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Abstract: The human gut microbiome plays an important role in health, and its initial development
is conditioned by many factors, such as feeding. It has also been claimed that this colonization is
guided by bacterial populations, the dynamic virome, and transkingdom interactions between host
and microbial cells, partially mediated by epigenetic signaling. In this article, we characterized the
bacteriome, virome, and smallRNome and their interaction in the meconium and stool samples from
infants. Bacterial and viral DNA and RNA were extracted from the meconium and stool samples of 2-
to 4-month-old milk-fed infants. The bacteriome, DNA and RNA virome, and smallRNome were
assessed using 16S rRNA V4 sequencing, viral enrichment sequencing, and small RNA sequencing
protocols, respectively. Data pathway analysis and integration were performed using the R package
mixOmics. Our findings showed that the bacteriome differed among the three groups, while the
virome and smallRNome presented significant differences, mainly between the meconium and stool
of milk-fed infants. The gut environment is rapidly acquired after birth, and it is highly adaptable
due to the interaction of environmental factors. Additionally, transkingdom interactions between
viruses and bacteria can influence host and smallRNome profiles. However, virome characterization
has several protocol limitations that must be considered.

Keywords: bacteriome; virome; smallRNome; gut microbiota; meconium; holobiont; multiomics;
metagenomics; breast-fed; formula-fed

1. Introduction

The human gut harbors more than 100 trillion different microorganisms (mainly
bacteria, but also viruses, protozoa, archaea, and fungi) that are in a symbiotic relationship
with the host. The gut microbiota plays a crucial role in human health, and there is crosstalk
between the intestinal microbiota and immune development, metabolism, neurogenesis,
gastrointestinal integrity, and many other systems across the lifespan, beginning during
fetal development [1,2]. Thus, the role of the microbiota in numerous intestinal and
extraintestinal diseases has become increasingly apparent [3,4], and more research is now
being performed on how alterations in the early gut microbiota could influence child and
adult health [5].

The acquisition and development of the gut microbiota in infancy is generally believed
to begin at birth, with the mode of delivery being the first contact with microbiota (vaginal
population for vaginal delivery and skin population for cesarean delivery) [6]. Although the
womb has long been assumed to be sterile, some evidence of nonpathogenic bacteria in the
placenta, amniotic fluid, and fetal gut has questioned this concept [7,8]. Regardless of this
debate’s outcome, microbes from maternal and environmental sources rapidly and densely
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colonize the neonate at birth. The development and maturation of the gut microbiota are
dynamic and nonrandom processes, where positive and negative interactions between
significant bacterial taxa start within a few hours after delivery [9–11]. Following birth,
another factor that determines early colonization is the type of milk feeding: breast-fed
or formula-fed. It has been suggested that breastfeeding can have a protective effect on
illness development due to its repercussions on gut microbiota composition, for example,
in celiac disease [12]. The mother’s age, length of gestation (i.e., full-term versus preterm),
smoking habits, and body mass index are also important factors to be considered. After the
first 6 months of life, the gastrointestinal tract slowly acquires a more complex bacterial
community, which substantially increases its diversity when solid food is introduced.
Microbiota diversity expands during the first two years of life. At this moment, the
community converges toward an adult-like state, and it remains stable throughout the
years until old age, the moment when microbiota diversity starts decreasing [13].

Although the microbiota is mainly composed of bacteria and viruses, most published
microbiome studies have focused on the bacterial community, as they clearly dominate the
microbiome, and techniques used for bacterial community studies are more developed and
standardized than those for the viral population (namely, the virome) [14]. However, the
gut virome is highly correlated with the intestinal bacterial population, and its main com-
position corresponds to the Caudovirales order [15,16], formed mostly by bacteriophages.
Bacteriophages are viruses that infect bacteria, and thus have various mechanisms that
could control the density, diversity, and network interactions inside gut-associated bacterial
communities, such as lysogeny and gene transfer [17,18]. The gut virome is also acquired
from an early age, and similar to the bacteriome, many factors influence its shaping (e.g.,
type of feeding) [19].

Although the external environment plays an important role in shaping the gut micro-
biome community, the host itself can modulate the microbial ecosystem through different
mechanisms, such as epigenetic factors, including small RNAs.

Small RNAs consist of different types of regulatory small transcripts, with microRNAs
(miRNAs) being the best known and most studied class, and have been described as key
regulators in multiple cellular functions. miRNAs are a family of very stable small non-
coding RNAs containing approximately 20 nucleotides that regulate gene expression [20],
and changes in their expression and function can be associated with numerous diseases.
Recent studies have suggested bidirectional interactions between host cells and the gut
microbiota via miRNAs that participate in shaping the gut microbiota after they are secreted
from intestinal epithelial cells. Likewise, host miRNA expression can be influenced by the
microbiota through microbe-derived metabolites that might potentially influence the host
physiology [21–24].

To gain a better understanding of how the gut microbial composition is shaped in early
life stages, we conducted a fecal holo-omic study in newborn infants (meconium samples
were obtained) and in exclusively milk-fed infants, either with human milk (breast-fed
group) or formula milk (formula-fed group). This study included the analysis of fecal
bacterial and viral populations, as well as the identification of host small RNA signaling
in feces.

2. Results
2.1. Bacteriome Analysis

The microbiota population at the phylum level showed differences among the three
groups. Proteobacteria was the predominant phylum in meconium samples (41.6%) and in
the formula-fed group (46.4%), mainly due to the Enterobacteriaceae family, which was less
prevalent in the breast-fed group (27.8%). The distribution of the Firmicutes phylum was
similar between the three experimental groups (30–33%), and the fundamental difference
in the meconium group compared to the two other groups was the higher presence of the
Bacteroidetes and Actinobacteria phyla. However, none of these differences were statisti-
cally significant. In contrast, the Verrucomicrobiota phylum showed that the Akkermansia
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genus was significantly different in the formula-fed group, whose abundance was lower in
comparison to the other two groups (p < 0.05).

Nevertheless, α diversity measured using the Shannon index remained unchanged
between groups (Figure 1B). However, when β diversity (between-sample diversity) was
measured by unweighted UniFrac and compared using ANOSIM and PERMANOVA
analysis, both tests showed significant segregation of the bacterial composition across
different categories (Figure 1A), with the breast-fed group showing the most differentiated
cluster (ANOSIM R = 0.07, p = 0.03; PERMANOVA pseudo-F = 2.11, p = 0.02).
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using Shannon, with the Y-axis representing the Shannon score values.

Afterwards, split statistical analysis was performed to determine the differences
between meconium and stool samples from milk-fed infants to assess the effect of the
feeding type.

2.1.1. Taxonomic Differences in the Gut Bacteriome of Meconium, Formula-Fed, and
Breast-Fed Infants

The statistical comparisons of the taxa among the meconium group versus the other
two groups showed that the Prevotellaceae family (p < 0.001), specifically Prevotella (p < 0.001),
Paraprevotella (p < 0.001), and Alloprevotella (p < 0.01) genera, were higher in the meconium
group. There was also a higher presence of Treponema (p < 0.01) and Rikenellaceae (p < 0.001)
genera in this group. On the other hand, Enterococcus (p < 0.01), Epulopiscium (p < 0.01),
and Lactobacillus (p < 0.05) genera were lower in the meconium group compared to the
other two.

Separately, the Enterobacteriaceae family, represented by Citrobacter (p < 0.01), Enterobac-
ter (p < 0.01), and Klebsiella (p < 0.05) genera, was less abundant in the meconium samples
compared to the formula-fed group, in contrast to Akkermansia (p < 0.05) and Muribacullaceae
(p < 0.05) genera, which are more abundant in the meconium samples.

When comparing the meconium and breast-fed groups, the Veillonella genera (p < 0.05)
had a lower presence in meconium samples.

2.1.2. Influence of Feed Type on Microbiota

When comparing the two types of feeding, the formula-fed group presented higher
levels of Prevotellaceae and Enterobacteriaceae families and a lower abundance of Bacteriodaceae
(Figure 2), and these differences were maintained at the genus level, as already mentioned
above. Additionally, at the genus level, the formula-fed group showed higher levels of
Micrococcus, Dorea, and Lactococcus (p < 0.05). In contrast, the Lactobacillae family was more
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abundant in the breast-fed group (p < 0.05), while the genera Parasutterella, Butyricimonas,
Desulfovibrio, and Acinetobacter (p < 0.05) were more abundant.
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2.2. Virome Analysis

Since viral enrichment was performed from stool samples, DNA and RNA virus
analyses were performed separately and interrogated at the species level. After sequencing,
only a small percentage of reads could be assigned to viral taxonomy (19.14% for DNA
viruses and 1.86% for RNA viruses).

2.2.1. Differences in DNA Virome, but Unchanged RNA Virome

The sequences obtained from the DNA virome were assigned to 495 different species,
predominantly of the order Caudovirales (phages). For RNA viruses, 54 different species
were identified: 53.7% of species belonged to bacteriophages, 31.5% to animal viruses,
7.4% to cloning vectors, 3.7% to phytoviruses, and the remaining 3.7% were crAssphages
or undetermined.

There was no difference between α-diversity (measured using the Shannon index)
values among groups in either DNA viruses or RNA viruses. However, when β-diversity
was measured by Bray–Curtis and compared using ANOSIM and PERMANOVA analysis,
both tests showed significant segregation of the DNA viral composition across different
categories (Figure 3A), with the breast-fed group showing the least differentiated cluster
(ANOSIM R = 0.29, p = 0.01; PERMANOVA pseudo-F = 2.47, p = 0.01). Any difference was
observed when comparing RNA viral populations (Figure 3B).
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2.2.2. Presence of Exclusive Bacteriophages in Milk-Fed Groups

Acinetobacter phages, Bifidobacterium phages, Lactococcus phages, Leuconostoc phages,
Mycobacterium phages, Stenotrophomonas phages, and Yersinia phages were detected only
in samples from milk-fed infants, but not in meconium samples (p < 0.05). Additionally,
Aeromonas phages and Bacteroidetes phages were detected only in the breast-fed group,
while Klebsiella and Lactobacillus phages were found only in the formula-fed group.

2.2.3. Virome Differences among the Experimental Groups

The abundance of more than half of Enterococcus phages, Pseudomonas phages, and
Streptococcus phages was significantly higher in breast-fed samples (p < 0.05), and detected
only in a very low proportion of the meconium samples. Additionally, the breast-fed group
showed a higher abundance (p < 0.05) of Escherichia phages than the formula-fed group.
In contrast, eleven of thirteen species of CrAss phages and Staphylococcus phages SauM
Remus were predominant in meconium samples (p < 0.05).

Finally, meconium samples presented a higher abundance (p < 0.05) of two RNA
viruses (Shamonda virus and Oxbow virus) than the other two groups.

2.3. Transkingdom Correlation

Several bacterial families correlate with phages and DNA/RNA viral species. Pseu-
domonadaceae and Veillonellaceae families strongly correlated with Burkholderia phage phiE094
(0.56 and 0.62, respectively). This makes sense in Pseudomonadaceae since phage phiE094 is a
lytic phage mainly hosting species from the Proteobacteria phylum, but not in Veillonellaceae
(Firmicutes phylum). As expected, another positive correlation was observed between a
group of Bacteroidetes phages and the Bacteroidetes phylum (0.39) (Figure 4). In contrast,
the Serratia (−0.27), Stenotrophomonas (−0.32), Aeromonas (−0.31), and Citrobacter (−0.30)
phages were negatively correlated with the Bacteroidetes phylum. Additionally, as shown
in Figure 5, the Bacteroidetes phylum was positively correlated with the Shamonda virus
(0.47) and Oxbow virus (0.50), and negatively correlated with Enterobacteria phages (−0.35).
Another association found was the positive correlation between Gammaherpesvirus (0.3,
human virus) and the Deinococcota phylum.
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2.4. SmallRNome Analysis

Starting from an average of 20.4 million single-end reads per sample, an average of
0.26% of the reads were assigned to human small RNA annotations. Collectively, 1918 hsa-
miRNAs and 1514 hsa-sncRNAs were assigned with at least one read. For the differential
expression analysis, both sets were combined, and only genes with 3 counts in at least
8 samples were considered, resulting in 227 human small RNAs.

In human annotation, in the meconium group, 13% of the assigned reads were for
miRNAs, and the remaining 87% were assigned to sncRNA. In the breast-fed group, the
percentages were 28% for miRNAs and 72% for sncRNA, and in the formula-fed group, the
percentages were 17% for miRNAs and 83% sncRNA. The remaining reads not aligned to
hsa-miRNAs and hsa-sncRNAs were further mapped against the human genome to identify
those derived from human RNAs. However, 91.12% of the input reads remained unaligned.
Then, these reads were mapped to bacterial, archaeal, and viral genomes, receiving the
highest percentage of reads with bacteria (on average, 99% of the assigned reads), followed
by virus with 0.73%, and less than 0.01% of the aligned reads associated with archaea.

2.4.1. SmallRNA Expression Differences between Meconium and Milk-Fed Sample

Several significant differences were found in small RNA expression when comparing
meconium samples with the other two experimental groups (Figure 6). Specifically, ten
small RNAs were upregulated, and eight were downregulated in meconium samples
compared with formula-fed samples. Similarly, upon comparing meconium with breast-
fed samples, twenty small RNAs were upregulated, and ten were downregulated in the
meconium group (considering a threshold of 1.5). See Supplementary Online Material for
further details (Tables S1–S3).
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2.4.2. Interference of Meconium miRNA in Metabolic Pathways

For a deeper functional analysis, the target genes for 17 differentially expressed miR-
NAs were predicted using several online algorithms (described in the methods section)
and mapped to the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways using
the KEGG Mapper. False discovery rate (FDR) correction was calculated. As presented
in Table 1, six possible pathways were listed with a p < 0.001, including the signaling
pathways of transforming growth factor β (TGF-β), fatty acid metabolism, and adherens
junction, among others.

2.4.3. Main Difference in mascRNA among Milk-Fed Infants

A single significant difference was found between the breast-fed and formula-fed groups:
MALAT1-associated small cytoplasmic RNA (ENST00000611300.1) was downregulated in the
formula-fed group compared to that in the breast-fed group (considering a threshold of 1.5).
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Table 1. Significantly targeted pathways.

KEGG Pathway FDR
Adjustment

Targeted
Genes

Number of Involved
miRNAs

Fatty acid biosynthesis <0.001 7 6

Cell cycle <0.001 87 6

Fatty acid metabolism <0.001 31 7

Adherens junction <0.001 55 9

Lysine degradation <0.001 33 9

TGF-beta signaling pathway <0.001 55 7

2.4.4. Correlation between small RNA Profile and Bacterial Population

To investigate the relationships between small RNAs and the intestinal microbiome,
all small RNA expression levels and microbial family abundance were analyzed together.
As shown in Figure 7, the expression of several small RNAs correlated (positively and nega-
tively) with bacterial families. For instance, there were strong positive correlations between
MT-IC-201 and five bacterial families: Bacteroidia (0.73), Peptococcaceae (0.73), Spirochaetaceae
(0.60), Erwiniaceae (0.62), and Muribaculaceae (0.64). mir 4792-201 had a positive correlation
with five different families: Clostridiales (0.65), Clostridia (0.63), Spirochaetaceae (0.68), Bac-
teroidia (0.66), and Peptococcaceae (0.60). On the other hand, the Bacteroidales order had the
largest number of correlations; in addition to the two previously mentioned correlations,
it had six more positive correlations (one mitochondrial RNA (0.62), one SnoRNA (0.60),
and four miRNAs (0.6–0.66)) and five negative correlations (mir-103b-1 (−0.58), mir-378a
(−0.56), mir-101-1 (−0.56), has-let-7a-2 (−0.58), and mir-103a-2 (−0.57)). The other family
that had many correlations was the Peptococcaceae family, which presented five positive
(two mitochondrial RNAs (0.60) and three miRNAs (0.6–0.64)) and five negative (mir-
103b-1 (−0.56), mir-378i (−0.55), mir-101-1 (−0.56), hsa-let-7a-2 (−0.58), and mir-103a-2
(−0.57)) correlations. Finally, the Muribaculaceae family had one positive correlation with
mitochondrial RNA (0.63).

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 9 of 19 
 

 

To investigate the relationships between small RNAs and the intestinal microbiome, 
all small RNA expression levels and microbial family abundance were analyzed together. 
As shown in Figure 7, the expression of several small RNAs correlated (positively and 
negatively) with bacterial families. For instance, there were strong positive correlations 
between MT-IC-201 and five bacterial families: Bacteroidia (0.73), Peptococcaceae (0.73), Spi-
rochaetaceae (0.60), Erwiniaceae (0.62), and Muribaculaceae (0.64). mir 4792-201 had a positive 
correlation with five different families: Clostridiales (0.65), Clostridia (0.63), Spirochaetaceae 
(0.68), Bacteroidia (0.66), and Peptococcaceae (0.60). On the other hand, the Bacteroidales 
order had the largest number of correlations; in addition to the two previously mentioned 
correlations, it had six more positive correlations (one mitochondrial RNA (0.62), one 
SnoRNA (0.60), and four miRNAs (0.6–0.66)) and five negative correlations (mir-103b-1 
(−0.58), mir-378a (−0.56), mir-101-1 (−0.56), has-let-7a-2 (−0.58), and mir-103a-2 (−0.57)). 
The other family that had many correlations was the Peptococcaceae family, which pre-
sented five positive (two mitochondrial RNAs (0.60) and three miRNAs (0.6–0.64)) and 
five negative (mir-103b-1 (−0.56), mir-378i (−0.55), mir-101-1 (−0.56), hsa-let-7a-2 (−0.58), 
and mir-103a-2 (−0.57)) correlations. Finally, the Muribaculaceae family had one positive 
correlation with mitochondrial RNA (0.63). 

 

 

Figure 7. Sparse partial least squares (sPLS). The following graph indicates the correlation between 
the variables of each dataset: X-axis with sncRNAs, and the Y-axis with the bacteriome highest tax-
onomic level that can be classified (p_phylum, c_class, o_order, f_family). The ± 0.5 threshold was 
used for generation of the figure. 

3. Discussion 
The gut microbiota, which includes bacteria, archaea, fungi, and viruses, plays an 

important role in human health. The development of an adult intestinal microbiota begins 
with the primary colonization of the infant gut, the composition of which may be affected 
by several early-life factors, such as birth mode or feeding type [25]. In the present study, 
we investigated the bacteriome and virome composition of neonates at the moment of 
delivery (meconium), and, we characterized the bacterial and viral populations depend-
ing on the feeding type (breast/formula milk) in 2- to 4-month-old infants. As in many 
other studies, bacteria were detected in all meconium samples [26–28], contrasting the 

Figure 7. Sparse partial least squares (sPLS). The following graph indicates the correlation between
the variables of each dataset: X-axis with sncRNAs, and the Y-axis with the bacteriome highest
taxonomic level that can be classified (p_phylum, c_class, o_order, f_family). The ±0.5 threshold was
used for generation of the figure.



Int. J. Mol. Sci. 2023, 24, 8069 9 of 17

3. Discussion

The gut microbiota, which includes bacteria, archaea, fungi, and viruses, plays an
important role in human health. The development of an adult intestinal microbiota begins
with the primary colonization of the infant gut, the composition of which may be affected
by several early-life factors, such as birth mode or feeding type [25]. In the present study,
we investigated the bacteriome and virome composition of neonates at the moment of
delivery (meconium), and, we characterized the bacterial and viral populations depend-
ing on the feeding type (breast/formula milk) in 2- to 4-month-old infants. As in many
other studies, bacteria were detected in all meconium samples [26–28], contrasting the
past hypothesis that considered meconium sterile [29]. Metagenomic analysis of meco-
nium samples showed large interindividual differences and low species diversity, with
Proteobacteria in the highest proportion (42%), followed by Firmicutes (30%), Bacteroidetes
(18%), Actinobacteria (10%), Verrucomicrobia (0.4%), and Desulfobacterota (0.2%). These
results are consistent with previous studies showing a high abundance of Proteobacteria
and a lower abundance of Bacteroidetes [30,31]. The Proteobacteria predomination in
meconium samples is explained by its similarity with the bacterial communities found in
the mother’s placenta, regardless of the method of delivery, and different from those found
in the maternal vagina, according to previous studies [32]. In our study, the most abundant
genera in meconium samples were Escherichia-Shigella, Bacteroides, Bifidobacterium, Strep-
tococcus, Clostridia, Staphylococcus, and Enterococcus, with the last two previously reported
as highly abundant [31,33]. As we expected, meconium samples presented statistically
significant differences in the microbial population compared to the 2–4-month-old infant
groups. Muribaculaceae (p < 0.001), Prevotella (p < 0.01), and the Propionibacteriaceae family
(p < 0.05) were higher in the meconium group than in the infants’ stool from later develop-
mental stages. Despite these differences, the bacterial composition of the meconium group
was more similar to that of the formula-fed group than to that of the breast-fed group,
suggesting that maternal milk has a higher modulating effect than formula, as published
previously [34]. It is worth noting that the virome has not been previously fully explored.
In our study, the meconium group presented a high abundance of crAssphages compared
to the other two lactating groups, agreeing with the published evidence that crAssphage
abundance increases with age [35] and supporting the hypothesis of vertical transmission
during delivery from the mother. In contrast, the eukaryotic viruses in the meconium
group were in low abundance, and many species were not even present in comparison
with the two milk-fed groups. Our results showed that viral species richness presented low
values at month 0 (meconium), but higher richness after four months, and reported that
the vast majority of taxonomic classifications were phage families, according to a previous
study [36].

Regarding the type of feeding, the infant intestinal microbiota was predominantly
represented by microorganisms from the Proteobacteria phylum (46% in formula-fed and
28% in breast-fed) and Firmicutes phylum (33% in both groups), followed by those from
the Bacteroidetes phylum (11% in the formula-fed group and 23% in the breast-fed group)
and Actinobacteria phylum (11% in the formula-fed group and 16% in the breast-fed
group). Alpha diversity was higher in the formula-fed group, and beta diversity clearly
differentiated the groups into two clusters according to previous studies [33]. In fact, the
formula-fed group presented higher levels of Prevotellaceae and Enterobacteriaceae families
and a lower abundance of Bacteriodaceae, partially in agreement with a previous study that
showed higher levels of Enterobacteriaceae, but no changes in Bacteriodaceae [37]. Focusing
on the virome analysis, there were few significant differences in DNA viruses according to
the type of feeding: only Shigella phage SfIV, Burkholderia phages, and Streptomyces phages
presented greater relative abundances in the formula-fed group. Additionally, Escherichia
phage JLK-2012 and Microviridae sp., both RNA viruses, were only present in the breast-
fed group. These results contrasted with previous studies [18] where viruses infecting
human cells were found only in formula-fed infants. Additionally, a previous study [35]
showed that after four months of life, human cell viruses were more prominent, including
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Adenoviridae, Anelloviridae, Caliciviridae, and Picornaviridae, but we did not find any of these
species; this result can be explained by the size of these viruses that might have remained
in the filter during the enrichment steps.

Nevertheless, human pathogens (eukaryotic viruses) are comparatively well docu-
mented but are outside of infections, and their abundance is low in a healthy human gut.
In contrast, phages are a natural component of every environment’s intricate microbiome,
depending on if it is a place where they can live freely, such as the human gut. There
is evidence that phages and bacteria coexist and evolve together, but their interaction in
the gut environment is poorly described [38]. To analyze this behavior, we correlated
both profiles (bacteriome and virome) for the whole cohort. Notably, most of the positive
correlations occurred between a bacteriophage and its host, i.e., the greater the presence of a
bacteriophage, the greater the presence of its bacterial host. This agrees with the hypothesis
that bacteria–phage interactions work as a network in which cross-infective phages invade
other bacteria, in addition to their putative bacterial hosts, to obtain a dynamic equilibrium
with all microbial communities of the gut microbiome to regulate gut homeostasis [39].

It is important to note that the current knowledge of the virome is very limited, and
most previous virome profiling studies have focused on the DNA virome [40]. Here, we
carried out two separate protocols for the DNA and RNA viromes, and as expected, we
mainly identified both DNA and RNA bacteriophages [40]. However, as in previous studies,
several protocol limitations can be identified [41]. First, the experimental enrichment
method introduces some bias; for example, large viruses, such as herpesviruses, may be
retained in microfiltration. Second, viruses have a small genome, and their proportion in
comparison with bacteria and the host genome is very small. Third, two different protocols
were needed for the study of RNA and DNA viruses. Virus taxonomy classification is
an additional challenge. Whereas viruses are traditionally classified according to their
morphology, their classification based on genomic sequences is more complex. Global viral
diversity has not yet been characterized, and many viruses do not have reference sequences
in databases. Due to this shortcoming, 90% of the virome sequenced reads that we obtained
did not share homology with any reference database, a situation also reflected in other
published studies [42,43].

While many studies have focused on how crucial a balanced microbiota is for home-
ostasis, epigenetic signaling controlling microbiota evolution has received less attention.
miRNAs have recently been described to interact with the gut microbiota in a reciprocal
manner and affect the host’s health status. In this study, we characterized the fecal and,
importantly, meconium small RNAs for the first time to determine differences between
infant milk feeding and the impact on the intestinal holobiont. To add more evidence
to this statement, we integrated bacteriome data with smallRNome to gain a better un-
derstanding of the overall regulation. We observed several miRNAs that were expressed
significantly differently in meconium compared with both milk-fed group samples. For
example, mir-30d and mir-30a were upregulated in the meconium group in comparison
with the formula-fed group. These two miRNAs belong to the miR-30 family and play a
crucial regulatory role in the development of tissues and organs, and in the pathogenesis of
clinical diseases [44]. These miRNAs are, for the first time, linked with infant microbiota or
type of feeding. Because these miRNAs come from the mother, it is not surprising to find
that newborns may be more protected against developmental problems [45] than milk-fed
infants. On the other hand, MALAT1-associated small cytoplasmic RNA was found to be
upregulated in breast-fed samples compared to formula-fed samples. This small RNA has
been described to regulate TLR-induced proinflammatory and antiviral responses, suggest-
ing its participation in the immune response in the early stages of life [46]. Thus, breast-fed
infants show an improved and well-prepared response to inflammation and viral infection.
Moreover, mir-24 and mir-29 were downregulated in the meconium group in comparison
to in the breast-fed group, and high expression of both miRNAs in maternal plasma was
associated with a high risk of preeclampsia [47]. Moreover, mir-21 was downregulated in
the meconium group compared to the breast-fed group. Low expression of this miRNA
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in the placenta was associated with intrauterine growth restriction [48] or with maternal
cigarette smoking during pregnancy [49]. Additionally, some metabolic pathways were
predicted to be affected by some of these miRNAs that were expressed significantly differ-
ently in meconium samples. One of the detected pathways was TGF-β signaling, which
regulates many aspects of physiological embryogenesis and adult tissue homeostasis [50],
and was associated with infant birth weight [51]. Another metabolic pathway was related
to adherens junctions, which may play a crucial role in regulating the intestinal barrier. In
addition, we report strong correlations between the Clostridia, Spirochaetaceae, Erwiniaceae,
Peptococcaceae, RF39, and Bacteroidia families and certain miRNAs, such as mir4792-201.
This miRNA has been previously described to target the FOXC1 gene (Forkhead Box C1),
which plays a role in the oxidative stress response, suggesting that these bacterial taxa are
involved in this metabolic process [52]. In addition, the Bacteroidia order had a strong cor-
relation with two mitochondrial genes (ENST00000636729.1 and ENST00000387392.1) and
two miRNAs (mir4472-2, mir-10396b), and Peptoccocaceae had a negative correlation with
mir101-1, which has been described to suppress different virus replications by targeting
different genes [53,54]. These findings suggest that the smallRNome mediates host regula-
tion of the intestinal microbiota from early development, which is an effective strategy for
establishing a structured and dynamic holobiont. However, for complete understanding,
the complex network of interactions between miRNAs and their targets that also depend
on the cell type, location, and tissue condition must be considered [55].

Finally, we can surmise that our analysis of the intestinal virome uncovered substantial
variation and associations with the corresponding bacteriome and several factors, such as
the smallRNome. These results provide the basis for a better understanding of microbial
ecology and its relationship with the host.

4. Materials and Methods
4.1. Study Design and Sample Collection

This study included a total of 64 vaginally delivered healthy full-term infants; 27 of
them were newborns, and meconium samples were obtained within 0–48 h after birth;
the remaining 37 were infants under four months old (3.2 ± 0.7) and were divided into
25 breast-fed and 12 formula-fed infants. To ensure the accuracy of our results, we excluded
infants whose mothers had illnesses or were on medication during pregnancy, as well as
those who had undergone restricted diets. Newborns with pathologies were also excluded,
as were infants whose birth weight fell below the 25th or above the 75th Spanish percentile.
The breast-fed group was formed by infants exclusively fed breast milk for 2–4 months
after birth. The formula-fed group was formed by infants exclusively fed formula for
2–4 months, whose mothers voluntarily chose to feed their babies formula. The formula
milk used in this study was compliant with the Commission Delegated Regulation (EU)
2016/127 regarding composition. While different commercially available formula milks
were used, they all met the same nutritional requirements. For all cases, stool samples were
collected and immediately frozen at −20 ◦C. Ethical approval was granted on 28 June 2018.
Informed consent was obtained from the parents of the eligible infants. This study is in
accordance with the ethical standards of the Declaration of Helsinki.

4.2. Bacteriome Analysis

Bacterial DNA was extracted from approximately 200 mg of meconium or fecal sample
using a QIAamp® DNA Stool Mini Kit (Qiagen Inc., Hilden, Germany) according to the
manufacturer’s instructions. DNA quantity and purity were assessed using a NanoDrop
2000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA).

The V4 variable region of the 16S rRNA gene was amplified by PCR as described
previously [56].

The amplicon libraries were pooled and diluted to 35 pM before clonal amplification.
The Ion 510 and 520 and 530 Ion Chef Kit (Life Technologies, Carlsbad, CA, USA) was
employed for template preparation. Next-generation sequencing of the clonally amplified
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16S rRNA libraries was performed on an Ion GeneStudio S5 system (Life Technologies,
Carlsbad, CA, USA) following the manufacturer’s instructions. The generated reads were
quality filtered, analyzed with QIIME2 (2022.2), and passed for classification into amplicon
sequence variants (ASVs) to DADA2, using only reads of at least 200 bp and truncating at
that length. These ASVs were taxonomically classified with VSEARCH against the Silva
database at 99% homology [56]. Alpha diversity was calculated as Shannon, Chao1, and
Faith indices, and beta diversity was calculated with Bray-Curtis, Aitchison, Jaccard, and
UniFrac (weighted and unweighted) distances. PERMANOVA and ANOSIM analyses were
performed on the beta diversity data. The taxonomic abundance for each taxon at every
level was compared using a Kruskal-Wallis test and corrected by Holm-Sidak correction.
Statistical power analysis for the comparisons was calculated according to Equations D and
E from Ferdous et al. [57]. The results are shown in Supplementary Table S4.

4.3. Virome Analysis

Each sample was weighed and resuspended to a final concentration of 10% (w/v) in
autoclaved phosphate-buffer saline (PBS) buffer (Thermo Fisher Scientific, Waltham, MA,
USA) and vigorously vortexed until reaching a completely homogeneous suspension. The
suspension was centrifuged at 4800× g for 10 min at 4 ◦C to remove/clarify large particles
that may be present in the samples, such as organic matter or host cells. The supernatant
was collected and filtered through a 0.22 µm filter Steritop (Millipore Sigma, Hayward, CA,
USA) to retain the bacterial cells. The filtrate was ultracentrifuged (14 mL, Polypropylene
Tube, 14 × 95 mm—50 Pk, and SW 40 Ti Swinging-Bucket Rotor Package) at 900,000× g
for 90 min at 4 ◦C to reduce the liquid volume and concentrate VLPs. The pellet was
resuspended in 199 µL of enzyme buffer and treated with 25 U of Benzonase® Nuclease
(Millipore Sigma, Hayward, CA, USA) at 37 ◦C for 90 min to digest non-particle-protected
nucleic acids. Subsequently, viral nucleic acids were extracted by a Quick-DNA/RNA Viral
Kit (Zymo Research, Irvine, CA, USA) according to the manufacturer’s instructions and
eluted into 36 µL of RNase-free water. The DNA and RNA purity were evaluated by the
A260/A280 ratio using a NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific,
Waltham, MA, USA). Nucleic acids were divided into two aliquots, one of which was
treated with 1 U of DNase I (Invitrogen™, Waltham, MA, USA) at 37 ◦C for 90 min to obtain
pure RNA, and the other aliquot was treated with 10 U of RNase ONE™ ribonuclease
(Promega, Madison, WI, USA) at 37 ◦C for 30 min to obtain pure DNA.

Afterwards, DNA libraries were generated by the Ion Xpress™ Plus Fragment Li-
brary Kit for the AB Library Builder™ System (Thermo Fisher Scientific, Waltham, MA,
USA) according to the manufacturer’s instructions, and libraries were reamplified and
purified manually after their creation. RNA libraries were created by a Total RNA-Seq
Kit v2 (Thermo Fisher Scientific, Waltham, MA, USA) for whole transcriptome libraries
according to the manufacturer’s instructions. DNA and RNA libraries were quantified by
electrophoresis at TapeStation using High-sensitivity DNA ScreenTape Analysis (Agilent
Technologies, Santa Clara, CA, USA). DNA and RNA template libraries were performed
using the Ion Chef System (Thermo Fisher Scientific, Waltham, MA, USA) and sequenced
using the Ion GeneStudio S5 System (Thermo Fisher Scientific, Waltham, MA, USA). All
steps in the Ion GeneStudio S5 System (Life Technologies, Carlsbad, CA, USA), includ-
ing amplification through sequencing, were performed according to the manufacturer’s
recommendations.

For both DNA and RNA, each sample’s reads were assembled using SPAdes genome
assembler 3.15.5. The resulting contigs were classified as viral, potentially viral, or non-
viral using viralVerify 1.1 (https://github.com/ablab/viralVerify, accessed on 9 Septem-
ber 2022).

With the Pfam-A HMM database and a BLAST against the NCBI “nt” database, contigs
marked as nonviral or that matched against cellular organisms or plasmids were discarded.
The abundance of each contig within each sample was derived from its coverage. The
remaining contigs were assigned a taxonomy based on their best match in the BLAST results.

https://github.com/ablab/viralVerify
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The contigs from all samples were clustered at 90% homology to form OTUs (operational
taxonomic units) comparable across samples. From these OTUs, alpha and beta diversity
analyses and statistical analyses, such as those for the bacteriome, were performed, with
the only difference being avoiding metrics that rely on phylogenetic distances. The results
are shown in Supplementary Table S4.

4.4. Analysis

Total RNA was extracted from 250 mg of meconium or fecal samples using
Direct-zol™ RNA Miniprep Plus (Zymo Research, Irvine, CA, USA) according to the
manufacturer’s instructions, and the RNA concentration was quantified using a NanoDrop
2000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). Libraries were
created by a TruSeq Small RNA Library kit (Illumina, San Diego, CA, USA) according to
the manufacturer’s instructions, and were sequenced by Illumina NextSeq2000. sRNA-seq
pipeline analysis was performed following a previously described approach [58–60].

FastQC software v0.11.9 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/)
was used for quality control (QC) of FASTQ files. Samples were preprocessed with Cutadapt
(version 2.9), discarding reads shorter than 14 nt and imposing a maximum error rate equal
to 0.15 for mismatches, insertions, and deletions. Trimmed reads were mapped against hsa-
miRNAs from miRBase using the BWA Algorithm v. 0.7.17-r1188. Unaligned reads were
aligned against hsa-sncRNA sequences shorter than 80 bp from Ensembl with BWA default
parameters. The quantification of miRNA and sncRNA was performed with SAMtools
and merged into a unique smallRNA count matrix. From this count matrix, differential
expression analysis was performed with DESeq2.

The reads that were left unmapped were aligned with BWA against the Hg38 genome
from Ensembl. The reads that were still unmapped on the human genome were then ana-
lyzed by Kraken for metatranscriptomic analysis. The statistical power of the comparisons
for each miRNA was calculated according to Equations D and E from Ferdous et al. [57].
The results are shown in Supplementary Table S4.

4.5. Metabolic Pathway Analysis

Target genes for 14 miRNAs that were significant, when comparing meconium with
the other two groups, were predicted using at least four of these public database algorithms
online: Diana MicroT, miRanda, miRDB, PicTar, and miRNAMap. Target genes predicted by
at least two different tools were mapped to the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways using KEGG Mapper, and enriched by Fisher’s exact test (confidence
interval 95%) with FDR correction using R Software version 4.2.2 (R Development Core
Team, 2013, Vienna, Austria).

4.6. Omics Data Integration

Integration of the bacteriome, RNA and DNA virome, and sRNA transcriptome was
performed in R version 4.2.2 with the mixOmics package [61]. We evaluated each pair
of omics data because of sample limitations. We calculated the sPLS model to identify
the most discriminative features between each pair of omics data to evaluate their asso-
ciations. sPLS in regression mode was applied to rlog-normalized sncRNA counts and
log-ratio-transformed relative abundance for the bacteriome and virome, respectively. The
models were tuned based on 10-fold cross-validation, and optimal parameters were chosen
according to the highest mean correlation measure for each pair of omics.

5. Conclusions

Despite the limited number of samples available from the formula-fed group, our
results indicate that the gut environment of newborns, as assessed through three examined
omic levels, is more similar to that of the formula-fed group than to the breast-fed group.
This supports the idea that diet has a significant impact on gut microbiota, and confirms
the modulating effects of breast-feeding, likely mainly triggered by the intake of colostrum.

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Furthermore, our study highlights a clear difference in the virome between newborns
and four-month-old infants, underscoring the dynamic nature of viral populations and their
role in shaping community assembly and host health. Notably, we found transkingdom
correlations between virome components and bacteria, suggesting additional layers of com-
plexity in host–microbial homeostasis. While we acknowledge certain protocol limitations
and analysis shortcomings, our findings point to the need for further investigation into
these areas.

In addition, our study is the first to identify miRNAs in meconium samples, indicating
the existence of epigenetic mechanisms before birth that putatively interact with the host
intestinal system, modulating and controlling its homeostasis. We also found that the
miRNome profile, similar to the virome, rapidly changes in the first months of life. However,
additional research is needed to fully understand the precise mechanisms underlying the
interaction between the microbiota and miRNA.

In conclusion, our findings suggest that the gut environment is rapidly acquired after
birth and is highly malleable, with environmental factors and genetic responses creating
complex molecular interactions at the host–microbiota interface. These interactions may
play a significant role in regulating predisposition to future diseases.
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