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Abstract: Helminths are multicellular parasites that are a substantial problem for both human and
veterinary medicine. According to estimates, 1.5 billion people suffer from their infection, resulting
in decreased life quality and burdens for healthcare systems. On the other hand, these infections may
alleviate autoimmune diseases and allergy symptoms. The immune system is programmed to combat
infections; nevertheless, its effector mechanisms may result in immunopathologies and exacerbate
clinical symptoms. This review summarizes the role of the immune response against worms, with
an emphasis on the Th2 response, which is a hallmark of helminth infections. We characterize
non-immune cells (enteric tuft cells—ETCs) responsible for detecting parasites, as well as the role of
hematopoietic-derived cells (macrophages, basophils, eosinophils, neutrophils, innate lymphoid cells
group 2—ILC2s, mast cells, T cells, and B cells) in initiating and sustaining the immune response,
as well as the functions they play in granulomas. The aim of this paper is to review the existing
knowledge regarding the immune response against helminths, to attempt to decipher the interactions
between cells engaged in the response, and to indicate the gaps in the current knowledge.

Keywords: helminths; immune response; macrophages; basophils; eosinophils; neutrophils; ILC2;
T cells; B cells; ETC; granuloma

1. Introduction

The word “helminth” comes from the Greek term for “worm”. The three primary
categories of helminths that infect humans are nematodes (roundworms), acanthocephalans
(thorny-headed worms), and platyhelminths (flatworms) [1,2]. Helminths have affected
humans since ancient times, as indicated by the finding of calcified helminth eggs in
mummies dating back to 1200 B.C. Helminths also played a role in the Cold War during
the Chinese invasion of Taiwan (formerly Formosa), when thousands of Chinese soldiers
were required to swim to reach the island’s shore. After swimming in Chinese canals,
these soldiers developed symptoms such as fever, abdominal pain, and skin rashes. The
investigation revealed that these symptoms were caused by Schistosoma japonicum [3–5].

Helminths are a divergent group of parasites that pose a global burden to public
health. Soil-transmitted helminths (STH), such as hookworm, Ascaris, and whipworm, are
among the most widespread infections globally, impacting nearly 1.5 billion individuals [6].
Additionally, Filariodea nematodes and Schistosoma spp. flukes affect over 120 million [7]
and 240 million people [8], respectively, with millions more at risk. Controlling these
diseases is challenging due to the various niches occupied in the host and their divergent life
cycles. STH parasites inhabit the intestine, and their eggs are released into the environment
through feces. Subsequent ingestion of embryonated eggs or infectious larvae by another
individual perpetuates the life cycle.
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Filarial nematodes release larvae into the bloodstream, which are ingested by mosquitoes
and transmitted to another host following development in the mosquito’s tissues. Schisto-
soma spp. eggs are excreted in stool or urine and develop into miracidium, which infects
a snail and undergoes further development, resulting in the release of infectious stages
known as cercariae that enter the final host. These infections are particularly prevalent in
regions with endemic, tropical conditions, primarily in developing countries that struggle
with inadequate access to proper sanitation, clean water, and low hygiene and healthcare
standards [9,10]. Nevertheless, due to climate change, helminth and other infectious dis-
eases associated with tropical and subtropical regions are becoming burdens for other
regions [11,12].

While current chemotherapy is effective and widely administered, it does not result in
long-term protection against the high rates of reinfection. It is estimated that approximately
50% of patients treated with these drugs will experience reinfection within six months upon
their initial treatment [13]. To address concerns about overusing drugs and the development
of drug resistance in parasite populations, the World Health Organization (WHO) places
significant emphasis on the development of effective vaccines. Unfortunately, currently,
there is no efficient vaccine against helminths, despite numerous research efforts [14–19].
Nevertheless, several potential vaccines have been identified and have advanced to the
second phase of clinical trials, offering hope for their introduction to the market, which
could reduce the reliance on anthelmintic drugs [20].

For many years, helminth infections have been overlooked, leading to their classifica-
tion by the Centre for Disease Control and Prevention (CDC) as NPI—neglected parasitic
infections. Presently, knowledge regarding helminth infections is being thoroughly exam-
ined, yet certain gaps in our understanding still persist. Gaining insight into the interaction
between helminths and the immune system will facilitate more efficient vaccine design and
better control of the infections.

On the other hand, while helminths have a negative impact, they may also be beneficial
for humans by alleviating the symptoms of diet-induced insulin resistance [21], colitis [22],
Crohn’s disease [23], and reducing allergic symptoms through an IL-10-dependent mech-
anism [24]. This review provides a concise overview of the mechanisms involved in
the recognition of helminths by host cells and the roles of various cell types, including
macrophages, tuft cells, T and B lymphocytes, eosinophils, basophils, neutrophils, innate
lymphoid cells type 2 (ILC2), and mast cells.

2. The Immune Response to Helminth Infection

During helminth infections, parasites can cause significant tissue damage and release
excretory–secretory (ES) products that trigger a type 2 immune response. This response is
characterized by the recruitment and activation of innate immune cells, including dendritic
cells, macrophages, mast cells, ILC2s, basophils, and eosinophils, with a hallmark of
increased IL-4, IL-5, IL-9, and IL-13 release, leading to Th2 and B cells activation and the
production of IgE and IgG1 class antibodies. Collectively, these molecular and cellular
events initiate host-protective responses, including mucus production by goblet cells,
proliferation of epithelial cells, and smooth muscle contractions, ultimately resulting in
helminth expulsion.

3. Detection
3.1. PRRs in the Recognition of Helminths

Detecting the presence of an invading pathogen represents a crucial initial step in
initiating a specific and effective immune response. The immune system identifies infections
or tissue damage through pattern recognition receptors (PRRs), which fall into three main
classes: toll-like receptors (TLRs), C-type lectin receptors (CLRs), and NOD-like receptors
(NLRs).

Pattern recognition receptors (PRRs) are responsible for recognizing pathogen-associated
molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs). Exam-
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ples of PAMPs include LPS, dsRNA, and lipomannan/lipoarabinomannan, while DAMPs
encompass extracellular ATP, HSPs, and mtDNA, among others. This intricate system
allows the immune system to distinguish between different invading threats and mount
an appropriate response. Both TLRs and CLRs are cell membrane-anchored proteins;
however, their signaling pathways are different (Figure 1). TLRs (except TLR3) activate
NF-κB through Myd88/IRAKs/TRAF activation [25], while CLRs are distinguished in two
classes: those containing the immunoreceptor tyrosine-based activation motif (ITAM) signal,
propagating through spleen tyrosine kinase (Syk), and those containing the immunore-
ceptor tyrosine-based inhibitory motif (ITIM), propagating through Src homology region
2 domain-containing phosphatase-1 (Shp-1) [26]. NLRs are intracellular receptors that
induce proinflammatory signals or inflammasome formation, leading to NF-κB, IL-1β, and
IL18 precursor activation [27]. A more detailed description of PRRs and theirs ligands and
signaling is beyond the scope of this review and may be found in other reviews [26,28,29].
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Figure 1. Interaction of helminth antigens with PRRs. Natural ligands of PRRs (TLRs, CLRs, and
NLRs) induce a proinflammatory response through the activation of the transcription factors NF-κB,
AP-1, CREB, and NFAT. Blue, green, and red arrows represent classical signaling from TLRs, CLRs,
and NLRs, respectively. Violet arrows indicate interference of helminths with PRR signaling. The
parasites stimulate PRRs directly or interfere with their signaling pathways, inducing a Th2/Threg

response. A full description is given in the text (Section 3.1). Fh-CL3—F. hepatica cathepsin L3,
Fh-HDM—fasciola hepatica helminth defense molecule, SEA—schistosoma-soluble egg antigens.

While our understanding of bacterial and viral PAMPs and their corresponding PRRs
is well-established, our knowledge regarding their ability to recognize helminths is still
in its infancy. Despite this, all three classes of PRRs have been demonstrated to play a
role in the response to helminth infections. Typically, PRRs induce a proinflammatory
response. However, their function during helminth infections differs from their response to
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other pathogens. Instead of recognizing evolutionarily conserved worm antigens, PRRs
are rather utilized by the invaders as tools to facilitate infection. This unique interaction
is beneficial for both the host and the parasite. The parasite can release eggs, and the
host is spared from the potential harm caused by prolonged inflammation. B cells from
filarial-infected humans stimulated with TLR2, TLR4, and TLR9 ligands (Pam3Cys, LPS,
and CpG, respectively) show diminished expression of activation markers and IL-6, IL-10,
and TNF-α [30]. Moreover, Pam3Cys and HKLM (TLR2 ligands) do not affect IFN-γ,
TNF-α, IL-12, IL-1β, IL-6, IL-17, or IL-23 release among infected patients’ PBMCs, but
they do upregulate their expression among patients showing chronic immunopathology
associated with enhanced phosphorylation of p38 MAPK and ERK1/2 [31]. Another filarial
nematode, Acanthocheilonema viteae, releases ES-62 antigen, which dampens TLR4 signaling,
making cells refractory to its ligands [32]. Shifting PRR signaling from Th1 towards Th2 is
also observed in Schistosoma japonicum-infected mice, which showed elevated expression
of TLR2, TLR3, TLR4, and TLR7 in the lungs. However, stimulation with TLRs’ cognate
ligands results in a substantially higher release of IL-4 than IFN-γ [33].

The main component interfering with TLR4 signaling seems to be S. mansoni egg
carbohydrate, lacto-N-fucopentaose III (LNFPIII) activating extracellular signal-regulated
kinase (ERK) [34]. Moreover, Schistosoma-soluble egg antigens (SEA) and S. mansoni
E/S are bound by DC-SIGN, MGL, MR, and MR, respectively, leading to an inhibition of
DC activation by TLR ligands [35]. This results in a reduction in LPS-induced release of
IL-10, IL12p40, TNF-α, IL12p70, and IL-6 [33] and a diminishment of the proinflammatory
response [36]. The fluke Fasciola hepatica favors the production of IL-10 and IL-27p28 by LPS-
stimulated DC through DC-SIGN interactions [37]. Similarly, Ascaris sum glycoconjugates
diminish CD40, CD80, CD86, and MHCII expression induced by LPS through CLRs:
DC-SIGN and MR [38]. DC-SIGN signaling counteracting the Th1 response is likely to be
associated with parasite-derived fucose, which induces IKKε and CYCLD-dependent Bcl
and NF-κB p50/p50 dimer activation [39,40].

Both TLRs and CLRs were also shown to have a similar effect during Nippostrongylus
brasiliensis infection. TLR4 induces a Th2 response through IFN type I induction [41], while
SP-D activation results in strong IL-4 and IL-13 release [42]. On the other hand, infection
with Heligmosomoides polygyrus shows no impact of TLR2, TLR4, TLR5, and TLR9 on egg
output [43]. This suggests other redundant mechanisms during infection; for example,
through the reduction of DC Dectin-1 expression that drives Th1/Th17 development [44].
The above-mentioned effects are associated with the development of the Th2 response
through the utilization of TLRs and CLRs by the worms. On the other hand, the NLRP3 in-
flammasome seems to be resistant to parasites’ modulation and induces a proinflammatory
response against Trichuris muris infection [45]. Nevertheless, helminths’ molecules may
have a pivotal impact on NLRP3 activation: F. hepatica cathepsin L3 (Fh-CL3) induces its
activation, whereas F. hepatica helminth defense molecule (Fh-HDM) prevents it [46].

3.2. Detection of Helminths by Intestinal Epithelial Cells (IEC)

Another critical type of cell engaged in helminth detection is the intestinal epithelial
cells (IECs), which serve as the primary physical barrier for helminths in the gastrointestinal
tract. IECs encompass various cell types, including enterocytes, enteric tuft cells (ETCs),
M cells, and enteroendocrine cells (EECs), and they release DAMPs or alarmins that are
involved in helminth detection. DAMPs are released in response to cellular damage or
when ligands bind to toll-like receptors (TLR). Damaged IECs release cytokines such as
IL-33, IL-25, and thymic stromal lymphopoietin (TSLP) [13], playing a crucial role in worm
infections. Mice lacking any of these cytokines exhibit reduced Th2 immune responses. The
most powerful population of IEC engaged in worms recognition are ETCs. They release
IL-25 and express taste 2 receptors (TAS2Rs), which typically recognize bitter tastes in
taste cells on the tongue. However, within the intestinal epithelium, they serve as parasite
sensors. This has been demonstrated using an inhibitor of bitter taste receptors, allyl



Int. J. Mol. Sci. 2024, 25, 420 5 of 22

isothiocyanate, which, upon delivery to intestinal villi, reduces IL-25 release from tuft cells
during Trichinella spiralis infection [47].

M cells, constituting approximately 10% of IECs during homeostasis, serve as a link
between the intestinal lumen and the immune system. They possess reduced microvilli,
and unlike other IECs, specialize in capturing antigens and delivering them to lymphocytes
or macrophages [48]. Studies have shown that there is no change in the function or number
of M cells during H. polygyrus infection in mice [49]. Nevertheless, further research is
required to ascertain the extent of M cells’ involvement in the immune response against
other helminths.

Another category of intestinal epithelial cells (IECs) that is likely to play a role in
pathogen recognition is enteroendocrine cells (EECs). The principal PRRs found on EECs
include TLR4, TLR5, and TLR9 [50–52]. These cells can release not only peptide hormones
but also cytokines in response to molecules associated with pathogens [53]. It has been
shown that EECs downregulate cholecystokinin (CCK) production during N. brasiliensis
in rats [54]. On the other hand, mice infected with T. spiralis exhibit hyperplasia and
heightened synthesis of CCK-secreting cells, leading to an increase in serum CCK levels [55].
This phenomenon leads to the conclusion that alterations in cholecystokinin (CCK) levels
appear to be species- and host-dependent. CCK triggers muscle contractions in the small
intestine [56] and induces hypophagia [57]. The reinforcement of contractions facilitates the
expulsion of parasites, while hypophagia allows the host to prioritize an immune response
over the digestive process. Moreover, parasite species may not only have a pivotal impact
on host cells, but cells’ responses to a parasite isolate may also differ [58,59].

4. Type 2 Inflammatory Cells—Development and Function
4.1. Enteric Tuft Cells (ETC)

The previous section summarized the role of ETCs in helminth recognition. This
paragraph will focus on their general description and interplay with hematopoietic cells.
Since 2016, special attention has been given to the role of intestinal tuft cells (ETC) in
parasitic infections [60,61]. Under normal physiological conditions, ETCs in adult mice
make up approximately 0.5% of the population of intestinal epithelial cells (IEC), but
this number increases during helminth infections. Infection of mice with N. brasiliensis
results in a tenfold increase in the number of ETCs [62]. ETCs originate from stem cells in
intestinal crypts, and their differentiation depends on POU domain class 2 transcription
factor 3 (POU2F3) and growth factor independent 1b (Gfi1b) [60]. ETCs can be divided
into two subtypes: ETC1 (neuronal) and ETC2 (immune). ETC1 cells predominate under
homeostasis, while ETC2 cells are more prevalent during parasitic infections [63]. Interest-
ingly, the development of both ETC1 and ETC2 is significantly regulated by neurons, which
was proven using three-dimensional organoid cultures. Cultures deprived of neurons or
pilocarpine supplementation (a cholinergic agonist) showed a reduction in the number of
ETCs within a week [64]. This emphasizes the interplay between the immune and nervous
system during infection, as described previously [65].

ETCs also serve as the primary source of IL-25 and generate cysteinyl leukotrienes
(CysLT), which activate ILC2s to produce IL-13 [66] (Figure 2) and control further events
during the immune response. IL-25 assumes a significant role in coordinating the intestinal
response to helminth infections, a fact underscored by its multifaceted impact on various
influencing factors. It triggers the production of Th2 cytokines such as IL-4, IL-5, and IL-13
by activating ILC2s, and it fosters the activation and differentiation of CD4+ T cells into
Th2 cells. Furthermore, IL-25 induces the contraction of intestinal smooth muscle cells,
facilitating the expulsion of worms during nematode infection [67]. Beyond its role in
promoting type 2 responses, research indicates that it has the capability to suppress Th1
and Th17 responses across diverse environments, including the intestine [68].
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Figure 2. Response of enteric tuft cells (ETCs) to parasite antigens and their impact on type 2 innate
lymphoid cells (ILC2s). Type 2 taste receptors (TAS2Rs) belong to G protein-coupled receptors
(GPCRs) and sense parasites’ antigens, signaling through the G protein gustducin. Gustducin
activates phospholipase β2 (PLCβ2), which hydrolyzes phosphatidylinositol biphosphate (PIP2) to
diacylglycerol (DAG) and inositol trisphosphate (IP3). The latter compound induces the migration
of calcium from the endoplasmic reticulum (ER) towards the cytoplasm, facilitating the influx of
sodium ions into the cell through transient receptor potential cation channel subfamily M member
5 (TRPM5). This leads to the metabolism of arachidonic acid (AA) to cysteine leukotrienes (CysLTs)
and the release of CysLTs and IL-25. Both mediators stimulate ILC2s to release IL-13, a powerful
modulator of the Th2 response. There is also a positive feedback loop between the secretion of IL-25
and CysLT from ETC. ILC2s, through the release of IL-13, stimulate intestinal stem cells (ISC) to
differentiate into ETC, increasing their number during helminth infections.

4.2. Macrophages (Mϕ)

Human intestinal macrophages have an approximate lifespan of one year [69] and
can be categorized into three subtypes: mature macrophages derived from monocytes
(Mm), inflammatory macrophages derived from monocytes (Mi), and self-maintaining
macrophages (Ms). All three subtypes are located in the lamina propria of the intestinal
mucosa, just beneath the epithelial cells. Additionally, Ms are also present in the submucosal
and outer muscular layers. Ms are distinguished by their unique ability to self-regenerate
and maintain their phenotype without the need for external activating signals. Mm and Mi
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release anti-inflammatory and pro-inflammatory cytokines, respectively, while Ms actively
engage in interactions with the enteric nervous system (ENS), relying on noradrenaline
signaling through intestinal neurons to facilitate gut peristalsis [70].

During helminth infections, lamina propria macrophages produce various factors
such as IL-4, IL-13, IL-10, arginase-1 (Arg-1), chitinase-like protein (Ym1), and resistin-like
alpha [71]. Another classification of macrophages is based on their phenotype: classically
activated (M1) and alternatively activated (M2) macrophages, with the latter playing a
significant role in the development of a protective response during helminth infections. M2
activation primarily involves IL-4 and IL-13 triggering the common receptor IL-4-α (IL-4Rα)
signaling. Typically, IL-4 and IL-13 originate from ILC2s, basophils, or IECs. Helminths
have a vested interest in inhibiting a detrimental Th1 response, and they release additional
factors that induce M2 differentiation [72]. Mouse M2 macrophages upregulate Arg1
production, leading to the synthesis of L-ornithine, which directly inhibits the movement
of H. polygyrus larvae [73]. Notably, during N. brasiliensis infection, arginase-dependent
smooth muscle contractions occur [74], enhancing physical parasite expulsion. Interestingly,
the ability of human macrophages to express arginase remains a subject of debate [75]. Other
powerful macrophage-derived orchestrators of immune response are Ym1 and resistin-like
molecule alpha (RELMα). Ym1 acts as a chemoattractant for eosinophils [76] and also
participates in cell–cell and cell–extracellular matrix (ECM) interactions through binding
to heparin [77]. RELMα is thought to have a regulatory role in inhibiting excessive type
2 responses. Mice with a deficiency in the RELMα gene exhibit significant liver, intestinal,
and lung pathology in S. mansoni and N. brasiliensis infection models, characterized by an
excessive Th2 cytokine response, fibrosis, and inflammation [78].

Moreover, M macrophages cannot be seen only as cells engaged in combating the
invader, as their role is much more complex. They are powerful drivers of tissue repair and
remodeling during and after the infection. M2s promote higher levels of vascular endothe-
lial growth factor (VEGF), insulin-like growth factor 1 (IGF-1), matrix metalloproteinases
(MMP), platelet-derived growth factor (PDGF), and the angiogenic Fizz1 protein, which
also stimulates actin and collagen synthesis [79]. IL-10 is a well-known anti-inflammatory
cytokine that is closely associated with M2 responses in parasitic worm infections [80].
Therefore, macrophages in type 2 responses serve the three “R” functions: react, resolve,
and repair.

4.3. Basophils

Basophils are a short-lived type of white blood cell, with a lifespan of 1–2 days [81].
They are characterized by the presence of basophilic granules in their cytoplasm. Under nor-
mal physiological conditions, they constitute approximately 0.5–1% of the total leukocyte
count, but this percentage increases during the Th2 immune response. Interestingly, unlike
in mice, humans rarely exhibit basophilia during parasitic infections [82]. Mature basophils
circulate in the bloodstream and migrate to damaged tissues during inflammatory re-
sponses, and their numbers rise in response to IL-3, TSLP, IL-25, and IL-33 [83,84]. Basophils
produce various cytokines, such as IL-4, IL-5, IL-13, TSLP, prostaglandins, leukotrienes
(which can activate ILC2s), and IL-5 (which induces eosinophil recruitment) [85].

The release of IL-4 and IL-13 by basophils can be triggered by TLR2, although this
signal often falls short of activating the pathways responsible for releasing leukotrienes or
histamine [86]. Basophils also play a role in secondary immune responses, as they carry
the FcεR1 receptor on their surface. Depleting basophils or removing FcεR1 from their
surface results in reduced M2 polarization [87]. While basophils do express MHC-II, their
classification as professional antigen-presenting cells (APCs) is a matter of debate due to
their relatively low surface MHC-II levels. In vivo studies have revealed that basophil–T
cell interactions in lymph nodes are typically brief and unstable [88].

Nevertheless, it is important to highlight that basophils do not consistently augment
the type 2 immune response. In certain situations, they have been demonstrated to restrain
the type 2 response by upregulating the expression of neuromedin B (NMB) receptors on
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ILC-2 cells during N. brasiliensis infection. NMB significantly reduce production of IL-5 and
IL-13 by ILC2s [89].

4.4. Eosinophils

Eosinophils constitute 5% of leukocytes [90]. Similar to basophils, eosinophils exit
the bone marrow fully differentiated, circulate in the bloodstream, and migrate to sites
of inflammation in response to eotaxin-1/2/3 or IL-5 [91]. Eosinophils are consistently
present throughout the gastrointestinal tract, except for the esophagus. They have a short
half-life in the blood (8–18 h), but their lifespan in tissues ranges from 2 to 5 days. In vitro
studies have shown that certain cytokines can prolong their lifespan for up to 14 days [92].
Eosinophil differentiation occurs in the bone marrow due to the exposure of progenitor cells
to cytokines such as IL-5, IL-3, and GM-CSF. However, IL-5 plays a pivotal role in eosinophil
differentiation and the expansion of eosinophil progenitor cells. It is also responsible for
increasing their sensitivity to eotaxin-1 and enhancing eosinophil survival in the mucosa
during type 2 inflammation [93].

Eosinophils display a variety of receptors on their surface, with the key players
in their activation being the receptors for interleukin-5 (IL-5R) and CC-chemokine re-
ceptor 3 (CCR3), which mediate the chemotaxis of eosinophils in response to eotaxins.
Additionally, eosinophils express immunoglobulin receptors, including the high-affinity
immunoglobulin E receptor (FcεRI), low-affinity immunoglobulin G receptor (FcγRII),
and immunoglobulin A receptor (FcαR). Interestingly, mouse eosinophils do not express
FcεRI [94]. Furthermore, eosinophils express various families of PRRs, such as retinoic
acid-inducible gene-like receptors (RIG-like), NLRs, and TLRs. However, the expression
of TLRs in eosinophils is lower compared to neutrophils and macrophages. Among the
Toll-like receptors expressed by eosinophils, TLR7 is the most prominent. Located in en-
dosomes, TLR7 is responsible for detecting ssRNA [95]. Its activation plays a crucial role
in regulating the adhesion, migration, and chemotactic responses of eosinophils, thereby
contributing to the prolonged survival of these cells [96].

Activated eosinophils discharge cytotoxic granules containing proteins such as ma-
jor basic protein (MBP-1 and MBP-2), eosinophil peroxidase (EPO), eosinophil-derived
neurotoxin (EDN), and eosinophil cationic protein (ECP), alongside cytokines like IL-4,
IL-6, IL-10, IL-13, TGF-β, and VEGF. The MBP proteins induce cytotoxicity in cells by
disrupting the lipid bilayer and enhancing hydrogen peroxide production by macrophages,
with MBP-1 exhibiting stronger activity than MBP-2. EDN and ECP are categorized as
ribonucleases; however, EDN displays lower toxicity towards parasites and is more ef-
fective against single-stranded RNA viruses. EPO produces potent oxidizing substances,
such as hypochlorous acid, exerting cytotoxic effects on parasites [97]. These granules are
released through three mechanisms: classical exocytosis (where all granules are released
without cell lysis), cytolysis with granule release, and partial degranulation (PMD). The
predominant physiological mechanism for releasing eosinophil granule-stored proteins is
PMD [98].

The role of eosinophils in protective responses against helminths seems to vary de-
pending on both the host and the specific helminth involved [99]. Additionally, despite the
association of parasitic infections with eosinophilia, there are helminth infection models
in which a reduction in eosinophil numbers does not significantly impact the initiation of
Th2 responses [100]. Consequently, the significance of eosinophils in protective responses
against helminths may be overstated, and additional research is required to attain a more
comprehensive understanding of this subject.

4.5. Neutrophils

Neutrophils are the most prevalent (50–70%) type of leukocytes in humans, and they
have a relatively short half-life in the bloodstream, typically less than 6–8 h [101]. Due
to their strong phagocytic capabilities, neutrophils are primarily associated with immune
responses against bacteria and viruses. However, their role in defending against parasites
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that harbor bacteria may be underappreciated. Metazoan parasites, apart from causing
evident physical tissue damage, can also act as carriers for potentially harmful bacteria that
trigger a Th1 immune response, thus dampening the protective Th2 response to helminths.
Neutrophils participate in neutralizing the bacteria carried by these parasites, indirectly
contributing to helminth infection termination [102], especially since some bacteria are
symbionts for parasites [103,104]

Furthermore, in vitro investigations have revealed that neutrophils possess the ca-
pacity to directly combat multicellular parasites [64]. They may release myeloperoxidase
(MPO), which catalyzes the generation of reactive oxygen intermediates and plays a role in
killing worm larvae. Studies have indicated that neutrophil-derived MPO is even more
effective than eosinophil peroxidase in targeting T. spiralis larvae [105]. Another mechanism
that neutrophils use to counteract multicellular parasites is the production of extracellu-
lar traps known as neutrophil extracellular traps (NETs). NETs are mesh-like structures
composed of nuclear DNA, histones, and antimicrobial peptides that are released into the
extracellular environment to ensnare and immobilize microorganisms such as bacteria,
fungi, and parasites. The physical barrier created by NETs prevents the spread of pathogens
and facilitates their subsequent elimination by other immune cells.

It is intriguing that neither macrophages nor neutrophils, when acting individually,
are capable of eliminating the helminth [106]. Neutrophils could potentially play a role in
fostering the Th2 response by generating Ym1, which has an inhibitory effect on IFN-γ. Con-
versely, Th2 cytokines appear to inhibit NET formation and neutrophil recruitment [107],
which appears to conflict with their role in helminth defense. Nonetheless, Heeb et al.
propose that this does not necessarily exclude the potential involvement of neutrophils
in the defense against helminths, considering their high numbers in the bloodstream and
rapid mobilization for pathogen combat [107].

During N. brasiliensis infection, a distinct early influx of neutrophils into the lungs is
observed just two days after infection [108]. Likewise, during the Th2 response induced by
H. polygyrus infection, neutrophils gather around the worms and penetrate their mucosal
and submucosal layers [109]. This implies they are among the first immune cells to react
to parasite infections, acting as the primary line of defense before the more targeted Th2
response develops.

Additionally, in vitro experiments suggest that, like macrophages and lymphocytes,
neutrophils can alter their phenotype in response to the cytokine milieu. During helminth
infections, neutrophils may exhibit the expression of IL-13 and IL-33 and fall into the cate-
gory of N2 neutrophils, although further in vivo experiments are necessary to validate this
occurrence [110]. In summary, while the precise role of neutrophils in the response against
helminths is not yet fully understood, it can tentatively be concluded that they play a sup-
porting role in the initial phases of infection, targeting the bacteria harbored by helminths.
They also potentially play an auxiliary role in later stages through NET formation.

4.6. Group 2 Innate Lymphoid Cells (ILC2s)

Group 2 innate lymphoid cells (ILC2s) were discovered in adipose tissue in 2010 [111],
and subsequent research has unveiled their abundance in mucosal membranes throughout
different organs. In vitro studies have indicated that ILC2s derived from adipose tissue
can survive up to 18 months in the presence of IL-2 [112]. These cells demonstrate a
swift and potent reaction to a diverse array of environmental factors, including cytokines,
neurotransmitters, hormones, nutrients, and lipid mediators, effectively coordinating Th2
responses.

ILC2s activation is predominantly initiated by IL-33, IL-25, or TSLP, which are secreted
by damaged epithelial cells (Figure 3). However, they are also responsive to a range of
other factors, including IL-4, IL-9, prostaglandin D2 (PGD2), cysteinyl leukotrienes (CysLT),
neuropeptides such as neuromedin U, vasoactive intestinal peptide (VIP), acetylcholine,
calcitonin gene-related peptide (CGRP), androgens, and estrogens [113].
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Figure 3. Schematic representation of the interaction between the intestinal immune system during
homeostasis (A) and helminth-induced inflammation (B). (A) Interactions between the immune
system and gut microbiota. Dendritic cells function through both antigen presentation to naive
B and T cells and by secreting IL-23, activating type 3 innate lymphoid cells (ILC3). Activated
ILC3s release IL-22 and granulocyte–macrophage colony-stimulating factor (GM-CSF). IL-22 activates
the epithelium, leading to the secretion of antimicrobial peptides (AMP) and an increase in IL-23
production by dendritic cells. Bacterial metabolites also directly interact with the immune system.
For example, short-chain fatty acids (SCFAs) penetrate the epithelial barrier and upregulate anti-
inflammatory cytokines. T regulatory cells are crucial for maintaining tolerance towards commensal
microbiota. (B) Immune system–helminth interactions, illustrated using the example of H. polygyrus.
Intestinal parasites release enzymes that digest the mucosal barrier, causing epithelial cell death. In
response to the damage, intestinal epithelial cells release alarmins (IL-25, IL-33, TSLP), activating
immune system cells. Alarmins activate basophils, mast cells, ILC2s, and neutrophils. Subsequently,
eosinophils are activated by IL-5, Th2 cells by IL-4, and type 2 macrophages by IL-13. The role of
neutrophils in the development of type 2 responses is not fully understood yet, but there is a suspicion
that they may be capable of secreting IL-13 and IL-33. Other cells contribute to the inflammatory
response, recruitment of immune cells, and coordination of the immune reaction.

Upon activation, ILC2s release a variety of cytokines, including IL-5, IL-13, IL-9,
amphiregulin, and small amounts of IL-4. Production of these cytokines leads to alterations
in the gut epithelium and the activation of various immune cells, including dendritic cells
(DCs), eosinophils, B cells, macrophages, Th2 cells, and mast cells [114]. ILC2s, being the
main source of IL-13, play a crucial role in regulating the Th2 response. The significance
of IL-13 has been demonstrated in mice infected with Nippostrongylus brasiliensis, where
animals deprived of IL-13 showed compromised parasite expulsion [115].

Additionally, the capacity of ILC2s to coordinate immune responses might be even
more significant, as ILC2s found in the spleen and lymph nodes express MHCII and can
present antigens, allowing for the expansion of CD4+ T cells [116].

4.7. Mast Cells (MC)

The term “mast cell” is derived from the German word “mastung”, which translates
to “well-nourished”. This term was coined in the late 19th century by the German scientist
Paul Ehrlich, who observed plentiful granules in the cytoplasm of these cells [117]. Mast
cells, often abbreviated as MCs, are myeloid immune cells situated in the connective tissue
of mucosal membranes, particularly in the subepithelial regions and around blood vessels.
In contrast to other hematopoietic cells, they complete their maturation in peripheral tissues
rather than in the bone marrow. Mast cells have a relatively extended lifespan, with the
potential to persist for up to 12 weeks [118]. They tend to accumulate in inflamed tissues
and can be activated by various cytokines, including stem cell factor (SCF), IL-3, IL-4, IL-9,
and IL-33, as well as IgE class antibodies [119].
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Stimulation of the FcεRI receptor on mast cells initiates degranulation, resulting in
the release of a diverse range of preformed bioactive substances, including histamine,
serotonin, IL-4, IL-5, VEGF, TNF, and proteases [120], along with the de novo production of
immune mediators like IL-33, prostaglandin D2, and leukotriene C4 [121]. Despite extensive
research endeavors, the intricate nature of the substances released and the processes
involved continues to present challenges in elucidating the exact role of mast cells in the
immune response.

Mast cells experience degranulation in the early stages of parasitic worm infections,
and this occurs regardless of IgE, facilitating the attraction and expansion of neutrophils,
the induction of M2 [122], and the modulation of dendritic cell activity through histamine
release [123].

4.8. T Lymphocytes

T helper lymphocytes, often referred to as CD4+ T cells, are crucial in coordinating
the adaptive immune response. Upon leaving the thymus, T cells are referred as Th0
cells. Then, they migrate to the spleen and lymph nodes, where they are activated by
antigens presented by DC (dendritic cells) complexed with MHCII. This is followed by
differentiation into distinct subtypes (Th1, Th2, Th9, Th17, Th22, and Treg cells) depending
on the antigen properties and cytokine milieu [124]. Each cell population is responsible
for a different action of the immune system. In general, Th1/Th17 is associated with cell-
mediated immunity and inflammation, targeting bacteria and viruses. The Th2 response is
supposed to combat multicellular invaders and is associated with IL-4, IL-5, IL-9, and IL-13,
with hallmarks of eosinophils, basophils, M2 activation, tissue regeneration (Figure 3), and
an antibody class switching from IgM to IgE and IgG1 in mice [125].

Although the precise factors responsible for differentiations into particular phenotypes
are not fully defined, it is well established that Th2 cells, which are crucial for expelling
helminths, differentiate in the presence of IL-4 [126]. This process is tightly regulated
by transcription factors such as GATA3 [127], STAT5 [128], and STAT6 [129]. The role of
transcription factors can vary in terms of inducing and maintaining differentiation. For
instance, mice lacking Gata3 are incapable of generating Th2 cells. Removing Gata3 from
fully differentiated Th2 cells has only a minimal impact on IL-4 production but completely
blocks IL-5 and IL-13 production [130]. While low STAT5 expression is sufficient for cell
proliferation and survival, robust STAT5 signaling is necessary for Th2 differentiation and
the subsequent release of the characteristic Th2 cytokine profile, which includes IL-4, IL-5,
IL-9, and IL-13 [131].

The development of the Th2 response is also supported by T follicular helper (Tfh)
cells, which play a key role in presenting antigens to B cells within germinal centers.
They provide essential signals to activated B cells, promoting their development, selection,
and antibody release [132]. Tfh cells may also release IL-4, but unlike Th2 cells, they do
not require IL-4 for their differentiation or to initiate and maintain the immune response
against helminths. However, to ensure a balanced and long-lasting response, which, when
excessive, can be detrimental, regulation is necessary. This regulation is achieved through
the development of another T cell population, Treg cells, which differentiate under the
control of Foxp3 [133] and STAT5 transcription factors [134].

Treg cells can be categorized into two main types: natural Treg (nTreg) cells, which
originate in the thymus, and induced Treg (iTreg) cells, which differentiate in peripheral
tissues from naive T cells under the influence of IL-2 or TGF-β. Both of these Treg cell
populations serve to suppress immune responses, which is beneficial for helminths, as it
allows them to persist within the host’s body [135].

One of the critical roles of Treg cells is to shift the production of antibody classes
by B cells from IgE to IgG4 [136] in humans (or the equivalent in mice lacking IgG4).
IgG4 and IgE compete for epitopes, and elevated IgG4 levels prevent immune IgE from
activating eosinophils and basophils, thus regulating immune responses [137]. IgE plays a
role in the immune response to helminths by triggering the release of histamine and other
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mediators, promoting Th2 inflammation, and facilitating parasite expulsion. In contrast,
IgG4 suppresses parasite-specific T cell proliferation, reduces levels of Th2 cytokines, and
abolishes Th1 cytokines [138].

Given Treg cells’ ability to dampen immune responses, they offer distinct advantages
to helminths. In mice infected with H. polygyrus, Treg cell proliferation is particularly
pronounced in close proximity to the parasite, notably within Peyer’s patches (PP). This
strongly suggests that substances released by the nematode may act locally to stimulate
Treg cell expansion. H. polygyrus releases a TGF-β mimic (Hp-TGM), one of the proteins
likely responsible for this Treg cell amplification, which effectively mimics the function of
TGF-β, a pivotal factor in Treg cell differentiation. It also serves as a potent inducer of both
mouse and human Foxp3+ Treg cells in vitro [139].

During the progression of a helminth infection, Treg cells can be induced through
several mechanisms:

• Early expansion of natural Treg cells occurring 3–7 days after infection, followed by
the induction of Treg cells.

• Directly by ES products of the helminth.
• Indirectly through the stimulation of dendritic cells (DCs), which in turn induce Treg

cell expansion.
• Through the action of M2 macrophages, which differentiate in response to IL-33

released upon epithelial damage [140].

4.9. B Lymphocytes

B cells represent a subgroup of lymphocytes responsible for generating antibodies
that target invading pathogens. During Th2 immune responses, B cells release antibodies
belonging to the IgE and IgG1 classes. IgE antibodies effectively coat parasites, essentially
marking them as targets for basophils and mast cells, which subsequently trigger degran-
ulation. However, the effectiveness of the antibody response against helminths varies
significantly and is species-dependent. For example, IgE-dependent responses do not play
a significant role in infections with H. polygyrus [141] or S. mansoni [142] in mice. Nonethe-
less, during reinfection with H. polygyrus, B lymphocytes become crucial for expelling
the parasite, and IgG is associated with immunity [143]. Although the exact mechanisms
behind this phenomenon are not fully understood, the antibody-dependent immunity
upon secondary exposure may be linked to increased antibody production and higher
affinity. This leads not only to opsonization but also to interference with parasite migration,
potentially by disrupting chemosensory reception [144].

Furthermore, antibodies play a significant role in granulomas, which are cell aggre-
gates that surround the parasite. Although lymphocytes are rare in granulomas, antibodies
are crucial in these structures [145]. IgG binds to FcGR receptors on basophils, eosinophils,
mast cells, and macrophages, resulting in antibody-dependent cytotoxicity, the release of
cytokines and chemokines, and cell degranulation [146].

B cells can also play a regulatory role in immune responses by inhibiting dendritic cells’
(DCs) ability to produce IL-12, which is associated with the Th1 response. This indirect
action promotes the Th2 response [147]. Additionally, there exists a subpopulation of
Breg lymphocytes that produce IL-10, which inhibits Th2 differentiation. Furthermore, the
absence of B lymphocytes during schistosomiasis in mice disrupts regulatory mechanisms,
leading to an excessive Th2 polarization [148].

5. Granulomas

Certain helminths, such as T. canis, S. japonicum, and H. polygyrus, have the ability to
trigger an immune response that results in the formation of a specific structure known as
a granuloma. A granuloma is a well-organized, compact structure that develops during
extended immune responses to persistent pathological stimuli that cannot be eradicated
through acute inflammatory processes. The term “granuloma” was first coined in the
latter half of the 19th century to describe changes in lungs affected by tuberculosis [149].
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Over time, it became evident that granulomas form not only in response to bacterial
infections like tuberculosis but also in the presence of other pathogens (viruses, parasites,
and fungi), as well as non-infectious agents, such as autoimmune diseases like Crohn’s
disease and foreign bodies [150]. One distinctive feature of granulomas, in contrast to
typical chronic inflammatory infiltrates, is the characteristic organization of specialized
forms of macrophages: epithelioid cells and giant cells.

5.1. Structure of a Granuloma

During parasitic infections, granulomas can include all the cell types associated with
type 2 inflammation, in addition to specialized macrophages like epithelioid cells and giant
cells, along with fibroblasts. The term “epithelioid cells” is derived from their resemblance
to epithelial cells. These cells closely adhere to one another, providing a barrier function,
and they have a distinctive flattened appearance with elongated nuclei. Giant cells, which
have three or more cell nuclei, play a phagocytic role within granulomas. An important
component of granulomas is also fibroblasts, which are spindle-shaped cells responsible
for synthesizing extracellular matrix components like collagen and elastic fibers [151]. The
specific cellular composition of granulomas can vary depending on the causative factor,
location, and host.

The structure of granulomas not only depends on the class of pathogen (virus, bacteria,
helminth) but also on the particular species of the pathogen. In the case of H. polygyrus
infection, granulomas directly envelop the parasite. They primarily consist of neutrophils,
encircled and dominated by macrophages (including epithelioid and giant cells), while
Th lymphocytes, dendritic cells, and eosinophils are observed at the periphery of these
structures. These granulomas do not contain basophils, mast cells, or B lymphocytes [152].
In the case of another nematode, Toxocara canis, in the first 10 days post-infection, the
granuloma is primarily composed of eosinophils (60–80%), with the remaining cells being
macrophages (giant cells), lymphocytes, and a small number of neutrophils [153] By day
28 post-infection, the granuloma takes on a different form. It contains fewer cells, with
macrophages and epithelial cells in the central area, and peripherally, there are fibrob-
lasts and scattered eosinophils [154]. For S. japonicum infection, neutrophils are the most
abundant cell type, while S. mansoni granulomas are characterized by extensive eosinophil
infiltrates [155].

The location within the host’s body where granulomas form also influences the cellular
composition of these structures. Histological examination of mice infected with S. mansoni
has revealed distinctions between colonic and hepatic granulomas. Colonic granulomas
contain more macrophages but fewer collagen fibers, eosinophils, and T and B lymphocytes;
nevertheless, the cells are more organized. These differences may be linked to the distinct
fates of the eggs in these organs. In the intestines, eggs are expelled with feces, which is not
the case for eggs located in the liver [156].

Furthermore, it has been noted that the composition of granulomas can differ among
various strains of laboratory mice. Specifically, both the CBA and C3H mouse strains
tend to exhibit a more severe progression of schistosomiasis compared to the BALB/c and
C57BL/6 strains. In CBA and C3H mice, there is a greater degree of splenomegaly, and
the liver granulomas are less well-defined. The underlying reasons for the substantial
variations in immunopathology among different mouse strains remain undefined, mainly
due to the fact that studies are generally conducted using a single strain [157].

5.2. Granuloma Formation during Parasitic Infections

Granulomas exhibit a complex structure (Figure 4), determined by the parasitic species
and the tissue in which they form. A significant element of granulomas comprises epithe-
lioid and giant cells, which originate from macrophages. The formation of epithelioid cells
is well-documented and is triggered by IL-4 or IL-13, leading to STAT6-dependent tran-
scription of genes encoding E-cadherin, a cell–cell adhesion protein [158]. The formation
of giant cells has been a subject of debate for some time. Previously, it was suggested that
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they are formed through the fusion of macrophages, similar to the pathway for epithelioid
cell formation [159,160]. However, recent studies indicate that M-CSF, in combination with
parasite-derived factors, induces the proliferation of myeloid bone marrow precursors,
followed by their differentiation into polyploid giant cells [161]. The increased chromo-
some number is linked to the failure of cytokinesis during cell division, resulting from the
induction of replicative stress. Nevertheless, the second hypothesis does not exclude the
first one, as monocytes can transform into giant cells through cell fusion when cultured
with mycobacterial glycoproteins without the addition of CSF [162]. Over time, granulomas
undergo fibrosis, characterized by the excessive deposition of connective tissue. This is
associated with the Th2 cytokine-induced environment created by the parasite, leading to
the activation of fibroblasts and the production of extracellular matrix components.
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The cytokine environment exerts a profound influence on the granuloma structure.
During H. polygyrus infection, granuloma formation is primarily orchestrated by the in-
duction of a Th2 immune response [163]. In contrast, the process of granuloma formation
during S. mansoni infection is more intricate, involving multiple stages of the immune
response, likely since the fluke navigates through tissues, engaging various immune mech-
anisms. Schistosomes deposit eggs in the blood vessels close to the endothelium, where
endothelial cells envelop the egg to facilitate its expulsion. Following the egg’s exit from the
blood vessels, a granuloma forms around it [156]. When assessing granuloma development
in the liver during S. mansoni infection, we can discern four distinct phases. The initial
phase, referred to as the pre-granulomatous exudative phase, entails an unorganized colo-
nization by the initial inflammatory cells around the parasite’s egg. The necrotic–exudative
phase displays a more complex array of inflammatory cells, distributed unevenly across
different layers, with central necrosis. The exudative–productive phase showcases a rich
structure of collagen fibers, with inflammatory cells concentrated at the periphery. Lastly,
the productive phase features prominent thick bands of collagen fibers between the egg
and a limited number of inflammatory cells [164].

The immune response evolves as the infection progresses, thereby affecting the com-
position of granulomas. Initially, a Th1 response dominates, characterized by elevated
levels of interleukin-2 (IL-2) and interferon-gamma (IFN-γ), persisting until the egg-laying
phase (approximately 5 weeks after infection). In the subsequent 1–2 weeks, granuloma
formation intensifies due to a shift toward a Th2 response, marked by the presence of IL-4
and IL-5. During the chronic phase, which extends for over 3 months, the intensity of
the Th2 response diminishes and regulatory T and B lymphocytes emerge, resulting in a
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state of reduced immune system reactivity [157]. During schistosomiasis, IL-13 takes on
a prominent role in this process, while IL-4 plays a supportive role [165]. IL-13 plays a
significant role in promoting collagen synthesis in fibroblasts by inducing the expression
of arginase. Arginase is involved in the conversion of L-arginine into proline, a crucial
building block for collagen [166].

5.3. Function of Granulomas

Granulomas have a crucial impact on the overall health of the host. They serve to
protect healthy host tissues from the harmful effects of eggs and parasites and prevent
interactions with toxic excretory–secretory products like the hepatotoxic omega-1 and
IPSE/alpha-1 released by Schistosome eggs. However, the process of granuloma formation
is associated with stress and chronic inflammation.

Certain substances, such as β-glucuronidase, leukotrienes, and free radicals produced
by cell populations within the granuloma, have the potential to cause damage to the
surrounding tissue. Therefore, the formation of granulomas is under the regulation of T
and B lymphocytes to limit excessive tissue damage [167].

Furthermore, the development of fibrosis around the eggs can be detrimental to the
host and may culminate in the progression of chronic hepatic schistosomiasis. Approxi-
mately 5 to 15 years following infection with S. mansoni, collagen deposits can accumulate in
periportal spaces, causing blockage of blood flow, portal hypertension, and the emergence
of esophageal varices [168]. The rupture of these varices can result in bleeding from the
esophagus [169]. This highlights the fact that granulomas represent a sort of compromise—
they enable the host to survive with the infection for many years, but simultaneously, they
are associated with chronic and adverse effects [170].

Indeed, Schistosoma mansoni effectively manipulates the host’s immune response to
aid in the expulsion of its eggs, a crucial step for the completion of its life cycle. This has
been substantiated by research, such as the study conducted by Dunne et al. in 1983, which
demonstrated that mice subjected to thymectomies expelled fewer eggs compared to control
mice with an intact immune system [164]. The thymectomized mice had lower egg counts
both in their intestines and feces [171]. Numerous researchers have also proposed that
granulomas play a beneficial role for the parasite, and the inflammatory response within
these granulomas in the intestines facilitates the translocation of eggs into the lumen and
their subsequent excretion [172–174]. The eggs of the parasite, found in the feces of infected
humans as well as experimental mice, lack an outer granulomatous layer, suggesting that
the eggs exit the granuloma before reaching the intestinal lumen. However, the precise
mechanism by which granulomas facilitate the passage of eggs into the intestinal lumen
and how the eggs exit the granuloma remains to be fully determined.

A recent study conducted by Takaki et al. (2021) offers intriguing insights into this
process. The study revealed that immature S. mansoni eggs possess an immunologically
neutral shell that enables them to remain concealed from the host’s immune system [175].
The actual immune response is initiated when the miracidium inside the egg reaches
maturity, subsequently recruiting macrophages and leading to the formation of granulomas.
The study also noted the presence of both immature and mature eggs in the intestinal wall,
with only mature eggs observed in the mouse feces [175]. These findings raise questions
regarding the factors that determine the immunological neutrality of eggs and the precise
role of granulomas in this process. Further research is essential to gain a comprehensive
understanding of the intricate interplay between the parasite, the host immune system, and
the function of granulomas in facilitating egg excretion.

6. Conclusions

A number of cell populations (both hematopoietic and non-hematopoietic-derived)
participate in recognizing helminth infection and raising and sustaining the immune
response. The interactions between these cells are complicated and not fully understood,
especially those depending on the host and the invader species. However, their role may
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be pivotal. An efficient response against a helminth species may depend on particular cells,
whereas this population may be of little significance in combating other helminth species.
There is significant work to be done in deciphering these interactions and their underlying
mechanisms; nevertheless, the existing knowledge allows us to provide a foundation for
the development of methods that will allow us to both combat these infections and use
them to mitigate autoimmune diseases and allergies in the future.
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