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Abstract: Inflammatory bowel disease (IBD) is a collective term for two diseases: ulcerative colitis
(UC) and Crohn’s disease (CD). There are many factors, e.g., genetic, environmental and immuno-
logical, that increase the likelihood of these diseases. Indicators of IBDs include extracellular matrix
metalloproteinases (MMPs). The aim of this review is to present data on the role of selected cytokines
and metalloproteinases in IBD. In recent years, more and more transcriptomic studies are emerging.
These studies are improving the characterization of the cytokine microenvironment inside inflamed
tissue. It is observed that the levels of several cytokines are consistently increased in inflamed tissue
in IBD, both in UC and CD. This review shows that MMPs play a major role in the pathology of
inflammatory processes, cancer, and IBD. IBD-associated inflammation is associated with increased
expression of MMPs and reduced ability of tissue inhibitors of metalloproteinases (TIMPs) to inhibit
their action. In IBD patients in tissues that are inflamed, MMPs are produced in excess and TIMP
activity is not sufficient to block MMPs. This review is based on our personal selection of the literature
that was retrieved by a selective search in PubMed using the terms “Inflammatory bowel disease”
and “pathogenesis of Inflammatory bowel diseases” that includes systematic reviews, meta-analyses,
and clinical trials. The involvement of the immune system in the pathophysiology of IBD is reviewed
in terms of the role of the cytokines and metalloproteinases involved.
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1. Introduction

Ulcerative colitis (UC) and Crohn’s disease (CD) are categorized as inflammatory
bowel diseases (IBD). Both these diseases are characterized by a chronic process, during
which there are periods of exacerbation and remission. Genetic, environmental, and im-
munological factors have a significant impact on the pathogenesis of inflammatory bowel
diseases. Crohn’s disease is an autoimmune disease of the intestines. The improper func-
tioning of the immune system is probably due to the body’s inappropriate reaction to
micro-organisms inhabiting the digestive tract. Autoimmune diseases develop under the
influence of environmental factors in genetically predisposed people. The main cause is im-
paired immune tolerance—the body incorrectly recognizes its own antigens. Autoimmune
diseases may affect single organs or entire systems [1]. Overall, it is estimated that IBDs
have been diagnosed in 0.3% of the European population, which corresponds to a total of
3 million people, and it is estimated that the incidence will increase by almost a quarter
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between 2017 and 2025 [1], making them civilization diseases. The increase in illness across
Europe is occurring mainly in the newly industrialized countries of Eastern Europe, which
has been linked to changing environmental factors [2—4]. Currently, treatment decisions are
based on clinical symptoms, laboratory indicators, gastrointestinal imaging and endoscopic
studies, but the results of the performed tests do not always correlate with the stage of
the disease, resulting in frequent failure to achieve remission after treatment. Therefore,
the search for new biomarkers of IBD activity capable of assessing the severity of the
underlying disease in a minimally invasive manner in everyday practice, is currently of
interest to researchers around the world. This study presents the characteristics of selected
cytokines and metalloproteinases as well as their importance in IBD.

2. Characteristics of IBD
2.1. Ulcerative Colitis

Ulcerative colitis is characterized by the fact that it is a recurrent IBD. Its characteristics
are mucosal inflammation. It starts distally but, consequently, can reach the proximal area,
that is, reaching the colon [5].

The extent of disease activity is a cross-sectional of events at a specific time of inflam-
mation, although disease severity may include other types of factors (such as longitudinal—
previous biological failure, maximum history of disease severity, and indicators of health
care use such as hospitalization and disability assessment tools and historical factors) [6].
One of the most popular and widely used scales in clinical practice is the Mayo scale
(Figure 1).

- 0 =Normal number of stools for this patient
1 = 1-2 stools more than normal

2 = 3-4 stools more than normal

| 3 =5 ormore stools more than normal

— 0=Noblood seen
1 = Streaks of blood with stool less than half of the time
2 = Obvious blood with stool most of the time

. 3 =Blood alone passed

Stool frequency

Rectal bleeding -

0 = Normal or inactive disease

Findings of flexible | 1= Mild disease (erythema, decreased vascular pattern, mild friability)
sigmoidoscopy 2 = Moderate disease (marked erythema, absent vascular pattern,
friability, erosions)

3 = Severe disease (spontaneous bleeding, ulceration)

- 0=Normal

1 = Mild disease

2 = Moderate disease
L. 3 =Severe disease

Physician's global
assessment B

Figure 1. Scoring system for assessment of UC activity [1-7].

The Mayo scale, like other methods, includes several variables characterized by high
inter-observer variability (i.e., mucosal fragility). In 2012, the Endoscopic Ulcerative Colitis
Severity Index (UCEIS) was developed [7]. According to this index, only 3 descriptors,
namely, the vascular system, bleeding, and erosions and ulcers, can suffice to create a model
that accounts for 90% of the overall endoscopic severity score, which is closely related to
UC (Table 1) [1-4].

Disease severity is measured by assessing parameters of a clinical and biochemical
nature, as is presented in the modified Truelove and Witts criteria (Table 2) [8,9]. In the
endoscopic field, UCEIS is the only validated system for assessing disease severity; however,
the Mayo scale is widely used in clinical practice because of its simplicity of use [8,10].

At least 30 histologic scoring systems have been developed, but they have some form
of validation [11]. Validated results include the Truelove and Richards index (tab above),
the Gomes index [12], the Riley scale [13], the Geboes scale [14], the Harpaz/Mount Sinai
index [15], the modified Riley scale [16], the Chicago/Rubin/Histologic inflammation
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activity scale, the modified Harpase index [17], the simplified Geboes score [18], the Nancy
index [19], and the Robarts histopathology score [20].

Table 1. UC disease severity index-prepared base on [1-4].

Descriptor (Score Most

. Likert Scale Anchor Points
Severe Lesions)

Definition

Normal (1)

Vascular pattern

Normal vascular pattern with arborization of capillaries
clearly defined, or with blurring or patchy loss of
capillary margins

Patchy obliteration (2)

Patchy obliteration of vascular pattern

Obliterated (3) Complete obliteration of vascular pattern
None (1) No visible blood
Some spots or streaks of coagulated blood on the surface
Mucosal (2) of the mucosa ahead of the scope, which can be washed

away

Bleeding
Luminal mild (3)

Some free liquid blood in the lumen

Luminal moderate or severe (4)

Frank blood in the lumen ahead of endoscope or visible
oozing from mucosa after washing intraluminal blood,
or visible oozing from a hemorrhagic mucosa

None (1)

Normal mucosa, no visible erosions or ulcers

Erosions (2)

Tiny (<5 mm) defects in the mucosa, of a white or
yellow color with a flat edge

Erosions and ulcers

Larger (>5 mm) defects in the mucosa, which are

Superficial ulcer (3) discrete fibrin-covered ulcers in comparison with
erosions, but remain superficial
Deep ulcer (4) Deeper excavated defects in the mucosa, with a slightly

raised edge

Table 2. Modified Truelove and Witts criteria-prepared base on [8,10].

Parameter Mild Moderate Severe
Bloody stool per day, n <4 4-6 >6
Pulse, beats per minute <90 <90 >90
Temperature, °C <375 37.5-37.8 >37.8
Hemoglobin, g/dL >11.5 11.5-10.5 <10.5
ESR, mm/h (or CRP, mg/L) <20 (normal) 20-30 (<30) >30 (>30)

But none of the above assessments have been fully validated. As an example of
evaluating histological findings in clinical trial data, the research group reported combined
histological and endoscopic findings. Mucosal healing was defined, having features:
(1) neutrophil infiltration in less than 5% of crypts; (2) no destruction of the crypt; and (3) no
erosion, ulceration, or granulation tissue with endoscopic improvement [20]. In addition,
histologic remission is correlated with endoscopic improvement, higher rates of sustained
steroid-free remission, and reduced rates of clinical recurrence and hospitalization [21-24].

2.2. UC Classification

The Montreal classification divides patients with UC based on maximal disease sever-
ity into E1 or rectal inflammation; E2 or left-sided disease; and E3 or extensive colitis [8].
The figure below (Figure 2) shows only selected endoscopic and microscopic signs in the
upper gastrointestinal area in UC.

There are several tests that are used to diagnose UC. Table 3 shows the types of these
tests and their brief characteristics.
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MICROSCOPY MANIFESTATIONS OF UGI IN UC

Multiple erosions

Granular changes Esophagitis

Ulcer Esophageal ulcers
Purulent deposits

Bambo joint - like appearance

Nonspecific chronic gastritis
Gastritis or gastroduodenitis

Duodenitis

Figure 2. Selected endoscopic and microscopic upper gastrointestinal signs in UC.

Table 3. Types of tests that are used in the diagnosis of UC prepared based on [21-24].

Investigation Type of Investigation Common Findings in UC

Full blood count
Urea and electrolytes

Blood tests C-reactive protein Anemia, thrombocytosis, low vitamin D,
Vitamin D and bone profile and raised inflammatory markers
Hematinic
Liver biochemistry
Recommend at least two biopsies from No histological features are dllagnostlc of
. . . UC, but basal plasmacytosis, crypt
Histology each bowel segment for histological . . .
atrophy /distortion, and villous surface
assessment . . .
irregularity are suggestive of UC
Stool cultures Clostridioides difficile toxin assay Should be negative if UC, but infections
MC&S such as C. difficile can co-exist

Alevel of 50-100 pg/g has a high
negative predictive value of 98-99% in
the diagnosis of IBD

Indicates migration of neutrophils to the

F 1 calprotecti - . .
aecal calprotectin lumen via the intestinal mucosa

In acute setting, flexible sigmoidoscopy
Ileocolonoscopy is recommended in all
Endoscopy patients to delineate disease extent,
severity of inflammation and to exclude
Crohn’s disease; also, for surveillance

Erythema, edema, loss of vascular
pattern, blood, and ulcers/erosions

Abdominal X-ray
Thumbprinting, lead-piping, edema, and
toxic megacolon
Cross-sectional imaging: CT/MRI
Bowel wall edema and inflammatory
pseudopolyps

Imaging




Int. J. Mol. Sci. 2024, 25, 202

5o0f 32

2.3. Etiopathogenesis

Many factors are responsible for the development of ulcerative colitis and Crohn’s
disease. Environmental factors are the main cause of the increase in IBD in people with
a genetic predisposition or immune disorders, but it is the coexistence of several factors
simultaneously that is responsible for the development of the disease. The immune system
of the intestinal mucosa provides a protective barrier to the integrity of the gastrointestinal
tract, loss of intestinal epithelial barrier function leads to excessive bacterial translocation,
which also contributes to the development of IBD [25]. Figure 3 shows factors affecting
of IBD.

Environmental
factors

Immune

Genetic

factors factors

Disorders of
the gut
microbiome

Figure 3. Factors affecting the development of IBD.

2.4. Genetic Factors

It is widely known that the risk of IBD is higher among affected family members,
with twins having the highest risk, followed by first-degree relatives [26]. To date, more
than 201 sites in the genome that determine IBD susceptibility have been identified [27].
Analysis of genes involved in IBD shows that multiple pathways may be responsible for the
development of the disease, where the intestinal barrier appears to be the most important.
Genome-wide association study (GWAS) is one method to analyze the prediction of IBD
disease. The genes involved in the development of IBD are summarized in Table 4 [28,29].

Some genetic disorders have been found to be specific to particular disease. For
example, genetic studies conducted have shown, among other things, NOD2, ATG16L1, and
IRGM mutations leading to chronic IBD. NOD2 mutation leading to over activation of the
MAP pathway causes chronic intestinal inflammation [30,31]. Mutations in ATG16L1 and
IRGM have been linked to autophagy disruption in Crohn’s disease, which is responsible
for the removal of degraded proteins and mitochondria, which plays a key role in innate
and acquired immunity [32-35]. Disruption of ECM1 encoding extracellular matrix and
activating NF-«B signaling and II-10 gene defect causing its defective function are associated
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with CU [36-38]. The first genotype—phenotype association studies were conducted on
IBD subphenotypes and HLA variability [39-44]. These studies were mostly limited in
number of patients (approximately 100 patients) and showed mixed results. Overall,
the common results showed a correlation between HLA alleles and extensive colitis and
colectomy in UC. Additionally, HLA DRB1*01:03 is also associated with localization of
colon disease in CD [45,46]. NOD?2 is the first gene associated with CD. Several genotypic—-
phenotypic studies involving several hundred subjects have attempted to link NOD2
variants to CD subphenotypes [47-53]. The results of HLA studies were also mixed, and
most often related to associations with NOD2 variants for colorectal disease, narrowing
behavior and younger age. An impressive study from the above scope was the study of
IBD chips using a custom chip that included the whole genome and nominally relevant
replicated loci from the meta-analysis [54]. They were used in this study to investigate
their impact on clinical outcomes in 1528 patients with CD [54,55]. The results showed
that three genes were associated with multiple subphenotypes. NOD2 has been associated
with colorectal disease, constricting, penetrating behavior, need for surgery, and disease.
Localization of colorectal disease and narrowing behavior were also associated with JAK2,
while penetrating behavior and complicated disease were associated with PRDM1. Variants
that are associated with subphenotypes do not necessarily have to be identical compared to
variants associated with the development of IBD. One study included 1762 CD patients
with poor prognosis, often exacerbating refractory disease, and 972 CD patients with
good prognosis and slow disease [56]. Four loci—FOXO03, MHC, XACT, and one near
IGFBP1—were found to be relevant to the whole genome. Cleynen et al. conducted the
largest genotype—phenotype study ever conducted by the International Inflammatory
Bowel Disease Genetics Consortium and relied on immunochip data in 16,902 CD patients
and 12,597 UC patients [57]. The subphenotypes studied were age at diagnosis, time to
surgery, disease location (CD), disease behavior (CD), and disease grade (UC). The analysis
included 156,154 genetic variants, but only three loci (MST1, NOD2, and MHC) showed
important genomic-wide associations with one or more subphenotypes. All three loci were
associated with age at diagnosis as well as disease location (CD). Time to surgery was
associated with MHC in all IBD patients and with NOD?2 in CD patients. However, the
researchers focused only on the variants available in the immunochip, a genotyping chip,
which is intended for immunogenetic studies. However, in a more recent study, imputed
data referring to the genotype from the broader SNP array were used. It was enrolled in
1495 patients with CD [58]. But it has not been possible to identify any significant linkages
that span the whole genome with time to surgery, time to disease progression, or disease of
slow or progressive course. Innovative therapies that target specific genes or gene products
involved in the pathogenesis of the disease have given the opportunity for individualized
treatment [59-61]. Recently, approximately 200 loci susceptible to IBD have been identified,
corresponding to different factors (patient age, ethnicity, and race) [62-65]. Although many
genes associated with IBD have been studied, only a dozen or so have been well understood
and defined as genes essentially associated with IBD and 70% of them are associated with
Crohn’s disease and ulcerative colitis [63,66,67]. These genes fall into three categories
that act on different control points of the inflammatory pathway. These categories are: 1.
pathogen recognition, 2. pathogen removal by innate as well as cellular immunity, and 3.
obstruction of pathogen invasion through the intestinal mucosa barrier [68,69]. A healthy
person may be screened positive for an IBD mutation without any clinical or histological
evidence suggestive of IBD [70]. This highlights the importance of additional factors in the
development of the disease [61,63,67,70,71]. Age of onset of IBD varies depending on the
genetic profile and the presence of external factors (environmental, nutritional, and social
factors) [70,71].
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Table 4. Main genes involved in IBD pathogenesis [28,29].
Role/Pathway Colitis Ulcerosa Crohn’s Disease IBD
GNA12, HNF4A, CDHI1,
Epithelial barrier ERRFI1, MUC19, ITLN1, TCF4, and )
prthe € and HLA allelic associations KCNN4
(mainly class II)
. and KCNN4 and NKX2-3
(mainly class II)
AQP12A/B, SLC9A3, SLC26A3, SLC9A4,SLC22A5, SLC22A4,
Solute transport and HLA allelic associations TCF4, -
(mainly class II) and KCNN4
ITLN1, NOD2, ATG16L1,
Paneth cells - TCF4, XBP1
and KCNN4
SLCIIAL FCGRZ[I./Bf NOD2, ITLN1, TCF4, and CARD 9,
Innate mucosal defense and HLA allelic associations
. KCNN4 and RER
(mainly class II)
ILS8RA/IL8RB, CCL11,CCL2,CCL7,CCLS,
Immune cell recruitment and HLA allelic associations CCR6, TCF4, MST1
(mainly class II) and KCNN4
ERAP2, LNPEP, DENNDI1B,
Antigen presentation - TCF4, -
and KCNN4
IL23R, JAK2,
1L-23/Th17 IL21 STAT3 TYK2, ICOSLG,
and TNFSF15
IL2, TNFRSF9, PIM3, IL7R, NDFIP1, TAGAP, IL2RA, TNFSF8, IL12B, IL23R,
T-cell regulation TNFSF8, IFNG, TCF4, PRDM1,
and IL21 and KCNN4 and ICOSLG
B-cell reculation IL7R, IL5, IKZF1, BACH2, TCF4, and )
& and IRF5 KCNN4
1L27, SBNO?2, IL10,
Immune tolerance IL1R1/IL1R2 and NOD2 and CREM
PARK7, ATGI16L1, IRGM,
Autophagy and DAP NOD2, LRRK2, TCF4, and CurL2
KCNN4
Apoptosis/ DAP FASLG, PUS10,
necroptosis and THADA and MST1
CPEB4, TCF4, ORMDL3,
ER stress SERINC3 and KCNN4 and XBP1
. GCKR, TCF4,
Carbohydrate metabolism - and KCNN4 SLC2A4RG
Intracellular logisti TTLLS,IIC%P " an? Z;Pﬁp A FGFRIOP, KIF21B
acellular logistics allelic associations and VAMP3

(mainly class II)

PRDX5, BACH2, ADO, GPX4,

Oxidative stress HSZASAEE?’ GPX1,SLC22A4, LRRK2, CAngtg?gz’
an NOD?2, TCF4, and KCNN4 an
ARPC2, LSP1,

Cell migration

and AAMP
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2.5. Biomarkers

Several biomarkers have been studied, focusing on the degree of correlation with UC.
The most commonly used biomarkers are: ESR, C-reactive protein (CRP), fecal calprotectin
(FC), and also fecal lactoferrin (FL). OB and CRP markers are helpful in identifying inflam-
matory and non-infectious causes of diarrhea but they are non-specific markers whose
levels are usually elevated in certain disease states. The ESR marker, on the other hand,
is a nonspecific marker and does not change as rapidly as CRP. This results in its limited
utility [72,73]. Significantly, studies conducted as recently as the late 1990s, showed that
approximately 50% of patients with active disease may not have elevated CRP levels [74,75].
FC and FL are more specific markers for inflammatory bowel disease and are more closely
associated with colonic disease [76,77]. Researchers Chen, Shang et al. identified 10 hub
genes that are associated with pyroptosis in UC. In addition, they verified the gene ex-
pression pattern of these hub genes. The effect of existing drugs used to treat UC on the
expression of hub genes was investigated. IL1B, a predictor of drug response and also a
marker of active UC status, was identified. After combining single-cell analysis along with
immune infiltration, macrophages were identified as the most relevant immune cell type
throughout UC progression. In addition, they also investigated the molecular mechanisms
of the process of pyroptosis in UC. The results showed that crosstalk between macrophages
and IECs that relate to pyroptosis may affect the unrelatability and recurrence of UC. Thus,
the resulting chain of 1B-macrophage-pyroptosis relationship may provide new insights
into the pathogenesis and also the treatment of UC [78]. Another group of researchers from
the American Gastroenterological Association made seven conditional recommendations
for UC. For patients with the disease in symptomatic remission, the researchers suggest
using a monitoring strategy that is based on biomarkers or symptoms instead of a monitor-
ing strategy that is based on symptoms. Patients in symptomatic remission should have
fecal calprotectin <150 pg/g, normal fecal lactoferrin, and/or normal CRP levels to rule
out active inflammation and avoid routine endoscopic evaluation of UC. UC patients with
moderate to severe symptoms should have either fecal calprotectin >150 ug/g, elevated
fecal lactoferrin, or elevated CRP. Researchers identified the use of a biomarker-based
monitoring strategy instead of an endoscopy-based monitoring strategy as a knowledge
gap in the field [79].

2.6. Imaging Methods

Several imaging methods have been investigated to assess disease activity in UC.
Intestinal ultrasound was studied using endoscopic ultrasound probes and with transab-
dominal access [80-83]. While studies have shown that the first method is more accurate,
the usefulness of endoscopic ultrasonography is somewhat limited, due to the fact that
adequate preparation of the intestine is necessary and this study has an invasive nature.
Transabdominal access has also been shown to be well correlated with Mayo 2 endoscopic
disease and continues to be an area of research and interest. The impact of MRI was also
studied [84,85]. However, few protocols have the advantage of not requiring bowel prepa-
ration combined with faster imaging. Thus, they have been shown to correlate well with
endoscopic results [84]. Despite the results obtained, the use of these imaging methods in
the assessment of CD disease as well as UC in the United States is slow.

2.7. Environmental Factors

The earliest documented environmental factor influencing IBD was smoking [86,87].
However, smoking protects against ulcerative colitis [88]. These findings highlight the
complexity of environmental influences in IBD. The main environmental factors are shown
in Tables 5 and 6 [89,90].

As information on IBD has developed, many environmental factors have been linked.
A change in intestinal microflora (dysbiosis) is associated with the onset or progression
of IBD. Early childhood events (birth, breastfeeding, and antibiotic exposure) or later
childhood events such as potential risk factors for IBD. In addition, air pollution, i.e.,
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the consequence of the progressive contamination of the environment by a large number
of compounds, is another factor associated with IBD. This is because solids or other
components may affect the host mucosal defense mechanisms and often trigger immune
responses [91-93]. Environmental factors have a significant impact on the understanding
of IBD pathogenesis. In addition, they define that the disease requires complex therapies,
which now go far beyond the one-way treatment approach [94].

Table 5. Factors that increase the likelihood of developing IBD.

No. Factor CD CuU IBD

1 smoking +
2 urban living + +
3 appendectomy +
4 tonsillectomy +
5 antibiotic exposure +
6 oral contraceptive use +
7 consumption of soft drinks +
8 vitamin D deficiency +
9 non-Helicobacter pylori-like enterohepatic

. . +

Helicobacter species
Table 6. Factors that reduce the likelihood of developing IBD.
No. Factor CD CU IBD

1 physical activity +
2 breastfeeding +
3 bed sharing +
4 tea consumption +
5 high levels of folate +
6 high levels of vitamin D +
7 H pylori infection + + +

2.8. Immune Factors

Studies focusing on characterizing the host immune response in IBD indicate that in
CD the response is associated with activation of Th1 cells, while in CU the response is
associated with a Th2 cell population. Lymphocytes with a Th1 phenotype are responsible
for the production of cytokines such as IL-2, IL-12, IL-18, interferon gamma, IL-1b, and TNF
alpha. Lymphocytes with a Th2 phenotype are primarily responsible for the production of
IL-4, IL-5, IL-10, and IL-13; see Figure 4 [95-97].

2.9. Characterization of the Most Important Cytokines in IBD

The study of the immune response has led to the observation that the two main types
of IBD are distinct forms of enteritis, that is, CD is induced by the Th1 response, and UC is
associated with unconventional enteritis [94,98]. Like Th17 cells, it is also involved in the
inflammatory bowel response in IBD [99].

The innate immune response plays an important role in defending against pathogens.
It is mediated by many different cell types (epithelial, neutrophils, dendritic cells, mono-
cytes, macrophages, and Natural Killer cells (NK cells)) [100]. This type of immunity is
initiated by the recognition of microbial antigens through receptors that recognize patterns,
including Toll-like receptors (TLRs) on the cell surface and NOD-like receptors found in the
cytoplasm [101]. Studies show that the behavior of cells, which are responsible for innate
immunity and the expression and function of TLR and NOD proteins undergo tremendous
changes in IBD patients. Mucosal neutrophil accumulation and injury-related IL-1§3 and
IL-8 production are reduced in CD patients but not in UC patients [102].
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IFN y
TNF B
IL-2

IL-12
IL-18
IL-1b

CNMHC | Ag

IL-4
IL-5
IL-10
IL-13
IL-25

Figure 4. Scheme of cytokines production. APC: anaphase-promoting complex, CSF: colony stimu-
lating factor, EBI: Epstein—Barr virus-induced gene, IFN: interferon, IL: interleukin, LIF: leukemia
inducing factor, LT: lymphotoxin, OSM: oncostatin M, TGF: transforming growth factor, TL1A: TNF-
like cytokine 1A, TCR: T-cell receptor, TNF: tumor necrosis factor, TNFSF: TNF super family member,
TSLP: thymic stromal lymphopoetin. Genome-wide association studies have identified several IBD
susceptibility loci containing genes encoding cytokines as well as proteins involved in cytokine
signaling. Mutations that cause loss of function in genes encoding interleukin-10 (IL-10) and the IL-10
receptor are associated with very early onset IBD [97].

According to GWAS, NOD2 mutations often associated with CD result in a defective
ability of the intestine to respond to LPS. Consequently, this gives a defect that can affect
susceptibility to diseases [103,104]. The role of the NOD2 mutation remains controversial
as current evidence suggests that there are mutations that cause loss of function leading to
less NF-kB activation [104]. In combination with the above, an insufficient response may
affect reduced production of antibacterial agents as well as invasion of pathogenic micro-
organisms [105]. There are also studies that indicate that loss of NOD2 function may lead to
a lack of inhibition of TLR2 stimulation, resulting in activation of inflammatory pathways
and excessive Th-1 responses [106]. NOD2 also contributes to immune tolerance. However,
these effects are significantly attenuated in cells of patients who have the NOD2 3020insC
mutation [107]. IL-23 is a key cytokine in both innate and acquired immunity, as it plays
an important role in eliciting early anti-microbial responses. IL23R polymorphisms are
related to both CD and UC. Thus, IL-23 may represent a common inflammatory molecule in
chronic enteritis. In addition to acting on Th17 cells, IL-23 may also act on cells of the innate
immune system. Studies have shown that IL-23 induces the production of Th17 cytokines
by congenital lymphoid cells having a lymphatic tissue-induced cell phenotype [108]
(Table 7).

West et al. have developed relative levels of expression in transcriptomic datasets [109]
and produced a table of cytokines involved in CD, UC, or both disease units [109-141]. In
transcriptomic assays, a large proportion of cytokines are not clearly regulated. However,
the lack of regulation in the tissue that is affected by inflammation does not exclude it from
the pathogenesis of IBD. Cytokines may act in specific immune compartments not subject
to endoscopic examination [142]. Figure 5 shows the modulated cytokines placed in the
context of the inflammatory response in IBD. As you can see, all the following groups of
cytokines overlap, and it is clear that they are interrelated. These cytokines have different
functions, but they can be grouped into modules related to phagocytes, T lymphocytes, B
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lymphocytes, and plasma cells, as well as regulators of epithelium, microflora, and stem

cells [143].

Table 7. Cytokines in inflammatory bowel disease (CD and UC) prepared based on [99-109].

. Suggested . .
Cytokines Function Appropriate Disease
Stem cell chemoattraction and tissue
OSM retention of neutrophils, monocytes, and CD/UC
T lymphocytes
CSF3 Increased tissue neutrophil survival CD
IL1B Costlmula}tlon in .zm inflammatory CD/UC
microenvironment
IL1A Costlmulétlon in .an inflammatory CD/UC
microenvironment
Local and systemic inflammation,
IL6 epithelial cell proliferation, and T cell CDh/uUcC
activation
£27 Th17 shift to inflammation via Th1 CD
IL11 Regulation of stem cells fibrosis CD
CSF2 Neutrophil /monocyte stimulation CD
122 Increases proliferation and production of D
antimicrobial peptides in the epithelium
TNFSF13 Homeostasis and B cell differentiation CD/UC
IL17A Emergency granulopoiesis CDh/UC
TNF Promotes acute phase proteins CD/UC
IL12A Differentiation Thl CD
IL17F Similar to IL17A but weaker CD
TGFB2 Immune regul.atlonf and inhibits CD/UC
proliferation
L33 Alarm.mg, t.1ssue remodeling, cup cell CD/UC
proliferation, and Treg expansion
EBI3 Th17 shift to inflammation via Th1l CD/UC
TGFB3 Immune regul.atlonf and inhibits CD/UC
proliferation
TGFB1 Immune reguliahon{ and inhibits CD/UC
proliferation
Stem cell maintenance, and cell
LIF differentiation CD/UC
CSF1 Monocyte stimulation CDh/UC
IL15 T-cell homeostasis CD
Monocyte differentiation, and
IL32 activation-induced cell death CD
o1 Th17 d1fferent1at10n,. and B cell D
homeostasis
TSL Activation of antigen-presenting cells CD
IF Activation of cellular immunity CD/UC
TGFB3 Immune regulfitlon{ and inhibits CD/UC
proliferation
TL1A Co-stimulation IFNG ucC
Regulation of responses mediated by
IL23A Th17 and IL-22 uc
IL16 Chemo attraction ucC
L34 Growth and development of myeloid uc
cells
IL26 Antibacterial activity CD/UC
1129 Promotes epithelial antiviral functions ucC
L2 Proliferation and survival of T cells ucC
1L37 Inhibits innate immunity ucC
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Figure 5. Cytokinases and their interrelations.

IFN-gamma is one of the most important cytokines that participates in the induction
and modulation of a variety of immune responses in the human body, including through
the activation of macrophages and it is characterized by antiviral, immunoregulatory, and
anticancer activity. Interferon gamma was first described in 1965 by E. Frederick Wheelock
as an interferon-like virus inhibitor that was induced by Phytohemagglutinin derived
from an extract of the Phaseolus vulgaris [144]. IFN gamma is the only member of type
II interferons whose human gene locus is located at 12q14p3 chromosome. IFN-gamma
combine with the receptor, which is formed by two subunits IFNGR-1 and IFNGR-2. Inter-
feron gamma is now known to participate in the signal transduction pathways, mediating
immune responses [145]. The role of IFN-v as an initiator of the inflammatory process in
the intestines has been demonstrated in several mouse models. In vivo studies have shown
that in people with high production of IFN-gamma, intestinal damage occurred after expo-
sure to toxic factors compared to people with a deficiency of this cytokine [146,147]. IFN-y
as an immunomodulatory exerts strong effects on the vasculature, because IFN causes
vascular barrier breakdown by disrupting VE-cadherin protein of the adherens junction.
This was used in the Langer et al. study, where restoration of vascular barrier function was
achieved and inflammation induced by DSS was reduced after imatinib treatment [148].
Woznicki et al. also showed that TNF-o synergises with IFN-y to induce enzyme dependent
death of intestinal epithelial cells [149]. IFN gamma have been shown to disrupt epithelial
barrier integrity both in vivo and in vitro in the study by Madara et al. [150].

IL-4 regulates antibody production and hematopoiesis, plays a key role in inflam-
matory reactions, and has mitogenic activity in endothelial cells [34,35]. Other properties
of IL-4 are its Th2 and Thl immune functions, in which it can initiate or inhibit a given
reaction. Increased secretion of IL-4 by Th2 cells is characteristic in colitis ulcerosa [151,152].
Studies also suggest that induction of an IL-4-dependent immune response may be a major
pathogenic factor in ulcerative colitis exacerbation [153]. IL-6 is a pleiotropic cytokine
with roles in immunity and metabolism. Interleukin 6 inhibits the reverse secretion of
TNF alfa. Interleukin 6 stimulates B lymphocytes to release immunoglobulins of different
classes, stimulates synthesis of acute phase proteins in the liver and phospholipase A2,
stimulates bone marrow progenitor cells and platelet production, regulates metabolism,
and stimulates bone resorption [154].

The study by Gross et al. showed that IL-6 is higher in patients diagnosed with Crohn’s
disease. Studies analyzing the concentration of selected interleukin were performed from
collected serum and intestinal mucosa [155]. Additionally, the authors confirmed that the
concentration of 11-6 depends on the progression of the disease. Additionally, it correlates
with the frequency of relapses and with inflammatory symptoms of the disease [156].

In turn, interleukin 10 (IL-10), as an anti-inflammatory cytokine, has inhibitory proper-
ties, inhibiting the production of many cytokines, e.g., proinflammatory cytokines. Accord-
ing to the literature, IL-10 has properties that regulate various types of innate and adaptive
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immune cells. This treatment helps avoid the development of various immunological
pathologies, which include cell induction and autocrine inhibitory effects on macrophages
and dendritic cells [157]. Low levels of interleukin IL-10 may cause prolonged activation
of mononuclear cells, thereby increasing the production of inflammatory cytokines. This
phenomenon may lead to, among other things, damage of the intestinal mucosa [158]. The
basic principles of anti-cytokine therapy in IBD are based on the use of anti-inflammatory
agents, aminosalicylates, and corticosteroids [158]. Additionally, a large number of studies
have investigated potential beneficial effects of anti-cytokine antibodies in IBD patients.
Infliximab was the first antibody in IBD therapy [159]. Adalimumab was shown to be
effective in IBD patients in both CD and UC [160]. TNF-receptor (TNF-R) fused with a Fc
domain of human immunoglobulin (Ig) G1, that binds and inactivates TNF, failed to show a
clinical benefit in CD patients [161]. Sirukumab, olokizumab (CDP6038), C326, PF04236921,
and BMS-945429, as well as tocilizumab targeting the IL-6 receptor have been investigated
in IBD patients [161].

3. Characteristics of the Main Indicators of Inflammatory Bowel Diseases:
Metalloproteinases: MMP-3, -7, -9, and -11

The focus on the aforementioned metalloproteinases is based on the fact that they
have been the subject of our research from the very beginning; hence, the characterization
of only these metalloproteinases. In IBD disease, the pathological process is associated
with extensive degradation of the mucous membrane, as well as with tissue remodeling,
which promotes the development of ulcers, fistulas, and narrowing. The pathogenesis of
the aforementioned changes is not yet well understood, and many studies confirm the
involvement in these processes of a large number of proteases, which are produced in
inflammatory microenvironments. These include, for example MMP [162].

MMPs are primarily secreted as latent, inactive zymogenes by a large number of differ-
ent cells (e.g., myofibroblasts, T cells, macrophages, monocytes, neutrophils, and epithelial
cells). Conversely, conversion to the active enzyme occurs most often in the pericellular or
extracellular space. MMPs are characterized by the fact that they act together, forming an
activation cascade. This process works in such a way that when activated, one MMP can
induce the conversion of other MMP zymogens to their active forms, forming a catalytic
cascade that has the ability to degrade many components proteoglycans, collagens, and
non-collagen glycoproteins [162]. Considering the primary substrate, MMPs are divided
into subclasses, which are collagenases, gelatinases, stromelysins, elastases, membrane
types, and others. The classifications of the above mataloproteinases are listed below
(Table 8).

Table 8. Expression and Function of Various Matrix Metalloproteinases in IBD.

Expression in

IBD Number of Number of . Quantification
MMP Class Compared to Controls Patients Disease Technique
Controls
In situ
8 8,5,6,and 7 U, UC, and CD hybridization
Quantitative polymerase
MMP-1 Collagenases Increased Not stated 30 uc chain reaction (qQPCR)
Not stated 17, and 16 UC, and CD Immuno-histochemistry
Not applicable ~ Not applicable Not applicable Microarray Real-Time
20 30 ucC (RT-PCR)
62 20, and 122 UC, and CD ELISA
MMP-2 Gelatinases Unchanged
14 23, and 22 UC, and CD RT-PCR
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Table 8. Cont.
Expression in
IBD Number of Number of . Quantification
MMP Class Compared to Controls Patients Disease Technique
Controls
. . . Microarray, in situ
Not applicable ~ Not applicable Not applicable hybridization
? 1 b h blr?dsilzmti n
MMP-3  Stromelysins Increased y ano
10 13, and 25 UC, and CD ELISA
16 23, and 24 UC, and CD RT-PCR
Not applicable  Not applicable Not applicable Microarray
Microarray,
Not stated Not stated UC, and CD and RT-PCR
Not stated 52 UucC Immuno-histochemistry
MMP-7 Stromelysins Increased Not stated 35 ucC RT-PCR
4 25 ucC Immuno-histochemistry
19 17,23, and 19 UC, CD, and AP qPCR
MMP-8 Collagenases Increased 11 12, and 11 UC, and CD Immuno-histochemistry
. . . Microarray, in situ
Not applicable Not applicable Not applicable hybridization
9 11 CD In situ hybridization
9 31, and 13 UC, and CD Zymography
MMP-9 Gelatinases Increased 8 16 ucC qPCR
Not stated 17, and 16 UC, and CD Immuno-histochemistry
Not applicable ~ Not applicable Not applicable Microarray
Not applicable ~ Not applicable Not applicable Zymography
21 21, and 22 UC, and CD qPCR
11 12, and 11 UC, and CD Immuno-histochemistry
MMP-10  Stromelysins Increased Microarray,
Not stated Not stated UC, and CD and RT-PCR
Not stated 5 IC qPCR
. . . . Microarray, in situ
MMP-11  Stromelysins ~ Unchanged Not applicable ~ Not applicable Not applicable hybridization
In situ
7 10,7, and 14 UC, IC, and CD hybridization
MMP-12 Elastases Increased 11 12, and 11 UC, and CD Immuno-histochemistry
Not applicable ~ Not applicable UC, and CD Microarray
Not applicable Not applicable Not applicable Mlcroarra.\y, m situ
MMP-13  Collagenases  Inconclusive hybridization
30 35, and 24 UC, and CD Immuno-histochemistry
. . . Microarray, in situ
Not applicable ~ Not applicable Not applicable A
MMP-14 Metmb;:ne Inconclusive hybridization
P 14 23, and 22 UC, and CD RT-PCR
Membrane . . . Microarray, in situ
MMP-17 Unchanged Not applicable ~ Not applicable Not applicable

types

hybridization
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Table 8. Cont.
Expression in
IBD Number of Number of . Quantification
MMP Class Compared to Controls Patients Disease Technique
Controls
. . . Microarray, in situ
Not applicable Not applicable Not applicable A
MMP-19 Other Unchanged pp pp pp hybridization
5 24,9,7,and 20 UG, IC,CD Immuno-histochemistry
MMP-23 Other Increased 20 40, and 30 UC, and CD RT-PCR
MMP-26 Other Unchanged 5 24,9,7,and 20 UG, IC,CD Immuno-histochemistry
Not stated 35 ucC RT-PCR
MMP-28 Other Decreased - -
5 24,9,7,and 20 UC, IC,CD Immuno-histochemistry

Studies by Saarialho-Kere et al. have documented high expression of MMP-1 and
MMP-3 RNA in gastrointestinal tissue around ulcers, also in the intestines of patients with
IBD [163]. Subsequently, the same researchers showed that MMPs are produced by different
types of cells in the gut—laminino-5-positive and Ki67-negative enterocytes that surround
ulcers expressed MMP-10 mRNA. Macrophages near the exfoliating mucosal epithelium
and below the necrotic surface of ulcers were positive for MMP-12 and fibroblast-like cells
in ulcers were the source of MMP-13 [164]. Dobre et al. documented increased expression
of MMP-10 RNA in inflammatory tissue of UC patients [165]. Other studies have confirmed
increased RNA expression of many MMPs in tissue that is inflamed in CD and UC patients
compared to healthy and diseased controls (e.g., diverticular disease) (Table 8) [166]. In
the pediatric population, MMP-7 expression was significantly pronounced in active CD as
compared to active UC. This gave hope that the MMP-7 could be helpful in distinguishing
a CD from a UC [167]. Another study in this regard confirmed increased expression of
MMP-7 with MMP-1, -3 and -10 in the area of intestinal epithelial cells and CD and UC
mononuclear plaque cells (LPMC) [168]. It was also noted that MMP-1 remained elevated
in UC patients with endoscopic remission with persistent histological inflammation [169].
MMP-1, MMP-3, and MMP-9 are largely produced by mucosal myofibroblasts [170] and
have also been observed in the fistula tract [171,172] while neutrophils produced MMP-2
and MMP-9 [173]. On the other hand, epithelial cells on the margins of ulcers most often
produce MMP-7 [174,175] This study indicates that MMP-7 plays roles in the re-creation
of epithelium after injury. In addition, expression of the MMP-9 gene and protein was
particularly increased in patients with extensive UC compared to patients with left-colonic
lesions or healthy controls [176]. IBD is characterized by increased plasma concentrations
of various MMPs [177,178]. However, there is no clear evidence to support the use of
circulating MMP as an indicator of disease activity. In IBD, an excessive immune response
is associated with abnormal production of several MMPs as well as altered MMP /TIMP
ratios. Studies confirm the role of MMP in the process of mucosal degradation, which is
associated with IBD. Several MMP inhibitors have been developed and used to alleviate
enteritis in animal models of IBD [179]. Similar results were also seen after treatment with
batimastat, which is an MMP inhibitor [180]. Studies by O’Sullivan et al. show that rectal
administration of diazotane-barbiturate, a barbiturate-based MMP inhibitor that includes
a group of nitric oxide donors/mimetics, to rats with colitis with sodium dextran sulfate
(DSS) inhibits the induction and activity of MMP-9. In addition, it relieved the ongoing
colitis [181]. The above data allowed the development of compounds for clinical use. Three
clinical trials have been conducted with MMP inhibitors for the treatment of IBD. The first
phase of the study focused on the safety and efficacy of GS-5745 (andecaliximab), a fully
humanized, high-affinity IgG4 monoclonal antibody that selectively binds to and inhibits
MMP-9 in the moderately to severely active form of UC, with very impressive results [182].
Seventy-four UC patients were randomized to receive either a single or multiple initial
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intravenous dose (0.3, 1.0, 2.5, or 5.0 mg/kg) two weeks apart (three infusions) or five
weekly subcutaneous doses (150 mg) of GS-5745 or placebo. The medicine was safe and 43%
of patients who received GS-5745 had a clinical response compared with 13% of patients
who received placebo. However, these results were not confirmed in the phase 2 and
3 studies [183]. GS-5745 was tested in phase II in patients with moderate to severe CD.
However, eight weeks of induction treatment did not result in adequate symptomatic or
endoscopic responses [184].

3.1. MMP-3

Matrix metalloproteinase-3, or MMP-3, is one of the representatives of the stromelysin
group [46]. MMP-3 plays a key role in many processes, both physiological and pathologi-
cal. It is present in processes such as tissue morphogenesis, inflammatory reactions, and
damage repair. It has proteolytic properties, so it has the ability to destroy chondrocytes.
Additionally, it is involved in the initial phase of rheumatoid arthritis [185]. MMP-3 expres-
sion influences the ability of many types of malignancies to degrade ECM, e.g., glioma,
breast cancer, liver cancer, etc. [186-190]. In addition, Kahlert et al. showed that colorectal
cancer cells have abnormally high expression of MMP-3 protein [191]. MMP-3 may play a
key role in colon cancer growth and migration promoted by collagen degradation, accord-
ing to recent studies [192,193]. MMP-3 matrix lysin that digests ECM components [185]. In
their study, Sipos et al. found a positive correlation between increased expression of the
MMP-3 protein and the adenoma—dysplasia—cancer process [194]. The dysplastic states
of established adenocarcinoma, which are characterized by high-grade malignancy and
early-stage CRC, can be distinguished by MMP3 expression in the stroma [194]. A study
by other researchers showed a positive relationship between the level of MMP-3 protein
expression and lymph node metastases [195]. Additionally, it has been shown that MMP-3
can activate other metalloproteinases, such as MMP-1, MMP-7, and MMP-9, mainly to
activate cancer cell division [172,196-202]. Kirkegaard et al. in their work noted high
concentrations of MMP-3 in the fistula tissue of patients with Crohn’s disease compared
to the control group in which inflammation was not diagnosed. The analysis detected
the presence of metalloproteinase in mononuclear cells and fibroblasts as well as in fistu-
las [172]. MMP-3 has also been identified in idiopathic fistulas. Liévre examined [203] gene
promoter polymorphism mainly in MMP-3, but also in MMP-7 and MMP-1 in patients
with adenomas. The experimental results confirmed a close and strong correlation between
MMP-3, MMP-1 polymorphisms, and adenomas. No such relationships were found with
MMP-7. This type of research plays a significant role in analyzing the origin and activity
of adenomas [202]. Another study assessed the role of cytokines and metalloproteinases,
which play an essential role in colitis. These genes include: MMP-3, MMP-9, MMP-7, and
MMP-13. They can be used as a kind of natural molecular markers in assessing the extent
of inflammation [192]. In turn, Pan et al. [204] analyzed genes, cytokines, and metallo-
proteinases associated with colon diseases, i.e., ulcerative colitis and colon cancer. In the
study, they confirmed that patients diagnosed with an active form of ulcerative colitis had
higher concentrations of MMP-3. In turn, after the administration of golimumab, there
was a decrease in the expression of not only the concentration of MMP-3 and TIMP-1 in
the mucosa of patients. Similar correlations have been observed in patients with colorectal
cancer [203]. Scientists have confirmed that MMP-3 is a promising marker of inflammatory
bowel diseases. Similar conclusions were presented by Li et al. [205], who recruited and
examined 260 patients in 2016-2020. Of the 35 cytokines identified, MMP-3 and CC2 were
the two most effective serum biomarkers [204]. Innate lymphoid cells (ILC) and their
cytokines may play a central role in the pathogenesis of IBD, especially ILC3 (UC) and
ILC1 (CD) [205]. The role of neutrophils, including neutrophil extracellular traps, and
various types of macrophages (M) and NK/NKT can also be noted. In addition to IFN-y,
interferons—IFNL also play an important role in the pathogenesis of CD [206]. The theory
that cytokines in UC IL-22, IL-17 (Th17, ILC3), IL-22 (Th17, Th22), and IL-9 (Th-9) under
pathological conditions (e.g., IBD) may cause epithelial inflammation due to endoplasmic
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reticulum (ER) stress response is worth further investigation [207,208]. Table 9 presents the
pathogenetic role of cytokines in UC [209-211].

Table 9. The pathogenetic role of cytokines in UC [209-211].

Cytokine Mechanism References
IL-9 (Th-9) IL-9 stimulation promoted
claudin-2 expression while inhibited
IL-9 claudin-3 and occludin expression. [209]
(Cells Secreting Furthermore, SOCS3 overexpression rescued Tian et al.. 2018
Cytokine Th-9) the IL-9-induced effects. Altogether, v
IL-9 participates in the pathogenesis of UC
through STAT3/SOCS3 signaling pathway.
IL-17 promoted inflammatory cytokines
L-17 (IL-1B, TNF-«) and chemokines responsible
(Cells Secreting Cytokine for leukocytes and neutrophils migration to [210]
Thi7, and ILC3) inflamed tissues, in the absence of I1L-23 Katuzna et al., 2022
’ supports the intestinal barrier through
occludin regulation in tight junctions.
IL-22 production is still an uncharted area,
awaiting more detailed analysis on the
transcription factors (TF) that help define
their developmental pathways and
IL-22 phenotypic stability. L-22) has been [211]
(Cells Secreting Cytokine extensively studied for its roles in Yan et al.. 2021
Th17, and Th22) maintaining mucosal barrier integrity, v
antimicrobial defense, cellular proliferation,
and inflammation. The beneficial and
pathogenic roles of IL-22 in various
disease settings.
3.2. MMP-7

MMP-7 is a metalloproteinase and proteolytic enzyme that produces zinc and calcium
endopeptidases [205]. Its main function is a regulatory role in various pathophysiological
processes. For example, it participates in the immune response in co-operation with other
elements of the immune system [205]. Additionally, it activates cryptins, i.e., antimicrobial
peptides [2]. This metalloproteinase may be a promising biomarker of cancer and, also, a
therapeutic target. MMP-7 expression is associated with clinical characteristics of cancer
patients [211,212]. Manipulation of MMP-7 expression or function may become a potential
treatment strategy for various types of diseases, most notably cancer [213]. There are four
characteristic regions in the structure of MMP-7, but the hemoglobin terminal group is
missing. Normally, MMP-7 metalloproteinase is present in high concentrations in organs
such as bronchioles, epithelial tissues of skin glands, and the gastrointestinal tract [214,215].
It is present in small amounts in the lungs, gallbladder, and urinary bladder. When inflam-
mation or disease begins, their levels increase [216-220]. MMP-7 is also responsible for
the effective wound healing process and participates in the processes of various signaling
pathways responsible for cell growth and angiogenesis [221-226]. MMP-7 is expressed
in human multi-organ cancers [227,228], including gastrointestinal cancers [227]. Addi-
tionally, MMP-7 may act as an oncogenic protein that regulates the physiology of various
cancers. According to the available literature data, it can be concluded that the level of
MMP-7 [167,174,175,229,230] is increased in inflammatory tissues. In patients with colorec-
tal cancer, MMP-7 is responsible for cell proliferation [231-236] by releasing ectodomains,
i.e., growth factors [234,237]. In turn, Klupp et al. [235] analyzed the level of MMP-7 in
serum samples of patients diagnosed with colorectal cancer. Studies have shown that the
level of MMP-7 was higher in patients with colorectal cancer compared to the level of
MMP-7 in patients from the control group, i.e., healthy patients [234]. Overall survival



Int. J. Mol. Sci. 2024, 25, 202

18 of 32

rates were also analyzed, which were lower in patients with colorectal cancer compared
to patients from the control group [232]. High concentrations of MMP-7 are responsible
for excessive proliferation of cancer cells and, consequently, contribute to the metastasis
of cancer cells (mainly in the case of colorectal cancer) [231]. Therefore, scientists claim
that the analysis of MMP-7 and its determination in tissues and serum can be used as an
independent prognostic indicator in the case of the large intestine [232]. Both MMP-3 and
MMP-7 in cancer cells may or may not determine tumor resistance to apoptosis [218-242].
Some MMPs, including MMP-3 and MMP-7, are involved in the transport of cancer cells.

3.3. MMP-9

MMP-9 also plays a significant role in the progression of cancer cells. According to a
review, it is one of the most frequently studied MMPs [238,243]. According to Daniluk et al.,
MMP-9 is a marker of destruction (to a greater or lesser extent) of the intestinal mucosa,
mainly in Crohn’s disease [244]. In the experiment, the research group and the control group
were pediatric patients. The experiment used an immunoassay. The results confirmed
previous hypotheses that MMP-9 levels were higher in patients with Crohn’s disease com-
pared to the control group. According to the authors, increased MMP-9 concentrations are a
reliable marker of inflammation, especially in Crohn’s disease [239]. The analysis of MMP-9
concentrations is also used in systemic diseases, e.g., thromboembolism [184,240-249]. A
similar study was conducted by the research group in Kofla-Dubacz et al. [250]. They
assessed the concentration of MMP-3 and MMP-9 in Crohn’s disease. They examined the
correlation between MMP-3 and -9 concentrations and clinical disease activity. As in the
previous case, in this experiment the research group was a group of pediatric patients
diagnosed with Crohn’s disease. The results confirmed that the concentration of MMP-9 in
serum correlates and is dependent on disease activity [245]. Similar research was conducted
by Piechota-Polaniczyk et al. [251]. The aim of the study was to analyze the correlation
between cyclophilin A and MMP-9 in inflammatory and non-inflammatory conditions
of the large intestinal mucosa in patients with Crohn’s disease. The subject of the study
were serum samples and tissue of the large intestine mucosa taken during biopsy. In this
experiment, ELISA was performed. And in this case, the results were not as good as in
the previous ones. Higher MMP-9 concentrations were detected in patients with Crohn’s
disease [246]. Similar results were presented by Meijer et al., who showed increased activity
of matrix metalloproteinases in tissues associated with inflammatory bowel disease [41].
In turn, Gao et al. and de Bruyn et al., attempted to assess the effect of infliximab therapy
on MMP-9 expression in Crohn’s disease. The authors observed that the level of MMP-9
decreased after the use of infliximab [252,253]. An example of a Polish research team that
estimated the concentration of MMP-9 in the serum of patients with inflammatory bowel
diseases was the team of Matusiewicz et al. In the results, the authors presented that the
concentrations of MMP-9 in the serum were significantly higher in the active phases of the
disease. The authors agree that the assessment of MMP-9 concentration in serum may help
in the differentiation of Crohn’s disease [254]. In studies conducted by Silosi et al. [255]
and Maikitalo et al. [256] the aim was to examine the content of MMP-9 in the stool of
patients with inflammatory bowel disease. MMP-9 concentrations were also analyzed by
ELISA. The experiment confirmed that MMP-9 levels were significantly higher in cases of
active intestinal inflammation and ulcerative colitis [255]. Mékitalo et al., [256] assessed
the concentration of MMPs and their inhibitors in the serum of pediatric patients with IBD
after pharmacotherapy. In this case, the experimental part was also performed using the
ELISA test. As a result of the experiment, it was observed that the concentration of MMP-9
in the serum before treatment was increased compared to the control group.

Another research team assessing the expression of MMP-9 in ulcerative colitis and
Crohn’s disease is the team of scientists Jakubowska et al. [257]. The assessment of expres-
sion in tissue samples was performed using the immunohistochemical method. Experiment
showed that MMP-9 overexpression predominated in both the glandular epithelium and the
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inflammatory infiltrate. The study confirmed that MMP-9 may be a potential therapeutic
target in inflammatory bowel diseases.

Another group of researchers examining the relationship between serum MMP-9
levels and disease activity in IBD patients was the group of Shamsey et al. [258]. The study
observed that serum MMP-9 concentrations were higher in patients with active ulcerative
colitis compared to patients with inactive disease. No elevated values were observed in
the control group either. Serum MMP-9 levels were also higher in patients with active
Crohn’s disease compared with patients with inactive disease. The authors concluded that
the measurement of MMP-9 in serum can be used to differentiate active and inactive stages
of the disease [258]. The next research group was that of Yablecovitch et al. [259]. The aim
of their study was to evaluate whether serum MMP-9 levels predict clinical exacerbation
in patients with Crohn’s disease. Higher MMP-9 levels were found in patients who later
experienced disease exacerbation. In summary, the authors demonstrate that MMP-9
may be a promising marker for predicting exacerbations of the clinical phase of Crohn’s
disease [259].

3.4. MMP-11

In turn, MMP-11 from the endopeptidase group is involved in matrix degradation
and tissue remodeling. Currently, there is a belief that MMP-11 promotes cancer develop-
ment. Compared to other MMPs, MMP-11 cannot have a destructive effect on any of the
components of the extracellular matrix. Additionally, MMP-11 is secreted in its active form.
MMP-11 participates in tissue remodeling processes, including those related to cancer pro-
gression [260]. MMP-11 is an important protease that is expressed in cancer cells, stromal
cells, and the surrounding microenvironment. MMP-11 has a bilinear effect on cancer. On
the one hand, it supports tumor growth by inhibiting apoptosis and promoting cancer
cell migration. On the other hand, in animal models, MMP-11 has a protective effect on
tumor growth and metastasis at more or less advanced stages [261,262]. Huang et al. [263]
conducted research to determine the levels of MMP-9 and MMP-11. The experimental
results confirmed that the concentration of MMP-9 and MMP-11 was higher in patients
with colorectal cancer compared to the concentration level in healthy patients. The results
showed that the combined detection of metalloproteinases in serum can be a specific and
sensitive diagnostic biomarker [263]. Increased serum levels of MMP-11 are observed not
only in inflammatory tissues of IBD but also in cancerous tissues of the stomach, breast, and
pancreas. Currently, research confirms that MMP-11 may be a prognostic factor for detect-
ing early-stage cancer. Additionally, it can help assess the degree and extent of the cancer.
Currently, there is a need to conduct further research analyzing the role of MMP-11 in can-
cer progression [264,265]. Arcidiacono et al. [266] investigated the expression of MMP-11
in adipose tissue dysfunctions using in vitro and in vivo models of insulin resistance. The
research was conducted in laboratory conditions on mice. The results showed that MMP-11
mRNA expression levels were significantly higher in insulin-resistant adipocytes compared
to control cells. It is worth noting that the results obtained in in vitro experiments were
confirmed in an in vivo model of insulin resistance. The authors conclude that dysregula-
tion of MMP-11 expression is the initial stage of the process of adipose tissue dysfunction,
which may, consequently, lead to problems with insulin resistance [266]. Zhang et al. [267]
conducted research to confirm the influence of MMP-11 in tumorigenesis. The authors
analyzed the possible mechanism of tumor initiation in patients with pancreatic cancer.
The results showed that MMP-11 could be expressed. The site of its activation was the
cytoplasm [267]. In turn, Motrescu et al. [268] presented a short review in which they
analyzed the role of MMP-11 in the context of cancer formation. It is worth noting that
MMP-11 plays a significant role during tumor desmoplasia and constitutes a molecular
link between obesity and cancer [268,269]. MMP-11 also plays a significant role in hepato-
cellular tumor migration and metastasis [270]. There are also examples in the literature of
the characterization of MMP-11 in prostate cancer. It is involved in the degradation and
remodeling of the extracellular matrix and plays an essential role in the development of
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prostate cancer and metastasis. Studies show that it may contribute to the development of
cancer in prostate cancer patients with biochemical recurrence [271]. Another example of
assessing MMP-11 expression is cholangiocarcinoma, which is a primary tumor of the bile
duct mucosa. The aim of the work by Tongtawee et al. [272] was to detect the expression
of MMP-11 in samples and show the relationship with survival time. The research group
consisted of 30 patients who underwent MMP-11 immunohistochemical staining. In the
results, the authors showed that MMP-11 expression was found in 50% of patients. Overall
median survival time was 237 days. The authors concluded that positive expression of
MMP-11 indicates a poor prognosis in samples with cholangiocarcinoma [272]. Another
example of a condition where researchers are evaluating the relationship between serum
MMP-11 levels and patient prognosis is colon cancer. The article by Pang et al. [273] anal-
ysed MMP-11 levels in the serum of patients with colon cancer. The experiment examined
the associations between serum MMP-11 levels and clinico-pathological characteristics
of patients. In the results, the authors showed that serum MMP-11 levels were higher in
patients with colorectal cancer compared to healthy control patients. According to the
authors, high levels of MMP-11 in serum correlated with poor clinical outcomes [268].
Nakopoulou et al. [274] conducted studies characterizing MMP-11 in various types of
glomerulonephritis. In the results, the authors showed that immunopositivity for MMP-11
was detected in the glomeruli of most patients. The highest incidence of MMP-11 was
reported in glomerulonephritis [274]. The MMP-11 biomarker is used to diagnose and
predict bladder cancer.

Studies on the analysis of MMP-11 in bladder cancer were also conducted by
Chen et al. [275]. In this study, they analyzed the expression of MMP-11 in patients with
bladder cancer. In this study, they confirmed that increasing MMP-11 levels is associated
with tumor progression and poor survival in bladder cancer patients. The presented results
suggest that MMP-11, as a secreted protein, is a promising biomarker in the diagnosis and
prognosis of patients with bladder cancer [275].

4. Summary

Metalloproteinases correlate with inflammation, signaling the phase of the disease [125].
Analysis of MMPs concentration is also useful in inactive disease states. In this case, a
biochemical test is performed to confirm inflammation [153]. A similar observation was
made by Bouma et al., [41] who also assessed inflamed tissues using biochemical analysis
of mucosal metalloproteinase activity in patients with Crohn’s disease. They characterized
the markers MMP-1, -2, -3, and -9. Inflammatory tissues showed increased activity of all
4 metalloproteinases, which could have influenced changes in tissue morphology and physi-
ology [154]. Moreover, MMP-7 is a biomarker of Crohn’s disease as a marker differentiating
inflammatory tissues. In the study by Rath et al. [175,230] increased MMP-2, MMP-7, and
MMP-13 mRNA levels have been reported in Crohn’s disease biopsy specimens. MMP-2
and MMP-9 indicated increased protein secretion [155]. Jakubowska et al., [257] based
on their research, also observed an increase in the concentration of MMP-2, MMP-7, and
MMP-9. Researchers suggest that the characterized metalloproteinases may constitute a
potential therapeutic target, and the use of their inhibitors may significantly reduce the
progression of Crohn’s disease [133]. In studies in children, serum MMP-7 reflected disease
activity [156,157]. Literature data indicate that the main biomarkers of inflammatory bowel
diseases are four MMPs, i.e., MMP-3, MMP-7, MMP-9, and MMP-11.

5. Conclusions

The cause of IBD is multifactorial, with genetic as well as environmental, infectious,
and immunological factors contributing to its development. Research has made significant
progress in understanding the pathogenetic mechanisms of IBD. It is difficult to deny
the widespread belief that IBD results from an extremely complex interaction between
genetic and environmental elements, a dysregulated immune response, and changes in
the microbiome, and that none of these factors alone can cause the disease. Moreover, the
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molecular response in IBD is dominated by T cells. In CD, Th1 and Th17 lymphocytes
dominate, and interleukins produced by CD4 cells (mainly IL-17 and 22) and INF-y are
also important. In UC, Th2 lymphocytes predominate, resulting in the expansion of NK
cells and the production of IL-13 and IL-5. It is worth noting that the MMP family also
plays a key role in IBD patients. The primary biomarkers are MMP-1, MMP-2, MMP-7,
MMP-8, MMP-9, MMP-12, MMP-13, MMP-14, and MMP-21. As shown in the review,
their expression is associated with poor prognosis and increased inflammation. MMPs
are mainly associated with inflammatory diseases. In colitis, the concentration of most
MMPs is increased. Therefore, lowering the levels of MMPs may have a positive effect
on preventing the development of inflammation. However, it should be noted that most
MMPs have bidirectional effects, i.e., they participate in pathogenesis and promote the
occurrence of malignant tumors, but also play a significant role in the progression of other
healthy (non-cancerous) cells. Therefore, the multifaceted nature of MMPs as well as
the multidirectionality of biological therapy requires further clinical trials to demonstrate
which type of treatment is best for long-term follow-up.
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