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Abstract: During the postnatal stages, skeletal muscle development undergoes a series of meticu-
lously regulated alterations in gene expression. However, limited studies have employed chromatin
accessibility to unravel the underlying molecular mechanisms governing muscle development in
yak species. Therefore, we conducted an analysis of both gene expression levels and chromatin
accessibility to comprehensively characterize the dynamic genome-wide chromatin accessibility
during muscle growth and development in the Tianzhu white yak, thereby elucidating the features of
accessible chromatin regions throughout this process. Initially, we compared the differences in chro-
matin accessibility between two groups and observed that calves exhibited higher levels of chromatin
accessibility compared to adult cattle, particularly within ±2 kb of the transcription start site (TSS). In
order to investigate the correlation between alterations in chromatin accessible regions and variations
in gene expression levels, we employed a combination of ATAC-seq and RNA-seq techniques, leading
to the identification of 18 central transcriptional factors (TFs) and 110 key genes with significant
effects. Through further analysis, we successfully identified several TFs, including Sp1, YY1, MyoG,
MEF2A and MEF2C, as well as a number of candidate genes (ANKRD2, ANKRD1, BTG2 and LMOD3)
which may be closely associated with muscle growth and development. Moreover, we constructed
an interactive network program encompassing hub TFs and key genes related to muscle growth and
development. This innovative approach provided valuable insights into the molecular mechanism
underlying skeletal muscle development in the postnatal stages of Tianzhu white yaks while also
establishing a solid theoretical foundation for future research on yak muscle development.
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1. Introduction

The domestic yak (Bos grunniens) is the most famous livestock throughout much of the
Asian highlands and the largest meat-producing mammal in the Qinghai–Tibet Plateau [1].
As a pivotal livestock species in this region, domestic yaks provide essential resources such
as meat, milk, transportation and fuel [2–5]. However, the production performance of yak
milk and yak meat is comparatively lower when compared to that of cattle-yak and ordinary
cattle [6,7]. Therefore, enhancing the growth rate and meat production performance of yak
has been a primary focus in yak breeding research.

Skeletal muscle is the main meat-producing tissue, which constitutes 40% of the total
body weight in adult bovines, and is directly related to the meat producing capacity of
them [8]. The development of skeletal muscle is a complex and intricately orchestrated
biological process regulated by a series of specific signaling pathways and transcription
factors (TFs), encompassing cell proliferation, differentiation, fusion, migration and apop-
tosis [9–11]. In addition to the substantial involvement of diverse myogenic regulators in
skeletal muscle development, epigenetic modifications play a crucial role in facilitating
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muscle growth [8,12,13]. For instance, m6A modification intricately and negatively governs
the expression levels of pivotal genes implicated in the growth and development of skeletal
muscle in yaks [14]. The regulation of muscle growth and development is achieved through
the methylation of gene promoters, which in turn controls the expression of genes asso-
ciated with muscle function [15,16]. However, an investigation of chromatin accessibility
during various stages of postnatal muscle growth and development in yaks has not been
undertaken to elucidate alterations in gene expression [17–20].

Eukaryotic DNA is not bare and its genomes undergo extensive compaction within
chromatin, which is known as closed chromatin [21]. When transcription of the DNA
within a cell commences, the chromatin region encompassing transcriptional regulatory ele-
ments assumes an open conformation, rendering the DNA exposed and giving rise to open
chromatin regions (OCRs). This state of openness facilitates the binding of transcription
factors (TFs) to the DNA within OCRs, thereby exerting control over the process of tran-
scription [17,22–24]. Binding sites for TFs and chromatin regulators are primarily located
in regions of the genome that are open or accessible. Assay for Transposase-Accessible
Chromatin sequencing (ATAC-seq), currently considered the preferred method for studying
epigenetics, enables us to create a sensitive profile of chromatin accessibility by directly
transposing native chromatin within the intact nucleus and analyzing the binding pat-
terns of various TFs [25–27]. Recently, several researchers have conducted investigations
into skeletal muscle development in mice, pigs and cattle through the utilization of RNA
sequencing (RNA-seq) and chromatin accessibility analysis [18,28–30]. For instance, the
integration of RNA-seq and ATAC-seq identified 22 candidate hub genes potentially tar-
geted by MEF2C during bovine skeletal muscle development [19]. Moreover, previous
studies have delineated dynamic alterations in chromatin accessibility and gene expression,
as well as identified numerous instances of transcription factor binding events during the
proliferation and differentiation of bovine myoblasts in vitro, encompassing ATF3, MyoG,
AP-1, ZBTB18, Myf5 and HLH-1 [18]. However, there has been limited investigations
into the alterations in chromatin accessibility and gene expression during yak skeletal
muscle development.

In this study, we investigated the epigenetic variations in the longissimus dorsi muscle
of yak at two postnatal time points to gain a deeper understanding of the underlying mech-
anisms involved in skeletal muscle development. By employing ATAC-seq and RNA-seq
techniques, we further established a correlation between chromatin accessibility and gene
expression. These findings offer novel insights into the epigenetic regulatory mechanisms
that govern skeletal muscle development, thereby providing valuable references for genetic
breeding strategies in yaks.

2. Results
2.1. ATAC-Seq Quality Control of the White Yak Longissimus Dorsi Muscle

To elucidate the chromatin accessible regions across the whole genome involved in
muscle growth and development, we characterized the differential chromatin accessibil-
ity between the calf yaks (Calf group, C) and the adult yaks (Adult group, A) by using
ATAC-seq (Figure 1A) [25,31]. We obtained a total of 430,228,222 raw reads, of which
427,139,652 clean reads were uniquely mapped to the reference genome after filtration
(Table 1). We evaluated the quality of the libraries by analyzing the lengths of inserted
fragments and peak signal distributions. Fragment size analysis showed that the major-
ity of fragments were <250 bp in length, including one mononucleosome fragment and
one nucleosome-free fragment, indicating that all libraries are available for subsequent
experiments (Figures 1B and S1). DeepTools software (version 2.5.4) was used to calculate
the distribution of reads across the gene bodies and peaks. The majority of the accessible
regions were located within ±2 kb of the transcription start site (TSS), suggesting that open
chromatin regions were essential for gene transcriptional regulation (Figure 1C,D). These
results demonstrated the high quality of the sequencing data.
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Figure 1. Phenotype and ATAC-seq quality control. (A) Overview of the experiment. Longissimus
dorsi tissue from adult and calf yaks were collected for ATAC-seq and RNA-seq. In the ATAC-seq
schematic the ellipse with red and blue fragments represents the Tn5 transposase, the circle with
the black fragment represents the chromatin, and the circle with red and blue represent the cleaved
chromosome fragments. (B) Fragment length distribution map. (C,D) Distribution of mapped reads
across gene bodies and peaks.

Table 1. Quality control for the ATAC-seq data.

Sample Raw Reads Raw Bases Clean Reads Clean Bases Clean Ratio Q20 Q30

A_1 128,541,756 19,281,263,400 127,569,914 13,604,132,565 99.24% 98.36% 95.01%
A_2 89,333,144 13,399,971,600 88,641,850 11,625,646,313 99.23% 98.76% 95.87%
C_1 135,034,832 20,255,224,800 133,887,694 17,651,791,047 99.15% 98.63% 95.46%
C_2 77,318,490 11,597,773,500 77,040,194 9,515,338,581 99.64% 99.00% 96.47%

2.2. Chromatin Accessibility in the Longissimus Dorsi Muscle of the White Yak

We identified 3385 and 1019 specific accessible chromatin peaks, and 16,583 common
peaks in A and C groups (Figure 2A, Table S1). The distribution of chromosomal peaks in
the yak genome is illustrated in Figure 2B. The chromatin open region maps at the chro-
mosome level in the whole genome showed that most of the regions on each chromosome,
including the X chromosome and the Y chromosome, were covered with peaks. To annotate
the genomic distribution of open chromatin peaks, they were assigned to genome-wide
functional regions, including 5’ untranslated regions (UTR), intergenic, promoters, introns,
exons and 3′UTR. Most peaks were mapped in promoter regions, intergenic, exon and
intron regions. We have discovered that the peaks in the promoter regions of C accounted
for 5.37%, while those in A accounted for 3.72% of the total area (Figure 2C, Table S2). The
heatmap indicated an increased enrichment in the readings within regions ±2 kb of the TSS
and termination end sites (TES) in the genome. The heatmap showed that the ATAC-seq
signals for calf yaks were stronger than for adult yaks, which suggested that these strong
signal peaks may be pivotal sites in the regulation of muscle development (Figure 2D).
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Figure 2. Distribution of peaks. (A)Venn diagram showing the peak overlap between A and C
groups. (B) Chromosomal distribution of all peaks. (C) Genomic distribution of the peaks in each
sample. Genomic functional regions include promoter, intergenic, exon, intron, 5′UTR and 3′UTR.
(D) A heatmap of the peak signals across the gene body of library; ±2.0 represents upstream and
downstream of the TSS.

Annotating each peak revealed that the different peaks in the C group correspond
to 2024 upregulated genes and 18 downregulated genes, and a total of 2224 genes were
obtained compared with the A group (Table S3). To explore the potential functions of these
genes, we conducted GO and KEGG enrichment analysis. We found that the biological
processes in GO analysis were mainly related to cellular processes, developmental processes
and cell proliferation, whereas molecular functions were mainly enriched in catalytic
activity and transcription regulator activity (Figure 3A, Table S4). In addition, the KEGG
enrichment analysis revealed that differentially expressed genes (DEGs) were enriched in
pathways associated with body growth and development, such as the MAPK signaling
pathway, the insulin signaling pathway and the thyroid hormone signaling pathway
(Figure 3B, Table S5). The growth rate of calf yaks is faster than that of adult yaks. Based on
this, Homer software was used to analyze transcription factor binding motifs on different
peaks in the yaks and compare them with mammalian transcription factors databases. As
a result of increased peaks, the top 10 significantly enriched transcription factor binding
motifs were identified as NFY, Sp5, SP1, KLF1, KLF14 and the MEF2 family (Figure 3C,
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Table S6). In contrast, ZEB2, ZEB1 and E2A were enriched by decreased peaks (Figure 3D,
Table S7).
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Figure 3. GO and KEGG pathway enrichment analysis and motifs analysis of genes associated
with differential chromatin accessibility. (A) GO enrichment analysis of genes corresponding to
differential peaks. (B) KEGG pathway enrichment analysis of genes corresponding to differential
peaks. (C) Enriched transcription factor binding motifs by increased peaks (p < 0.01). (D) Enriched
transcription factor binding motifs by decreased peaks (p < 0.01). Green A stands for adenine, red T
for thymine, blue C for cytosine and yellow G for guanine.

2.3. RNA-Seq Data from Longissimus Dorsi Muscle of the White Yak

To determine gene expression patterns in yaks at different time periods, we selected
three samples from the calf group and three samples from the adult group for high-
throughput mRNA sequencing. A total of 489,332,176 clean reads were obtained from
six transcriptome sequencing libraries (Table 2). To identify the vital functional genes,
DEGs were filtered based on the requirements of |log2 (Fold Change)| ≥ 1 and FDR < 0.05.
The volcano map showed 860 differential genes, including 457 upregulated genes and
403 downregulated genes (Figure 4A, Table S8). We determined the clustering pattern of
DEmRNAs. The same group of DEGs was clustered together in the heatmap, indicating the
accuracy and reliability of the samples (Figure 4B). The potential function of these DEGs
was investigated by employing GO and KEGG pathway enrichment analysis. The GO
enrichment results showed that these DEGs were mainly enriched in cell proliferation, the
regulation of biological processes and transcription regulator activity (Figure 4C, Table S9).
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Several KEGG pathways related to energy metabolism and cell signaling transduction were
significantly enriched, such as the MAPK signaling pathway, cAMP signaling pathway,
Rap1 signaling pathway, PPAR signaling pathway and Pantothenate and CoA biosynthesis.
These results suggested that DEGs may play a role in the maintenance of muscle balance
and the growth of muscle (Figure 4D, Table S10).
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Table 2. Quality control for the RNA-seq data.

Sample Raw Reads Raw Bases Clean Reads Clean Bases Clean Ratio Q20 Q30

A_1 78,265,742 11,739,861,300 77,683,168 11,626,880,356 99.26% 98.25% 94.88%
A_2 53,208,116 7,981,217,400 52,829,996 7,906,568,770 99.29% 98.24% 94.80%
A_3 121,439,410 18,215,911,500 120,564,720 18,063,425,239 99.28% 98.23% 94.76%
C_1 102,222,314 15,333,347,100 101,316,102 15,149,604,968 99.11% 98.10% 94.56%
C_2 36,264,690 5,439,703,500 35,877,070 5,370,251,031 98.93% 98.19% 94.77%
C_3 101,895,462 15,284,319,300 101,061,120 15,133,341,000 99.18% 98.17% 94.70%

2.4. Combined Analysis of ATAC-Seq and RNA-Seq

In order to ascertain whether alterations in chromatin accessible regions correlated
with variations in gene expression levels, we combined ATAC-seq and RNA-seq data. A
total of 110 DEGs were identified, including 76 downregulated genes and 34 upregulated
genes (Figure 5A, Table S11). We analyzed the correlation between the chromatin openness
and expression levels of these 110 key genes, and found that the expression levels of DEGs
were negatively correlated with differential ATAC-seq signaling (Pearson’s R = −0.15612,
p < 0.001; Figure 5B, Table S12). To visually show the relationship between chromatin
accessibility and gene expression, IGV was used to demonstrate the ATAC-seq and RNA-
seq signaling of the genes ANKRD2, ANKRD1, LMOD3 and BTG2, which have been
deemed to be related to the development of muscle [31–35]. The ATAC-seq signals were
significantly higher in the promoter region in the vicinity of the TSS than in the other
regions of the genes. In the A group, both the chromatin accessibility and transcription
levels of ANKRD2 were lower compared to the C group. In contrast, ANKRD1, LMOD3
and BTG2 had high chromatin accessibility but low transcription levels (Figure 5C). TFs
can bind promoters with other regulatory proteins and cooperate with RNA polymerase
II to start gene transcription and regulate gene expression. Based on this, all upregulated
and downregulated peaks sequences were predicted through the Homer software motif.
We screened the top 30 upregulated and down-regulated motifs that were significantly
enriched in genes, and constructed a regulatory map of the transcription factor binding site
network in yak muscle tissue by comparing the yak reference genome with the STRING
database. We found that the transcription factor (TFs) Sp1, YY1, MYOG, MEF2A and
MEF2C were highly correlated with other TFs in the network, suggesting their potential
significance in the regulation of yak muscle development (Figure 5D, Table S13). Based on
the above analysis results, we constructed an interaction network between four key genes
and 18 transcription factor binding sites (Figure 5E, Table S14). A total of 11 transcription
factors interact with the promoter regions of ANKRD2, ANKRD1, LMOD3 and BTG2.

2.5. Validation of the Results by RT-qPCR

In order to confirm the precision of the RNA-seq data, we randomly selected nine
genes (ANKRD2, PLEKHA4, ZNF503, ANKRD1, BTG2, FOS, FOXO1, LMOD3 and UCP3)
from DEGs for RT-qPCR. The results indicated that the RT-qPCR expression pattern of
these genes corresponded with that of RNA-seq, suggesting the reliability of the DEGs
identified by RNA-seq in this study (Figure 6).
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Figure 5. Integration of RNA-Seq and ATAC-Seq. (A) Venn plot of ATAC-seq and RNA-seq;110
common genes were found. (B) Correlation of significantly differentially accessible gene (ATAC-seq)
and gene expression (RNA-seq). Red indicates up-regulated genes, blue indicates down-regulated
genes. (C) IGV snapshot for ATAC-seq and RNA-seq signal for the ANKRD2, ANKRD1, BTG2 and
LMOD3 gene. (D) The interaction network between transcription factors. The size of the nodes and
the shade of the color represent the importance of the interaction between TFs (p < 0.01). (E) The
interaction network between hub TFs and key genes. The dark green circle type represents TFs.
The inverted triangles type represents genes, in which red represents upregulation, and the green
represents downregulation.
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3. Discussion

The yak, a rare breed of plateau cattle worldwide, has become the primary source
of sustenance and livelihood for local herdsmen [36]. Given their slow growth rate and
the low meat yield from yaks, there is a pressing need to expedite their growth in order
to enhance meat production. In recent years, several research teams have investigated
the transcriptional level mechanism of yak muscle development, providing fundamental
insights for further exploration [6,14,37]. Building upon previous studies, we used the
ATAC-seq and RNA-seq analysis methods for the first time to effectively identify the key
factors influencing muscle development from a chromatin accessibility perspective, and
explored the potential molecular mechanisms underlying the variations in skeletal muscle
growth and development in the Tianzhu white yak.

In our study, we selected 12-month-old yaks exhibiting rapid growth and 4-year-old
adult yaks as ideal models for investigating the postnatal skeletal muscle growth rate
in yaks [37–39]. We identified a total of 19,968 upregulated and 17,602 downregulated
accessible chromatin peaks between these two groups, which corresponded to 2024 upreg-
ulated genes and only 18 downregulated genes. We observed that the C group exhibited a
higher ATAC signal value within ±2 kb of the TSS in compared to the A group. Previous
studies on early embryonic development in cattle have demonstrated a significant increase
in ATAC signal values at TSS sites during the embryonic genome activation [17,40]. In
addition, it has been found that yaks grow slowly from 6 months to 12 months of age after
birth, after which they enter a period of rapid growth [38,39]. Hence, we hypothesized that
the substantial enhancement in chromatin accessibility at TSS region during muscle growth
of 12-month-old white yaks may be associated with genome activation processes. Further-
more, we noted a similar distribution pattern of peaks in the gene 5′UTR and promoter
regions as depicted by the line graph. ATAC-seq peaks exhibited significant enrichment
within promoter region, aligning with previously reported chromatin accessibility features
observed in the longissimus muscle of Duroc and Luchuan pigs [20,41]. These findings sug-
gested a pivotal role for promoter, enhancer and cis-regulatory elements in the regulation
of muscle development. Furthermore, another study has revealed the higher prevalence
of muscle affinity peaks in the exon and promoter regions while identifying differentially
expressed genes (DEGs) that are specifically expressed in the skeletal muscle of cattle using
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the RNA-seq and ATAC-seq techniques [19]. Our study yielded similar findings, enhancing
our comprehension of chromatin accessibility and gene dynamic transcriptional regulation
during skeletal muscle development.

The GO enrichment analysis of genes associated with peaks revealed that differential
chromatin accessibility was primarily associated with cellular development and cell pro-
liferation processes, while molecular functions were predominantly enriched in catalytic
activity and transcription regulator activity. Furthermore, the KEGG pathway enrichment
analysis demonstrated a significant correlation between differential chromatin accessibility
and muscle growth and development, such as the MAPK signaling pathway, the insulin
signaling pathway and the thyroid hormone signaling pathway. These findings further
support the notion that skeletal muscle growth and development involves a complex tran-
scriptional regulatory process controlled by multiple tightly regulated changes in gene
expression. Interestingly, the enrichment result obtained in this study exhibits a remarkable
similarity to the differential gene enrichment findings observed in RNA-seq analysis. By
integrating the analysis of chromatin accessibility and transcriptome gene enrichment, we
have successfully elucidated several crucial pathways implicated in the regulation of mus-
cle development. Among these pathways, the MAPK signaling pathway, Rap1 signaling
pathway and PPAR signaling pathway are recognized as the classical regulators of muscle
development. The p38 MAPK signaling pathway plays a pivotal role in regulating muscle
satellite cell proliferation and promotes skeletal muscle regeneration and differentiation by
mediating the expression of myogenesis-related genes and epigenetic regulators [42,43].
Rap1, a widely distributed protein that belongs to Ras family, plays crucial roles in cellular
proliferation and migration by serving as an upstream regulator that activates diverse
signal transduction pathways [44,45]. Peroxisome proliferator-activated receptors (PPARs)
play a crucial role in development and energy metabolism, as well as in the regulation of
satellite cells proliferation, skeletal muscle regeneration, and diversification of muscle fiber
types [46]. Furthermore, we have identified that certain hormones and coenzyme biosyn-
thesis processes, such as insulin, thyroid hormone and pantothenate and CoA biosynthesis,
also exert regulatory control over muscle development. Thyroid hormones are implicated
in muscle contraction, metabolic activities and the growth and repair of skeletal muscle
tissue [47]. The regulation of intracellular triiodothyronine levels exerts a direct influence
on myogenesis by modulating the growth and differentiation of precursor cells [48]. Insuf-
ficient intramuscular T3 levels below the optimal threshold can lead to a decrease in energy
metabolism in the muscles as well as reduced contraction and relaxation rates [49]. This
biological process may involve the interplay among various bioactive substances, including
the thyroid hormone and pantothenate and CoA biosynthesis [50,51].

We have integrated ATAC-seq data with RNA-seq data, revealing a significant correla-
tion between chromatin accessibility and the expression levels of 110 genes. Furthermore,
our combined analysis demonstrated the negative associations between differential gene
expression and ATAC-seq signaling. This may be attributed to the actions of activating
transcription factors, transcriptional repressors, DNA methylation or other epigenetic
modifications in regulating gene expression [13,52–55]. We focused on four crucial genes
located in differentially accessible chromatin regions (DARs) within gene promoters and
exons of ANKRD2, ANKRD1, BTG2 and LMOD3, which have been previously associated
with muscle development [32–35]. Through gene expression analysis, we identified the
ANKRD2 gene as the top hub gene. In myoblasts, it predominantly localizes in the nu-
cleus and upon differentiation, and translocates from the nucleus to the cytoplasm. This
dynamic localization suggests its involvement in the coordination myoblast differentiation
and proliferation [56]. Previous studies have also demonstrated the localization or close
proximity of ANKRD2 to the identified QTL region influencing meat quality and carcass
traits, suggesting its potential as a candidate gene with significant influence on porcine
growth and carcass traits [57]. These findings highlight the crucial role of the ANKRD2
gene in promoting muscle development in Tianzhu white yaks.
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Open chromatin regions (OCRs) serve as binding sites for transcription factors, ini-
tiating target gene transcription and playing a crucial role in myoblast proliferation and
differentiation. In this study, we investigated the variability of transcription factors within
OCRs at two time points. Our findings revealed that special TF motifs, including Sp1, YY1,
MYOG, MEF2A and MEF2C, were enriched in the differentially accessible chromatin re-
gion. The TFs in this group are directly associated with the proliferation and differentiation
of skeletal muscle cells. Sp1, a ubiquitously expressed mammalian transcription factor,
plays a pivotal role in maintaining genome integrity through diverse mechanisms [58,59].
Recent research has revealed that Sp1 is essential for the assembly of mitotic chromosomes,
thereby facilitating cell proliferation [60]. In vivo studies on YY1 knockout mice derived
from skeletal muscle satellite cells have demonstrated that inducible deletion of YY1 sig-
nificantly impedes the process of muscle repair caused by acute damage and exacerbates
the dystrophic phenotype resulting from chronic injury [61]. MEF2A, a member of the
MEF2 gene family which includes MEF2B, MEF2C and MEF2D [62], is a bHLH domain
transcription factor highly expressed in the brain, skeletal muscle and heart muscle that
plays an important role in regulating proliferation and differentiation of muscle cells [63].
MyoG, a member of the myogenic regulatory factors (MRFs) family, plays an indispensable
role in individual growth, development and muscle formation by regulating the expres-
sion of creatine kinase, troponin and the troponin gene [64]. MEF2A and MyoG TFs can
bind to the core promoter region of the bovine LATS2 gene influencing its transcriptional
activity and controlling animal muscle growth and development [65]. Based on these
aforementioned findings, we hypothesize that Sp1, MyoG, MEF2A and MEF2C may serve
as pivotal transcription factors (TFs) involved in regulating muscle growth in the Tianzhu
white yaks. As initiators of transcriptional processes, TFs recognize specific sequences
(motifs) within their target genes’ regions to regulate gene expression [66]. Therefore, we
constructed networks of hub transcription factors (TFs) and crucial target gene interaction.
We observed interactions between TFs and multiple genes in the regulatory networks. In
future studies, a series of experiments should be conducted to further explore the regulatory
effects of candidate TFs on target genes and the biological processes involved in skeletal
muscle development of the Tianzhu white yak. Additionally, it is essential to analyze the
underlying regulatory mechanism and elucidate the mode of action of these TFs and genes
in muscle growth and development.

4. Materials and Methods
4.1. Collection of Samples

The yaks in the experiment were reared under identical breeding conditions. Five
4-year-old yaks and five 12-month-old white yaks were selected for slaughter to obtain the
longissimus dorsi muscle samples used in this study. The samples were then divided into
0.5 cm3 portions, immediately frozen in liquid nitrogen and stored at −80 ◦C for further
experiments. Here, two adult and two calf samples were sequenced for ATAC-seq and
three adult and three calf samples were sequenced for RNA-seq.

4.2. ATAC-Seq

The ATAC-seq experiments were performed according to previously described meth-
ods [25,27,67]. After pulverizing the frozen tissue, approximately 3 g of longissimus dorsi
muscle were isolated and immediately homogenized in 2 mL of pre-cooled lysis buffer. The
resulting mixture was then ground and layered onto the surface of 2 mL of concentrated
sucrose buffer in a 10 mL Falcon tube. Subsequently, the nuclei were centrifuged at 2200× g
at 4 ◦C for 15 min and the resulting pellets were resuspended in 500 µL of pre-chilled
lysis buffer.

The crude nuclei were re-suspended in the transposition mix (25 µL of reaction buffer,
2.5 µL of Nextera Tn5 Transposase and 22.5 µL of Nuclease free water) and incubated
at 37 ◦C for 30 min. After transposition, DNA was purified using a QIAGEN MinElute
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PCR Purification Kit. It was worth noting that throughout these procedures, samples were
consistently kept on ice.

NEBNext® High-Fidelity 2 × PCR Master Mix was employed for DNA amplification,
followed by purification of the amplified libraries using QIAGEN MinElute PCR Purifica-
tion Kit (Hilden, Germany) according to the manufacturer’s instructions. The library was
subsequently washed with 20 µL of elution buffer containing 10 mM Tris buffer at pH 8.
Quality assessment of purified libraries was performed using Agilent 2100 (Santa Clara,
CA, USA) and Thermofisher Qubit 4 Fluorometer (Waltham, MA, USA). Multiplex libraries
were sequenced on the Illumina NovaSeqTM 6000 next-generation sequencing platform
(San Diego, CA, USA).

The adapter sequences and the low-quality reads were removed from the raw data
using Trimomatic (version 0.36) and FASTQC (version 0.11.5), respectively. Subsequently,
the clean reads were aligned to the reference genome of Bos grunniens (LU_Bosgru_v3.0)
using HISAT2 (version2.0.1-beta) [68]. Peaks were identified using MACS2 software (ver-
sion 2.1.0) default parameters and their identification was performed utilizing DeepTools
(version 2.5.4). If a peak midpoint fell within the range of ±5000 bp around the transcription
start site (TSS) of a gene, it was assigned to that specific gene.

The heat maps and average map of the ATAC-seq data were generated using DeepTools
(version 2.5.4). The distribution of peaks on gene functional elements was mapped using
the ChIPseeker R package (Version 1.30.3). Peak differences between groups were analyzed
using the DiffBind package (version 1.16.3), with criteria set at FDR < 0.05 and Fold > 0.
Motif analysis was performed using Homer (version 3) and MEME-FIMO (version 4.11.2).
Two biological replicates were utilized for ATAC-seq.

4.3. RNA-Seq

We employed the conventional Trizol method [69], in conjunction with the RNAprep
Pure Tissue Kit DP431 (TIANGEN, Beijing, China), to performed total RNA extraction
from yak longissimus dorsi muscle. Subsequently, all RNA samples were assessed for both
integrity and concentration using 1.2% agarose and Thermofisher Qubit 4 Fluorometer
respectively. The library construction process encompassed several steps including polyA-
selected RNA extraction, RNA fragmenting and reverse transcription utilizing random
hexamer primers. These procedures were executed employing the VAHTS mRNA-seq
V3 Library Prep Kit for Illumina platform. Finaly, sequencing of libraries was performed
on an Illumina Novaseq™ 6000 instrument generating paired-end reads of 150 nt length.
Adapters and low-quality reads were subjected to filtration using Cutadapter (version
1.11). The resulting clean reads were subsequently aligned to the Bos grunniens reference
genome using HISAT2. Transcript abundance was estimated and expression values were
normalized using FeatureCounts (version 1.6.0) to obtain FPKM values [70]. Significantly
differentially expressed genes were identified using edgeR (Version 3.36.0) with a filter
threshold of FDR < 0.05 and |log2FoldChange| > 1. Three biological replicates were used
for RNA-seq.

4.4. Integration Analysis of ATAC-Seq and RNA-Seq

The reads associated with each ATAC-seq peak were converted to RPKM (reads per
kilobase per million mapped reads). Subsequently, the gene expression levels (FPKM)
were determined for each group using consistent methodologies. We employed the same
approch to partition the FPKM mRNA values for all genes and ascertain the RPKM values
at distinct gene positions. The IGV software (version 2.12.2) was utilized to visualize the
genome browser view of the merged datasets comprising ATAC-seq and RNA-seq data.
Motif regulatory networks were constructed by utilizing the STRING database (Version
12.0) and displayed in Cytoscape (Version 3.10.1).
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4.5. Gene Functional Annotation

The GO and KEGG enrichment analysis was conducted using the ClusterProfiler R
package (Version 4.2.2) and the hypergeometric distribution approach with a significance
level of p < 0.05.

4.6. RT-qPCR

We randomly selected 9 key genes and analyzed their expression using RT-qPCR. The
forward (F) and reverse (R) primers for the genes used in this study were shown in Table 3.
We utilized the HiScript® III RT SuperMix for qPCR (+gDNA wiper) (Vazyme, Nanjing,
China) to generate cDNA. Genomic DNA remaining was eliminated at 42 ◦C for 2 min,
followed by a reverse transcription reaction at 37 ◦C for 15 min and 85 ◦C for 5 s. The
PerfectStart® Green qPCR SuperMix (Transgen, Beijing, China) was employed for real-time
quantitative PCR (RT-qPCR), with the internal reference gene GAPDH utilized for data
standardization. Each sample analyzed using RT-qPCR underwent a minimum of three
biological repetitions. The 2−∆∆Ct method was used to calculate and analyze the relative
mRNA expression.

Table 3. Information on primers used in this study.

Primer Sequence (5′–3′) Product Size

ANKRD2-F CCTGAGAGTCCGTCCTTAC 141 bp
ANKRD2-R CCGTTTCTTCTGCTTGCGT
PLEKHA4-F GGCAATGCTCTCAGAAGGGA 118 bp
PLEKHA4-R AATGGCCAGAGAGGACGAAC

ZNF503-F CGCTCTCTGGAAATAGCTCCG 122 bp
ZNF503-R CTTGATGGGCAGGCGGTTAG
ANKRD1-F AGAAGAAAGGCAGTGGGGATG 121 bp
ANKRD1-R ACAAAGTGGACCGGAAGTGT

BTG2-F GCATCCGCATCAACCACAAG 217 bp
BTG2-R TTCTTGCAGGTGAGAAGCCC
FOS-F TACAGCCCACCCTAGTCTCC 71 bp
FOS-R AGTAGGGACTCCATAGGGGTG

FOXO1-F ACCCCACAAGGTTTCCGATG 90 bp
FOXO1-R AGTGTCCCCTCTCTTTCCAAC
LMOD3-F CCACCTTGTCCCCAGAAGAG 129 bp
LMOD3-R GGTCGAAGTTCCCTGTTGGT

UCP3-F CGGACCACTCCAGCATCATT 186 bp
UCP3-R CTTCCTCTCTGGCGATGGTC

GAPDH-F CCACGAGAAGTATAACAACACC 120 bp
GAPDH-R GTCATAAGTCCCTCCACGAT

4.7. Statistical Analysis

The data were presented as the means ± standard deviation (SD) obtained at least
three biological repeat samples. To compare the significance of mean values, paired t-tests
(between two groups) or ANOVA (among multiple groups) were conducted using SPSS
26.0. The differences were regarded as very significant or significant at p < 0.01 or p < 0.05,
respectively. The analysis of the results and generation of the images were carried out using
the Origin 2023b software.

5. Conclusions

This study presents a comprehensive map of chromatin accessibility during muscle
development in the Tianzhu white yaks, highlighting key genes and transcription factors
(TFs) involved in this process. By comparing the differences in chromatin accessibility and
gene expression between calves and adult white yaks, specifically in the longissimus dorsi,
we constructed an interactive network program that integrates hub TFs and key genes
associated with yak muscle development, providing a novel approach for understanding
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the postnatal stages of yak muscle development and establishing a theoretical foundation
for future research.
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