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Abstract: Significant advances have been achieved in understanding the critical role of enhancer
RNAs (eRNAs) in the complex field of gene regulation. However, notable uncertainty remains
concerning the biology of eRNAs, highlighting the need for continued research to uncover their
exact functions in cellular processes and diseases. We present a comprehensive study to scrutinize
mutation density patterns, mutation strand bias, and mutation burden in eRNAs across multiple
cancer types. Our findings reveal that eRNAs exhibit mutation strand bias akin to that observed
in protein-coding RNAs. We also identified a novel pattern, in which mutation density is notably
diminished around the central region of the eRNA, but conspicuously elevated towards both the
beginning and end. This pattern can be potentially explained by a mechanism involving heightened
transcriptional activity and the activation of transcription-coupled repair. The central regions of the
eRNAs appear to be more conserved, hinting at a potential mechanism preserving their structural
and functional integrity, while the extremities may be more susceptible to mutations due to increased
exposure. The evolutionary trajectory of this mutational pattern suggests a nuanced adaptation in
eRNAs, where stability at their core coexists with flexibility at their extremities, potentially facilitating
their diverse interactions with other genetic entities.

Keywords: enhancer RNA; mutation; mutation density

1. Introduction

Cancer represents a substantial global health concern, with the World Health Organiza-
tion reporting 19.3 million new cases and over 10.0 million cancer-related deaths worldwide
in 2020. Existing studies highlight the dysregulation of gene expression and genetic muta-
tions as fundamental contributors to carcinogenesis, often stemming from aberrant gene
expressions or somatic mutations during cell division [1]. Contemporary cancer research
has unveiled long noncoding RNAs (lncRNAs), a crucial class of biomolecules, as a novel
avenue for understanding the developmental intricacies of cancer [2]. Furthermore, emerg-
ing evidence underscores enhancer RNAs (eRNAs) as significant contributors to genetic
regulation, exhibiting substantial potential within the realm of oncology [3].

As a subclass of non-coding RNA molecules, enhancer RNAs (eRNAs) are transcribed
from DNA sequences located within the enhancer regions, pivotal components in the
regulation of gene expression. Characterized by an average length of 5000 nucleotides,
eRNAs exhibit distinct categorization based on polyadenylation and transcriptional direc-
tionality [4]. Significantly, the expression levels of eRNAs correlate with the activity of
their associated enhancers in gene targets, emphasizing their integral role in transcriptional
regulation [5]. The observed link between eRNA expression and enhancer function sug-
gests potential implications in tumorigenesis. Numerous studies have underscored the
involvement of eRNAs in governing gene expression across both healthy and cancerous
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cells [6–8]. Furthermore, mutations occurring in enhancer regions often trigger aberrant
eRNA transcription, implicating eRNAs in the initiation and progression of cancer [5].
Consequently, eRNAs not only show promise as biological markers for diagnosis and
prognosis in oncology, but they also present a potential target for therapeutic intervention.

Substantial efforts have been exerted in the curation of eRNAs, including systematic
endeavors to identify, annotate, and catalog eRNAs based on experimental evidence or
computational predictions. Several databases and resources have been developed to
compile and organize information regarding eRNAs. Notable examples include Enhancer
Atlas v2.0 [9], HACER [10], eRNAbase [11], ENdb [12], etc. These databases incorporate
diverse experimental techniques such as RNA sequencing (RNA-seq), cap analysis of gene
expression sequencing (CAGE-seq), precision nucleotide run-on sequencing (PRO-seq),
and chromatin-based assays to identify and characterize eRNAs. Continuous efforts are
made to update and expand these resources, reflecting the evolving understanding of
eRNA biology in different cellular contexts.

eRNA can be categorized into two subclasses, unidirectional and bidirectional, accord-
ing to their transcriptional directionality. The terms “unidirectional” and “bidirectional”
refer to different modes of transcription from the enhancer regions, indicating unidirec-
tional and bidirectional transcription, respectively. There are key differences between
unidirectional and bidirectional eRNAs. Unidirectional transcription generates long eR-
NAs (>4 kb) from enhancer regions in a single direction [13]. Bidirectional transcription
generates eRNAs in two opposing directions from the same enhancer region, and the
length of bidirectional eRNAs is usually shorter (<2 kb) [14]. Furthermore, unidirectional
eRNAs usually generates poly(A) tails and exhibit a lower H3K4me/me3 ratio in their chro-
matin signature than do bidirectional eRNAs. In comparison, bidirectional eRNAs have a
higher H3K4me/me3 ratio than do unidirectional eRNAs. Unfortunately, the annotation
of eRNA directionality is lacking in the current databases. None of the aforementioned
eRNA databases provide the precise eRNA directionality annotation, making it difficult to
distinguish between unidirectional and bidirectional eRNAs. One solution is to assume
that the majority of the eRNAs in the database are bidirectional eRNAs; such a strategy
was used by Zhang et al. to study eRNA-targeted therapy in cancer [6]. In this study, we
choose to initially treat all eRNAs as bidirectional. Further separation of unidirectional and
bidirectional eRNA was achieved by length selection.

Another characteristic of eRNA is their tissue specificity. The expression of eRNAs is
often context-dependent, influenced by the specific cellular environment, developmental
stage, and physiological conditions [15]. Certain eRNAs may exhibit tissue-specific expres-
sion patterns. The majority of the current eRNA databases curate eRNA by tissue type.
Thus, our analyses were also performed by tissue type.

Mutations represent an established causal factor in the onset of various cancers, mani-
festing a spectrum of deleterious consequences. Adhering to the foundational principles of
the central dogma of molecular biology, it is anticipated that mutations exert their influence
on transcriptomes, subsequently influencing proteins, the pivotal entities orchestrating
biological processes and pathways. Consequently, the identification and characterization of
somatic motifs, representing binding sequences, either suppressed or induced by somatic
mutations, are imperative in advancing cancer research

Mutations represent an established causal factor in the onset of various cancers, mani-
festing a spectrum of deleterious consequences. Adhering to the foundational principles of
the central dogma of molecular biology, it is anticipated that mutations exert their influence
on protein coding gene expression [16,17], and micro RNA expression [18], subsequently
influencing proteins, the pivotal entities orchestrating biological processes and pathways.
Consequently, the identification and characterization of somatic motifs, representing bind-
ing sequences, either suppressed or induced by somatic mutations, are imperative in
advancing cancer research [19]. In a prior investigation [20], it was demonstrated that the
oncogenic E26 transformation-specific (ETS) factor exhibits binding affinity with a cryptic
binding site induced by a prominent somatic mutation within the TERT promoter region.
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This specific mutation initiates the formation of a novel binding sequence specifically recog-
nized by ETS proteins. Subsequently, the upregulation of TERT expression follows, leading
to uncontrolled cellular proliferation and ultimately contributing to the development of
cancer. Theoretically, the same somatic motif concept is applicable to eRNAs, implying
that mutations within eRNAs can impact their expression levels and modify their regulatory
mechanisms. Indeed, empirical evidence supports this notion, as mutated enhancers have been
shown to diminish the binding potential of the transcription factors POU2F and YY1 [21].

Multiple eRNA reviews have pointed out the potential importance of eRNA. Ding
et al. pointed out that pathogenic mutations in eRNA are often overlooked [22]. In an
opinion published in Nature Review Genetics, the author stated that extending the concept of
mutation burden and aggregate analysis employed in exome sequencing to regulatory ele-
ments poses a significant challenge. Nevertheless, it is plausible that the genetic landscape
of numerous common diseases encompasses diverse regulatory mutations scattered across
multiple enhancers within an individual [23]. Given that limited attention has been devoted
to the study of mutations within eRNAs, we have therefore formulated a comprehensive
investigation aimed at elucidating mutation density patterns within eRNAs. Mutation
density has been a hypothesized, albeit underexplored, area of study, depicting regions of
the genome where mutations cluster, acting as guides for the identification of oncogenes
and the decoding of the complex mechanisms involved in tumorigenesis. Previous investi-
gations have highlighted discernible imbalances in mutational density between sense and
antisense RNA strands proximal to DNA replication origins and transcription start sites
(TSSs) in protein-coding RNAs [24]. These observations suggest that mutational density
patterns could serve as a historical record of tumorigenesis. Moreover, recent research
delving into lncRNAs has unveiled similar mutation density patterns around the TSSs
between lncRNAs and protein-coding RNAs. Furthermore, it was shown that the quanti-
fied transcriptional strand bias holds prognostic significance, suggesting that a stronger
DNA repair mechanism may negatively affect chemotherapy effectiveness [25]. Given the
growing recognition of the interplay between non-coding RNAs and cancer, we propose a
comprehensive examination of mutational density patterns in eRNAs to ascertain whether
they mirror or differ from those observed in protein-coding RNAs.

2. Results
2.1. Overall Study Design

Our workflow is bifurcated into two separate components. One component was
dedicated to identifying eRNA mutation density patterns, and the other was devoted to
quantifying the mutations in eRNA to evaluate their prognostic value. Our study involved
50 cohorts, covering 35 cancer types and 13,891 cancer patients. We selected 12 eRNA
annotation files from Enhancer Atlas [9], each matching with a corresponding cancer type
(Table 1). The full list of data and abbreviations is available in Supplementary Table S1.

Table 1. eRNA and cancer site matching results.

eRNA Source Additional Description Matching Cancer Site Number of eRNA

A375 Melanoma cell Skin 10,206
A549 Lung adenocacinoma cell Lung 46,317

AML blast AML blast cell Blood 565
HeLa-S3 Cervix adenocarcinoma cell Cervix 57,933

Hepatocyte None Liver 321
Kidney None Kidney 543
Liver None Liver 20,227

Melanocyte None Skin 1447
Melanoma None Skin 33,138

Ovary None Ovary 14,836
HS All tissue type consensus All 193,218

Pancreas None Pancreas 60,477
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2.2. Tissue-Specific eRNA Comparisons

GC content often serves as a fundamental genomic characteristic, with implications for
DNA stability, gene regulation, evolution, and various molecular processes. It is also known
that different gene types and genomic regions often exhibit distinct GC content patterns. GC
content can vary, based on the functional and structural roles of specific genomic elements.
Thus, in our initial analysis, we evaluated the nucleotide content percentage of eRNAs,
comparing them to those of four other genomic regions: TSS for protein coding genes,
lincRNA, DNA replication origin, and retrotransposon (Figure 1A–D, respectively). Protein
coding TSS is marked by a sharp contrast and transition between GC and AT content,
and this pattern is not shared by lncRNA, but by a few tissue-specific eRNA, with less
magnitude. The variability of nucleotide content across different gene types became evident,
with certain genes exhibiting elevated percentages of specific nucleotides or distinctive
sequences integral to their functionality. Traditional belief posits that genes of the same type
should manifest analogous patterns. However, by focalizing on the midpoint of eRNAs and
extending 2000 nucleotides both upstream and downstream, we observe several unique
patterns (see Figure 1E–P). Among the 12 eRNA sources, including A375, AML-BLAST,
melanocyte, melanoma, ovary, and pancreas, a coherent pattern emerged in which AT
content surpasses GC content as one moves away from the focal point. Conversely, when in
proximity to the focal point, GC content surpassed AT content, with a peak at the midpoint
of the eRNAs. In contrast, A549, Hela-S3, liver, and all tissues consensus exhibited a
relatively stable trend in which AT content consistently exceeded GC content. Notably,
in the case of the hepatocyte, GC content consistently outpaced AT content across the
observed regions.

In addition to the distinct GC content patterns, the number of eRNA also differs
greatly among tissue types. These observation may be ascribed to two primary factors.
First, these patterns could potentially mirror the tissue-specific characteristics inherent in
eRNA, thereby implicating unique functions or regulatory mechanisms associated with
individual tissues. Second, these patterns might stem from the incomplete annotation of
eRNAs within the specific tissue, a circumstance influenced by the inherent variability and
technological limitations pertinent to the annotation process.

For the 12 selected eRNA sources, their overlapping proportion is calculated
(Figure 1M). The average overlapping proportion is 10.9% across the 12 eRNA sources,
demonstrating the strong tissue-specific nature of the eRNAs. The highest overlap (70%)
is found between Hela-S3, a cervix adenocarcinoma cell line, and A375, a melanoma cell
line. Hepatocyte, on the other hand, shows a near zero percent overlap for all other sources
tested, further demonstrating the tissue-specificity of eRNA. As the tissue-specificity of
eRNA is well-known, it can help to explain the variation in mutation density patterns we
observed among multiple types of cancers.

2.3. Mutation Strand Bias in eRNA

The assessment of mutation strand bias involved the examination of three distinct
positions along the eRNA sequences: the start, midpoint, and end. Correspondingly, for
each focal point, the analysis is extended to three regions in relation to these focal points:
left, right, and the entire area. Following multiple test corrections, a total of 850 cancer-type
eRNA source combinations retained statistical significance in at least one region in relation
to the focal point, as detailed in Supplementary Table S2. Within this subset of statistically
significant findings, the positional distribution revealed that 285 mutations emanated from
the start of eRNA, 270 from the middle, and 295 from the end. Further delineating the
results based on mutation type, it is observed that the C > A, C > G, C > T, T > A, T > C,
and T > G mutations achieved significance 230, 95, 225, 35, 130, and 135 times, respectively.
These findings underscore the comprehensive and nuanced nature of the mutation strand
bias across diverse cancer types and eRNA sources.
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Figure 1. (A) Nucleotide content percentage for protein coding TSS regions. (B) Nucleotide con-
tent percentage for lncRNA (eRNA not included) regions. (C) Nucleotide content percentage for
DNA replication origin regions. (D) Nucleotide content percentage for retrotransposon regions.
(E–P) Analysis of nucleotide content percentage for the 12 eRNA sources, using the midpoint of
eRNA as the focal point. (Q) Heatmap demonstrating the pair-wise overlapping proportion for the
12 eRNA sources.
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Utilizing the liver cancer China cohort (LICA-CN), in conjunction with the midpoint
of all-tissue consensus eRNAs as the focal point, we present the outcomes of a mutation
density analysis (Figure 2). The comprehensive genome-wide mutation analysis reveals
a prevalence of C > A mutations in the LICA-CN (Figure 2A), with a pronounced strand
bias evident between the C > A and G > T mutations (Figure 2B). Notably, this dominance
of C > A mutations and the corresponding strand bias are particularly pronounced in the
eRNAs (Figure 2C,D). Among the six mutation types examined (Figure 2E–J), a discernible
bias is observed specifically for the C > A mutations across the entire region (adjusted
p < 0.0001), as well as within the regions to the left (adjusted p < 0.0001) and right (adjusted
p < 0.0001) of the focal point. No strand bias is detected for the five remaining mutation
types. Interestingly, when subjected to the same analytical conditions, the liver cancer
France and Japan cohorts do not exhibit the same bias observed in the LICA-CN for
C > A mutations. This discrepancy suggests a fundamental disparity in the etiology of
mutations, possibly attributable to genetic ethnic variations or strongly influenced by
hepatitis infection rates. Furthermore, to reduce noise from combining the 1D and 2D
eRNAs, we re-conducted the analyses using eRNAs with a size < 2000 bp, and the results
closely resemble those achieved without size selection (Supplementary Figure S1).

 

2 

Figure 2. LICA-CN mutation density analysis results; eRNA source: all tissue consensuses; focal
point: eRNA midpoint. (A) A pie chart depicts the genome-wide mutation count distribution by the
six mutation types. (B) A bar depicts the genome-wide strand bias for six mutation types, along with
their complementary mutations. (C) A pie chart depicts the mutation count distribution by the six
mutation types within the eRNAs. (D) A bar chart depicts the strand bias for six mutation types
and their complementary mutations within the eRNAs. (E–J) mutation density patterns for the six
mutation types.

Among the noteworthy findings, we identify a particularly prominent cohort within
the ICGC: the melanoma cohort from Australia, denoted as MELA-AU. This cohort is
paired with four eRNA tissue sources, with a focus on skin-related contexts, including
the consensus of all tissues, the A375 cell line, melanoma, and melanocytes. Given the
prevalent occurrence of C > T mutations in skin cancer, we constructed a density plot
illustrating the C > T mutation distribution in MELA-AU (Figure 3). The outcomes revealed
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analogous mutation density patterns between eRNAs derived from the A375 cell line and
melanoma, underscoring the similarity in source materials. In contrast, discernable patterns
emerged when comparing the human tissue consensus and melanocytes with A375 and
melanoma. Within the MELA-AU cohort, distinct mutation strand biases were observable.
For instance, employing the human all-tissue consensus as the source and positioning the
eRNA start as the focal point revealed a higher C > T mutation rate compared to the G > A
mutation rate downstream of the focal point. Conversely, when utilizing melanoma as the
eRNA source and selecting the end of eRNAs as the focal point, the G > A mutation rate
surpassed the C > T mutation rate.

 

2 

Figure 3. MELA-AU mutation density patterns for four skin-related eRNA sources. (A–C) Mutation
density patterns when using the all-tissue consensus eRNA source for the start, midpoint and end,
respectively. (D–F) Mutation density patterns when using the A375 eRNA source for the start,
midpoint and end, respectively. (G–I) Mutation density patterns when using the melanoma eRNA
source for the start, midpoint and end, respectively. (J–L) Mutation density patterns when using the
melanocyte eRNA source for the start, midpoint and end, respectively.

Previously, we employed the TSS as the focal point in the protein-coding RNAs, re-
vealing a similar mutation pattern when using the all-tissue consensus as the eRNA source.
However, this pattern dissipated when individual tissue sources were considered. Con-
ventionally, the belief persists that the mutation peak around the TSS region is attributable
to increased transcriptional activity and the activation of the transcription-coupled repair
mechanism post-TSS [26]. Unlike protein-coding RNAs, eRNAs undergo bidirectional tran-
scription [27], raising uncertainties regarding the applicability of the transcription-coupled
repair mechanism to eRNAs. Nevertheless, our observed results, particularly when utiliz-
ing the start of eRNA from the all-tissue consensus, suggest a potential resemblance in the
repair mechanisms experienced by the eRNAs and protein-coding RNAs.
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2.4. Mutation Density Peaks and Dips in eRNA

The prevailing eRNA annotation exhibits a pronounced tissue-specificity. Employing
all-tissue consensus eRNAs for analysis may inadvertently introduce extraneous signals
specific to particular tissue types. Despite this, the increased quantity of annotated eRNAs
enables the identification of unique patterns. These patterns are especially trustworthy
when they are consistent across multiple cancer types. One of the most noteworthy among
these patterns is the mutation dip observed at the midpoint of the eRNAs, sharply contrast-
ing the mutation peaks evident at the eRNA start and end.

Illustrated through the utilization of gastric adenocarcinoma United States (STAD-US),
skin cutaneous melanoma United States (SKCM-US), brain glioblastoma multiforme United
States (GBM-US), and liver cancer Japan (LINC-JP) cohorts, we substantiate the presence
of a mutation dip in the middle of the eRNAs (Figure 4). Moreover, when we extended
the flanking range to 6000 bp (Supplementary Figure S2) and limited the eRNA to a
size < 2000 bp (Supplementary Figure S3), the same patterns were persistently observed. We
also demonstrate mutation peaks around the eRNA start and end, using data from the GBM-
US and LINC-JP cohorts (Figure 5). Similarly, we extended the flanking range to 6000 bp
(Supplementary Figure S4) and limited the eRNA to a size < 2000 bp (Supplementary
Figure S5), and similar patterns were consistently observed, with minor variations due
to parameter changes. The exact biological mechanism causing these observed mutation
patterns in eRNA remains unclear. In the following discussion, we will propose several
hypotheses to potentially explain these patterns.

 

3 

 

Figure 4. Mutation density analyses show that a mutation density dip occurs around the midpoint of
the eRNAs. (A–F) Mutation density plots using the STAD-US cohort and the eRNAs’ midpoint as the
focal point; (G–L) mutation density plots using the SKCM-US cohort and the eRNAs’ midpoint as the
focal point; (M–R) mutation density plots using the GBM-US cohort and the eRNAs’ midpoint as the
focal point; (S–X) mutation density plots using the LINC-JP cohort and the eRNAs’ midpoint as the
focal point.
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3 

 
Figure 5. Mutation density analyses show that a mutation density peak occurs at the start and end
of the eRNAs. (A–F) Mutation density plots using the GBM-US cohort and the eRNAs’ start as the
focal point; (G–L) mutation density plots using the GBM-US cohort and the eRNAs’ end as the focal
point; (M–R) mutation density plots using the LINC-JP cohort and the eRNAs’ start as the focal point;
(S–X) mutation density plots using the LINC-JP cohort and the eRNAs’ end as the focal point.

2.5. Mutation Burden in eRNA

Mutation burden, a pivotal metric with far-reaching implications for disease diagnosis,
prognosis, treatment strategies, evolutionary biology, and our comprehension of genetic
variation in both health and disease, has traditionally been computed at the individual
level. However, computing mutation burden at a specific regional level holds the potential
to unveil additional details related to underlying mechanisms. To address this, we have
devised the MPKM computation, a methodology that normalizes mutational burden by
considering local nucleotide distribution, length, and total mutation amount within the
specified region. The MPKM were computed for the eRNAs at the individual level for each
of the mutation types, in addition to a combined MPKM computation.

We further performed a Cox proportional hazard regression to determine whether
eRNA mutation burdens hold any prognostic value. The analysis revealed one significant
results after multiple test corrections, using adjusted p < 0.2 as the significant threshold. The
lung adenocarcinoma US cohort (LUAD-US) shows that an increased mutation burden in
eRNA decreases survival (hazard ratio with 95% confidence interval: 0.01 (0–0.44), adjusted
p = 0.13). For skin cutaneous melanoma US cohort (SKCM-US), the results show that a
lower mutation burden in eRNA is associated with decreased survival (adjusted p = 0.23),
which is consistent with previous reports [28–30]. This phenomenon could be caused by
several reasons: (1) the increased number of mutations provides a higher likelihood of
generating neoantigens, making the tumor more recognizable to the immune system; (2) a
higher mutation burden can contribute to intra-tumor heterogeneity, meaning that there is
greater genetic diversity within the tumor cell population. This diversity may lead to the
emergence of subclones that respond differently to treatments; (3) high mutation burdens
may exhibit deficiencies in DNA repair mechanisms, which may make the cancer cells more
vulnerable to certain types of therapies that exploit these deficiencies. The MPKM analysis
applied to eRNAs is conceivably a subset of the broader mutation burden encompassing the
entire genome. Consequently, the outcomes derived from this methodology may parallel
those obtained through a comprehensive assessment of overall mutational burden. This
approach is designed to elevate the accuracy and contextual significance of evaluated
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mutation burden, thereby affording a more nuanced comprehension of genomic alterations
at a finer scale.

3. Discussion

eRNAs play a pivotal role in the intricate regulation of gene expression, possessing
substantial significance in diverse biological processes. Although considerable progress has
been made in evaluating eRNA functions, many aspects of their biology continue to evade
complete understanding. These underexplored areas remain inadequately researched
in current scientific literature, making them active subjects for ongoing investigation.
Therefore, this study was designed to systematically examine mutation density patterns of
eRNAs across multiple types of cancer.

Our results reveal several novel aspects of eRNA in relation to mutations. Previous
studies have observed mutation density transcriptional strand bias in protein-coding
RNAs [24] and lncRNAs [25]. This bias occurs due to the action of the transcription-coupled
DNA repair mechanism, which preferentially repairs the template strand, commencing
from the transcription start site (TSS). This action mitigates the disruptions caused by DNA
lesions on the RNA polymerase, resulting in a diminished mutation density on the template
strand compared to the coding strand.

Interestingly, we discovered a similar mutation strand bias within eRNAs. However,
in contrast to protein-coding RNAs and lncRNAs, eRNAs are bidirectionally transcribed
by RNA polymerase II [31]. Furthermore, rarely do any eRNA databases annotate eRNA
by their transcriptional directionality. Whether or not the traditional transcription-coupled
DNA repair mechanism works on eRNAs is inconclusive. However, the broader context of
DNA repair mechanisms, including nucleotide excision repair (NER), can still play a role in
maintaining genomic integrity, including at the enhancer regions. Mutation strand bias can
also occur due to preferential expression on a specific strand of eRNA. The level of enhancer
activity on one strand may differ from that of the other, influencing the initiation and extent
of bidirectional transcription. The presence of cis-regulatory elements within the enhancer
region may contribute to strand-specific differences in transcription. Regardless, the precise
mechanisms and regulatory pathways involved in DNA repair at the enhancer regions,
especially during eRNA transcription, are areas of ongoing research, and the understanding
of these processes is evolving.

In an analysis of all-tissue consensus eRNAs, it was observed almost uniformly across
all cancer types that a dip in mutation density existed in the center of the eRNA sequence.
This dip was sharply juxtaposed by peaks of mutation density occurring at both the
beginning and end of the eRNAs. This pattern persists somewhat when using tissue-specific
eRNAs matching the respective cancer types, albeit with diminished prominence and often
lacking in statistical significance. Despite the potential introduction of tissue-specific
bias or noise through the utilization of all-tissue consensus eRNAs, the discernible and
consistent patterns remain interpretable as indicative of an unknown biological mechanism.
In the analysis of protein-coding RNA [24] and lncRNA [25], distinctive mutation peaks
were observed around the transcription start site (TSS), attributed to the mechanism of
transcription-coupled repair. However, in the case of eRNAs characterized by bidirectional
transcription with the TSS positioned in the middle, the mutation density pattern around
eRNA TSS diverges from that observed in protein-coding RNAs and lncRNAs. Notably,
the underlying mechanism driving this pattern is distinct and cannot be attributed to
transcription-coupled repair.

The exact mechanisms at play within the context of eRNAs remain enigmatic; however,
several contributing processes can be hypothesized. Firstly, it has been shown that eRNA
activation are through binding to TF [6,32]. Such functional constraint within the middle
region of eRNA could be instrumental in maintaining enhancer activity. Mutations in this
region might cause more significant consequences for the enhancer’s function, thereby
exerting selective pressure against mutations. Secondly, the involvement of transcription-
coupled repair or DNA repair mechanisms may play a role in mitigating the number
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of mutations subsequent to eRNA transcription, although this does not account for the
observed mutation peak at the end of the eRNAs. Thirdly, the potential elevation of
spontaneous mutations during transcriptional activity may arise due to the increased local
exposure of DNA during the synthesis of RNA transcripts [33].

The biggest limitation of this study may be related to the accuracy of eRNA annotation,
which can, in part, be ascribed to the sensitivity of the underlying technology. Various
methods have been employed for identifying eRNA, including the identification of the
binding site of the transcription factor EP300 via ChIP-seq [34], as well as the sequencing
of nascent RNA through techniques such as GRO-seq [35] or PRO-seq [36], among others.
Each of these techniques exhibits distinct sensitivities and offers unique advantages [37].
For each unique tissue type, the Enhancer Atlas database [9] combined eRNA data from
multiple sources, based on multiple technologies. The results may not exhibit uniform
representation across all tissue types, potentially introducing variability or noise into the
results. Furthermore, none of the major eRNA databases annotate eRNAs by transcriptional
directionality, making distinguishing unidirectional and bidirectional status difficult. In our
study, we further divided the eRNA by size, hoping to reduce the level of noises caused by
inaccurate annotation. Moreover, we employed rigorous statistical analyses and validated
the findings through the examination of multiple cancer types, thereby enhancing the
robustness and reliability of our conclusions.

Significant advancements have been made in recognizing the crucial role of eRNAs in
the complex field of gene regulation. Nevertheless, the persistent uncertainties highlighted
here emphasize the ongoing complexities of eRNA biology, underlining the need for
continued research to clarify their exact roles in cellular processes and disease. Our findings
not only substantiate the tissue-specificity of eRNAs in terms of mutation density, but also
propose the existence of one or multiple underlying biological mechanisms orchestrating
mutations in a non-random fashion within eRNAs.

4. Methods
4.1. Data Collection

Somatic mutation data from cancer patients spanning 80 cohorts representing 35 dis-
tinct cancer types were obtained from the International Cancer Genome Consortium (ICGC).
The dataset was refined by excluding small indels and silent mutations, retaining only
single base substitutions (SBS). From the initial 80 cohorts available from the ICGC, the top
50 cohorts were chosen based on mutation quantity ranking, as higher mutation density
assessments are more reliable when the total number of mutations per cohort is substantial.
eRNA is known to be tissue-specific. We downloaded 12 eRNA annotation files from
Enhancer Atlas [9]. These eRNA annotation files were matched with specific cancer types.
We used BedTools [38] to identify the pairwise overlapping proportion of eRNA between
different tissue types. Due to the lack of annotation of unidirectional and bidirectional
eRNA, we first conducted the analysis without distinguishing the directionality, then
selected bidirectional eRNAs by size < 2000 bp.

4.2. Mutation Density Pattern and Strand Bias

Given the complementary nature of DNA, the 12 possible single nucleotide mutations
are classified into six intuitive mutational categories: C > A (C > A & G > T), C > G (C > G
& G > C), C > T (C > T & G > A), T > A (T > A & A > T), T > C (T > C & A > G), and T > G
(T > G & A > C). Each mutational category incorporates two reciprocally complementary
forms, as exemplified by the C > T and G > A pair. Mutation density analysis relies on a
predetermined focal genomic feature. For this study, the focal feature of interest is eRNA
TSS, an extension of our previous work in which we assessed transcription strand bias in
close proximity to protein-coding RNAs TSS [3].

In order to dissect the spatial patterns of mutation density near eRNA TSS, the counted
mutations included those within the immediate flanking regions, both upstream and
downstream, each spanning 2000 nucleotides. These bidirectional flanks were divided into
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40 bins, each measuring 100 nucleotides in length. Mutations (singular genomic positions)
identified from a specific cancer cohort were tallied within each sequential 100-bp bin in
correlation to every occurrence of eRNA TSS. Further normalization took into consideration
the G/C to A/T ratio in GRCh38, generating the mutation density evaluated as “mutations
per kilo total mutations per megabase” (MPKM). The dense graphical representation of
mutation densities for the two complementary strands is enabled using R command line
scripting, underpinned by our previously developed R software, MutDens [3].

MutDens offered two core statistical analyses—the detection of a mutation peak or
dip in the vicinity of eRNA TSS, and the determination of strand bias. For the former, a
background mutation density was constructed in a Poisson distribution using mutations
distant from the focal genomic features. A comparison of the eRNA mutation density
for each ICGC cohort against this background attempted to locate possible peaks or dips,
corroborated by a nominal p < 1 × 10−5 in the Poisson test. Subsequently, to identify strand
bias, a Wilcoxon signed-rank test was deployed. While MutDens supplied results for the
upstream flank, downstream flank, and bidirectional flanks of TSS, this study only consid-
ered the TSS downstream, aiming to detect transcription strand bias, while maintaining the
false discovery rate at 0.05 (pursuant to the Benjamini–Hochberg correction).

4.3. Mutation Density in Target Genomic Regions by Cancer Patient

Within each cancer cohort, ICGC released information that allowed for the delimiting
of all of the personal SBS mutations of each cancer patient (a donor). Given all the charac-
terized SBS mutations of a donor, we leveraged the R package GenomicRanges to count
the mutations that overlapped with the eRNA spans, the target genomic regions. This
overlapping-based total number of mutations per donor, C, underwent three elements of
normalization, resulting in the final mutation density value as “mutations per kilo total
mutations per megabase” (MPKM), computed using the following formula:

MPKM =
C

M· f ·K f =

{
0.2 f or C > A, C > G, C > T
0.3 f or T > A, T > C, T > G

(1)

First, the raw region-bearing mutation count C was divided by total size of the target
genomic regions (M), assessed in mega bases, to become an interim value I1. In the
current study, because the target regions comprised human enhancers, the normalization
factor serving as the denominator equated to summed enhancer lengths in the unit of
Mb. Secondly, considering that a specific SBS category can occur on only a specific type of
substrate base, the interim value I1 was divided by a GC content-based adjusting factor
(f ), to become the next interim value I2. For C > A, C > G, and C > T SBSs, the adjusting
factor is 0.2, while for T > A, T > C, and T > G, it is 0.3. Finally, the interim value I2 was
divided by the total number of mutations in the whole genome of the donor (K), assessed
in kilos. For example, the six categories of SBS mutations for donor DO46325, an Australian
ovarian cancer patient, were tallied at 1342 (C > A), 1178 (C > G), 1770 (C > T), 912 (T > A),
1160 (T > C), and 503 (T > G), ranking C > T as the most significantly mutated category in
the entire genome. Counting only the mutations overlapping the enhancer regions, the
six SBS categories revealed 7 (C > A), 10 (C > G), 12 (C > T), 0 (T > A), 2 (T > C), and 5
(T > G) mutations, still ranking C > T as the most significantly mutated category in the
enhancer regions.

The ovary enhancer regions collectively occupy 14,522,866 (14.5 Mb) nucleotides.
Dividing the enhancer-bearing SBS totals by the total region size (14.5 Mb), the total
mutational burdens (1.3 k, 1.2 k, 1.8 k, 0.9 k, 1.1 k, and 0.5 k), and the concordant adjusting
factors (0.2 for the former three and 0.3 for the latter three), we ended up with the following
mutation density MPKM values for the ovary enhancer regions of donor DO46325: 1.7
(C > A), 2.8 (C > G), 2.2 (C > T), 0 (T > A), 0.4 (T > C), and 2.3 (T > G). Of note, after
normalizing the raw enhancer-bearing mutation count from the foresaid three aspects,
C > G stood out as the most frequently mutated category in the enhancer regions, with the
highest MPKM value derived as 2.8 = 10/(14.5 * 0.2 * 1.2). It is worth noting that the MPKM
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values assessed per SBS category (Equation (1)) capture the average mutation density of the
two mutation forms within an SBS category, rather than summing the two mutation forms.
The MPKM values resulting from this current strategy were comparable to the mutation
form-based MPKM values proposed in MutDens.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ijms25010534/s1.

Author Contributions: Conceptualization, Y.G.; methodology, Y.G. and H.Y.; software, H.Y.; valida-
tion, L.J., T.Z. and Y.Y; formal analysis, T.Z.; investigation, T.Z. and X.L.; resources, Y.G. and Y.B.; data
curation, T.Z.; writing—original draft preparation, T.Z. and Y.G.; writing—review and editing, T.Z.
and Y.G.; visualization, T.Z. and Y.G.; supervision, Y.G. and Y.B.; project administration, Y.G.; funding
acquisition, Y.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Cancer Institute (USA) P30CA240139 and R01ES030993.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data used in this study were downloaded publicly. The codes used
for this study can be found at https://github.com/hui-sheen/MutDens, accessed on 2 April 2023.

Acknowledgments: This study is supported by the Biostatistics and Bioinformatics Shared Resource
from Sylvester Comprehensive Cancer Center, University of Miami.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Croce, C.M. Oncogenes and cancer. N. Engl. J. Med. 2008, 358, 502–511. [CrossRef] [PubMed]
2. Wang, K.C.; Chang, H.Y. Molecular Mechanisms of Long Noncoding RNAs. Mol. Cell 2011, 43, 904–914. [CrossRef] [PubMed]
3. Lee, J.H.; Xiong, F.; Li, W. Enhancer RNAs in cancer: Regulation, mechanisms and therapeutic potential. RNA Biol. 2020, 17,

1550–1559. [CrossRef] [PubMed]
4. Natoli, G.; Andrau, J.C. Noncoding Transcription at Enhancers: General Principles and Functional Models. Annu. Rev. Genet.

2012, 46, 1–19. [CrossRef] [PubMed]
5. Mikhaylichenko, O.; Bondarenko, V.; Harnett, D.; Schor, I.E.; Males, M.; Viales, R.R.; Furlong, E.E.M. The degree of enhancer

or promoter activity is reflected by the levels and directionality of eRNA transcription. Genes Dev. 2018, 32, 42–57. [CrossRef]
[PubMed]

6. Zhang, Z.; Lee, J.H.; Ruan, H.; Ye, Y.Q.; Krakowiak, J.; Hu, Q.S.; Xiang, Y.; Gong, J.; Zhou, B.Y.; Wang, L.; et al. Transcriptional
landscape and clinical utility of enhancer RNAs for eRNA-targeted therapy in cancer. Nat. Commun. 2019, 10, 4562. [CrossRef]

7. Adhikary, S.; Roy, S.; Chacon, J.; Gadad, S.S.; Das, C. Implications of Enhancer Transcription and eRNAs in Cancer. Cancer Res.
2021, 81, 4174–4182. [CrossRef]

8. Stasevich, E.M.; Uvarova, A.N.; Murashko, M.M.; Khabusheva, E.R.; Sheetikov, S.A.; Prassolov, V.S.; Kuprash, D.V.; Demin, D.E.;
Schwartz, A.M. Enhancer RNA AL928768.3 from the IGH Locus Regulates MYC Expression and Controls the Proliferation and
Chemoresistance of Burkitt Lymphoma Cells with IGH/MYC Translocation. Int. J. Mol. Sci. 2022, 23, 4624. [CrossRef]

9. Gao, T.S.; Qian, J. EnhancerAtlas 2.0: An updated resource with enhancer annotation in 586 tissue/cell types across nine species.
Nucleic Acids Res. 2020, 48, D58–D64. [CrossRef]

10. Wang, J.; Dai, X.; Berry, L.D.; Cogan, J.D.; Liu, Q.; Shyr, Y. HACER: An atlas of human active enhancers to interpret regulatory
variants. Nucleic Acids Res. 2019, 47, D106–D112. [CrossRef]

11. Song, C.; Zhang, G.; Mu, X.; Feng, C.; Zhang, Q.; Song, S.; Zhang, Y.; Yin, M.; Zhang, H.; Tang, H.; et al. eRNAbase: A
comprehensive database for decoding the regulatory eRNAs in human and mouse. Nucleic Acids Res. 2023, gkad925. [CrossRef]
[PubMed]

12. Bai, X.; Shi, S.; Ai, B.; Jiang, Y.; Liu, Y.; Han, X.; Xu, M.; Pan, Q.; Wang, F.; Wang, Q.; et al. ENdb: A manually curated database of
experimentally supported enhancers for human and mouse. Nucleic Acids Res. 2020, 48, D51–D57. [CrossRef] [PubMed]

13. Koch, F.; Fenouil, R.; Gut, M.; Cauchy, P.; Albert, T.K.; Zacarias-Cabeza, J.; Spicuglia, S.; de la Chapelle, A.L.; Heidemann, M.;
Hintermair, C.; et al. Transcription initiation platforms and GTF recruitment at tissue-specific enhancers and promoters. Nat.
Struct. Mol. Biol. 2011, 18, 956–963. [CrossRef] [PubMed]

14. Kim, T.K.; Hemberg, M.; Gray, J.M.; Costa, A.M.; Bear, D.M.; Wu, J.; Harmin, D.A.; Laptewicz, M.; Barbara-Haley, K.; Kuersten, S.;
et al. Widespread transcription at neuronal activity-regulated enhancers. Nature 2010, 465, 182–187. [CrossRef] [PubMed]

15. Ren, B. TRANSCRIPTION Enhancers make non-coding RNA. Nature 2010, 465, 173–174. [CrossRef] [PubMed]
16. Jia, P.; Zhao, Z. Impacts of somatic mutations on gene expression: An association perspective. Brief. Bioinform. 2017, 18, 413–425.

[CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/ijms25010534/s1
https://www.mdpi.com/article/10.3390/ijms25010534/s1
https://github.com/hui-sheen/MutDens
https://doi.org/10.1056/NEJMra072367
https://www.ncbi.nlm.nih.gov/pubmed/18234754
https://doi.org/10.1016/j.molcel.2011.08.018
https://www.ncbi.nlm.nih.gov/pubmed/21925379
https://doi.org/10.1080/15476286.2020.1712895
https://www.ncbi.nlm.nih.gov/pubmed/31916476
https://doi.org/10.1146/annurev-genet-110711-155459
https://www.ncbi.nlm.nih.gov/pubmed/22905871
https://doi.org/10.1101/gad.308619.117
https://www.ncbi.nlm.nih.gov/pubmed/29378788
https://doi.org/10.1038/s41467-019-12543-5
https://doi.org/10.1158/0008-5472.CAN-20-4010
https://doi.org/10.3390/ijms23094624
https://doi.org/10.1093/nar/gkz980
https://doi.org/10.1093/nar/gky864
https://doi.org/10.1093/nar/gkad925
https://www.ncbi.nlm.nih.gov/pubmed/37889077
https://doi.org/10.1093/nar/gkz973
https://www.ncbi.nlm.nih.gov/pubmed/31665430
https://doi.org/10.1038/nsmb.2085
https://www.ncbi.nlm.nih.gov/pubmed/21765417
https://doi.org/10.1038/nature09033
https://www.ncbi.nlm.nih.gov/pubmed/20393465
https://doi.org/10.1038/465173a
https://www.ncbi.nlm.nih.gov/pubmed/20463730
https://doi.org/10.1093/bib/bbw037
https://www.ncbi.nlm.nih.gov/pubmed/27127206


Int. J. Mol. Sci. 2024, 25, 534 14 of 14

17. Ping, J.; Oyebamiji, O.; Yu, H.; Ness, S.; Chien, J.; Ye, F.; Kang, H.; Samuels, D.; Ivanov, S.; Chen, D.; et al. MutEx: A multifaceted
gateway for exploring integrative pan-cancer genomic data. Brief. Bioinform. 2020, 21, 1479–1486. [CrossRef]

18. Yu, H.; Jiang, L.; Li, C.I.; Ness, S.; Piccirillo, S.G.M.; Guo, Y. Somatic mutation effects diffused over microRNA dysregulation.
Bioinformatics 2023, 39, btad520. [CrossRef]

19. Jiang, L.; Guo, F.; Tang, J.; Yu, H.; Ness, S.; Duan, M.; Mao, P.; Zhao, Y.Y.; Guo, Y. SBSA: An online service for somatic binding
sequence annotation. Nucleic Acids Res. 2022, 50, e4. [CrossRef]

20. Chiba, K.; Lorbeer, F.K.; Shain, A.H.; McSwiggen, D.T.; Schruf, E.; Oh, A.; Ryu, J.; Darzacq, X.; Bastian, B.C.; Hockemeyer, D.
Mutations in the promoter of the telomerase gene TERT contribute to tumorigenesis by a two-step mechanism. Science 2017, 357,
1416–1420. [CrossRef]

21. He, H.; Li, W.; Wu, D.; Nagy, R.; Liyanarachchi, S.; Akagi, K.; Jendrzejewski, J.; Jiao, H.; Hoag, K.; Wen, B.; et al. Ultra-rare
mutation in long-range enhancer predisposes to thyroid carcinoma with high penetrance. PLoS ONE 2013, 8, e61920. [CrossRef]

22. Ding, M.T.; Liu, Y.H.; Liao, X.H.; Zhan, H.J.; Liu, Y.C.; Huang, W.R. Enhancer RNAs (eRNAs): New Insights into Gene
Transcription and Disease Treatment. J. Cancer 2018, 9, 2334–2340. [CrossRef] [PubMed]

23. Pennacchio, L.A.; Bickmore, W.; Dean, A.; Nobrega, M.A.; Bejerano, G. Enhancers: Five essential questions. Nat. Rev. Genet. 2013,
14, 288–295. [CrossRef] [PubMed]

24. Yu, H.; Ness, S.; Li, C.I.; Bai, Y.S.; Mao, P.; Guo, Y. Surveying mutation density patterns around specific genomic features. Genome
Res. 2022, 32, 1930–1940. [CrossRef] [PubMed]

25. Zhang, T.; Yu, H.; Bai, Y.; Guo, Y. Mutation density analyses on long noncoding RNA reveal comparable patterns to protein-coding
RNA and prognostic value. Comput. Struct. Biotechnol. J. 2023, 21, 4887–4894. [CrossRef] [PubMed]

26. Perera, D.; Poulos, R.C.; Shah, A.; Beck, D.; Pimanda, J.E.; Wong, J.W.H. Differential DNA repair underlies mutation hotspots at
active promoters in cancer genomes. Nature 2016, 532, 259–263. [CrossRef] [PubMed]

27. Ye, R.; Cao, C.C.; Xue, Y.C. Enhancer RNA: Biogenesis, function, and regulation. Essays Biochem. 2020, 64, 883–894. [CrossRef]
28. Sha, D.; Jin, Z.H.; Budczies, J.; Kluck, K.; Stenzinger, A.; Sinicrope, F.A. Tumor Mutational Burden as a Predictive Biomarker in

Solid Tumors. Cancer Discov. 2020, 10, 1808–1825. [CrossRef]
29. Wang, L.; Chen, F.; Liu, R.; Shi, L.; Zhao, G.; Yan, Z. Gene expression and immune infiltration in melanoma patients with different

mutation burden. BMC Cancer 2021, 21, 379. [CrossRef]
30. Valero, C.; Lee, M.; Hoen, D.; Wang, J.M.; Nadeem, Z.; Patel, N.; Postow, M.A.; Shoushtari, A.N.; Plitas, G.; Balachandran, V.P.;

et al. The association between tumor mutational burden and prognosis is dependent on treatment context. Nat. Genet. 2021, 53,
11–15. [CrossRef]

31. Kim, T.K.; Hemberg, M.; Gray, J.M. Enhancer RNAs: A Class of Long Noncoding RNAs Synthesized at Enhancers. Cold Spring
Harb. Perspect. Biol. 2015, 7, a018622. [CrossRef] [PubMed]

32. Azofeifa, J.G.; Allen, M.A.; Hendrix, J.R.; Read, T.; Rubin, J.D.; Dowell, R.D. Enhancer RNA profiling predicts transcription factor
activity. Genome Res. 2018, 28, 334–344. [CrossRef] [PubMed]

33. Bachl, J.; Carlson, C.; Gray-Schopfer, V.; Dessing, M.; Olsson, C. Increased transcription levels induce higher mutation rates in a
hypermutating cell line. J. Immunol. 2001, 166, 5051–5057. [CrossRef] [PubMed]

34. Durbin, A.D.; Wang, T.J.; Wimalasena, V.K.; Zimmerman, M.W.; Li, D.Y.; Dharia, N.V.; Mariani, L.; Shendy, N.A.M.; Nance, S.;
Patel, A.G.; et al. EP300 Selectively Controls the Enhancer Landscape of MYCN-Amplified Neuroblastoma. Cancer Discov. 2022,
12, 730–751. [CrossRef] [PubMed]

35. Barbieri, E.; Hill, C.; Quesnel-Vallières, M.; Zucco, A.J.; Barash, Y.; Gardini, A. Rapid and Scalable Profiling of Nascent RNA with
fastGRO. Cell Rep. 2020, 33, 108373. [CrossRef]

36. Mahat, D.B.; Kwak, H.; Booth, G.T.; Jonkers, I.H.; Danko, C.G.; Patel, R.K.; Waters, C.T.; Munson, K.; Core, L.J.; Lis, J.T. Base-pair-
resolution genome-wide mapping of active RNA polymerases using precision nuclear run-on (PRO-seq). Nat. Protoc. 2016, 11,
1455–1476. [CrossRef]

37. Yao, L.; Liang, J.; Ozer, A.; Leung, A.K.; Lis, J.T.; Yu, H. A comparison of experimental assays and analytical methods for
genome-wide identification of active enhancers. Nat. Biotechnol. 2022, 40, 1056–1065. [CrossRef]

38. Quinlan, A.R.; Hall, I.M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26, 841–842.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1093/bib/bbz084
https://doi.org/10.1093/bioinformatics/btad520
https://doi.org/10.1093/nar/gkab877
https://doi.org/10.1126/science.aao0535
https://doi.org/10.1371/journal.pone.0061920
https://doi.org/10.7150/jca.25829
https://www.ncbi.nlm.nih.gov/pubmed/30026829
https://doi.org/10.1038/nrg3458
https://www.ncbi.nlm.nih.gov/pubmed/23503198
https://doi.org/10.1101/gr.276770.122
https://www.ncbi.nlm.nih.gov/pubmed/36100435
https://doi.org/10.1016/j.csbj.2023.09.027
https://www.ncbi.nlm.nih.gov/pubmed/37860228
https://doi.org/10.1038/nature17437
https://www.ncbi.nlm.nih.gov/pubmed/27075100
https://doi.org/10.1042/Ebc20200014
https://doi.org/10.1158/2159-8290.CD-20-0522
https://doi.org/10.1186/s12885-021-08083-1
https://doi.org/10.1038/s41588-020-00752-4
https://doi.org/10.1101/cshperspect.a018622
https://www.ncbi.nlm.nih.gov/pubmed/25561718
https://doi.org/10.1101/gr.225755.117
https://www.ncbi.nlm.nih.gov/pubmed/29449408
https://doi.org/10.4049/jimmunol.166.8.5051
https://www.ncbi.nlm.nih.gov/pubmed/11290786
https://doi.org/10.1158/2159-8290.CD-21-0385
https://www.ncbi.nlm.nih.gov/pubmed/34772733
https://doi.org/10.1016/j.celrep.2020.108373
https://doi.org/10.1038/nprot.2016.086
https://doi.org/10.1038/s41587-022-01211-7
https://doi.org/10.1093/bioinformatics/btq033

	Introduction 
	Results 
	Overall Study Design 
	Tissue-Specific eRNA Comparisons 
	Mutation Strand Bias in eRNA 
	Mutation Density Peaks and Dips in eRNA 
	Mutation Burden in eRNA 

	Discussion 
	Methods 
	Data Collection 
	Mutation Density Pattern and Strand Bias 
	Mutation Density in Target Genomic Regions by Cancer Patient 

	References

