation of
chemopreventive agents (Figure 1B), allowing candidate compounds to be tailored to the
specific risk level of affected individuals.

In the general population, which has an average risk of developing CRC, important
factors that affect risk calculation are sex, age, and race/ethnicity [14]. CRC rates are
30% higher in men than in women, and the risk increases with age. Moreover, among
broadly defined racial and ethnic groups, CRC incidence is highest in non-Hispanic Black
individuals. Reasons for racial/ethnic disparities in CRC are complex but largely related
to socioeconomic status. In addition, approximately half of all CRCs are attributable to
lifestyle factors, including unhealthy diet, high alcohol consumption, smoking, and lack of
physical activity [15].

Populations with a moderate risk of developing CRC include subjects with a prior
diagnosis of colonic adenoma and individuals with a family history of CRC [9]. Indeed,
people with a first-degree relative diagnosed with CRC have up to four times higher risk of
developing the disease compared with people without a CRC family history [16].

Populations at high risk of CRC consist of patients with CRC-related genetic syn-
dromes. Almost 5% of CRC patients have a germline mutation associated with high-risk
genetic syndromes [17]. The most common hereditary risk factor for CRC is Lynch syn-
drome, also known as hereditary non-polyposis CRC (HNPCC). HNPCC is due to inherited
mutations in genes affecting DNA mismatch repairs, such as MLH1, MSH2, MSH6, PMS2,
and EPCAM [18]. The second most common genetic syndrome predisposing to CRC is
familial adenomatous polyposis (FAP) [13]. FAP is characterized by the development of
up to thousands of polyps until the third decade of life [19] and is related to germline
mutations in the APC gene. There are various types of FAP: classic FAP, attenuated FAP
(AFAP), which is a less severe form of the disease, and other rare variants such as Gard-
ner’s syndrome, which is accompanied by extra-intestinal manifestations, and Turcot’s
syndrome, which is associated with brain tumors [20]. Recently, another type of FAP has
been described, which was termed gastric polyposis and desmoid FAP (GD-FAP). This
syndrome is characterized by colon oligo-polyposis, diffuse gastric polyposis, and desmoid



Int. J. Mol. Sci. 2023, 24, 7597 4 of 45

tumors and is related to a truncation mutation in the C-terminal region of the APC gene [21].
Moreover, other genetic syndromes predispose to CRC, including MUTYH-associated poly-
posis, Peutz-Jeghers syndrome, juvenile polyposis syndrome, Cowden syndrome, and
hamartoma tumor syndrome, all of which are rare diseases with an up to 40% increased
lifetime risk of CRC [22–28].

Inflammation is also linked to CRC carcinogenesis. Indeed, patients with chronic
inflammatory bowel disease such as ulcerative colitis or Crohn’s disease are at greater risk
of developing CRC. Available reports suggest that almost 15% of patients with a 30-year
history of ulcerative colitis will develop CRC [29].

4. Chemopreventive Agents

Since chemopreventive agents are meant to be administered for a long time, especially
in the average-risk population, they should be well tolerated and have low side effects.
Moreover, they have to be readily available at a low cost and easy to administer, with a
convenient dosing schedule for patients. Candidate compounds must thus fulfill these
requirements before their efficacy can be evaluated in a clinical trial [9]. In the last decades,
several natural and synthetic molecules have been investigated as potential chemopreven-
tive agents for CRC. These agents and the relevant studies are described in detail below
and summarized in Table 1.

4.1. Anti-Inflammatory Agents

Since inflammation can promote the onset of CRC, it is reasonable to assume that
agents with anti-inflammatory activity may have chemopreventive effects.

4.1.1. Aspirin

The most widely studied non-steroidal anti-inflammatory drug (NSAID) for CRC
chemoprevention is acetylsalicylic acid. This compound was marketed as aspirin in
1899 [30] and is currently the most promising chemopreventive agent for CRC. The mecha-
nistic basis for its protective effect is believed to be its irreversible binding to, acetylation,
and consequent inhibition of PTGS1 and PTGS2, also known as cyclooxygenase 1 (COX-1)
and 2 (COX-2), which ultimately results in prostaglandin E2 (PGE2) downregulation [31].
Indeed, COX enzymes are responsible for the conversion of arachidonic acid into down-
stream effectors that are metabolized into prostaglandin and eicosanoids. Consistently,
increased expression of COX-2 has been found in up to 40% of colonic adenomas and up
to 90% of sporadic CRCs [32,33], and increased synthesis of PGE2 has been observed in
patients with CRC and has been shown to promote CRC carcinogenesis [34].

Evaluation of Aspirin Treatment with ACF or Adenoma Lesions as Endpoints

In vivo experiments showed that aspirin treatment was associated with reduced ACF
lesions, which are the smallest lesions detectable in normal-appearing human colonic mu-
cosa. The administration of 0.2% or 0.6% aspirin in rats treated with the carcinogenic drug
azoxymethane promoted a 55% and 54% reduction, respectively, in the overall frequency of
ACF (crypts/focus). In particular, aspirin seemed to lower the frequency of medium and
large ACF but not of the small ones. These findings show that aspirin acts by delaying the
initiation of azoxymethane-induced CRC carcinogenesis in rats and suggest that it has a
chemopreventive effect on ACF [35,36].

Several randomized controlled trials (RCTs) revealed the efficacy of aspirin chemo-
preventive treatment on colorectal adenomas [37–40]. From 1993 to 2000, the Cancer
and Leukemia Group B (CALGB) enrolled individuals with prior CRC and treated them
with aspirin for several years. Investigators observed that these patients had a lower risk
of subsequent colonic adenomas and developed adenomas at later stages [38]. Aspirin
chemoprevention was also studied in FAP patients as a high-risk group. The Colorectal
Adenoma/Carcinoma Prevention Program (CAPP1) study, conducted from 1993 to 2005,
found that aspirin did not reduce colonic polyps in these patients, but one year or more
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of aspirin use decreased the largest polyp size [41]. The Aspirin/Folate Polyp Prevention
Study (AFPPS) enrolled 1121 patients with a recent history of adenomas as a moderate-risk
population from 1994 to 1998. In this group, low-dose aspirin had moderate chemopre-
ventive activity on adenomas in the large bowel [37]. Another study, the United Kingdom
Colorectal Adenoma Prevention (ukCAP) trial, was conducted from 1997 to 2005 to eval-
uate the chemoprevention of polyp formation in the bowels. This large study involved
945 patients with moderate CRC risk who already had one or more polyps removed. The
results showed that aspirin (300 mg/day) but not folate (0.5 mg/day) treatment reduced
the risk of colorectal adenoma recurrence and prevented the development of advanced
lesions [39].

In a randomized, double-blind, placebo-controlled trial carried out from 1997 to
2001 by the Association Pour la Prevention Par l’Aspirine du Cancer Colorectal (APACC),
two different endpoints, i.e., adenoma recurrence after one and four years, were analyzed.
Daily soluble aspirin was associated with a reduction in the risk of recurrent adenomas, as
detected by colonoscopy one year after starting treatment [40]. However, these promising
results were not confirmed after four years. Two possible explanations have been proposed
for this discrepancy. The first reason could be the lack of statistical power of the final
analysis performed at four years, resulting from the number of dropouts (about 30%)
mainly due to the long duration of the follow-up and the need for a third colonoscopy.
The second reason could be a differential effect of aspirin according to the exposure time
and the natural history of polyps. Indeed, the authors distinguished between the “true”
chemopreventive aspirin activity, which is only observed after 7–10 years of treatment, and
its anti-tumor effect detected at 1 year [42].

The Systematic Evaluation of Aspirin and Fish Oil (seAFOod) Polyp Prevention Trial
was a multicenter, randomized, double-blind, placebo-controlled study conducted from
2010 to 2017 on moderate-risk patients aged 55–73. The first endpoint was the detection
of adenomas during the first-year surveillance colonoscopy. Unfortunately, neither of the
two study treatments, i.e., eicosapentaenoic acid (EPA) and/or aspirin, were associated
with reduced adenoma rates [43]. Importantly, clinical trials commonly assess more than
one outcome. Usually, secondary endpoint results improve the overall interpretation of the
trial and facilitate the understanding of the extent of any possible intervention effect [44]. A
secondary analysis of the seAFOod trial provided evidence of the chemopreventive effects
of both agents. In particular, aspirin was effective in reducing the number of conventional or
serrated adenomas in the right colon [43]. Of note, a large cross-sectional study performed
from 2011 to 2014 revealed that adenoma prevention by aspirin treatment is abrogated in
active smoker patients [45].

Overall, the studies described above provided promising results, showing that aspirin
treatment can reduce adenoma risk, size, and recurrence.

Evaluation of Aspirin Treatment with CRC as an Endpoint

A large body of evidence suggests that regular prophylactic aspirin use reduces CRC
incidence and mortality both in the general average-risk population and in high-risk groups
consisting of patients with CRC-related genetic syndromes.

The first prospective cohort study with CRC as an endpoint was carried out from 1980
to 2000. This study, named the Nurses’ Health Study (NHS), enrolled 82,911 women and
demonstrated that regular long-term aspirin use reduces the risk of CRC [46]. However,
these findings were not always confirmed in subsequent studies.

The Physicians’ Health Study (PHS), which was conducted from 1982 to 1995, found
that alternate-day use of 325 mg of aspirin had no statistically significant effect on the
incidence of CRC after up to 12 years of follow-up [47]. Conversely, the Cancer Prevention
Study II (CPS-II), a prospective mortality study that was also started in 1982 and included
662,424 adults, showed that regular aspirin use at low doses may reduce the risk of fatal
CRC [48]. The prospective cohort study Health Professionals Follow-up Study (HPFS)
began in 1986 to determine whether the regular use of aspirin decreases the risk of CRC.
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Approximately 47,900 male subjects with an age ranging from 40 to 75 years completed
the questionnaire. In their report about the study, the authors highlighted that regular
users of aspirin (more than two times per week) had a lower risk of CRC and metastatic
CRC [49]. However, this association was not confirmed 4 years after the suspension of
aspirin administration [50].

Subsequently, the Women’s Health Study (WHS), a large placebo-controlled random-
ized trial that was started in 1993 and lasted 20 years, first failed to confirm that aspirin
protects against CRC. It was initially speculated that these findings could be related to the
low doses of aspirin used (100 mg every other day) or to the insufficient duration of the
treatment; however, it was more probably due to the short duration of the follow-up [51,52].
Indeed, an inverse association between the use of aspirin and CRC incidence emerged
10 years after patient randomization [52], and the 18-year follow-up of WHS patients
confirmed a reduction in CRC risk in patients administered with alternate-day low-dose
aspirin [52].

Interestingly, the 1997–2012 analysis based on the Colon Cancer Family Registry
(CCFR) showed that the use of aspirin decreased CRC risk in Lynch syndrome patients [53].
CRC incidence in this patient population was further investigated in the Colorectal Ade-
noma/Carcinoma Prevention Program 2 (CAPP2), which enrolled a high-risk cohort of
patients affected by Lynch syndrome from 2001 to 2008. While the analysis of the primary
outcome performed after two years of follow-up failed to show a reduction in CRC risk [54],
the analysis of the secondary outcome carried out after 10 years of follow-up revealed a
remarkable decrease in the risk of developing CRC [55].

In 2004, the US Preventive Services Task Force (USPSTF) recommended for the first
time the use of aspirin as a chemopreventive agent for the prevention of both cardiovascular
disease and CRC in non-high-risk populations. However, in 2015, it specified that the daily
use of aspirin was indicated in patients between 50 and 69 years of age with a specific
cardiovascular risk profile (10-year risk of cardiovascular disease, expected to live more
than 10 years without increased bleeding risk) [56,57].

The Japan Colorectal Aspirin Polyps Prevention (J-CAPP) study, conducted from 2007
to 2012, revealed that aspirin reduced the recurrence of adenoma or CRC in the non-smoker
population [58].

In 2008, the ASCOLT RCT started enrolling patients with high-risk Dukes’ B and C
CRC. Its primary endpoint was disease-free survival, while its secondary endpoint was five-
year overall survival. Patients who had undergone surgery and chemotherapy treatments
(oxaliplatin) were assigned to daily use of 200 mg aspirin or placebo for 3 years [59]. Follow-
up assessments were performed every 3 months for 3 years and then every 6 months for
another 2 years. To date, no results have been provided for this study.

In 2010, Rothwell and colleagues published the results of a follow-up analysis of
pooled individual patient data from four randomized trials of aspirin versus control and
one trial of different doses of aspirin [60]. The authors found that aspirin taken for several
years at doses of at least 75 mg daily reduced long-term CRC incidence and mortality.
Moreover, the greatest benefit was observed for cancers in the proximal colon, which are
not effectively prevented by colonoscopy [60].

The Aspirin Intervention for the Reduction of CRC Risk (ASPIRED) trial was launched
in 2010 to define which patients can benefit more from aspirin use [61]. This double-blind,
multidose, placebo-controlled study was addressed to patients previously diagnosed with
colorectal adenoma. 180 patients (60 per arm) were randomized to low-dose (81 mg/day)
or standard-dose (325 mg/day) aspirin or to placebo [61]. This trial is still recruiting, and
no results have been published yet.

As mentioned above, the CAPP2 study tested the effect of the daily use of high-dose
aspirin (600 mg per day) in patients with Lynch syndrome. Some years later (from 2014
to 2019), the CAPP3 trial was conducted on more than 1500 Lynch syndrome patients to
establish the most effective aspirin dose in this population. Patients were treated with
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100 mg, 300 mg, or 600 mg of aspirin. The first results of this study are expected by the end
of 2024 [62].

A randomized, double-blind, placebo-controlled, multicenter trial, named J-FAPP, was
carried out in Japan between September 2015 and March 2017 on another population at
high risk of CRC. This study enrolled patients with FAP to evaluate possible alternatives
to colectomy as a preventive treatment [58]. Patients were divided into four treatment
groups: daily aspirin (100 mg) plus daily mesalazine (2 g), daily aspirin (100 mg) plus
mesalazine placebo, aspirin placebo plus daily mesalazine (2 g), or aspirin placebo plus
mesalazine placebo. Treatment was continued until 1 week before the 8-month colonoscopy.
The results showed that daily use of low-dose aspirin reduced the recurrence of colorectal
adenomas larger than 5 mm and CRC in FAP patients [58].

Current guidelines support the recommendation of 100 mg/day aspirin to reduce
CRC risk only for Lynch syndrome patients [63–65]. In the next few years, the findings of
various ongoing trials on aspirin in CRC or in other settings, e.g., Aspirin to Reduce Risk of
Initial Vascular Events (ARRIVE) and Aspirin in Reducing Events in the Elderly (ASPREE),
are expected to add evidence in support of aspirin use in CRC chemoprevention.

The available data suggest that for aspirin to have chemopreventive effects, it should
be taken for 10–20 years and at doses greater than those used for cardiovascular prevention.
However, the optimal dose for specific patient groups, the exact duration of the treatment,
and when it should be started still need to be elucidated. Moreover, benefits should
be balanced against potential harms. Indeed, side effects of aspirin treatment include
gastrointestinal tract bleeding and intra/extracranial hemorrhages, mostly in patients older
than 70 years [66]. In this respect, it should be noted that eradication of Helicobacter
pylori infection before regular use of aspirin may reduce the incidence of gastrointestinal
complications by 25–30% [67].

Biomarkers for Aspirin Efficacy as a CRC Chemopreventive Agent

Over the last few years, several biomarkers have been investigated to help identify
which CRC patient groups can benefit the most from aspirin chemoprevention. Indeed,
altered levels of selected molecules, specific mutations, and certain genetic variants have
been shown to affect the efficacy of aspirin use as a CRC chemopreventive treatment. These
biomarkers are summarized in Table 2.

Interestingly, varying genetic susceptibility among patients enrolled in clinical trials
and among different CRC subtypes has emerged as an important factor that may influence
trial results. Indeed, an explanation for the conflicting results of some of the trials on
aspirin chemoprevention in CRC may be the presence of genetic variants in genes affecting
aspirin activity.

Uridine diphosphate glucuronosyltransferase 1A6 (UGT1A6) is involved in aspirin
metabolism by catalyzing its glucuronidation, and two UGT1A6 single-nucleotide poly-
morphisms (SNPs), rs2070959-G and rs4365457-C, have been shown to be associated with
30–50% lower enzyme activity compared with the wild type [68]. Of note, in studies com-
paring the effect of regular aspirin intake on adenoma risk in subjects with wild-type or
variant UGT1A6 genotypes, the benefit was largely confined to the groups carrying these
functional polymorphisms, while in subjects with wild-type UGT1A6, aspirin use was not
associated with a statistically significant reduction in the risk of adenoma [69,70].

Recently, a subgroup of patients enrolled in the AFPPS trial was investigated with
a genotyping approach. As a result, two novel SNPs, rs2430420-GG and rs28362380-TT,
which seemed to be potential markers of daily low-dose aspirin (81 mg) efficacy, were
identified in the promoter of the ornithine decarboxylase (ODC) gene [71].

In an attempt to define a valid non-invasive biomarker to stratify colorectal adenoma
risk, Bezawada and colleagues examined the role of PGE-M, the main prostaglandin E2
metabolite in the urine [72]. Results from this study demonstrated that regular use of
aspirin reduces the risk of developing advanced, large, and multiple adenomas in patients
with high levels of urine PGE-M [72].
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Interestingly, within the cohort of Lynch syndrome patients enrolled in the CCFR,
Resler and colleagues identified the intronic SNP rs2920421-GA in the ALOX12 gene as a
protective variant against CRC development [73].

In 2011, Chan and colleagues investigated the correlation between plasma inflamma-
tory markers and CRC risk and ascertained whether the use of aspirin was differentially
associated with the risk of CRC according to the levels of inflammatory markers [74]. The
authors found that plasma levels of serum soluble tumor necrosis factor receptor-2, sTNFR-
2, but not C-reactive protein (CRP) or interleukin-6 (IL-6), were associated with CRC risk.
Intriguingly, aspirin seemed to reduce CRC risk in women with high levels of sTNFR-2 [74].
Another inflammatory marker involved in aspirin response is the macrophage inhibitory
cytokine 1 (MIC1). It is involved in the TGFβ pathway and is believed to play a role in
CRC carcinogenesis, as higher MIC1 levels were associated with a 93% increased risk of
CRC [75]. Interestingly, aspirin users with high plasma levels of MIC1 were found to have
a higher risk of developing COX-2-positive CRC [75].

According to Thun and colleagues, daily treatment with low-dose aspirin (75 mg)
cannot achieve total inhibition of COX-2 in nucleated cells but causes permanent inhibition
of COX-1 in platelets. This, in turn, suppresses the induction of COX-2 in adjacent nucleated
cells of the intestinal mucosa at sites of injury during the early stages of tumorigenesis,
where platelets are likely to be recruited and activated [76]. The induction of COX-2 leads
to reduced apoptosis and increased cell proliferation and angiogenesis. Thus, even low
doses of aspirin lead to the downregulation of COX-2 in epithelial and tumor cells [76].

Moreover, it seems that regular aspirin use reduces the risk of COX-2-overexpressing
CRCs but not the risk of tumors showing weak or absent COX-2 expression [77]. In 2012,
based on the observation that COX-2 inhibition downregulates PI3K activity, Liao and
colleagues investigated the role of the PI3K signaling pathway in an attempt to identify
potential molecular biomarkers for aspirin chemoprevention. The authors found that
regular use of aspirin was associated with longer survival in patients with PIK3CA-mutated
CRC [78]. Moreover, the aspirin preventive effect was strongest in patients with tumors
showing both PIK3CA mutation and high COX-2 expression [78]. Conversely, BRAF-
mutated CRC cells seem to be less sensitive to aspirin’s effects [79]. Indeed, regular aspirin
use was associated with a lower risk of tumors with wild-type BRAF and high COX-2
expression. The association between the use of aspirin and decreased risk of BRAF-wild-
type CRC was found to be independent of KRAS mutation status [79]. This study suggested
that resistance to aspirin in BRAF-mutated cells is due to the upregulation of the MAPK
pathway, which results in increased COX-2 and prostaglandin E2 production. These
findings were extremely important since Lynch syndrome patients, which are at high risk
of CRC, mostly have BRAF-wild-type tumors [80].

Another mechanism of CRC chemoprevention by aspirin involves the inhibition of
the WNT pathway. Indeed, aspirin inhibits COX-mediated synthesis of prostaglandin E2,
a known activator of β-catenin signaling [81]. β-catenin plays a crucial role in the WNT
pathway, and high levels of nuclear β-catenin induce the loss of normal cellular architecture
and promote neoplastic conversion [82]. In 2013, Nan and colleagues showed that the SNP
rs6983267 on chromosome 8q24 is a CRC susceptibility locus that affects TCF7L2 binding
to CTNNB1, the gene encoding β-catenin, thereby affecting its transcriptional activity [83].
A lower CRC risk was observed with the use of aspirin in subjects carrying the T allele of
rs6983267, which is associated with reduced expression of the MYC oncogene, the gene
most proximate to the SNP. Conversely, the G allele of rs6983267 leads to constitutively
active binding of CTNNB1/TCF7L2 and MYC expression, thereby promoting CRC can-
cerogenesis [84]. According to these data, aspirin chemoprevention could thus be tailored
based on the rs6983267 genotype [83].

Considering the important role of hydroxyprostaglandin dehydrogenase 15-(NAD)
(15-PGDH) as an antagonist of COX-2 during CRC carcinogenesis, Fink and others hypoth-
esized that susceptibility to aspirin might differ according to 15-PGDH expression levels in
the colon mucosa [85]. In the cohorts analyzed by these authors, the regular use of aspirin
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decreased the risk of CRC only in patients with high 15-PGDH expression [85]. Both aspirin
and 15-PGDH reduced CRC risk by decreasing the amount of available prostaglandin.
Thus, 15-PGDH levels in normal colon mucosa could be taken advantage of as a marker to
identify potential target populations for the use of aspirin as a chemopreventive agent.

In 2015, an interesting study published in Journal of the American Medical Association
(JAMA) tested the interaction between the regular use of aspirin and SNPs across the
genome in relation to the risk of CRC. The authors identified two different SNPs associated
with enhanced benefits from aspirin treatment. In particular, they found an association
between regular use of aspirin and reduced risk of developing CRC in individuals carrying
the TT genotype of SNP rs2965667, which is located on chromosome 12p12.3, near the
microsomal glutathione S-transferase 1 (MGST1) gene, and in individuals carrying the AA
genotype of SNP rs16973225, which is located on chromosome 15q25.2, near the interleukin
16 (IL16) gene (Table 2) [86].

Altogether, these findings suggest that for maximum benefit, chemopreventive treat-
ment with aspirin should be tailored, taking into account the status of these (and possibly
other) biomarkers.

4.1.2. Non-Aspirin NSAIDs

Non-aspirin NSAIDs (NA-NSAIDs) competitively inhibit both COX-1 and COX-2 [87].
Various NA-NSAIDs have been evaluated for their activity as chemopreventive agents
in CRC. Two-month treatment with sulindac (150 mg daily), a non-selective NSAID, was
found to reduce the number of ACF lesions both in the general population and in a cohort
of individuals with a CRC family history, which represent groups at average and moderate
risk of developing CRC, respectively [88]. The benefit of sulindac was also evaluated
in a high-risk group consisting of FAP patients. In this population, the use of sulindac
(300 mg daily) was associated with a reduction in both the number and size of colonic
polyps [89–91]. However, after discontinuation of sulindac treatment, an increase was
observed in polyp size and number, although at levels that remained statistically lower
than baseline [89].

Unfortunately, several studies revealed that the use of non-selective NA-NSAIDs is
associated with a high risk of gastrointestinal bleeding, which is probably related to COX-1
inhibition. Thus, it was hypothesized that the use of selective COX-2 inhibitors could be
safer [92]. As a result, other NA-NSAIDs able to inhibit COX-2, including celecoxib and
rofecoxib, were tested in clinical trials. Celecoxib and rofecoxib were first studied in FAP
patients and individually found to cause a regression in polyp number and size compared
to placebo [93,94]. Moreover, they were shown to reduce the risk of sporadic colorectal
adenoma and CRC in a case-control study performed in the average-risk population [95].

The ability of these specific COX-2 inhibitors to prevent sporadic adenomas was
also assessed in three multicenter randomized trials. The first study, entitled Adenoma
Prevention with Celecoxib (APC), was launched in 1999. It included 2035 patients treated
with twice-daily doses of celecoxib (200 mg or 400 mg) and revealed a dose-dependent,
33–45% reduction in the number of detected sporadic adenomas after 3 and 5 years [96,97].
Moreover, it was found that the genotype influences the dose of celecoxib required to
reduce the risk of adenoma. Indeed, high-dose celecoxib was associated with a 5.6%
greater reduction in the 3-year cumulative incidence of adenomas compared with low-dose
celecoxib in patients carrying the SNP rs1057910-C, a genetic variant of cytochrome P450
2C9 (CYP2C9) (Table 2) [98]. The greater efficacy of high-dose celecoxib in preventing
colorectal adenomas thus appears to be confined to individuals with slow metabolizer
(CYP2C9*3) genotypes. This suggests that genetic variability influences susceptibility to
the potential benefits and risks of celecoxib.

In the second trial, entitled Prevention of Colorectal Sporadic Adenomatous Polyps
(Pre-Sap), 400 mg single-dose celecoxib or placebo was given daily to 1561 subjects who
had had adenomas removed before enrollment in the study [99]. This randomized, placebo-
controlled, double-blind trial demonstrated that the use of 400 mg of celecoxib once daily
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reduced the occurrence of colorectal adenomas within 3 years after polypectomy [99].
Interestingly, in a subsequent report, the authors observed a statistically significant lower
rate of new advanced adenomas in the celecoxib-treated group compared with the placebo
group 2 years after the last administration of celecoxib [100].

Finally, the third randomized study, named Adenomatous Polyp Prevention On Vioxx
(APPROVe), included 2586 patients with a history of colorectal adenomas, which were
treated daily with 25 mg of rofecoxib or placebo [101]. Rofecoxib was found to reduce
the formation of adenomas by 24% [102]; however, it was withdrawn from the market
by the Food and Drug Administration because of its increased cardiovascular risk [101].
Unfortunately, all NA-NSAIDS, including selective COX-2 inhibitors, are associated with
significant side effects, which hinder their use as CRC chemopreventive agents apart from
FAP patients due to their high risk of developing CRC [93,103].

4.1.3. 5-Aminosalicylates

As mentioned above, ulcerative colitis is considered a risk factor for developing
precancerous lesions and therefore CRC [104]. CRC prevention strategies for ulcerative
colitis patients are based on colonoscopy screening; however, the inflammatory background
can make the exam more difficult to read [105]. For this reason, the identification of
chemopreventive agents amenable to being used in ulcerative colitis patients is crucial.
Currently, the aspirin derivatives 5-aminosalicylates (5-ASAs) are the most effective agents
for treating ulcerative colitis. In addition, these drugs showed promising results in reducing
the risk of CRC in these patients [106]. Indeed, observational studies reported a dose-
dependent inverted association between the use of 5-ASAs and the risk of CRC, with the
lowest risk being observed when ulcerative colitis patients were treated with at least 1.2 g
of mesalamine equivalents per day [107]. In these studies, a lower risk of CRC was detected
when 5-ASAs were administered for a minimum of 2–6 months to 20 years. Importantly,
pooled results from these observational analyses support the potential use of 5-ASAs as
protective agents for CRC in ulcerative colitis patients [106–108].

4.1.4. Ursodeoxycholic Acid

Various reports suggest that ursodeoxycholic acid (UDCA), a synthetic bile acid, may
also be effective as a CRC chemopreventive agent in ulcerative colitis patients. Starting
from in vivo studies, UDCA was shown to be involved in the inhibition of ACF growth and
thus prevents the development of CRC [109,110]. Subsequently, a phase III trial in patients
with previously diagnosed sporadic adenomas revealed that UDCA treatment reduced the
recurrence of adenomas with high-grade dysplasia by almost 40% [111]. Moreover, UDCA
was found to reduce both colorectal dysplasia and CRC in patients with ulcerative colitis
and associated primary sclerosing cholangitis [112,113].

4.2. Metabolic Agents

Since type 2 diabetes and hypercholesterolemia are both considered risk factors for
CRC [114,115], various metabolic agents have been evaluated as chemopreventive factors.

4.2.1. Metformin

Metformin is an insulin-sensitizing drug belonging to the biguanide class and is com-
monly prescribed to patients with type 2 diabetes. Several reports revealed that metformin
also has an anti-tumor effect, including on CRC, in both diabetic and non-diabetic pa-
tients [116–119]. Studies performed in mice showed that the use of metformin reduced
ACF and adenomas in azoxymethane-treated animals and decreased polyp generation in
the APCMin/+ CRC mouse model [120,121].

Interestingly, in 2010, a short-term randomized study in non-diabetic patients showed
that metformin reduced by 40% the formation of CRC precancerous lesions such as ACF
compared to controls [122]. These findings recently prompted the investigators to perform
another RCT. Patients with both colorectal ACF and resectable polyps were recruited
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and treated with aspirin (100 mg) and/or metformin (250 mg) for 8 weeks, after which
polypectomy was performed to evaluate changes in the number of ACF. The final results of
this trial are still pending [123]. In another report, the use of low-dose metformin (250 mg
daily) for one year was associated with a 40% lower incidence of adenomas and a 33%
reduced number of total colon polyps without side effects in non-diabetic patients after
polypectomy [124]. Moreover, a meta-analysis of ten different studies revealed an inverse
association between metformin treatment and colorectal adenoma risk and colorectal
tumors in patients with diabetes and also showed a trend in lowering the risk of adenomas
in non-diabetic patients with a history of adenomas or CRC [125].

RCTs support the use of metformin mainly in diabetic patients at high risk of CRC and,
to a lesser extent, in other populations at moderate and high risk; however, epidemiology
data are not always consistent. Indeed, while most epidemiology studies showed decreased
CRC risk in metformin users [126–133], some reports failed to detect an association between
metformin treatment and the risk of developing adenomas or CRC [134–137]. Nevertheless,
based on a systematic review and meta-analysis of metformin intake and CRC mortality,
metformin was found to improve survival in CRC patients with diabetes [138].

Overall, the evidence gathered to date suggests that the use of metformin should
be considered in clinical practice as a chemoprevention strategy for CRC, especially in
diabetic patients.

4.2.2. Statins

Statins are inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) re-
ductase and are commonly prescribed for their lipid-lowering properties [139]. Of note,
HMG-CoA was found overexpressed in several CRC cell lines, and in vitro studies showed
that the use of statins inhibits cell proliferation and increases apoptosis [140,141]. These ob-
servations were confirmed in vivo in mice with chemically or genetically induced colorectal
neoplasia, in which the use of statins alone or with NSAIDs reduced the development of
CRC [142–144]. However, inconsistent results were gathered from studies investigating the
effect of statins on colorectal adenoma incidence in patient cohorts [145,146]. A population-
based case-control study, entitled the Molecular Epidemiology of Colorectal Cancer Study,
was conducted in northern Israel from 1998 to 2004 in patients previously diagnosed with
CRC. This observational study revealed that the use of statins for more than 5 years was
associated with a 47% decrease in the risk of developing CRC [147]. Moreover, two different
clinical trials showed that the use of pravastatin or simvastatin reduced the number of
new cases of CRC by 43% and 19%, respectively, over a 5-year follow-up period [148,149].
However, multiple meta-analyses failed to detect an association between statin use and
CRC risk [150–153]. Interestingly, genetic variation may influence the effect of statins on
CRC risk. Indeed, Lipkin and colleagues observed a significant association between statin
intake and a reduced risk of developing CRC in individuals carrying the AA genotype of
SNP rs12654264 in the HMGCR gene (Table 2) [154].

Considering their ease of administration, safety, tolerability, and low cost, along with
promising preclinical data, statins could offer substantial benefits as chemopreventive
agents; however, clinical studies provided conflicting results. Thus, further trials are
needed to ascertain the potential of statins in CRC chemoprevention.

4.2.3. Long-Chain Omega-3 Polyunsaturated Fatty Acids

Long-chain omega-3 polyunsaturated fatty acids (PUFAs) are important nutrients
involved in decreasing inflammation and are primarily found in dark-meat fish [155]. In
agreement with the role of inflammation in CRC carcinogenesis, fish consumption was
associated with a reduced risk of developing CRC [156,157]. In particular, two different
PUFAs, EPA and docosahexaenoic acid (DHA), were shown to have anti-neoplastic effects
in in vivo studies [158–160]. These results were confirmed in a cohort of patients at high risk
of CRC. Indeed, an RCT in FAP patients revealed that EPA intake (500 mg twice daily for
6 months) significantly reduced the number and size of rectal adenomas [161]. Consistent
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data were obtained in a secondary analysis of the previously mentioned multicenter,
randomized seAFOod trial, which found that EPA treatment was associated with a decrease
in left-sided and conventional adenomas [43].

Moreover, in a prospective cohort study in the average-risk general population, indi-
viduals taking fish oil supplements (4 or more days/week) for 3 or more years had about
50% lower risk of developing CRC, with greater benefits for colon cancer than for rectum
cancer and in men compared to women [162]. However, other meta-analyses of pooled
results from epidemiological and prospective cohort studies failed to report a significant
association when comparing the highest and lowest doses of fish or PUFAs [163–165].

Despite the attractive safety and tolerability profiles of long-chain omega-3 PUFAs
such as EPA and DHA, additional studies are needed to demonstrate their benefits in
reducing colorectal adenoma and CRC risk.

4.2.4. Folic Acid

Folic acid (or folate) is a micronutrient abundantly found in fruits and vegetables. It
is believed to potentially contribute to CRC chemoprevention by maintaining the normal
DNA methylation pattern needed for DNA synthesis and repair [166,167]. Various studies
showed that several factors, including the dosage of folic acid intake, may affect its role as
a preventive or promoting agent in CRC cancerogenesis [168,169]. Indeed, modest levels of
folate supplementation appear to suppress cancer development, while high doses seem to
enhance it [66]. Further evidence suggests that folate protects against adenoma formation
but promotes the progression of existing colorectal neoplasia [170]. In vivo studies provided
conflicting results showing a correlation between folate deficiency and a reduced risk of
developing CRC [166,171]. On the other hand, epidemiology studies found an association
between the intake of folic acid and a decreased risk of both colorectal adenomas and
CRC [172–174], while a meta-analysis of 8 RCTs failed to reveal a significant association
between folate treatment and adenoma recurrence in both high-risk and average-risk patient
populations [175]. Conversely, two different investigations involving women cohorts (the
NHS and the Canadian National Breast Screening Study) indicated that supplementation
with folate was protective against CRC, with dose-dependent benefits [176,177].

Further reports indicate that folate intake may be important in preventing the develop-
ment of CRC in patients with ulcerative colitis. Indeed, case-control studies revealed that
daily folate supplementation may reduce the risk of ulcerative colitis-related CRC [178,179].

The involvement of folate in CRC carcinogenesis has also been suggested by additional
findings. For example, it has been reported that folate deficiency may induce TP53 muta-
tion, with a low intake of folate being associated with an increased risk of TP53-mutated
CRC [180]. Moreover, polymorphisms that affect the activity of methylenetetrahydrofolate
reductase (MTHFR) may modify individual cancer risk [181]. MTHFR plays an important
role in folate metabolism by contributing to the maintenance of circulating levels of folate
and methionine, thereby preventing the accumulation of homocysteine [182]. Various
meta-analyses confirmed that homozygosity for the MTHFR C677T polymorphism (Table 2)
is associated with a significantly reduced risk of developing CRC [181,183,184].

Overall, there is no strong evidence that folate is an effective chemopreventive agent for CRC;
thus, further investigations are needed to support its potential use in CRC chemoprevention.

4.3. Antioxidants

Oxidative stress plays a major role in mutagenesis, carcinogenesis, and aging. As a
result, in recent years, there has been great interest in the potential health benefits of dietary
and antioxidant supplements for cancer prevention.

4.3.1. Selenium

Selenium is an essential cofactor for the antioxidant enzyme glutathione peroxidase,
which protects against oxidative damage to lipids, lipoproteins, and DNA [185,186]. The
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effect of selenium supplementation on CRC risk was reviewed by three different meta-
analyses of RCTs.

Bjelakovic and colleagues included in their analysis several studies investigating
various antioxidant agents, including selenium. While none of the other antioxidants
revealed beneficial effects, selenium seemed to potentially reduce gastrointestinal cancers
and associated mortality, although these observations could be influenced by the low
methodological quality of most of the assessed trials. Indeed, only one of the trials in which
selenium was given as a single antioxidant had a low-bias risk [187].

In 2011, Papaioannou and colleagues published a systematic review and meta-analysis
to assess the available evidence on the clinical effectiveness of antioxidants (vitamins A, C,
E, selenium, and β-carotene) for the prevention of adenomas and/or CRC in the general
population [188]. Their findings failed to show a positive effect associated with an increased
intake of antioxidants, including selenium [188].

By contrast, in another meta-analysis published in 2013, selenium seemed to show
promising results. Indeed, the authors found that it was the only antioxidant having a
positive effect on CRC risk reduction. In particular, selenium supplementation (200 µg/day)
was associated with a trend in lowering both colorectal adenoma recurrence (RR = 0.70)
and CRC incidence (RR = 0.88). Importantly, selenium intake was also related to decreased
overall mortality (RR = 0.91) [189].

As for its side effects, selenium supplementation has been associated with a statistically
significant (p < 0.01) increase in alopecia and grade 1–2 dermatitis [190].

4.3.2. Vitamins A, C, E and β-Carotene

Since antioxidants such as vitamins A, C, E, and β-carotene are involved in reducing
oxidative stress by neutralizing free radicals, their intake from the diet has been investigated
in various reports. A pooled analysis of prospective cohort studies found that the total
intake of vitamins C and E from the diet was associated with a modest decrease in CRC risk,
while no correlation was found for vitamin A or β-carotene [191]. However, a meta-analysis
of 12 RCTs evaluating the effects of vitamins A, C, and E as well as other compounds,
concluded that these agents were not effective as chemopreventive agents for CRC in the
general population [188].

The potential benefits of vitamin A were also assessed in two different meta-analyses of
observational studies [192,193]. In one of these analyses, a significant association between
vitamin A intake and a reduced risk of developing colon cancer was found when comparing
individuals taking vitamin A to non-users [192].

Three different studies investigating the effect of vitamin C on CRC prevention were
published from 2011 to 2015. All of them failed to show a protective role for this vita-
min [188,192,193].

The potential benefits of vitamin E as a CRC chemopreventive agent were evaluated in
seven different meta-analyses published between 2007 and 2015. Also in this case, none of the
studies could detect a significant effect of vitamin E intake on CRC risk [187–189,192–195].

In addition, several meta-analyses evaluating the effects of β-carotene supplementa-
tion (alone or in combination with other agents) on CRC risk were published from 2004
to 2013. Again, no significant association between β-carotene consumption and primary
prevention of CRC was detected in any of these studies [187–189,196,197].

Overall, the available evidence indicates that intake of these antioxidants is not associ-
ated with a reduction in the risk of developing CRC.

4.3.3. Curcumin

Curcumin is a phytochemical derived from turmeric (Curcuma longa). It is commonly
used as a dietary supplement and is renowned for its antioxidant properties; therefore,
its intake has been advocated for chemopreventive, anti-metastatic, and anti-angiogenic
purposes [198].
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Two studies were performed to assess the role of curcumin in adenoma chemopreven-
tion in FAP patients [199,200]. In the first study, FAP patients treated orally with 480 mg
of curcumin and 20 mg of quercetin 3 times a day for at least 6 months showed a 60%
reduction in polyp number and a 50% decrease in polyp size at endoscopy [199]. However,
in the second study, a double-blind randomized trial, no difference was found in the mean
number or size of lower intestinal tract adenomas in FAP patients treated with curcumin at
3000 mg/day for 1 year compared to placebo [200].

Based on these conflicting results, the potential chemopreventive effect of curcumin,
alone or in association with other agents, will have to be assessed in larger patient cohorts.

4.4. Minerals and Vitamin D

Recently, dietary supplements have been studied as chemopreventive agents. This
strategy is known as the ‘nutraceutical’ approach. Nutraceuticals are products that contain
vitamins and minerals as main ingredients and are consumed in different forms, such as
tablets, capsules, powder, or soft gels. This approach has the advantage of virtually no
harmful side effects [201].

4.4.1. Magnesium

Magnesium is an essential mineral for several processes involved in CRC carcinogene-
sis, including DNA synthesis and repair, cell proliferation, and apoptosis. In vivo studies
carried out about 30 years ago revealed that magnesium intake has a preventive effect on
CRC in rat models [202,203]. More recently, a meta-analysis of 8 prospective studies found
that higher magnesium intake seemed to be associated with a modest reduction in the risk
of CRC and, in particular, colon cancer, with a pooled relative risk of 0.81 and 0.94 for colon
and rectal cancer, respectively [204]. A concomitant report including a case-control study
on colorectal adenomas (768 cases; 709 polyp-free control subjects) and a meta-analysis of
colorectal adenomas (3 case-control studies) and carcinomas (6 prospective cohort studies)
provided similar results. Indeed, in the case-control study, inverse associations between
magnesium intake and the risk of colorectal adenomas were only observed in subjects
with a BMI ≥ 25 kg/m2 or older than 55 years and for advanced adenomas, while in the
meta-analysis, increased magnesium intake was associated with a lower risk of colorectal
adenomas and CRC [205]. Of note, in a meta-analysis of epidemiologic studies, evaluat-
ing the correlation between dietary magnesium intake and the risk of all cancers, higher
magnesium intake showed a significant preventive effect only in CRC, especially in female
participants [206].

Altogether, these findings suggest that magnesium intake is a promising approach in
CRC chemoprevention; however, important factors such as optimal dosage, appropriate
indications, and potential toxicity need to be further investigated in future studies with
larger samples.

4.4.2. Calcium

Calcium is believed to protect against CRC by binding bile acids and fatty acids within
the lumen of the colon or by directly inhibiting cell proliferation [207–209]. Its potential role
as a chemopreventive agent was first confirmed in in vivo studies showing that calcium
supplementation reduced CRC development in mouse models [210]. Subsequently, the
Calcium Polyp Prevention Study Group trial showed that patients with prior adenomas
taking 3 g of calcium daily were less prone to develop other adenomas [211]. This effect
was later confirmed for advanced adenomas [212] and was shown to continue for at least
5 years after discontinuation of calcium intake [213]. However, another study investigating
individuals with prior adenomas, entitled the European Cancer Prevention Intervention
Study, demonstrated that the intake of 2 g/day of calcium did not induce a significant
decrease in adenoma recurrence in this moderate-risk population [214]. Further evidence
emerged from a systematic review and meta-analysis performed by Carroll and colleagues
in 2010 [215]. The authors analyzed RCTs evaluating the efficacy of calcium intake in
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reducing colorectal adenomas and CRC risk in populations at average, moderate, and
high risk. Their findings showed that calcium intake, with or without vitamin D, did
not affect the relative risk of CRC in populations at average risk, whereas a statistically
significant reduction in the relative risk of adenoma recurrence was observed in individuals
at moderate risk (with a history of adenomas). On the other hand, FAP patients, which
are a population at high risk, did not benefit from supplemental calcium, as shown by the
number of developed adenomas [215].

Interestingly, evidence from observational studies suggested that CRC risk decreased
upon calcium supplementation [216,217], although some positive results were limited to
the distal colon and the rectum [218,219]. However, in the WHS trial, in which participants
received 500 mg of calcium carbonate and 200 IU of vitamin D twice daily for seven
years, no notable differences in CRC incidence were observed compared to placebo-treated
patients [220].

Although a modest protective effect of calcium intake emerged from observational
studies, conflicting results were reported in meta-analyses of RCTs. Thus, the efficacy of
calcium supplementation as a chemopreventive strategy needs further investigation.

4.4.3. Vitamin D

Vitamin D plays an important role in calcium metabolism and is also involved in
other physiological functions. It has been shown to reduce cell proliferation, inhibit an-
giogenesis, and promote cell differentiation, which are mechanisms through which it may
reduce the risk of CRC [221,222]. Moreover, it may be effective as a chemopreventive agent
because activated vitamin D receptors have been found to repress β-catenin signaling [8].
Additional data from in vivo studies also indicated that vitamin D has anti-inflammatory
activity [223,224]. Various RCTs and case-control studies designed to evaluate the role of
25(OH)-vitamin D revealed an inverse association with colorectal adenoma, CRC, and
rectal cancer [220,225,226]. Moreover, the NHS study showed that the relative risk of CRC
decreased linearly across quintiles of plasma 25(OH)-vitamin D concentration, with an
almost 50% risk reduction for the highest compared to the lowest quintile [227]. Simi-
larly, the Women’s Health Initiative (WHI) study showed an inverse correlation between
25(OH)-vitamin D levels and CRC relative risk [220]. However, the final results of this
study gathered after 7 years of follow-up did not support the use of vitamin D as a chemo-
preventive agent to reduce the risk of developing CRC. According to the investigators, this
could be due to various reasons. First of all, 7 years might have not been sufficient to reveal
an effect on cancer incidence since CRC tumorigenesis is a process that occurs over decades.
Furthermore, the vitamin D dose of 400 IU/day administered to study participants might
have been too low to yield significant results [220]. However, similar results were obtained
in a subsequent trial carried out with higher doses of vitamin D (2000 IU/day) associated
or not with omega-3 (1000 mg/day) vs. placebo, in which the investigators found no
difference in CRC incidence among the different patient groups [228].

In summary, meta-analyses, observational studies, and clinical trials evaluating the
use of vitamin D, alone or in association with calcium, to reduce CRC incidence provided
conflicting results. Larger clinical trials are thus needed to further ascertain the potential
benefits associated with the use of vitamin D as a CRC chemopreventive agent.

4.5. Hormone Replacement Therapy

The observation that pre-menopausal women are much more protected against CRC
than postmenopausal women prompted researchers to investigate the role of hormones
in reducing CRC risk [229]. Estrogens may act against CRC through different mecha-
nisms, including reduced production of insulin-like growth factor-I (IGF-1) or secondary
bile acids [230,231]. Based on this evidence, the correlation between hormone replace-
ment therapy and CRC risk has been evaluated in several prospective studies, most of
which showed an inverse association between hormone use and the risk of both colorectal
adenomas [232–235] and CRC [236–239]. These outcomes were also confirmed in various
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clinical trials. For example, in the Women Health Initiative (WHI) study, the combination
of estrogen and progestin was found to reduce the risk of developing CRC by almost
40% [240]. However, estrogen alone did not prove effective in reducing CRC risk [241,242],
a result that was also validated in other studies [243,244]. It was hypothesized that pro-
gestin enhances the estrogenic effect of conjugated estrogen, making combined therapy
more biologically active than estrogen alone in the colon [244]. Interestingly, a case-control
study in which participants were stratified for microsatellite instability (MSI) showed that
combined hormone therapy with estrogen and progestin was associated with a statistically
significant (about 40%) reduction in CRC risk in women with MSI-low or MSI-stable tumors,
while no clear correlation was found in women with MSI-high tumors (Table 2) [243].

Despite the benefits that may be associated with hormone replacement therapy in the
reduction in CRC risk, potential side effects should also be considered. Indeed, it has been
shown that postmenopausal hormones increase the risk of breast cancer and cardiovascular
events, and thus the risk-benefit profile must be carefully evaluated [242].

4.6. Dietary Products

International comparisons of tumor incidence suggest that people consuming a West-
ern diet are at an increased risk of CRC [75]. Based on this observation, nutritional chemo-
prevention based on fiber, whole grains, fruits, and vegetables has been proposed as a
potential strategy to reduce the risk of developing CRC. One of the possible mechanisms
involved in the protective effect of these products is that increased dietary fiber intake
accelerates the transit of lumen contents, thereby decreasing the exposure of colonic cells to
carcinogens [245]. Five different meta-analyses of observational studies published from
1990 to 2018 found that increased whole grain consumption was associated with a lower
risk of developing colon cancer and CRC, with a significant dose effect [246–250]. Further
meta-analyses of observational studies published from 1990 to 2017 investigated the role of
fruits and vegetables in CRC risk. Most but not all of these studies revealed that fruits and
vegetables have a protective effect against CRC, with a relative risk ranging from 0.48 to
0.92 [163,246,248,251–256]. However, only vegetable intake (100 g/day) showed a signif-
icant inverse association with CRC risk in a linear dose-response analysis. Interestingly,
patients who were previously consuming low amounts of fruits and vegetables showed the
highest CRC risk reduction after increasing their intake [251].

Dietary products such as fiber, fruits, and vegetables meet all the prerequisites of the
ideal chemopreventive agent; thus, it would be very important to gather further evidence
on their effects and optimal intake strategy in populations at average, moderate, and high
risk of developing CRC.

4.7. Vaccine Strategy

In the last few years, advances in medical sciences have led to the use of vaccines for
CRC immunoprevention, especially in high-risk patients. Patients with a hereditary genetic
syndrome predisposing to CRC are considered the ideal population for the development of
a preventive vaccine because the involved mutations are predictable, resulting in a specific
group of neoantigens that can be directly targeted by vaccines [257]. There are two types of
antigens that can be incorporated into cancer vaccines: tumor-specific antigens (TSAs) and
tumor-associated antigens (TAAs) [258]. TSAs are directly generated by somatic mutations
in tumor cells; as such, they are not expressed in normal cells.

Lynch syndrome patients carry indel mutations in microsatellites of coding genes,
which can result in the synthesis of frameshift peptides (FSP) [258]. FSPs are tumor-
specific neoantigens shared across patients with MSI. Recently, a clinical trial was con-
ducted to investigate vaccines based on a combination of three recurrent FSPs (TAF1B (−1),
HT001/ASTE1 (−1), AIM2 (−1)), all derived from indel mutations in coding microsatellite
regions [259]. Interestingly, all participants receiving the vaccine developed humoral and
T-cell responses against the neoantigens, and no severe vaccine-related side effect was
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identified. This trial demonstrated for the first time that vaccines can also be used for
preventing MMR-deficient cancers [259].

Subsequently, another TSA vaccine was developed based on FSPs shared across pa-
tients with MSI. This viral-vectored vaccine, encoded by 209 selected FSPs, was named
Nous-209. Nous-209 immunogenicity was first demonstrated in mice with potent and
broad induction of FSP-specific CD8 and CD4 T-cell responses. Then, the authors demon-
strated in vitro that the vaccine was processed by human antigen-presenting cells and was
subsequently able to activate human CD8 T-cells. These findings demonstrate the feasibility
of a vaccine for CRC prevention [260]. Currently, the Nous-209 vaccine is being studied in
two ongoing clinical trials (NCT04041310 and NCT05078866). The first one was launched
in 2019 and is designed to detect evidence of anti-tumor activity of the Nous-209 vaccine
plus pembrolizumab combination therapy in adults with unresectable or metastatic dMMR
or MSI-H CRC [261]. The second one is being conducted to evaluate the safety and effect of
the Nous-209 vaccine in Lynch syndrome patients [262]. No result has been posted yet for
either study.

In an effort to achieve a CRC preventive vaccine strategy also for FAP patients, ERBB3,
a pseudo-kinase member of the EGFR/ERBB family of receptor tyrosine kinases, was
targeted by using a synthetic peptide vaccine in APCMin/+ mice [263]. In this study, the
development of humoral and cellular immunity was associated with a reduced number of
polyps in vaccinated animals [263].

In populations with a moderate risk of developing CRC, such as individuals diag-
nosed with premalignant lesions in the colon, a strategy based on TAA vaccines provided
promising results. In a phase I/II open-label study, Kimura and colleagues tested a peptide
vaccine based on the TAA MUC1 in subjects with a history of advanced colorectal adenoma.
The vaccine consisted of 100 µg of a MUC1 100 mer peptide mixed with 500 µg of Hiltonol®,
an adjuvant toll-like receptor 3 agonist. The vaccine was administered at weeks 0, 2, and 10.
To assess memory response, a booster dose was given at week 52 [264]. This MUC1-derived
vaccine was well tolerated and capable of inducing long-term immunological memory [264].
More recently, this vaccine was used in a randomized, double-blind, placebo-controlled,
multicenter trial in individuals with prior adenomas. The primary outcome was adenoma
recurrence at the first colonoscopy >1 year after the initial vaccination. The authors ob-
served a nearly 40% reduction in adenoma recurrence in participants who had an immune
response at week 12 and with the booster injection [265].

Based on these encouraging results, further clinical studies are warranted to evaluate
the efficacy of peptide vaccines to prevent CRC malignant progression.

4.8. Target Therapy

Increasing interest has been directed toward the use of target therapy compounds,
alone or in combination with other treatments such as NSAIDs, as chemopreventive agents
for CRC. The most promising compound in this class is difluoromethylornithine (DFMO),
which is an irreversible inhibitor of ornithine decarboxylase, the enzyme that catalyzes
the conversion of ornithine to putrescine. This reaction is the first step in polyamine
synthesis, which is implicated in cell proliferation [266]. Interestingly, it has been found
that colorectal adenomas and CRC have increased levels of polyamines compared to
normal colon mucosa [267]. Based on this observation, DFMO was evaluated, alone
or in combination with other compounds, as a potential CRC chemopreventive agent.
A randomized, placebo-controlled, double-blind trial showed that DFMO (500 mg) and
sulindac (150 mg) administered once daily markedly reduced recurrent colorectal adenomas
with few side effects [268]. The efficacy of this combination was later compared with either
drug alone in a high-risk population consisting of FAP patients. It was found that the
incidence of disease progression in FAP patients was not significantly lower with the
combined treatment compared with DFMO or sulindac alone [269]. In another randomized
trial, FAP patients were treated with DFMO in combination with celecoxib [270]. The
combined treatment reduced the number of adenomas by 13%; however, no significant
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difference in adenoma count was observed compared to celecoxib alone. Conversely,
synergistic effects in the reduction in CRC risk were observed for DFMO with cyclosporine
and selenium [271,272]. However, it should be noted that a common side effect associated
with DFMO is ototoxicity [270].

A large body of evidence supports the role played by the epidermal growth factor
receptor (EGFR) in CRC tumorigenesis [273]. Indeed, EGFR has been found overexpressed
in up to 50% of CRCs [274]. As a result, efforts to target EGFR in order to reduce the risk of
CRC are ongoing [275]. Since in vitro and in vivo studies showed that the EGFR signaling
pathway is involved in COX-2 expression [276], a trial evaluating combined treatment with
the non-specific COX-2 inhibitor sulindac 150 mg twice daily and the EGFR tyrosine kinase
inhibitor erlotinib 75 mg daily vs. placebo was performed in FAP patients. The combination
of sulindac and erlotinib was found to lower the colorectal polyp burden after 6 months of
treatment [277]. Interestingly, a secondary analysis of this trial revealed that the reduction
in polyp burden occurred both in patients with an entire colorectum and in patients with
only a rectal pouch or rectum [278].

Since interleukin 23 (IL-23) has been shown to sustain CRC progression [279], a further
trial on the high-risk group of FAP patients was conducted using guselkumab, an anti-IL-23
monoclonal antibody. However, this study is ongoing, and no results have been published
yet [280].
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Table 1. Chemopreventive agents for CRC. Abbreviations: 5-ASAs, 5-aminosalicylates; ACF, aberrant crypt foci; AIM2, Absent In Melanoma 2; AMPK, 5-adenosine
monophosphate-activated protein kinase; AOM, azoxymethane; APACC, Association pour la Prévention par l’Aspirine du Cancer Colorectal; APC, Adenoma
Prevention with Celecoxib; APPROVe, Anomatous Polyp Prevention on Vioxx; ASCOLT, Aspirin for Dukes C and High-Risk Dukes B Colorectal Cancers;
ASPIRED, Aspirin Intervention for the Reduction of CRC Risk; ATP, adenosine 5′-triphosphate; CALGB, Cancer and Leukemia Group B; CAPP, Colorectal
Adenoma/Carcinoma Prevention Program; CCFR, Colon Cancer Family Registry; COX, cyclooxygenase; CPS II, Cancer Prevention Study II; CRC, colorectal
cancer; DFMO, difluoromethylornithine; EB3IV, recombinant protein ERBB3 residues 269–396; EBX, extracellular amino acid residues 299–323 of ERBB3; EGFR,
epidermal growth factor receptor; EPA, eicosapentanoic acid; ERBB3, Erb-B2 Receptor Tyrosine Kinase 3; FAP, familial adenomatous polyposis; FSP, frameshift
peptides GAd, Great Ape Adenovirus; HMG-CoA, hydroxy-β-methylglutaryl-CoA; HPFS, Health Professionals Follow-up Study; KLH, keyhole limpet hemocyanin;
IL-23, interleukin-23; HT001, protein asteroid homolog 1; MUC-1, mucin-1; MVA, Modified Vaccinia virus Ankara; N.A., not applicable; NA-NSAIDs, non-aspirin
non-steroidal anti-inflammatory drugs; NHS, Nurses’ Health Study; PHS, Physicians’ Health Study; ppm, parts per million; Pre-Sap, Prevention of Colorectal
Sporadic Adenomatous Polyps; PUFA, polyunsaturated fatty acid; RB, retinoblastoma; RCT, randomized controlled trial; seAFOod, Systematic Evaluation of Aspirin
and Fish Oil; TAA, tumor-associated antigen; TF1B, TATA-Box Binding Protein Associated Factor, RNA Polymerase I Subunit B; UDCA, ursodeoxycholic acid;
ukCAP, United Kingdom Colorectal Adenoma Prevention; USPSTF, US Preventive Services Task Force; WHS, Women’s Health Study.

Agent Primary
Target Mechanism Endpoint Study or Trial

(Years)
Participants

(n)
Age of

Participants
CRC Risk

Level Dose Median Time
of Follow-Up Results Ref

Anti-inflammatory agents

Aspirin

COX-1 and
COX-2

(irreversible
inhibition)

Inhibits
prostaglandin
synthesis and
the β-catenin

WNT pathway

ACF In vivo studies AOM-treated
rats N.A. N.A. 0.2–0.6% N.A. Reduced ACF

number and size [35,36]

Adenoma

CALGB
(1993–2000)

Individuals
with prior
CRC (517)

30–80 years High 325 mg daily 13 months Reduced adenoma
risk [38]

CAPP1
(1993–2005)

FAP patients
(133) 10–21 years High 600 mg

twice daily

After 1 year
and then
annually

Reduced adenoma
largest size [41]

AFPPS
(1994–1998)

Individuals
with prior
adenomas

(1121)

21–80 years Moderate 81 mg or
325 mg daily 3 years

Low dose but not
high dose reduced

the risk of
adenoma

recurrence

[37]

ukCAP
(1997–2005)

Individuals
with prior
adenomas

(945)

Younger than
75 years Moderate 300 mg daily 3 years Reduced adenoma

recurrence risk [39]
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Table 1. Cont.

Agent Primary
Target Mechanism Endpoint Study or Trial

(Years)
Participants

(n)
Age of

Participants
CRC Risk

Level Dose Median Time
of Follow-Up Results Ref

APACC
(1997–2001)

Individuals
with prior
adenomas

(272)

18–75 years Moderate 160 mg or
300 mg daily 1 and 4 years

Reduced adenoma
risk after 1 year,

but not after
4 years

[40,42]

seAFOod
(2010–2017)

Individuals
with prior
adenomas

(709)

55–73 years Moderate 300 mg daily 1 year

Reduced number
of conventional

and serrated
adenomas in the

right colon at
secondary analysis

[43]

Cross-
sectional
studies

(2011–2014)

General
population

divided into
smokers and
non-smokers
and people
with CRC

family history
(2918)

45–65 years Average and
moderate 81 mg 30 months

Reduced adenoma
risk only in

non-smoker users
[45]

CRC

NHS
(1980–2000)

General
population

(82,911 female)
30–55 years Average 325 mg 2 times

per week Every 2 years Reduced CRC risk [46]

PHS
(1982–1995)

General
population

(22,071 male)
40–84 years Average 325 mg on

alternate days 5–12 years No reduced
CRC incidence [47]

CPS II
(1982–1988)

General
population
(662,424)

57 years
(mean) Average 100 mg on

alternate days 10–18 years Reduced CRC risk [48]

HPFS
(1986–1990)

General
population

(47,900 male)
40–75 years Average 100 mg 2 times

per week 2–4 years
Reduced CRC risk

and
metastatic CRC

[49,50]

WHS
(1993–2004)

General
population

(39,876 female)

45 years or
older Average 100 mg on

alternate days 1-10-18 years

Reduced CRC
incidence only

after 10 or 18 years
of follow-up

[51,52]
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Table 1. Cont.

Agent Primary
Target Mechanism Endpoint Study or Trial

(Years)
Participants

(n)
Age of

Participants
CRC Risk

Level Dose Median Time
of Follow-Up Results Ref

CCFR
(1997–2012)

Lynch
syndrome
patients
(1858)

43 years
(mean) High Twice a week Not reported Reduced CRC risk [53]

CAPP2
(2001–2008)

Lynch
syndrome
patients

(861)

45 years
(mean) High 600 mg daily 2–10 years

No reduced CRC
risk after two years

of follow-up, a
strong reduction in

CRC risk at
10 years

[54,55]

USPSTF
(2004–2015)

General
population

and
individuals
with prior
adenomas

40–79 years Average and
moderate

75 mg daily or
on

alternate days
10–20 years Reduced CRC risk

and mortality [56,57]

J-CAPP
(2007–2012)

Individuals
with prior
adenomas

(311)

40–70 years Moderate 100 mg daily 2 years
Reduced CRC risk
in the non-smoker

population
[58]

ASCOLT
(2008-

ongoing)

Dukes’ B and
C CRC (1587)

18 years and
older High 200 mg daily

Every 3
months for

3 years + every
6 months for

another
2 years

Final results
pending [59]

Pooled
analysis

derived from
4 RCTs and
1 study of

different doses
of aspirin

(2010)

General
population

(13,500)
45–69 years Average 75 mg or

300 mg daily 20 years Reduced CRC risk
and mortality [60]

ASPIRED
(2010-

ongoing)

Individuals
with prior
adenomas

(180)

50–69 years Moderate 81 mg or
325 mg daily

Every
6 months

Final results
pending [61]
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Table 1. Cont.

Agent Primary
Target Mechanism Endpoint Study or Trial

(Years)
Participants

(n)
Age of

Participants
CRC Risk

Level Dose Median Time
of Follow-Up Results Ref

CAPP3
(2014–2019)

Lynch
syndrome
patients
(1500)

Not reported High
100 mg or
300 mg or

600 mg daily
5 years Final results

pending [62]

J-FAPP
(2015–2017)

FAP patients
(311) 40–70 years High

100 mg and/or
mesalazine

daily
8 months Reduced adenoma

and CRC risk [58]

NA-NSAIDs

COX-1 and
COX-2

(reversible
inhibition)

Inhibit
prostaglandin
synthesis and

WNT
signaling
pathway

ACF Sulindac

General
population

and
individuals
with a CRC

family history
(304)

55–75 years Average and
moderate 150 mg 2 months and

1 year
Reduced ACF

number [88]

Adenoma

Sulindac FAP patients
(46) 14–46 years High 300 mg daily 1 year Reduced adenoma

risk [89–91]

Double-blind,
placebo-

controlled
study

(celecoxib)
(1996–1998)

FAP patients
(77) 18–65 years High

100 mg or
400 mg

twice daily
6 months Reduced adenoma

risk [93]

Double-blind,
placebo-

controlled
study

(rofecoxib)

FAP patients
(21) Not reported High 25 mg 3-6-9 months Reduced adenoma

risk [94]

Nested
case-control

study
(rofecoxib and

celecoxib)

General
population

(3477)

65 years or
older Average Not reported 3 months Reduced adenoma

risk [95]

APC trial
(1999–2002)

Individuals
with prior
adenomas

(2035)

31–88 years Moderate

Celecoxib
200 mg or

400 mg
twice daily

3–5 years Reduced adenoma
risk [96,97]
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Table 1. Cont.

Agent Primary
Target Mechanism Endpoint Study or Trial

(Years)
Participants

(n)
Age of

Participants
CRC Risk

Level Dose Median Time
of Follow-Up Results Ref

Pre-Sap
(2001–2005)

Individuals
with prior
adenomas

(1561)

30 years or
older Moderate Celecoxib

400 mg daily 1–3 years Reduced adenoma
risk [99]

APPROVe
(2001–2004)

Individuals
with prior
adenomas

(2586)

40–96 years Moderate Rofecoxib
25 mg daily 1–3 years Reduced adenoma

risk [101]

5-ASAs Derivatives of
aspirin

Inhibit
prostaglandin

synthesis

Adenoma and
CRC

Observational
studies

(1972–2002)

Ulcerative
colitis patients Not reported High

Mesalamine
>1.2 g/day

Sulfasalazine
>2.4 g/day

10-20-30 years Reduced adenoma
and CRC risk [106–108]

UDCA Secondary bile
acids

Disruption of
the balance

between
colorectal
crypt cell

proliferation,
differentiation,
and apoptosis

ACF In vivo studies
AOM-treated
Fisher male

rats (344)
N.A. N.A.

UDCA 0.2% or
0.4% for
2 weeks

28 weeks Reduced ACF
number [109,110]

Adenoma and
CRC

Phase III
clinical trial

Individuals with
prior adenomas
and ulcerative
colitis patients

(1285)

40–80 years Moderate and
high 300 mg 3 years Reduced adenoma

and CRC risk [111]

Cross-
sectional

study

Ulcerative colitis
and primary

sclerosing
cholangitis

patients
(59)

Not reported High 9.9 mg/kg
daily 3 years Reduced adenoma

and CRC risk [112,113]

Metabolic agents

Metformin

Inhibits
mitochondrial
complex I to
prevent the

production of
mitochondrial

ATP

Activates
AMPK,

reduces cyclin
D1 expression
and RB phos-
phorylation

ACF and
adenoma In vivo studies AOM-BALB/c

mice N.A. N.A. 250 mg/kg
daily

6 weeks for
ACF and

32 weeks for
adenomas

Reduced ACF and
adenoma risk [120]

Adenoma In vivo studies APCMin/+

mice
N.A. N.A. 250 mg/kg N.A.

Reduced number
of intestinal polyps
larger than 2 mm

[121]

ACF, adenoma
Short-term

randomized
study

Non-diabetic
patients

(26)
65–75 years Average 250 mg daily 1 month Reduced ACF and

adenoma risk [122]
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Table 1. Cont.

Agent Primary
Target Mechanism Endpoint Study or Trial

(Years)
Participants

(n)
Age of

Participants
CRC Risk

Level Dose Median Time
of Follow-Up Results Ref

ACF RCT
Non-diabetic

patients
(60)

Not reported Average
250 mg and/or
aspirin 100 mg

daily
8 weeks Final results

pending [123]

Adenoma

Multicenter
double-blind,

placebo-
controlled,

randomized
phase 3 trial
(2011–2014)

Non-diabetic
patients

(498)

20 years or
older Average 250 mg daily 1 year

Reduced
prevalence and

number of
metachronous
adenomas or
polyps after

polypectomy

[124]

Adenoma and
CRC

Case-control
studies and

RCT
(2008–2016)

Non-diabetic
and diabetic

patients,
individuals
with prior

adenomas and
CRC

(8726)

40–89 years
Average,

moderate, and
high

≥250 mg daily 4–15 years Reduced adenoma
and CRC risk [125]

Epidemiology
studies

Non-diabetic
and diabetic

patients
20–80 years Average and

high
250 mg or

500 mg daily 1–3 years Conflicting results [126–137]

CRC Retrospective
cohort study

Diabetic
patients
(60,520)

40 years or
older High 750–4000 mg

daily 5 years Reduced CRC risk [138]

Statins

HMG-CoA
reductase
(reversible
inhibition)

Disruption of
the

mevalonate
pathway

Adenoma and
CRC

In vivo studies APCMin/+

mice
6-week-old N.A.

Pitavastatin at
doses of 20
and 40 ppm

14 weeks

Reduced
adenomas in a

dose-dependent
way

[142]

In vivo studies AOM-treated
F344 rats 5-week-old N.A.

Atorvastatin
100–200 ppm

and/or
sulindac

100 ppm or
naproxen
150 ppm

45 weeks Reduced CRC risk [143]
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Table 1. Cont.

Agent Primary
Target Mechanism Endpoint Study or Trial

(Years)
Participants

(n)
Age of

Participants
CRC Risk

Level Dose Median Time
of Follow-Up Results Ref

In vivo studies APCMin/+

mice
6-week-old N.A.

Atorvastatin
100 ppm
and/or

celecoxib
300 ppm

80 days Reduced adenoma
and CRC risk [144]

Adenoma

Review of
endoscopy

and pathology
databases

Individuals
with prior
adenomas

(2626)

63 years
(mean) Moderate Not reported 3–5 years Reduced adenoma

risk [145]

Secondary
analysis of
data from
three large
colorectal
adenoma

chemopreven-
tion
trials

General
population

(2915)
Not reported Average Not reported Not reported No reduced

adenoma risk [146]

CRC

Molecular
Epidemiology
of Colorectal
Cancer Study
(1998–2004)

Individuals
with prior

CRC
(3968)

58–80 years High Not reported 5 years Reduced CRC risk [147]

Double-blind
trial

Patients with
myocardial

infarction who
had plasma

total
cholesterol

levels below
240 mg/dL

and
low-density
lipoprotein

(LDL)
cholesterol

levels of 115 to
174 mg/dL

(4159)

50–70 years Moderate Pravastatin
40 mg daily 5 years Reduced CRC risk [148]
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Table 1. Cont.

Agent Primary
Target Mechanism Endpoint Study or Trial

(Years)
Participants

(n)
Age of

Participants
CRC Risk

Level Dose Median Time
of Follow-Up Results Ref

Survival study

Patients with
angina

pectoris or
previous

myocardial
infarction and

serum
cholesterol

levels of 5.5 to
8.0 mmol/L

(4444)

35–70 years Moderate Simvastatin
20–40 mg daily 5 years Reduced CRC risk [149]

Systematic
review and

meta-analysis

General
population 40–80 years Average Not reported 3–6 years Conflicting results [150]

Long-Chain
Omega-3
PUFAs

Components
of

phospholipids
that form cell
membranes

Anti-
proliferative,

apoptotic, and
anti-

angiogenic
properties

ACF In vivo studies Wistar rats N.A. N.A. EPA 18.7%;
DHA 8% 48 h Reduced ACF

number [158]

ACF, adenoma,
and CRC In vivo studies

APCMin/+

mice,
AOM-treated

mice,
xenograft mice

N.A. N.A. EPA 4–16%;
DHA 0.75–6%

1 day-32
weeks

Reduced ACF
number, adenoma,

and CRC risk
[159]

Adenoma

Prospective
study

(2006–2007)

FAP patients
(55)

18 years or
older High EPA 500 mg

twice daily 6 months Reduced adenoma
risk [161]

seAFOod
(2010–2017)

Individuals
with prior
adenomas

(709)

55–73 years High EPA 2 g daily 1 year

Reduced number
of conventional
and left-sided
adenomas at

secondary analysis

[43]

CRC

Prospective
study

(2000–2008)

General
population

(68,109)
50–76 years Average

Fish oil more
than 4 days
per week

3 years Reduced CRC risk [162]

RCTs
(2001–2011)

General
population,

FAP patients
40–75 years Average and

high

EPA 0.09 vs.
0.03 g daily

DHA 0.18 vs.
0.08 g daily

3–22 years Conflicting results [163–165]
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Table 1. Cont.

Agent Primary
Target Mechanism Endpoint Study or Trial

(Years)
Participants

(n)
Age of

Participants
CRC Risk

Level Dose Median Time
of Follow-Up Results Ref

Folic acid

Coenzyme in
single

transfers in the
synthesis of
nucleic acid
and amino

acid
metabolism

Maintaining
normal DNA
methylation
required for

synthesis and
repair

ACF and CRC In vivo studies AOM-treated
rats (159) 6-week old N.A. 0, 2, 5, or

8 mg/kg 34 weeks Conflicting results [166,171]

Adenoma and
CRC

Epidemiology
studies

General
population Not reported Average 100 µg or

600 µg daily Not reported Reduced CRC risk [172–174]

Adenoma RCT

General
population,
individuals
with prior
adenoma

65 years
(mean)

Average and
high

0.5 to 2.5 mg
daily 36–88 months No reduced

adenoma risk [175]

CRC

NHS
(1980–1994)

General
population

(88,756 female)
30–55 years Average 200 µg or

400 µg daily Every 2 years Reduced risk of
CRC [176]

Canadian
National

Breast
Screening

Study

General
population

(5681)
Not reported Average 200 µg or

400 µg daily 10 years Reduced risk of
CRC [177]

Case-control
studies

Ulcerative
colitis patients Not reported High 0.4–1.0 mg

daily Not reported Reduced risk of
CRC [178,179]

Antioxidant agents

Selenium

Trace minerals
required to

make
selenium-

containing
proteins

Antioxidant
properties

Adenoma and
CRC RCT General

population
62 years
(mean) Average 200 µg daily 6–12 years Conflicting results [187–189]

Vitamin A

Combines
with retinol-

binding
protein

Regulates
nuclear

receptors that
are involved in

tumor
formation

CRC Observational
studies

General
population 34–80 years Average 1 µg daily 8–10 years Conflicting results [192,193]

Vitamin C

Cofactor in
collagen

formation and
tissue repair

Reduces
oxidative

stress
CRC RCT General

population 40–80 years Average
75 mg or

250 mg or 500
mg daily

5–9 years No reduced CRC
risk

[188,192,
193]
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Table 1. Cont.

Agent Primary
Target Mechanism Endpoint Study or Trial

(Years)
Participants

(n)
Age of

Participants
CRC Risk

Level Dose Median Time
of Follow-Up Results Ref

Vitamin E

Primarily ends
up in cell and

organelle
membranes

Inhibits lipid
peroxidation

in membranes
CRC RCT General

population Not reported Average
30 mg or
50 mg or

600 mg daily
6–12 years No reduced CRC

risk

[187–
189,192–

195]

β-carotene Functions as a
provitamin A

Antioxidant
properties CRC RCT General

population
55 years
(mean) Average 20 mg or

30 mg daily 2–12 years No reduced CRC
risk

[187–189,
196,197]

Curcumin

Inhibits
reactive
oxygen-

generating
enzymes

Antioxidant
properties

Adenoma
Prospective

study
FAP patients

(5) Not reported High

Curcumin
480 mg and
quercetin

20 mg orally
3 times a day

Every
3 months

Reduced adenoma
risk [199]

RCT
(2011-2016)

FAP patients
(44) 18–85 years High 3000 mg daily 1 year No reduced

adenoma risk [200]

Minerals and vitamin D

Magnesium

Involved in
metabolism,

insulin
resistance, and
inflammation

Important for
DNA

synthesis and
repair

ACF and CRC In vivo studies
Methylazoxymethanol
acetate-treated
male F344 rats

N.A. N.A.
250 ppm or

500 ppm
1000 ppm

4-6-8 weeks Reduced ACF and
CRC risk [202,203]

CRC In vivo studies
Methylazoxymethanol
acetate-treated
male F344 rats

N.A. N.A. 500 ppm or
1000 ppm 227 days Reduced CRC risk [203]

CRC
Prospective

studies
(2005–2012)

General
population
(338,979)

40–75 years Average 50 mg daily 8–28 years Reduced CRC risk [204]

Adenoma Case-control
studies

General
population,
individuals
with a CRC

family history

18–75 years Average and
moderate 100 mg daily Not reported Reduced adenoma

risk [205]

Adenoma and
CRC

Epidemiologic
and

prospective
studies

General
population
(1,236,004)

Not reported Average 300–400 mg
daily Not reported Reduced adenoma

and CRC risk [206]
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Table 1. Cont.

Agent Primary
Target Mechanism Endpoint Study or Trial

(Years)
Participants

(n)
Age of

Participants
CRC Risk

Level Dose Median Time
of Follow-Up Results Ref

Calcium

Incorporated
into the
skeleton

Bile
acid-binding

capacity

CRC In vivo studies

1,2-
Dimethylhydrazine

(DMH)-
treated Slac

mice
(80)

N.A. N.A. 1.24–3.0% 24 weeks Reduced CRC risk [210]

Adenoma

Calcium Polyp
Prevention

Study Group
RCT

Individuals
with prior
adenomas

(930)

61 years
(mean) Moderate 3 g daily 1-4-9 years

Reduced advanced
adenoma

recurrence risk
[211–213]

The European
Cancer

Prevention
Intervention

Study

Individuals
with prior
adenomas

(665)

35–75 years Moderate 2 g daily 3 years
No significant

effect on adenoma
risk

[214]

Systematic
review and

meta-analysis
of RCTs
(2010)

General
population,
individuals
with prior
adenomas,

FAP patients

16–80 years
Average,

moderate, and
high

500 mg−2 g−3

g daily
6 months–

7 years

No positive results
for average- and

high-risk
populations,

reduced adenoma
risk in individuals
with a history of

adenomas

[215]

CRC

Cancer
Prevention

Study II
Nutrition

Cohort
(1992-1993)

General
population
(1,277,499)

50–74 years Average 500 mg daily 5 years Reduced CRC risk [216]

Prospective
study
(2000)

General
population

(61,463)

53 years
(mean) Average 900 mg daily 12 years Reduced CRC risk [217]

NHS and
HPFS

General
population
(135,342)

30–75 years Average 500–1250 mg
daily 10–16 years Reduced distal

colon cancer risk [218]

Prospective
study

General
population

(34,702)
Not reported Average Not reported 9 years Reduced rectal

cancer risk [219]
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Table 1. Cont.

Agent Primary
Target Mechanism Endpoint Study or Trial

(Years)
Participants

(n)
Age of

Participants
CRC Risk

Level Dose Median Time
of Follow-Up Results Ref

WHS
General

population
(36,282 female)

50–79 years Average

Calcium
carbonate

500 mg and
vitamin D 200
IU twice daily

7 years No reduced CRC
risk [220]

Vitamin D

Regulates gene
transcription
by binding
vitamin D
receptors

Inhibits
proliferation

and
angiogenesis

Adenoma,
CRC, and

rectal cancer
RCT

General
population,
individuals
with prior
adenomas

50–79 years Average and
moderate 400 IU daily 7 years Conflicting results [220,225,

226]

CRC RCT
General

population
(25,871)

50 years or
older Average

Vitamin D
2000 IU and

omega-3 fatty
acids 1 g daily

5 years No reduced CRC
risk [227,228]

Hormone replacement therapy

Hormones

Increase the
production of

insulin-like
growth factor-I
or secondary

bile acids

Inhibit
proliferation
and promote

cell cycle
arrest and
apoptosis

Adenoma Prospective
studies

Individuals
with prior
adenomas

(411)

30–74 years Moderate Not reported Not reported Reduced adenoma
risk [232–235]

CRC

The Molecular
Epidemiology
of Colorectal
Cancer Study
(1998–2006)

Individuals
with prior

CRC
(1234)

60 years or
older High Not reported 5 years Reduced CRC risk [236–239]

Women’s
Health

Initiative
(WHI)
RCT

General
population

(post-
menopausal

status)
(10,739)

50–79 years Average

Conjugated
equine estrogen
0.625 mg plus

medroxyproges-
terone acetate
2.5 mg daily

7 years No reduced CRC
risk [240–242]

Dietary products

Fibers

Involved in the
metabolism and

catabolism of
bioactive food
components

Decrease the
exposure of

colonic cells to
carcinogens

CRC RCT General
population 25–76 years Average 90 g daily

increments 6–16 years Reduced CRC risk [246–250]
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Table 1. Cont.

Agent Primary
Target Mechanism Endpoint Study or Trial

(Years)
Participants

(n)
Age of

Participants
CRC Risk

Level Dose Median Time
of Follow-Up Results Ref

Fruits and
vegetables

Involved in
the

metabolism
and

catabolism of
bioactive food
components

Decrease the
exposure of

colonic cells to
carcinogens

CRC RCT General
population 34–82 years Average 100 g daily

increments Not reported Reduced CRC risk
[163,246,
248,251–

256]

Vaccines

FSP-based
vaccines

TAF1B(−1),
HT001(−1),

and AIM2(−1)

Development
of humoral
and T-cell
responses

against FSPs

CRC
Phase I/IIa
clinical trial
(2011–2015)

Lynch
syndrome

(22)

55 years
(mean) High

3 cycles of
subcutaneous
vaccinations
mixed with
Montanide
ISA-51 VG

6 months
Enhanced immune

response against
FSP peptides

[259]

Nous 209
viral-vectored

vaccine
209 FSPs

Neoantigen-
based vaccine

for the
treatment of
MSI tumors

Immunogenic
response In vivo studies CB6F1 mice 6-week-old N.A.

GAd-209-FSP
and

MVA-209-FSP
were

administered
i.m. at the
dosage of

4× 108 vp and
4× 107 ifu,
respectively

3 weeks CD8 and CD4
T-cell responses [260]

CRC
Phase I/II

clinical trial
(2019–2025)

Individuals
with prior

CRC
(34)

18 years or
older High

GAd-209-FSP
low dose;

MVA-209-FSP
low dose;

GAd-209-FSP
high dose;

MVA-209-FSP
high dose;

GAd20-209-FSP;
RP2D;

MVA-209-FSP,
RP2D

Up to
110 weeks

Final results
pending [261]
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Table 1. Cont.

Agent Primary
Target Mechanism Endpoint Study or Trial

(Years)
Participants

(n)
Age of

Participants
CRC Risk

Level Dose Median Time
of Follow-Up Results Ref

Phase Ib/II
clinical trial
(2021–2025)

Lynch
syndrome
patients

(45)

18 years or
older High

GAd-209-FSP
and

MVA-209-FSP

Every
12 months

Final results
pending [262]

Synthetic
peptide ERBB3

Development
of humoral
and cellular
immunity

against FSPs

Adenoma In vivo studies APCMin/+

mice
3-week-old N.A.

100 mg of EBX
peptide, EB3IV,
or KLH in 100
mL of a 50/50

mixture of
antigen and

CFA

3 months Reduced recurrent
adenomas [263]

TAA vaccine
MUC-1-
derived
peptides

Anti-MUC-1
IgG response Adenoma

Phase II
clinical

trial—RCT
(2008–2013)

Individuals
with prior
adenomas

40–70 years Moderate

100 µg MUC1
+ Hiltonol®at
week 0, 2, 10,

and 52

54 weeks Reduced recurrent
adenomas [264,265]

Target therapy

DFMO

Ornithine
decarboxylase
(irreversible
inhibition)

Inhibits
polyamine
synthesis

Adenoma

RCT

Individuals
with prior
adenomas

(375)

40–80 years Average and
high

DFMO 500 mg
daily and/or
sulindac 150

mg

36 months Reduced recurrent
adenomas [268]

RCT FAP patients
(171)

18 years or
older High

DFMO 750 mg
and/or

sulindac150
mg

48 months Conflicting results [269]

RCT FAP patients
(112)

38 years
(mean) High

DFMO 250 mg
and/or

celecoxib 400
mg

6 months Modest reduction
in adenoma risk [270]

Erlotinib

EGFR tyrosine
kinase

inhibitor
(reversible
inhibition)

Inhibits EGFR
signaling Adenoma RCT

(2010–2014)
FAP patients

(92)
41 years
(mean) High

Erlotinib 75
mg daily
and/or

sulindac 150
mg twice daily

6 months Reduced recurrent
adenomas [277,278]

Guselkumab

Monoclonal
antibody

against IL-23
subunit alpha

Inhibits IL-23
signaling Adenoma RCT FAP patients Not reported High Not reported Not reported Final results

pending [280]
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Table 2. Molecular biomarkers associated with CRC chemopreventive agent effects. Abbreviations: 15-PGDH, 15-hydroxyprostaglandin dehydrogenase; APC,
Adenoma Prevention with Celecoxib; CCFR, Colon Cancer Family Registry; COX-2, cyclooxygenase 2; CRC, colorectal cancer; GSEC, Genetic Susceptibility to
Environmental Carcinogens; GWAS, genome-wide association study; HPFS, Health Professionals Follow-up Study; MECC, Molecular Epidemiology of Colorectal
Cancer; MIC1, macrophage inhibitory cytokine 1; MSI, microsatellite instability; NHS, Nurses’ Health Study; PGE-M, prostaglandin E2 major metabolite; PI3KCA,
phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha; RCT, randomized controlled trial; SNP, single-nucleotide polymorphism; sTNFR-2, serum
soluble tumor necrosis factor receptor-2; UGT1A6, UDP glucuronosyltransferase family 1 member A6.

Biomarker Type Chemopreventive Agent Study (Number of
Participants) Endpoint Description Outcome Ref

rs2070959-G Genetic variant Aspirin NHS (1062) CRC G genotype SNP Protective against CRC [69,70]

rs4365457-C Genetic variant Aspirin NHS (1062) CRC C genotype SNP Protective against CRC [69,70]

rs2430420-GG Genetic variant Low-dose aspirin AFFPS nested cohorts
within an RCT (370) Adenoma GG genotype SNP Protective against CRC [71]

rs28362380-TT Genetic variant Low-dose aspirin AFFPS nested cohorts
within an RCT (370) Adenoma TT genotype SNP Protective against CRC [71]

PGE-M Urine levels Aspirin NHS and AFPPS (748) Adenoma High levels Protective against CRC [72]

rs2920421-GA Genetic variation Aspirin CCFR
(1621) CRC GA genotype SNP Protective against CRC [73]

sTNFR-2 Plasma levels Aspirin NHS (280) CRC High levels Protective against CRC [74]

MIC1 Plasma levels Aspirin NHS and HPFS (618) CRC High levels Promotes COX-2-positive
CRC [75]

COX-2 Overexpression in tumor Aspirin NHS and HPFS (632) CRC High levels Protective against CRC [76,77]

PIK3CA Mutation in tumor Aspirin NHS and HPFS (2190) CRC PIK3CA exons 9 and 20 mutated in
tumor Protective against CRC [78]

BRAF Mutation in tumor Aspirin NHS and HPFS (1226) CRC BRAF V600E mutated in tumor Promotes CRC [79]

rs6983267-T Genetic variant Aspirin NHS and HPFS (840) CRC T genotype SNP Protective against CRC [83,84]

15-PGDH Colon mucosa levels Aspirin NHS and HPFS (270) CRC High levels Protective against CRC [85]

rs2965667-TT Genetic variant Aspirin GWAS (8,634) CRC TT genotype SNP Protective against CRC [86]

rs16973225-AA Genetic variant Aspirin GWAS (8,634) CRC AA genotype SNP Protective against CRC [86]

rs1057910-C Genetic variant Celecoxib APC (2,035) Adenoma C genotype SNP Protective against CRC [98]

rs12654264-AA Genetic variant Statins MECC (4,187) CRC AA genotype SNP Protective against CRC [154]

MTHFR 677TT Genetic variant Folic acid GSEC (30,650) CRC TT genotype SNP Protective against CRC [181–183]

MSI Microsatellite instability Hormone replacement therapy
(estrogen and progestin) Case-control studies CRC MSI-low or stable tumors Protective against CRC [243]



Int. J. Mol. Sci. 2023, 24, 7597 34 of 45

5. Conclusions

The identification of which subgroups of individuals will most likely benefit from and
should thus be treated with chemopreventive agents is one of the priorities of preventive
medicine; however, no conclusive data have been gathered to date to answer this crucial
question in the field of CRC. Indeed, many aspects have to be considered, including CRC
risk level, potential side effects, genetic factors such as SNPs or other variants, and the
determination of intermediate endpoints such as ACF or colorectal adenomas.

While some of the chemopreventive agents discussed in this review are currently
recommended for subjects with increased risk of genetic syndromes predisposing to CRC,
such as Lynch syndrome or cardiovascular diseases, chemoprevention largely remains an
unmet need for populations at average and moderate risk of developing CRC. Some natural
and synthetic compounds have actually shown promising results in these populations
and may reach clinical practice in the near future, yet further studies are needed to find
compounds that can meet all the requirements of the ideal chemopreventive agent, i.e.,
efficacy, safety, tolerability, low cost, wide availability, and ease of administration.
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