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Abstract: The mitogen-activated protein kinase (MAPK) pathway is essential for cellular prolifera-
tion, growth, and survival. Constitutive activation of this pathway by BRAF mutations can cause
downstream activation of kinases, leading to uncontrolled cellular growth and carcinogenesis. There-
fore, inhibition of BRAF and the downstream substrate MEK has been shown to be effective in
controlling tumor growth and proliferation. Over the last decade, several BRAF and MEK inhibitors
have been investigated, ranging from primarily melanoma to various cancer types with BRAF al-
terations. This subsequently led to several Food and Drug Administration (FDA) approvals for
BRAF/MEK inhibitors for melanoma, non-small cell lung cancer, anaplastic thyroid cancer, colorectal
cancer, histiocytosis neoplasms, and finally, tumor-agnostic indications. Here, this comprehensive
review will cover the developments of BRAF and MEK inhibitors from melanomas to tumor-agnostic
indications, novel drugs, challenges, future directions, and the importance of those drugs in personal-
ized medicine.

Keywords: BRAF; MEK; ERK; MAPK; molecular profiling; targeted therapy; tumor agnostic;
personalized medicine

1. Introduction

The mitogen-activated protein kinase (MAPK) pathway is important for several vital
cellular functions, such as differentiation, proliferation, survival, autophagy, and apop-
tosis [1]. Activation of any step in the MAPK pathway (RAS/RAF/MEK/ERK) can lead
to downstream activation and carcinogenesis. BRAF is one of the three isoforms of the
RAF protein kinase. BRAF and MEK inhibitors have been developed for the treatment
of various types of cancers due to their inhibition of the MAPK pathway and subsequent
inhibition of cancer growth. Targeting the BRAF/MEK pathway has become one of the re-
cent advancements in precision medicine. This review will mainly discuss BRAF inhibitors
(vemurafenib, dabrafenib, and encorafenib) and MEK 1/2 inhibitors (trametinib, cobime-
tinib, and binimetinib), their indications across various types of cancers, combinations with
immunotherapy, associated toxicities, resistance mechanisms, as well as novel drugs and
future perspectives.

2. MAPK Pathway

The MAPK pathway is composed of cytoplasmic serine/threonine and tyrosine ki-
nases, including RAS, RAF, MEK, and ERK [1]. RAS is a GTPase that includes three isoforms
encoded by HRAS, NRAS, or KRAS genes [1]. RAF is a protein kinase with three isoforms
encoded by the ARAF, BRAF, and CRAF genes [1]. Each RAF isoform is composed of three
conserved regions, including the RAS binding domain (CR1), regulatory domain (CR2),
and catalytic kinase domain (CR3), as well as isoform-specific domains responsible for
embryological functions [2]. BRAF activation is solely dependent on RAS, but BRAF itself
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is a co-activating factor for CRAF and is a more potent activator of MEK due to its higher
affinity for this substrate [2]. MEK proteins consist of three regions, including an N-terminal
region for binding its substrate, a core kinase domain, and a C-terminal region [2]. Binding
of membrane tyrosine kinase receptors such as fibroblast growth factor receptor (FGFR) or
epidermal growth factor receptor (EGFR) to their specific ligands (FGF or EGF) leads to
their dimerization and autophosphorylation, resulting in intracellular signaling. It leads to
the recruitment of growth factor receptor-bound protein 2 (GRB2) to the phosphorylated
receptor. The attachment of Son of Sevenless (SOS—GTP exchange factor) to GRB2 enables
the activation of RAS-GDP to RAS-GTP. The active form of RAS-GTP indirectly leads to
fixation, dimerization, and phosphorylation of RAF via the SRC kinase family (SKF) and
Casein Kinase 2 (CK2) at the plasma membrane. RAF proteins further phosphorylate and
activate MEK 1/2 on serines 218 and 222, which in turn lead to phosphorylation and acti-
vation of ERK1 on threonine 202 and tyrosine 204 and ERK2 on threonine 185 and tyrosine
187 [1,3]. The activated ERK proteins cause phosphorylation of a variety of substrates as
well as enter the nucleus via importin 7 and phosphorylate multiple transcription factors
involved in cellular growth, proliferation, and evasion from apoptosis [3]. The MAPK
pathway is described in Figure 1.
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Figure 1. The BRAF signaling pathway and targeted therapies in the BRAF pathway. Description:
Binding of ligands to transmembrane receptors, such as FGFR or EGFR, leads to receptor dimerization
and phosphorylation of kinases, which leads to the recruitment of growth factor receptor-bound
protein 2 (GRB2) to the phosphorylated receptor. The attachment of Son of Sevenless (SOS—GTP
exchange factor) to GRB2 enables the activation of RAS-GDP to RAS-GTP. The active form of RAS-
GTP causes downstream activation of MAPK, PI3K, and other effector pathways. BRAF inhibitors in
yellow box and MEK inhibitors in blue box inhibit BRAF and MEK substrates and inhibit downstream
pathway activation.

3. Alterations in MAPK Pathway Causing Carcinogenesis

The most common alterations in the MAPK pathway are RAS, BRAF, and, less fre-
quently, MEK and CRAF alterations. BRAF mutations can be divided into three classes (I, II,
and III) depending on their RAS dependency and the activity of the catalytic domain [2].
The BRAF proto-oncogene is located on chromosome 7 (7q34), and BRAF gene-activating
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mutations are present in about 7% of human cancers [4]. Class I BRAF mutations, which
include BRAFV600 E/K/D/M/R, with 90% being BRAFV600E, have high kinase activity even
in their monomer state without RAS signaling (RAS-independent) [2,4,5]. Class II BRAF mu-
tations include non-V600 mutations, including K601E, K601N, K601T, and L597Q mutations
at the BRAF activation segment; G464, G469A, G469V, and G469R mutations within the
P-loop; and chromosomal alterations such as fusions and deletions [4]. Class II mutations
are also RAS-independent, but they have intermediate kinase activity as monomers and
require dimer formation [2,5]. Class III BRAF mutations, including D954N, N581S, G466V,
D594G, G466E, and G596D point mutations, are dependent on RAS signaling and need
dimerization with other wild-type CRAF isoforms to fully function [2,4,5]. Class I and II
mutations do not require upstream RAS pathway activation and are mutually exclusive
with other co-concurrent mutations, while Class III mutations require upstream activation
and often co-exist with upstream RAS mutations [2].

Class I BRAF alterations are the most prevalent, with 53% present in BRAF-altered
samples in the AACR project GENIE (Genomics Evidence Neoplasia Information Exchange)
analysis, and current approved BRAF inhibitors such as vemurafenib, dabrafenib, and
encorafenib mainly inhibit class I mutations [5,6]. The most common activating BRAF
mutation is the BRAFV600E hotspot mutation, which is caused by the transversion of a
thymine (T) to an adenine (A) at position 1799 in exon 15, leading to the replacement of
the amino acid valine with glutamic acid and constitutive activation of the BRAF kinase
domain without being activated by RAS [1]. Class I BRAF inhibitors competitively bind to
the ATP-binding pocket of RAF kinase, which stabilizes kinase in its active conformation,
thus forcing the protein to take an inactive one and leading to downstream MAPK pathway
inhibition, cell cycle arrest, and apoptosis [4,7,8].

MEK mutations are also divided into three classes depending on RAF dependency, in-
cluding RAF-independent, RAF-regulated, and RAF-dependent alterations. RAF-independent
MEK alterations are usually in-frame deletions resulting in hyperactive MEK domains,
whereas RAF-regulated and -dependent MEK mutations require RAF phosphorylation for
full function [2]. Current MEK inhibitors are allosteric inhibitors that block MEK in its
inactive form and have low efficacy when given as monotherapy due to hyperactivation of
the upstream pathway [2].

Monotherapy of BRAFV600E mutant cell lines can increase EGFR phosphorylation,
leading to adaptive feedback reactivation of the MAPK signaling pathway and continued
cell proliferation, causing resistance to BRAF inhibitors. The addition of MEK inhibitors to
BRAF inhibition could delay the development of this acquired resistance by blocking ERK
signaling as well as prevent paradoxical MAPK pathway activation in the development
of secondary squamous cell skin cancers, hence the development of combination treat-
ments [3]. The mechanism of resistance by MAPK pathway inhibitors is further explored
in Section 7.

4. BRAF/MEK Inhibitors across Various Cancers
4.1. Melanoma

BRAF mutations are found in approximately 40–60% of melanoma cases [4,9]. Ve-
murafenib was the first BRAF inhibitor to have FDA approval on 17 August 2011 for
unresectable and metastatic melanoma, followed by dabrafenib on 29 May 2013 [10,11].
Vemurafenib was compared to the standard treatment, dacarbazine, in the phase III random-
ized BRIM-3 trial in patients with previously untreated BRAFV600E mutated metastatic
melanoma [9]. Overall survival (OS) at 6 months was 84% in the vemurafenib group and
64% in the dacarbazine group [9]. The hazard ratio (HR) for death in the vemurafenib group
was 0.37 (95% CI 0.26–0.55; p < 0.001) [9]. Progression-free survival (PFS) was 5.3 months in
the vemurafenib group and 1.6 months in the dacarbazine group (HR 0.26, 95% CI 0.2–0.33;
p < 0.001) [9]. Both coprimary end points, OS and PFS, were met in the study. The most
common adverse effects of vemurafenib were cutaneous events, including rash in 71% of
patients, squamous cell skin cancer in 20%, and keratoacanthoma in 11% of patients. Other
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common adverse effects were arthralgia, alopecia, fatigue, nausea, and diarrhea. Treatment
discontinuations due to adverse events were 7% in the vemurafenib group and 2% in the
dacarbazine group [9]. The final updated OS from BRIM-3 was reported in 2017 with an OS
of 13.6 months in the vemurafenib group vs. 9.7 months in the dacarbazine group (HR 0.81,
95% CI 0.67–0.98; p = 0.03) [12]. Vemurafenib was also evaluated in patients with metastatic
melanoma of the brain, with results reported in 2017 (Table 1) [13].

The approval for dabrafenib monotherapy was based on the phase III randomized
BREAK-3 trial in treatment-naive patients with BRAFV600E-mutated unresectable or
metastatic melanoma [14,15]. Median PFS was 6.7 months for dabrafenib and 2.9 months
for dacarbazine (HR 0.35, 95% CI 0.20–0.61; p < 0.001). The most common adverse effects
of dabrafenib were hyperkeratosis, headache, arthralgia, and pyrexia. Similar to vemu-
rafenib, dabrafenib has skin-related toxic effects, including squamous cell skin carcinoma
or keratoacanthoma [14,15]. Dose reductions were seen in 28% of patients on vemurafenib
vs. 17% on dacarbazine, with drug discontinuations in 3% of patients in each group [14].
Updated results from the BREAK-3 trial in 2013 showed consistent PFS improvement,
with a median PFS of 6.9 months and 2.7 months in the dabrafenib and dacarbazine
groups, respectively (HR 0.37, 95% CI 0.23–0.57) [15]. However, OS was confounded by the
crossover from dacarbazine to dabrafenib arm [15]. The phase II BREAK-MB trial evaluated
172 patients with BRAFV600-mutated melanoma with brain metastases. Patients were
divided into cohort A with no prior therapy for brain metastasis and cohort B with prior
local therapy for brain metastasis [16]. This study confirms that dabrafenib has efficacy in
patients with BRAFV600E mutant melanoma and brain metastases, irrespective of prior
local therapies [16] (Table 1).

Trametinib was the first MEK inhibitor to have FDA approval on 29 May 2014 for unre-
sectable and metastatic melanoma based on the phase III randomized METRIC trial [17,18].
Updated results from the METRIC trial in 2019 showed a median PFS of 4.9 months and
a median OS of 15.6 months in the trametinib arm vs. a median PFS of 1.5 months and a
median OS of 11.3 months in the chemotherapy arm (PFS: HR 0.54, 95% CI 0.41–0.73 and
OS: HR 0.84, 95% CI 0.63–1.11) [19]. The most common adverse events of trametinib were
rash, diarrhea, fatigue, peripheral edema, nausea, and dermatitis acneiform [17].

Acquired resistance and development of secondary squamous cell skin cancers and
other skin toxicities associated with BRAF inhibitors caused by the paradoxical activation of
wild-type BRAF kinase in the MAPK pathway in normal tissues were the challenges faced
with BRAF inhibitor monotherapy. Therefore, further investigations to overcome those
resistances and toxicities led to the combination of BRAF and MEK inhibitors [20]. Dual
BRAF and MEK inhibition improves efficacy and lessens the paradoxical MAPK activation-
related toxicities [20]. Currently, two BRAF-MEK inhibitor combinations, dabrafenib–
trametinib and vemurafenib–cobimetinib, were FDA-approved on 9 January 2014 and
10 November 2015, respectively, for the treatment of unresectable or metastatic BRAF
mutant melanoma [21,22].

The approval for dabrafenib–trametinib was based on the phase III randomized
COMBI-d trial of BRAFV600E/K mutated metastatic melanoma [20]. The dabrafenib–
trametinib group has a longer median PFS than the group with dabrafenib only (9.3 months
vs. 8.8 months, HR 0.75, 95% CI 0.57–0.99; p = 0.03) [20]. The efficacy was confirmed in the
updated results in 2017 with a 3-year PFS of 22% in the dabrafenib–trametinib group vs.
12% with the dabrafenib monotherapy group (HR 0.71, 95% CI 0.57–0.88) and a 3-year OS
of 44% versus 32%, respectively (HR 0.75, 95% CI 0.58–0.96) [23]. More dose modifications
and more pyrexia, chills, diarrhea, and vomiting were noted in the combination group, but
the rate of hyperkeratosis, alopecia, and cutaneous squamous cell carcinoma was lower
in the combination group [20]. Dabrafenib–trametinib was also compared to vemurafenib
monotherapy in the COMBI-v trial. The dabrafenib–trametinib group demonstrated better
median OS (not reached) and median PFS (11.4 months) compared to OS of 17.2 months and
PFS of 7.3 months in the vemurafenib monotherapy group (OS: HR 0.69, 95% CI 0.53–0.89;
p = 0.005 and PFS: HR 0.56, 95% CI 0.46–0.69; p < 0.001) [24].
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The dabrafenib–trametinib combination was also investigated in metastatic melanoma
with brain metastasis in the phase II COMBI-MB trial, and it showed clinical efficacy,
but the duration of response (DOR) was relatively short [25]. On the other hand, in the
phase III COMBI-AD trial, combined dabrafenib–trametinib as an adjuvant treatment
in completely resected melanoma with BRAFV600E/K mutation demonstrated a 3-year
relapse-free survival rate (RFS) of 58% in the combined group vs. 39% in the placebo group
(HR 0.47, 95% CI 0.39–0.58; p < 0.001) with a 3-year OS of 86% and 77%, respectively (HR
0.57; 95% CI, 0.42–0.79; p = 0.0006) [26]. This led to FDA approval of dabrafenib–trametinib
as an adjuvant therapy in patients with BRAFV600E/K mutated resected melanoma on
30 April 2018 [27].

Another phase III randomized coBRIM trial led to the FDA approval of vemurafenib–
cobimetinib in treatment-naive, BRAFV600-mutated metastatic melanoma patients [28,29].
It showed an improved median PFS and a median OS of 12.3 and 22.3 months in the
combination group vs. 7.2 and 17.4 months, respectively, in the vemurafenib monotherapy
group (PFS: HR 0.58, 95% CI 0.46–0.72; p < 0.0001 and OS: HR 0.70, 95% CI 0.55–0.90;
p = 0.005) [28,29]. Updated results in 2021 maintained the efficacy of the vemurafenib–
cobimetinib combination with a median OS and PFS benefit of 5.1 months and 5.4 months,
respectively [30].

However, both combinations above are associated with disease progression at approx-
imately 12 months and have unique toxic effects, prompting the development of more
effective and better-tolerated treatments. This led to a new combination of encorafenib and
binimetinib. Encorafenib, a new generation of ATP-competitive BRAF inhibitors, can have
improved sustained target inhibition due to longer pharmacodynamic activity with a half-
life of 10 times longer than either vemurafenib or dabrafenib [31]. The FDA approved the
combination of encorafenib and binimetinib for the treatment of unresectable or metastatic
melanoma patients with a BRAFV600E or V600K mutation on 27 June 2018 [32]. The ap-
proval was based on the phase III randomized active-controlled three-arm COLUMBUS
trial, which evaluated the combined encorafenib–binimetinib vs. encorafenib alone or ve-
murafenib alone in patients with BRAF-mutated unresectable or metastatic melanoma [31].
Encorafenib–binimetinib demonstrated an improved median PFS of 14.9 months com-
pared to 7.3 months in the vemurafenib group (HR 0.54, 95% CI 0.41–0.71; p < 0.0001)
and 9.6 months in the encorafenib-only group (HR 0.75, 95% CI 0.56–1.0; p = 0.051) [31].
Encorafenib–binimetinib also showed OS benefits at 16.7 months compared to the ve-
murafenib group but no statistically significant OS improvement when compared to the
encorafenib-only group [33]. Drug discontinuation rates due to adverse effects were similar
in all three groups. The most common adverse effects in the combination group were
nausea, diarrhea, vomiting, fatigue, arthralgia, and an increased serum creatinine phos-
phokinase level [33]. Overall, the combination of encorafenib and binimetinib showed a
tolerable toxicity profile and could be used in patients who cannot tolerate other BRAF-MEK
inhibitor combinations [31]. Five-year updated results of the COLUMBUS trial maintained
the efficacy and durability of response in the combined encorafenib and binimetinib group
with a PFS of 23% and an OS of 35%, while the PFS was 10% and the OS was 21% in the
vemurafenib group [34].

Table 1. Landmark trials of BRAF/MEK-targeted monotherapy, combination therapy, and combina-
tions with immune checkpoint inhibitors leading to FDA approvals and other important trials.

Study Phase Study Population
Number of

Patients/
Subgroup

Intervention/Subgroup PFS
Months

OS
Months

ORR
(%)

DOR
Months FDA Approval/Notes

Chapman et al.
BRIM-3

2011
[9,12]

III
Metastatic melanoma with BRAFV600E

mutation, treatment-naive

337 vemurafenib 5.3 13.6 48 -

17 August 2011
338 dacarbazine 1.6 9.7 5 -

Ascierto et al.
CoBRIM

2015
[28–30]

III
Unresectable or metastatic BRAFV600
mutated melanoma, treatment-naive

247 vemurafenib + cobimetinib 12.3 22.3 70 13

10 November 2015
248 vemurafenib + placebo 7.2 17.4 50 9.2
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Table 1. Cont.

Study Phase Study Population
Number of

Patients/
Subgroup

Intervention/Subgroup PFS
Months

OS
Months

ORR
(%)

DOR
Months FDA Approval/Notes

McArthur et al.
2017
[13]

II

Metastatic BRAFV600 mutant melanoma
with brain metastasis (BM). Cohort A:

previously untreated BM; Cohort B:
previously treated BM

Cohort A
90 vemurafenib 3.7 8.9 33 EC

18 IC 4.1
EC: extracranial response
IC: intracranial responseCohort B

56 vemurafenib 4 9.6 23 EC
18 IC 4.1

Hauschild et al.
BREAK-3

2012
[14,15]

III
Unresectable or metastatic melanoma with

BRAFV600E mutation, treatment-naive

187 dabrafenib 6.9 18.2 50 5.5

29 May 2013
63 dacarbazine 2.7 15.6 6 NR

Long et al.
BREAK-MB

2012
[16]

II

Unresectable or metastatic melanoma with
BRAFV600E or V600K mutation, with

brain metastasis
Cohort A with no prior local therapy for
brain metastasis and Cohort B with prior

local therapy

Cohort A
83

dabrafenib
V600E 16.1 33.1 39.2 20.1

29 May 2013
(ORR here is overall

intracranial response)

V600K 8.1 16.3 30.8 28.1

Cohort B
139

dabrafenib
V600E 16.6 31.4 6.7 12.4

V600K 15.9 21.9 22.2 16.6

Long et al.
COMBI-d

2014
[20,23]

III Unresectable or metastatic BRAFV600E or
V600K mutant melanoma

211 dabrafenib + trametinib 9.3 NR 68 9.2

9 January 2014
212 dabrafenib + placebo 8.8 NR 55 10.2

Robert et al.
COMBI-v

2014
[24]

III
Unresectable or metastatic melanoma with
BRAFV600E/K mutation, treatment-naive

353 dabrafenib + trametinib 11.4 NR 64 13.8

353 vemurafenib 7.3 17.2 51 7.5

Davies et al.
COMBI-MB

2017
[25]

II

Metastatic melanoma with BRAFV600E/K
mutation with brain metastasis. Cohort A:

asymptomatic patients with V600E mutation
and no prior local brain therapy. Cohort B:

asymptomatic patients with V600E mutation
who had prior local therapy. Cohort C:
asymptomatic patients with V600D/K/R

mutations regardless of prior local therapy.
Cohort D: symptomatic patients regardless of

local therapy or mutation status

dabrafenib + trametinib

76 Cohort A 5.6 10.8 58 6.5

16 Cohort B 7.2 24.3 56 12.5

16 Cohort C 4.2 10.1 44 6.6

17 Cohort D 5.5 11.5 65 4.5

Long et al.
COMBI-AD

2017
[26]

Stage III melanoma with completely resected
BRAFV600E/K-mutated tumor

438 dabrafenib + trametinib NR NR
37

(recur-
rence)

30 April 2018

432 placebo NR NR
56

(recur-
rence)

Flaherty et al.
METRIC

2012
[17,19]

III
Unresectable or metastatic melanoma with

BRAFV600E or V600K mutation,
treatment-naive and previously treated

214 trametinib 4.9 15.6 29 5.3

29 May 2013
108 dacarbazine or paclitaxel 1.5 11.3 9 8.1

Dummer et al.
COLUMBUS

2018
[31,33,34]

III
Unresectable or metastatic melanoma,

treatment-naive or progressed after
first-line immunotherapy

192 encorafenib + binimetinib 14.9 33.6 63 18.6

27 June 2018194 encorafenib 9.6 23.5 51 14.9

191 vemurafenib 7.3 16.9 40 12.3

Salama et al.
NCI-MATCH
subprotocol H

2020
[35]

II

Previously treated BRAFV600E-mutated
tumors, excluding melanoma, thyroid, and

colorectal cancer. Responses seen in 7 distinct
tumor types

35 dabrafenib +
trametinib 11.4 28.6 38 25.1 23 June 2022 tumor-agnostic

indication for solid tumors

Kopetz et al.
BEACON CRC

2019
[36,37]

III BRAFV600E-mutated mCRC,
treatment-naive

220 encorafenib + cetuximab 4.3 9.3 20 -

8 April 2020 for encorafenib
and cetuximab for mCRC

224 encorafenib + cetuximab +
binimetinib 4.5 9.3 26 -

221 cetuximab + irinotecan or
cetuximab + FOLFIRI 1.5 5.9 2 -

Cutsem et al.
ANCHOR CRC

2023
[38]

II BRAFV600E-mutated mCRC,
treatment-naive 95

encorafenib+
binimetinib+
cetuximab

5.8 18.3 47.4 -

VE-BASKET
2015

[39–43]

BRAFV600-mutated nonmelanoma cancers
(26 unique cancer types)

Total 172 vemurafenib 5.8 17.6 32.6 13.1

vemurafenib for ECD on 6
November 2017

NSCLC (62) vemurafenib 6.5 15.4 37.1 7.2

ECD (22)/LCH (4) vemurafenib NR NR 61.5 -

Glioma (24) vemurafenib 5.5 28.2 25 -

CRC (27) vemurafenib 4.5 9.3 0 -

vemurafenib + cetuximab 3.7 7.1 4 -

ATC (7) vemurafenib - - 29 -

BTC (26) vemurafenib - - 12 -

Subbiah et al.
ROAR Basket trial

2023
[44,45]

II
BRAFV600E mutated rare cancers, ATC, BTC,

ASi, LGG, HGG, HCL, MM

ATC (36) dabrafenib + trametinib 6.7 14.5 56 14.4

4 May 2018 for ATC
23 June 2022 tumor-agnostic
indication for solid tumors

BTC (43) dabrafenib + trametinib 9 13.5 53 8.9

ASi (3) dabrafenib + trametinib - 21.8 67 7.7

LGG (13) dabrafenib + trametinib 9.5 NR 54 NR

HGG(45) dabrafenib + trametinib 5.5 17.6 33 31.2

HCL (55) dabrafenib + trametinib NR NR 89 NR

MM (10) dabrafenib + trametinib 6.3 33.9 50 11.1
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Table 1. Cont.

Study Phase Study Population
Number of

Patients/
Subgroup

Intervention/Subgroup PFS
Months

OS
Months

ORR
(%)

DOR
Months FDA Approval/Notes

Planchard et al.
BRF113928
2016–2017

Updated 2022
[46–48]

II
BRAFV600E-mutated metastatic NSCLC.
Cohorts A and B: previously treated and

Cohort C: treatment-naive

Cohort A (78) dabrafenib 5.5 12.6 33 9.6

22 June 2017 for dabrafenib
and trametinib

Cohort B (57) dabrafenib + trametinib 10.2 18.2 68.4 9.8

Cohort C (36) dabrafenib + trametinib 10.8 17.3 63.9 10.2

Mazieres et al.
French AcSe

2020
[49]

II
BRAF-mutated NSCLC cohort, previously

treated. Cohort A: BRAF nonV600 mutation.
Cohort B: BRAFV600 mutations

Cohort A (15) vemurafenib 2.1–6.8 - 0 -

Cohort B (100) vemurafenib 5.2 10 44.8 6.4

Riely et al. PHAROS
trial
2023
[50]

II
BRAFV600E-mutated metastatic NSCLC.
Cohort A: treatment-naive and Cohort B:

previously treated

Cohort A (59) encorafenib + binimetinib NR NR 75 NR

12 October 2023Cohort B
(39) encorafenib + binimetinib 9.3 NR 46 16.7

Diamond et al.
2022
[51]

II ECD/LCH/RDD patients regardless of
BRAF mutations 18 cobimetinib NR - 89 NR 1 November 2022

Whitlock et al.
CDRB436A2102

2023
[52]

I/II R/R BRAFV600-mutated pediatric LCH 13 dabrafenib NR - 76.9 NR

Whiltlock et al.
CTMT212X2101

2023
[52]

I/II R/R BRAFV600-mutated pediatric LCH 12 dabrafenib + trametinib NR - 58.3 NR

Gershenson et al.
2022 [53]

II/
III

Recurrent LGSOC
130 trametinib 13 37.6 26 13.6

130 SOC 7.2 29.2 6 5.9

Ribas et al.
KEYNOTE-022

2020
Updated 2022

[54]

I/II BRAFV600E/K-mutated melanoma,
treatment-naive

60 pembrolizumab +
dabrafenib + trametinib 17 46.3 65 30.2

60 dabrafenib + trametinib 9.9 26.3 72 12.1

Gutzmer et al.
IMspire150

2020
Updated 2023

[55]

III Advanced or metastatic BRAFV600
mutant melanoma

256 atezolizumab +
vemurafenib + cobimetinib 15.1 39.0 67 21

30 July 2020

258 vemurafenib + cobimetinib 10.6 25.8 65 12.6

ASi: adenocarcinoma of the small intestine, ATC: anaplastic thyroid carcinoma, BTC: biliary tract cancer, CRC:
colorectal cancer, ECD: Erdheim–Chester disease, GIST: gastrointestinal stromal tumor, HCL: hairy cell leukemia,
HGG: high-grade glioma, LCH: Langerhans cell histiocytosis, LLG: low-grade glioma, and MM: multiple myeloma.
NR—not reached and (-)—data not available.

4.2. Gastrointestinal Cancers
4.2.1. Colorectal Cancer

BRAF mutations are found in approximately 10% of metastatic colorectal cancer
(mCRC) and up to 20% of colorectal cancer overall [36,56]. Non-V600E mutations represent
about 2.2% of mCRC [56]. Somatic BRAF mutations increase the BRAF signaling pathway,
resulting in CpG island methylation, which silences the tumor suppressor gene MLH1
and leads to deficient DNA mismatch repair. Therefore, microsatellite instability (MSI)
can be found in 20% of mCRC patients with BRAFV600E mutations [56]. In sporadic CRC,
60% of MSI-high tumors can have a BRAF mutation [56]. The presence of the BRAFV600E
mutation is a marker for poor prognosis before the utilization of targeted therapies and is
associated with older age at diagnosis, female sex, right-sidedness, nodal and peritoneal
metastasis, poorer differentiation, mucinous histology, larger primary tumors, and KRAS
wild-type tumors [56]. Non-V600E BRAF mutations are more likely to be associated with
younger patients, male sex, well-to-moderately differentiated and left-sided primary tu-
mors, concomitant RAS mutations, and lower MSI [56]. Non-BRAFV600E mutations do not
have a negative impact on prognosis and present with a longer OS compared to BRAFV600
mutant CRC or wild-type CRC [56].

Dual blockade of both EGFR and BRAF has been shown to have synergistic inhibi-
tion in BRAFV600E mutant colorectal cancer murine models [56]. The landmark phase III
BEACON CRC trial led to FDA approval of the encorafenib and cetuximab combination
in previously treated mCRC with the BRAFV600E mutation on 8 April 2020 [57]. BEA-
CON CRC divided patients into three groups, as summarized in Table 1. Encorafenib
and cetuximab groups have a better median OS of 8.4 months compared to 5.4 months in
the control group (irinotecan with cetuximab or FOLFIRI (5 fluorouracil and irinotecan)
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with cetuximab) (HR 0.60, 95% CI 0.45–0.79; p = 0.0003), with an improved ORR of 20%
compared with 2% in the control group (p < 0.001) [36]. The trial was not powered enough
to compare triplet and doublet combinations, and the triplet therapy (encorafenib, binime-
tinib, and cetuximab) was not FDA-approved yet due to the comparable clinical outcomes
with doublet therapy [36]. However, triplet therapy has manageable toxicities, thus paving
the way for further investigations of its utilization in mCRC [58]. The most common grade
3 or 4 adverse effects were fatigue, elevated aspartate transferase (AST) level, and urinary
tract infections; in the most common grade, any adverse effects were diarrhea, dermatitis
acneiform, fatigue, nausea, dry skin, and drug discontinuations of at least one drug due to
adverse events were seen in 20% of patients [36]. Updated results of BEACON-CRC were
reported in 2021, as summarized in Table 1 [37].

The phase II ANCHOR-CRC trial evaluated the combination of encorafenib, binime-
tinib, and cetuximab in the first-line setting in BRAFV600E-mutated mCRC. The primary
end point ORR was met with an ORR of 47.4%, a median PFS of 5.8 months, and a median
OS of 18.3 months [38]. The most frequent grade 3 or higher adverse events were anemia,
diarrhea, nausea, and large-intestine obstruction [38]. Currently, encorafenib and cetux-
imab are being evaluated in combination with chemotherapy as a first-line treatment in
BRAFV600E-mutated mCRC in the phase III BREAKWATER trial (NCT04607421) [59].

4.2.2. Biliary Tract Cancers

BRAFV600E mutations are seen in approximately 4–7% of biliary tract cancers (BTC)
and are observed more in the intrahepatic BTC [60,61]. Intrahepatic BTC patients with
BRAFV600E mutations tend to have a higher tumor stage at surgery, a higher lymph node
involvement, and an overall worse prognosis than the non-BRAF-mutated BTC patients [62].
Updated results of the BRAFV600E-mutated BTC cohort from the phase II ROAR trial
reported in 2023 showed that patients treated with dabrafenib and trametinib had an
ORR of 53%, a DOR of 8.9 months, and a median PFS of 9 months [44]. The phase II NCI
MATCH EAY131-H trial, including four patients with BRAFV600E-mutated intrahepatic
BTC, confirmed an ORR of 38% with a median PFS of 11.4 months in the overall population.
Among them, 75% of BTC patients had partial responses (PR) [35]. There is no specific
indication of MAPK pathway inhibitors in BTC, but based on those trials, dabrafenib and
trametinib were approved by the FDA on 23 June 2022 for a tumor-agnostic indication for
unresectable or metastatic BRAFV600E mutated solid tumors that have progressed on prior
therapy and have no other alternative treatment options [63].

4.3. Non-Small Cell Lung Cancer

BRAF mutations are found in approximately 3–5% of non-small cell lung cancer
(NSCLC) patients, while BRAFV600E-specific mutations are only present in about 2% of
NSCLC [2,64]. BRAFV600E mutations in NSCLC are more common in micropapillary
patterns and females with no smoking history, while non-V600E BRAF mutations are more
likely associated with mucinous patterns and males with a smoking history [2]. BRAF
mutations are associated with metastasis to the central nervous system (CNS), especially
with class II and III mutations [65]. In an analysis of BRAF-altered samples by Negrao et al.,
the most common BRAF mutations were missense mutations (90%, with 45% of which were
variants of unknown significance), followed by nonsense and splice-site mutations (5%
each) [64]. Class I mutations are exclusively V600E mutations, whereas G469A and K601E
are the most common class II mutations, and G466V and N581S are the most common class
III mutations [64]. The most common co-mutations in BRAF that altered NSCLC were TP53
(57%), EGFR (26%), KRAS (15%), and NF1 (15%) [64]. All class BRAF mutations co-occurred
in 10% of samples with EGFR activating exon 21 L858R and exon 19 deletion mutations,
whereas class III BRAF mutations are more likely to have KRAS mutations than class I
and II mutations (I: 6.0%; II: 12.6%; III: 23.5%; and p < 0.01) [64]. BRAF mutations also
seem to be associated with PDL1 (programmed death ligand 1) expressions, with more
than 50% of PDL1 expressions reported in 42% of BRAFV600E and 50% of non-V600E
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mutations [66]. On the other hand, BRAF fusions were identified in 0.2% of 17,128 NSCLC
samples, with the most frequent partner genes being AGK, DOCK4, and TRIM24, and the
most frequently co-occurring mutations being TP53 (67%), CDKN2A (31%), EGFR (29%),
and CDKN2B (26%) [67]. MEK alterations are very rare, with only 0.6% present in 6024
lung adenocarcinoma cases, associated with current smoking status [68]. The prognostic
value of BRAFV600E in NSCLC is unclear, but patients with this mutation seem to have
poorer outcomes and a lower response to platinum-based chemotherapy [48].

In the French Acsé phase II trial, vemurafenib was evaluated in two cohorts of NSCLC
patients with either BRAFV600E or non-V600 BRAF mutations [49]. ORR was 0% in the
non-V600 cohort, and ORR was 44.8% in the BRAFV600E cohort, with a DOR of 6.4 months,
a median PFS of 5.2 months, and a median OS of 10 months [49].

The combination of dabrafenib and trametinib was FDA-approved on 22 June 2017
for the treatment of NSCLC harboring BRAFV600E mutations as both the first and sec-
ond lines [69]. The approval was based on the phase II BRF113928 trial, which divided
BRAFV600E-mutated metastatic NSCLC patients into three cohorts. Patients in cohorts
A and B received at least one prior therapy, while patients in cohort C were treatment-
naive [47,48]. Cohort A received dabrafenib alone, and cohorts B and C received both
dabrafenib and trametinib. Patients in cohort A have an ORR of 33% with a median
PFS of 5.5 months, while patients in cohort B have an ORR of 63.2% with a median PFS
of 9.7 months [47]. ORR of 64% was observed in cohort C with a DOR of 10.4 months
and a median PFS of 10.9 months [48]. Updated results from the BRF113928 trial were
reported in 2022, with results listed in Table 1, which continued to maintain the efficacy
of combined dabrafenib and trametinib in the BRAFV600E-mutated NSCLC regardless
of prior treatments [46]. However, the dabrafenib–trametinib combination can lead to
increased adverse effects, given the added toxicities of each drug. In a meta-analysis of
the toxicities of BRAF and MEK inhibitors by Garutti et al., 95% of patients who received
both dabrafenib and trametinib had all grade adverse events, with grade 3 or higher ad-
verse events seen in 43% of patients, with the most common being pyrexia, rash, and
hypertension [70]. Dose reductions were seen in 28% of patients with dabrafenib and tram-
etinib, while drug discontinuations were seen in 24% of patients [70]. Due to the significant
adverse effects of dabrafenib–trametinib and its low efficacy, the dabrafenib–trametinib
combination is usually used as a second line after the chemoimmunotherapy combination
with pembrolizumab in metastatic NSCLC with BRAF mutations, unlike other tyrosine
kinase inhibitors, which are used in the first-line setting for specific molecular alterations.

The combination of encorafenib and binimetinib in both treatment-naive and previ-
ously treated BRAF-mutated NSCLC is currently being evaluated in two phase II trials, the
PHAROS (NCT03915951) and ENCO-BRAF trials. The interim analysis of the PHAROS
trial showed an ORR of 75% in the treatment-naive group and 46% in previously treated
patients, with more detailed results summarized in Table 1 [50]. The most frequent adverse
events were nausea, diarrhea, and fatigue, with 24% of dose reductions and 15% of drug
discontinuations seen [50]. This led to the FDA’s approval of encorafenib and binimetinib
for the treatment of adult patients with metastatic NSCLC with the BRAFV600E mutation
on 12 October 2023 [71].

4.4. Hematological Malignancies
4.4.1. Hairy Cell Leukemia

Tiacci et al. reported in 2011 that the BRAFV600E mutation is the disease-defining
genetic alteration in hairy cell leukemia (HCL) and absent in other B cell leukemias and
lymphomas and plays a pivotal role in HCL cell survival [72,73]. The BRAFV600E muta-
tion occurs in 90–100% of HCL cases and is both a diagnostic and therapeutic target in
HCL [45,72,74]. A variant type of HCL (HCL-V) has no BRAFV600E mutation but is instead
found to have MEK1 (MAP2K1) mutations in half of the cases [75].

In two different phase II trials in Italy and the United States, vemurafenib showed a
high ORR of 96–100% when administered for a median of 16–18 weeks in relapsed and
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refractory (R/R) HCL, but the median RFS was short at 9 months [76]. However, it was
significantly longer in patients with complete responses (CR) than in patients with PR
(19 months vs. 6 months, HR 0.26, 95% CI 0.1–0.68, p = 0.006) [77]. Vemurafenib given in
combination with rituximab for 8 weeks in a phase II trial showed an ORR of 87% (all CR,
p = 0.005) with improved DOR [77]. Median RFS was not reached at a median follow-up of
19.5 months compared to the shorter DOR observed with BRAF inhibitor monotherapy [77].
Median RFS was even longer in patients with MRD negativity [77].

In the phase II ROAR basket trial evaluating dabrafenib and trametinib in BRAFV600E
mutated rare tumors, a cohort of R/R HCL was reported to have an ORR of 89% and an
MRD negativity of 12.7%, making it a potential therapeutic option for the R/R BRAFV600E
mutant HCL [44,45].

4.4.2. Langerhans Cell Histiocytosis/Erdheim–Chester Disease

Langerhans Cell Histiocytosis (LCH) is a rare clonal neoplasm derived from macrophage
and dendritic lineages primarily occurring in children, with more than 50% of patients
having BRAF mutations [42,52]. It is characterized by the uncontrolled multiplication and
accumulation of cells similar to Langerhans cells in bones, skin, and visceral organs such
as the liver and lungs [52]. BRAF mutations have been associated with a more severe
disease, a poorer prognosis, and a higher prevalence in younger patients [52]. On the other
hand, Erdheim–Chester Disease (ECD) and Rosai–Dorfman Disease (RDD) are non-LCH
with multiorgan involvement, including diffuse osteosclerotic lesions, orbital infiltration,
lung, kidney, cardiac, and neurological involvement, as well as other endocrinopathies [78].
BRAFV600E mutations are found in half of patients with ECD, while patients without
BRAFV600E mutations tend to have other mutations in components of the MAPK pathway,
including the RAS and MEK1 genes [78].

The phase II VE-BASKET trial evaluated vemurafenib in 22 patients with BRAFV600-
mutated ECD and four patients with LCH, including treatment-naive patients [42]. ORR
was 61.5% in the overall cohort and 54.5% in patients with ECD, while PFS and OS were
not reached at a median follow-up of 28.8 months at study closure [42]. Two-year OS and
PFS were 83% and 95%, respectively, in the ECD patients [42]. This led to FDA approval of
vemurafenib for ECD on 6 November 2017 [79].

Given that almost all patients with histiocytosis have either BRAFV600 mutations
or some type of molecular alterations in the MAPK pathway, further research has been
developed for the use of MEK inhibitors [51]. Cobimetinib was evaluated in ECD/LCH
patients regardless of BRAF mutation status and was found to have an ORR of 89% with a
DOR and PFS not reached at a median follow-up of 11.9 months [51]. Responses were ob-
served in patients with ARAF, BRAF, RAF1, NRAS, KRAS, MEK1, and MEK2 mutations [51].
Based on those results, the FDA approved cobimetinib for adult patients with histiocytic
neoplasms, including ECD, RDD, and LCH, on 1 November 2022 [80].

Dabrafenib monotherapy in CDRB436A2102 and in combination with trametinib in
CTMT212X2101 demonstrated clinical efficacy and manageable toxicity in pediatric patients
with the R/R BRAFV600 mutant LCH [52]. ORR was 76.9% in the dabrafenib monotherapy
arm with both a 12- and 24-month DOR of 90%, while ORR was 58.3% in the dabrafenib
plus trametinib trial with a 12- and 24-month DOR of 100% [52].

In a retrospective study evaluating the benefit of trametinib in patients with ECD, 35%
of patients had BRAFV600E mutations, and ORR was seen in 71% of patients, while OS
and PFS were not reached at a median follow-up of 23 months [78]. Out of the responders,
73% of patients did not have the BRAFV600E mutation but instead had other alterations
in the MAPK pathway, including MEK1 or RAS [78]. In addition, given that the time-to-
treatment failure was 37 months, ECD patients treated with trametinib have more durable
responses and do not seem to have developed the acquired resistance like in other solid
tumors [78]. However, both dabrafenib and trametinib did not have specific FDA approval
for histiocytosis neoplasms.
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4.5. Central Nervous System Tumors

BRAF mutations, including BRAFV600E, are present in about 7% of all CNS tumors,
with prevalence in 60% of pleomorphic xanthoastrocytomas (PXA), 10–12% of anaplastic
PXA, 80–95% of benign papillary craniopharyngioma, 38% of astroblastoma, 20–70% of gan-
gliogliomas, 10% of pilocytic astrocytoma, and 1–2% of adult glioblastomas (GBM) [4,81].
Class I BRAF mutations represent 44–66% of all BRAF mutations in gliomas, while class
II and III mutations represent 10–24% and 4–10%, respectively [81]. GBMs with BRAF
mutations are different in different aspects, including location, survival rates, and global
gene-expression profiles, from the rest of the GBMs. GBM patients with BRAF muta-
tions are usually younger, with a longer survival rate when compared with other patients
with GBM and epithelioid features [7]. The BRAFV600E mutation is more common in
IDH-wild-type tumors (GBM) than in IDH-mutant tumors, which are now classified as
astrocytomas [81]. In diffuse low-grade gliomas, the BRAFV600E mutations are found in
2–5% of cases [81]. However, the impact of the BRAFV600E mutation on the prognosis of
gliomas is unclear [82]. Multiple case reports have shown some clinical efficacy of BRAF
inhibitors (vemurafenib, dabrafenib) either alone or in combination with MEK inhibitors
(trametinib) in BRAF-mutated glioma patients [4].

Vemurafenib was evaluated in a phase II VE-BASKET trial of non-melanoma BRAFV600E
mutant tumors, which included 24 patients with different glioma subtypes [40]. The glioma
cohort enrolled patients with a malignant diffuse glioma (GBM and anaplastic astrocytoma),
PXA, an anaplastic ganglioglioma, a pilocytic astrocytoma, and a high-grade glioma, not
otherwise specified [40]. ORR was 25% with a median PFS of 5.5 months and a median OS
of 28.2 in the overall population [40]. Malignant diffuse gliomas have an ORR of 9.1% with
a median PFS of 5.3 months and a median OS of 11.9 months [40].

Subsequently, the dabrafenib and trametinib combination was also evaluated in an-
other phase II ROAR basket trial, which included BRAFV600E-mutated rare tumors [44].
The study included high-grade glioma (HGG) and low-grade glioma (LGG) cohorts [82].
ORR in LGG was 54% with one CR and six PR, while ORR in HGG was 33% with three
CR and twelve PR with good DOR (Table 1) [44]. The dabrafenib–trametinib combination
seems to have a better ORR than vemurafenib alone.

Based on the ROAR trial, dabrafenib and trametinib were approved by the FDA on
23 June 2022, as tumor-agnostic indications in patients with unresectable or metastatic
BRAFV600E solid tumors who have progressed on prior therapy and have no other alterna-
tive treatment options [63].

4.6. Thyroid Cancers

The BRAFV600E mutation is the most important and common genetic alteration in
thyroid cancers, comprising 37–60% of papillary thyroid carcinoma (PTC) and 20–45% of
anaplastic thyroid carcinoma (ATC) [1,83]. The presence of the BRAF mutation is associated
with more aggressive tumor features, including extrathyroidal extension, advanced tumor
stage at presentation, and metastasis in PTC [83].

Radioactive iodine therapy (RAI) is the main treatment for metastatic dedifferentiated
thyroid cancer (DTC), of which 80% are PTC. However, two-thirds of those patients became
refractory to RAI [84]. BRAF mutations can lead to hyperactivation of the MAPK pathway,
which decreases the expression of the sodium/iodine symporter and reduces iodine uptake.
Thus, MAPK pathway inhibitors also have the potential for re-sensitization to RAI by
increasing iodine uptake via MAPK pathway inhibition [84]. The phase II MERAIODE trial
showed that a combination of dabrafenib and trametinib is associated with reinduction of
RAI in 95% of patients, with a 6-month response rate of 38% in patients with BRAFV600E
and RAS-mutated, RAI-refractory DTC [85,86].

Vemurafenib was evaluated in the phase II trial of patients with BRAFV600E-positive
PTC and demonstrated some efficacy [83]. The patients were divided into two cohorts.
Cohort 1 included patients who never had a vascular endothelial growth factor (VEGFR)
multi-kinase inhibitor, and cohort 2 included patients with prior VEGFR multi-kinase
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inhibitors [83]. Cohort 1 showed an ORR of 38% with a DOR of 16.5 months, while cohort
2 showed an ORR of 27.3% with a DOR of 7.4 months [83].

The combination of dabrafenib and trametinib has also shown efficacy in ATC in the
phase II ROAR basket trial, which led to its FDA approval on 4 May 2018, for locally ad-
vanced or metastatic BRAFV600E mutated ATC with no satisfactory locoregional treatment
options [87]. The ATC cohort of the ROAR trial included 16 patients with BRAFV600E-
mutated ATC who had received prior radiation therapy/surgery, of which 6 had received
prior systemic therapy. ORR was seen in 69% of patients [88]. Updated results in 2023
showed an ORR of 56%, with a DOR of 14.4 months, a median PFS of 6.7 months, and a
median OS of 14.5 months, confirming its efficacy [44].

4.7. Gynecological Cancers

Low-grade serous ovarian carcinoma (LGSOC) is a subtype of ovarian carcinoma that
accounts for 5–10% of all epithelial ovarian cancers. It has an indolent nature, low response
rates to chemotherapy, and a high prevalence of MAPK pathway alterations [89]. There is
a wide range of BRAF mutations in LGSOC depending on individual studies, but BRAF
mutations are found in approximately 2–16% of LGSOC [89]. In the AACR GENIE cohort,
BRAF mutations are found in 9.5% of LGSOC [90].

The phase III MILO/ENGOT-ov11 trial of binimetinib in LGSOC was closed prema-
turely after an interim analysis of the initial 303 patients showed futility with an ORR of
16%. PFS was 9.1 months in the binimetinib group and 10.6 months in the group with
the physician’s choice chemotherapy (HR, 1.21; 95% CI 0.79–1.86) [91]. Even though its
primary end point, PFS, was not met, it showed that MEK inhibition is beneficial in the
disease control of some patients [91]. A subsequent molecular analysis report showed that
the ORR of binimetinib was higher in patients with MAPK pathway alterations (41%) com-
pared to patients without MAPK pathway alterations (13%) [89]. The most common MAPK
alterations included KRAS and BRAFV600E, with the rest being NRAS, RAF1, and NF1
alterations [89]. Therefore, binimetinib could be considered as an option for the treatment
of recurrent LGSOC.

The phase II EAY131-H NCI-MATCH trial included five patients with LGSOC and
one patient with mucinous papillary serous adenocarcinoma of the peritoneum [35]. All
six patients had clinical benefits from dabrafenib and trametinib therapy, with PR in five
patients and stable disease in one patient [35]. Results from the NCI MATCH trial, together
with the ROAR trial, led to the FDA approval of dabrafenib and trametinib for BRAFV600E-
mutated solid tumors, including gynecological cancers as tumor-agnostic indications [63].

Trametinib monotherapy in recurrent LGSOC in the GOG281/LOGS phase II/III
trial demonstrated improved PFS of 13.0 months in the trametinib group compared to
7.2 months in the standard of care (SOC) group (HR 0.48, 95% CI 0.36–0.64; p < 0.0001) [53].
ORR was 26% in the trametinib group compared to 6% in the SOC (odds ratio 5.4, 95% CI
2.4–12.2, p < 0.0001) [53]. The study included patients regardless of their MAPK alteration
status [53]. Thus, trametinib monotherapy can be considered as an option for LGSOC
regardless of BRAF mutations.

5. Combinations of BRAF/MEK Inhibitors with Immunotherapy

Given the limitations seen in both immune checkpoint inhibitors (ICIs) and targeted
therapies, combination therapy of ICIs with BRAF/MEK inhibitors has been further de-
veloped. The KEYNOTE-022 phase I/II trial evaluated the addition of pembrolizumab
to dabrafenib and trametinib in patients with unresectable or metastatic melanoma in
parts 1–3 and solid tumors in parts 4–5 [54]. Reports from the long-term follow-up of
melanoma patients with BRAFV600E/K mutations were presented in 2022 [54]. Part 3
patients were randomized 1:1 to triplet therapy with pembrolizumab, dabrafenib, and
trametinib and doublet therapy with dabrafenib and trametinib [54]. It reported a median
PFS of 17.0 months for the triplet arm vs. 9.9 months for the doublet arm (HR 0.46, 95% CI
0.29–0.74). The median OS was 46.3 months in the triple arm and 26.3 months in the doublet
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arm [54]. DOR was higher in the triplet arm, with 30.2 months compared to 12.1 months in
the doublet arm [54]. Another phase II TRICOTEL trial evaluated the same combination
in previously untreated metastatic melanoma patients with brain metastasis of 5 mm or
larger in at least one dimension [92]. Patients were divided into two cohorts: the BRAFV600
mutant-positive cohort and the BRAFV600 wild-type cohort [92]. Patients in the BRAF wild-
type group had atezolizumab and cobimetinib, while patients in the BRAFV600 mutant
group had atezolizumab, vemurafenib, and cobimetinib [92]. The intracranial response rate
was 42% by independent review charter (IRC) in the BRAFV600 mutant cohort and 27% by
investigator review in the BRAFV600 wild-type cohort, showing some intracranial activity
of triplet combination in BRAF600 mutant melanoma with brain metastasis [92].

On the other hand, phase III IMspire150 evaluated atezolizumab in combination
with vemurafenib and cobimetinib in BRAFV600 mutants with advanced or metastatic
melanoma. Primary analysis reported an improved median PFS of 15.1 months in the
triplet arm vs. 10.6 months in the doublet arm with vemurafenib and cobimetinib (HR 0.78;
95% CI 0.63–0.97; p = 0.025) [50]. It led to FDA approval of a triplet combination as the
first line in BRAFV600 mutant unresectable or metastatic melanoma on 30 July 2020 [93].
Results from the second interim analysis were reported in 2023, and they showed better
OS in the triplet arm, but the results were not statistically significant. The median OS was
39 months in the triplet arm vs. 25.8 months in the doublet arm (HR 0.84, 95% CI 0.66–1.06;
p = 0.14); however, it continued to show PFS benefit and longer DOR with 21 months in the
triplet arm vs. 12.6 months (95% CI 10.5–16.7) in the doublet arm [55]. However, another
PDL1 antibody, spartalizumab, in combination with dabrafenib and trametinib in the phase
III COMBI-I trial did not meet its primary end point PFS with a PFS of 16.2 months in
the triplet arm vs. 12.0 months in the doublet arm (HR 0.82, 95% CI 0.66–1.03; p = 0.042
(one-sided; nonsignificant)) [94].

Despite better efficacy and more durable responses, there is concern that the com-
bined use of BRAF/MEK inhibitors with ICIs could increase the overall adverse effects
and intolerability. Therefore, there has been slow progress in the investigations of triplet
combinations of ICIs and BRAF/MEK inhibitors. In the KEYNOTE-22 trial, 58% of patients
in the triplet arm (dabrafenib, trametinib, and pembrolizumab) and 25% of patients in the
doublet arm (dabrafenib and trametinib) had grade 3 or higher adverse events, with all
grade treatment-related adverse events in 95% vs. 93%, dose interruptions in 83% vs. 68%,
dose reductions in 27% vs. 15%, and discontinuations in 47% vs. 20% in the triplet arm
vs. the doublet arm, respectively [95]. Immune-mediated adverse events occurred in 52%
of patients in the triplet arm vs. 15% in the doublet arm, with the most common being
pneumonitis, leading to one’s death and hypothyroidism [95]. More grade 3 or higher
adverse events were also reported with the triplet arm (spartalizumab, dabrafenib, and
trametinib) compared to the doublet arm (dabrafenib and trametinib) in the COMBI-I trial,
with 55% of patients in the triplet arm vs. 33% in the doublet arm. More drug discon-
tinuations (36% vs. 18%) and dose reductions (68% vs. 45%) were also reported in the
triplet arm vs. the doublet arm [94]. However, treatment-related adverse effects of a triplet
combination (vemurafenib, cobimetinib, and atezolizumab) were comparable to a doublet
regimen (vemurafenib and cobimetinib) in the IMspire150 trial, as 99% of patients in both
arms had adverse effects, with only 6% more of grade 3 or higher adverse events in the
triplet arm (79% vs. 73%) [50]. Adverse events, including increased blood creatinine phos-
phokinase level, arthralgia, pyrexia, myalgias, increased liver enzymes, hyperthyroidism,
hypothyroidism, and pneumonitis, were higher in the triplet arm compared to the doublet
arm, while the incidence of a rash is similar in both groups. More drug discontinuations
were, however, seen in the doublet group compared to the triplet group (16% vs. 13%) [50].

Currently, the encorafenib–binimetinib–pembrolizumab combination is being eval-
uated as a first line in BRAFV600-mutated melanoma in the STEABOARD phase III
trial, which started enrollment in June 2022 [96]. Hopefully, this combination of ICI and
BRAF/MEK inhibitors has more tolerable toxicities than prior combinations.
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6. Mechanism of Resistance to BRAF/MEK Inhibitors

Resistance to anti-neoplastic therapy is a significant barrier to achieving long-term
remission and disease control in cancer. Primary resistance occurs due to the initial lack of
response to treatment, while secondary resistance occurs after the initial response to treat-
ment. Targeted treatment with BRAF/MEK inhibitors is no exception to this. As discussed
previously, the median PFS with single-agent BRAF inhibitors in BRAF-mutated metastatic
melanoma is around 5–6 months [9,15]. The addition of MEK inhibitors improves this to
about a year [24]. However, a subset of tumor cells acquires a resistance mechanism that
allows them to evade targeted therapy and leads to disease progression. These resistance
mechanisms represent a broad and complex interplay of tumor cell heterogeneity, tumor
microenvironment, genetic and epigenetic changes, and reprogramming of metabolic path-
ways. They have been studied extensively in the melanoma population. It is evident that
MAPK pathway activation is a key pathway in carcinogenesis and is targeted by BRAF and
MEK inhibitors. Hence, most resistance mechanisms involve an alteration of the MAPK
pathway that leads to its reactivation. The phosphorylation and activation of ERK1 and
ERK2 is an important downstream step that is regulated and provides negative feedback to
other signaling molecules such as SOS, SPRY, and DUSP proteins. The loss of this negative
feedback loop can allow a subset of tumor cells to survive in the drug environment, with
additional mutations driving further growth of tumor cells [97].

In a compilation of 132 tissue samples from three studies of resistance to BRAF
inhibitors, the most commonly identified resistance mechanisms were NRAS or KRAS
mutations (20%). Other common mechanisms included BRAF splice variants, BRAF am-
plification, MEK 1/2 mutations, and alteration in non-MAPK pathways, in order of their
frequency. NRAS mutations were also associated with intracranial metastasis [98]. Overpro-
duction of BRAFV600E due to amplification of the mutant gene is a common mechanism of
resistance and leads to overactivation of the MEK pathway, causing resistance to both BRAF
and MEK inhibitors. There are also four splicing site variants of BRAFV600E described that
lack the RAS binding domain and can dimerize even with low levels of RAS. In patients
with melanoma, up to 13–30% of cases are described as having acquired resistance due
to abnormal splicing [97]. In an analysis by Van Allen et al., whole exome sequencing
was performed in 45 patients with BRAFV600E mutated metastatic melanoma who re-
ceived vemurafenib or dabrafenib monotherapy. Genomic alterations in known resistance
genes were observed in 23 of 45 patients (51%) [99]. These were broadly divided into early
treatment failures (less than 12 weeks) that are purported to have an inherent resistance
mechanism and late progression, where an acquired resistance is developed. Alterations
conferring resistance occurred primarily in the MAPK pathway and include its down-
stream signaling, including NRAS, BRAF, MEK1, MEK2, NF1, and MITF. Less common
alterations were observed in PIK3CA, PTEN, PIK3R1, HOXD8, or RAC1. Interestingly, all
NRAS mutations were seen in patients with acquired mutations who had been on therapy
for more than 12 weeks [99].

Other pathways also remain very important as a way to bypass the inhibition of the
MAPK pathway by BRAF inhibitors and confer resistance. PI3K-AKT is one such pathway
and has cross-talk with the MAPK pathway. AKT can activate ERK downstream from MEK
and hence avoid inhibition by both BRAF and MEK inhibitors [100] (refer to Figure 1 for
various downstream signaling pathways). The work by Atefi and colleagues looked at the
induction and positive feedback of AKT signaling by inhibiting the MAPK pathway and,
in turn, leading to its paradoxical activation. Using in vitro methods, this resistance was at
least partially reversed by using AKT inhibitors or rapamycin [101]. Luo et al. showed that
the levels of phosphorylated AKT were increased in melanoma cells after treatment with
vemurafenib, and higher levels were seen in vemurafenib-resistant melanoma cells [102].
Multiple receptor tyrosine kinases (RTKs) are also involved in increased activation of the
MAPK pathway. This includes the platelet-derived growth factor receptor beta (PDGFRβ),
insulin-like growth factor-1 (IGF-1), hepatocyte growth factor (HGF), and AXL receptors.
Some of these resistance mechanisms are mediated by a nongenetic pathway. The secretion
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of HGF by the tumor microenvironment has been shown to cause the activation of the
MAPK and PI3K-ATK pathways through the MET RTK [103]. There is also an upregulation
of these various RTKs, such as AXL, EGFR, and PDGFRβ, caused by BRAF inhibitors that
act in an upstream manner, causing resistance [104]. Another level at which this resistance is
mediated is by transcription factors such as MITF (microphthalmia-associated transcription
factor), which play a critical role in the differentiation of melanocytes and offer a unique
resistance mechanism against BRAF and MEK inhibitors in malignant melanoma. There
are phenotypes associated with both high and low expression of MITF that lead to resistant
states, act as a switch between invasive and proliferative stages, and offer an example of
tumor plasticity [105,106]. STAT3 (signal transducer and activator of transcription 3) is
another important driver for oncogenic stimulation via upregulation of the Mcl-1 (induced
myeloid leukemia cell differentiation protein) gene, and its suppression has been shown to
be effective in vemurafenib-resistant and -sensitive cells [107].

As evident from the discussion above, the resistance mechanisms to BRAF/MEK
inhibitors are complicated and remain incompletely understood. This is unlike some
other resistance mechanisms, such as T315I in the treatment of chronic myeloid leukemia
using tyrosine kinase inhibitors, and makes overcoming the mechanism more challenging.
Nevertheless, there are a variety of ongoing clinical trials aimed at overcoming these
resistance mechanisms, as outlined in Table 2. These include combining BRAF/MEK
inhibitors with other pro-apoptotic targets, such as inhibitors of BCL-2 (B cell lymphoma
2), CDK4/6, histone deacetylase (HDAC), and heat shock protein 90 (HSP 90). Another
area of research has been the inhibition of the PIK3-AKT pathway using mTOR inhibitors
and PI3K inhibitors. Lapatinib is also being evaluated as an inhibitor of RTK to prevent an
increase in their signaling at the upstream level. These approaches are still mostly in the
trial phase, with benefits not yet evident in clinical practice. This is owed, to some degree,
to the fact that tumor cells acquire multiple resistance mechanisms, and targeting one of
the pathways may not be enough. At the same time, BRAF/MEK inhibitors come with
their own toxicities, and combining them with other agents will require close attention to
the side effect profile.

Table 2. Current ongoing clinical trials.

Agent Trial Status Conditions Phase

Vemurafenib + cobimetinib NCT05768178 R

Arm 5: adult patients with
BRAF-positive solid and

hematology malignancies
(DETERMINE trial)

II/III

Vemurafenib + cobimetinib +
atezolizumab NCT02908672 A, NR

Previously untreated
BRAFV600-mutated patients

with metastatic or unresectable
locally advanced melanoma

III

Dabrafenib + trametinib NCT04940052 R

Previously treated patients
with locally advanced or

metastatic, radioactive
iodine refractory

BRAFV600E-mutated
differentiated thyroid cancer

III

Dabrafenib + trametinib NCT03340506 R
Rollover study, patients with

solid tumors, melanoma,
NSCLC, high-grade gliomas

IV

Encorafenib + binimetinib NCT05270044 R

High-risk patients with stage II
melanoma with

BRAF-mutations as adjuvant
treatment (COLUMBUS-AD)

III



Int. J. Mol. Sci. 2024, 25, 624 16 of 25

Table 2. Cont.

Agent Trial Status Conditions Phase

Encorafenib + cetuximab
+/− chemotherapy NCT04607421 R

Previously untreated
metastatic CRC

(BREAKWATER)
III

Encorafenib + cetuximab +
pembrolizumab vs.

pembrolizumab alone
NCT05217446 R

Previously untreated
BRAFV600E mutant, MSI

high/DMMR metastatic CRC
(SEAMARK)

II

Encorafenib + binimetinib +
pembrolizumab NCT04657991 R

Treatment-naive patients with
advanced or metastatic
melanoma with BRAF

alterations (STEABOARD)

III

Encorafenib + binimetinib +
palbociclib NCT04720768 R BRAF mutant metastatic

melanoma (CELEBRATE) I/II

Encorafenib + binimetinib
+/− nivolumab NCT04061980 R

Patients with metastatic
radioiodine refractory

BRAFV600 mutant
thyroid cancer

II

Trametinib
vs. Standard of care NCT02101788 A, NR

Recurrent or progressive
low-grade ovarian cancer or

peritoneal cavity cancer
II/III

Binimetinib + palbociclib NCT03170206 R Patients with advanced KRAS
mutant NSCLC I/II

Binimetinib +
pembrolizumab NCT03991819 R Advanced NSCLC I

Cobimetinib NCT04409639 R

Newly diagnosed or
HMA-treated CMML patients
with RAS pathway mutations

(CONCERTO trial)

II

Cobimetinib + atezolizumab NCT04216953 R
Locally advanced and/or

metastatic soft tissue sarcoma
(COTESARC)

I/II

Novel Drugs

BDTX-4933 NCT05786924 R
Patients with BRAF and other

RAS/MAPK mutation-
positive neoplasms

I

ABM-1310 +/−
cobimetinib NCT04190628 R Patients with BRAF-mutated

advanced solid tumors I

BGB-3245 + mirdametinib NCT05580770 R
Advanced metastatic or

unresectable solid cancers with
at least one prior line

I

Tovorafenib (DAY101) +/−
pimasertib NCT04985604 R

Recurrent, progressive, or
refractory solid tumors

harboring MAPK
pathway aberrations

I

PF07284890 NCT05538130 R
Advanced solid tumors for

which available treatments are
no longer effective

I

VS6766 +/− everolimus NCT02407509 R
Advanced solid tumors with

BRAF, KRAS, and/or
NRAS mutations

I
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Table 2. Cont.

Agent Trial Status Conditions Phase

VS6766 + defactinib NCT05512208 R

Recurrent gynecological
cancers (endometrioid cancer,

mucinous ovarian cancer,
high-grade serous ovarian
cancer, or cervical cancer)

II

VS6766 + sotorasib NCT05074810 R

Previously treated
KRASG12C-mutated NSCLC

patients +/− prior G12C
inhibitor (RAMP203)

I/II

VS6766 + cetuximab NCT05200442 R Previously treated KRAS
mutant advanced CRC patients I/II

E6201 + Dabrafenib NCT05388877 R BRAFV600 mutated metastatic
with CNS metastasis I

R = recruiting, A, NR = active, non-recruiting. Retrieved from clinicaltrials.gov [108] assessed on 18 Novem-
ber 2023.

7. Novel Agents and Current Ongoing Clinical Trials

Current FDA-approved BRAF/MEK inhibitors are being further explored in different
treatment combinations across various cancers. At the same time, several novel BRAF and
MEK inhibitors—such as VS6766, FORE8394, DS03090629, PLX8394, and BDTX4933, which
can overcome paradoxical MAPK pathway activations—are currently being explored in
phase I/II trials. Agents like FORE8394, PLX8394, and BDTX4933 can target both V600
and nonV600-BRAF mutations. Agents with good CNS penetration, such as DAY101,
PF07284890, ABM-1310, and BDTX4933, are also being explored [109,110].

VS6766 (avutometinib) is a RAF/MEK clamp that inhibits BRAF, CRAF, and MEK
by trapping them in inactive complexes. It is a potent inhibitor of the MAPK pathway,
given that it also blocks feedback reactivation via MEK signaling [111]. It is currently
being evaluated in combination with FAK inhibitor defactinib in advanced KRAS-mutated
NSCLC patients after failure of prior platinum-based chemotherapy and ICI, in combination
with cetuximab in KRAS-mutant mCRC, as well as in combination with defactinib in
recurrent LGSOC [111–114].

DAY101 (Tovorafenib) is an oral, selective, small-molecule, type II pan-RAF inhibitor
with good CNS penetration [115]. It has been evaluated in the phase II FIREFLY-1 trial
in patients with R/R pediatric LGG, showing an ORR of 51% with a median DOR of
13.8 months [115]. The most common adverse effects were hair color changes, elevated
serum creatinine phosphokinase, and anemia [115]. It is being further evaluated in the
phase III FIREFLY-2 trial in pediatric and young adult patients with newly diagnosed LGG
harboring activating RAF alterations [116]. Given its good CNS penetration, it has potential
to treat CNS tumors and brain metastases. It was also evaluated in adult patients with
R/R advanced solid tumors in dose escalation and expansion studies. It showed responses
in 15% of 68 patients, with responses seen in 50% of patients with MAPK inhibitor-naive
BRAF-mutated melanoma [117].

PF07284890 is another novel oral small molecule, a high CNS penetrant, and a potent
BRAF inhibitor [118]. It has been shown to inhibit BRAF and CRAF in vitro studies and
inhibit both BRAFV600E and BRAFV600K mutations. It demonstrated significant and
durable responses in the intracranial A375-luc BRAFV600E melanoma xenograft model,
thus showing its potential as a promising agent for CNS tumors [118]. It is currently being
investigated in a phase Ia/b trial with or without binimetinib in patients with BRAFV600-
mutant advanced solid tumors with or without brain metastasis [110].

ABM1310 is a novel small-molecule BRAF inhibitor that has been shown to have high
water solubility and blood–brain barrier penetration in preclinical studies [119]. It was eval-
uated first in the human phase I trial of adult patients with advanced BRAFV600-mutated
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solid tumors, including those with an active brain metastasis or primary CNS cancer, re-
gardless of prior BRAF inhibitor use [119]. The most common adverse events were skin
rashes and QT prolongation. It had potential for use in patients with BRAFV600-mutated
tumors, especially primary CNS cancers, and patients with refractory prior BRAF/MEK
inhibitors [119].

BGB3245 is a RAF dimer inhibitor that has been evaluated in a phase Ia/Ib trial of
42 patients with advanced refractory tumors harboring MAPK pathway alterations with a
median of three prior lines of treatment. It demonstrated 1 CR and 7 PR in 33 evaluable
patients [120]. The most common adverse events were rash acneiform, maculopapular rash,
fever and alanine aminotransferase (ALT) elevation, and nausea [120].

FORE8394 is a novel class I and II BRAF inhibitor that did not show feedback reactiva-
tion of the MAPK pathway in preclinical studies. It was evaluated in the phase I/IIa trial of
previously treated BRAF-altered advanced solid and CNS tumors. It demonstrated antitu-
mor activity in gliomas, ovarian, CRC, small bowel cancers, PTC, and ATC. PR was seen in
39% of MAPK inhibitor naive V600 mutant tumors and 18% of V600 mutated tumors with
prior MAPK inhibitors. The most common adverse events were increased ALT, aspartate
aminotransferase (AST), fatigue, nausea, diarrhea, and vomiting, and the most common
grade 3 adverse events included increased ALT, bilirubin, and hyponatremia [121].

DS03090629 is a novel oral ATP-competitive MEK inhibitor. It has been shown to
overcome acquired resistance driven by feedback reactivation of the MAPK pathway in
a BRAF-overexpressing melanoma cell line model that was resistant to dabrafenib and
trametinib in preclinical studies, making it a potential therapeutic choice for patients with
resistance to BRAF and MEK inhibitors [122].

PLX8394 is another novel oral small-molecule BRAF inhibitor that blocks both monomeric
BRAFV600 and dimeric nonV600 BRAF proteins without causing paradoxical MAPK
pathway activation. In a phase I/II trial of PLX8394 together with cobicistat (a CYP3A4
inhibitor to enhance PLX8394 exposure), it was well tolerated and demonstrated some
promising activity with 23% PR, including one ovarian cancer patient previously treated
with a BRAF/MEK inhibitor [123].

BDTX4933 is a potent, highly CNS-penetrant, oral RAF inhibitor that can target class
I/II/III BRAF mutations as well as RAF mutations. It can inhibit the MAPK pathway with-
out paradoxical MAPK pathway activation, thus causing sustained inhibition of cellular
proliferation and growth [124]. It has shown promising activity in preclinical studies and
has to be further investigated in phase I studies to evaluate its use [124].

E6201 is an intravenous ATP-competitive MEK1 inhibitor that has been shown to have
responses in BRAFV600E-mutated metastatic melanoma with brain metastasis [125]. In
the phase I trial of advanced solid tumors, one patient with BRAF-mutated PTC during
part A and three patients, including two BRAF-mutated melanoma and one BRAF wild-
type melanoma in part B, had PR [126]. One patient with melanoma and brain metastasis
had a near-complete response to E6201 in the initial phase I study and survived beyond
8 years [125].

There are several ongoing trials investigating MAPK pathway inhibitors, and some of
those trials are listed in Table 2 (retrieved from clinicaltrials.gov) [108].

8. Conclusions

BRAF/MEK pathway inhibitors were initially heavily investigated and approved for
the treatment of melanomas; however, they have been proven to be effective across various
types of cancer with specific alternations over the past decade. Targeting the BRAF/MEK
pathway is a great example of tumor agnostic therapy and precision medicine, as tumors
are no longer treated or classified based on location alone but instead according to their
molecular profiles. Since pembrolizumab was approved for tumors with high tumor mu-
tation burden and MSI status, followed by the approval of larotrectinib for NTRK fusion,
more targeted therapies are being investigated for tumor agonistic indications. Therefore,
identifying the genetic aberration driving the tumor and finding the proper therapy for
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that aberration should now be the new direction in cancer treatment investigations. These
developments have paved the way for the utilization of targeted therapies, including
BRAF/MEK inhibitors, for specific genetic alterations across various cancers. At the same
time, better agents to target this pathway must be investigated because most BRAF/MEK
inhibitors have PFS for around one year despite their efficacy in various trials, as discussed
above in this review. Very rarely, survival extends beyond two years unless these agents are
combined with immunotherapy. There is also a need to further identify agents that improve
the toxicity profile. Most of these combinations do not cause major or life-threatening
toxicities, but side effects like pyrexia or diarrhea always affect the quality of life of the
patients. In addition, further exploration of novel agents with good brain penetration as
well as agents that can overcome acquired resistance by not having paradoxical MAPK
pathway reactivation is needed. In summary, BRAF/MEK-targeted therapies are an im-
portant part of personalized medicine and pave the way for treatments targeting specific
genetic alterations. BRAF/MEK inhibitors have shown some promising activities across
various malignancies with MAPK pathway alterations; however, further investigations are
needed to find better treatments that have longer duration of responses and longer survival
with more tolerable toxicities that would improve the quality of life of cancer patients.
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