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Abstract: While primarily produced in the pineal gland, melatonin’s influence goes beyond its
well-known role in regulating sleep, nighttime metabolism, and circadian rhythms, in the field of
chronobiology. A plethora of new data demonstrates melatonin to be a very powerful molecule,
being a potent ROS/RNS scavenger with anti-inflammatory, immunoregulatory, and oncostatic
properties. Melatonin and its metabolites exert multiple beneficial effects in cutaneous and systemic
aging. This review is focused on the neuroprotective role of melatonin during aging. Melatonin
has an anti-aging capacity, retarding the rate of healthy brain aging and the development of age-
related neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, Huntington’s
disease, multiple sclerosis, amyotrophic lateral sclerosis, etc. Melatonin, as well as its metabolites, N1-
acetyl-N2-formyl-5-methoxykynuramine (AFMK) and N1-acetyl-5-methoxykynuramine (AMK), can
reduce oxidative brain damage by shielding mitochondria from dysfunction during the aging process.
Melatonin could also be implicated in the treatment of neurodegenerative conditions, by modifying
their characteristic low-grade neuroinflammation. It can either prevent the initiation of inflammatory
responses or attenuate the ongoing inflammation. Drawing on the current knowledge, this review
discusses the potential benefits of melatonin supplementation in preventing and managing cognitive
impairment and neurodegenerative diseases.

Keywords: melatonin; brain aging; neuroprotection; neurodegenerative disorders

1. Introduction

Melatonin (N-acetyl-5-methoxytryptamine) is a multifunctional hormone with a uni-
versal distribution in nature [1,2] and remarkable essential functions [3,4]. It can be pro-
duced in all living species including plants [5–7]. Melatonin was first identified in the
bovine pineal glands by the dermatologist Aaron Lerner et al. in 1958 [8]. It was thought
that melatonin could be uniquely released by the pineal gland, playing a major role in the
regulation of circadian rhythms and seasonal biorhythms [9]. Pineal-released melatonin
can be measured at lower levels in the blood than in the cerebrospinal fluid (CSF) of the
third ventricle, suggesting its neuroprotective role against oxidative stress [10]. To this date,
many extra-pineal sites of melatonin synthesis have been established, like bone marrow,
retina, lens, cochlea, lungs, liver, kidney, pancreas, thyroid gland, female reproductive
organs, and skin [11–18]. Melatonin exhibits a diverse protective potential that includes a
high capacity to mitigate oxidative stress, protect mitochondrial functions, modulate the
immune system, reduce inflammation, modify the cell response and cytokine release, and
enhance circadian rhythm amplitudes. These different mechanisms of melatonin’s action
contribute to its neuroprotective effects, potentially retarding the process of aging [19,20]
and the onset of age-related neurodegenerative diseases, such as Alzheimer’s disease [21],
Parkinson’s disease [22], Huntington’s disease, multiple sclerosis, amyotrophic lateral
sclerosis (ALS), etc. [23].

Neurodegenerative diseases are a heterogeneous group of aging-related disorders,
characterized by a significantly increased neuronal cell death and a progressive loss of
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function. They are often linked to pathological protein formation, as well as aggregate for-
mation in many patients, causing cytotoxicity. The cytotoxic events include mitochondrial
dysfunction, oxidative stress, DNA damage, impaired protein degradation systems, synap-
tic dysfunction, and cell cycle re-entry [24]. Since mitochondrial dysfunction with a reduced
capacity for the production of adenosine triphosphate (ATP) has been implicated in the
pathogenesis of brain age-associated decline and major neurodegenerative diseases [25,26],
melatonin could be an excellent novel therapeutic option. As a highly powerful antioxidant,
melatonin, along with some of its metabolites, is capable of preserving mitochondrial
bioenergetic function in the brain by reducing oxidative damage; thus, it may delay the
progression of the aging phenotype and the development of age-related neurodegenerative
diseases [27,28]. Furthermore, melatonin could be implicated in the treatment of neurode-
generative conditions, by modifying their characteristic low-grade neuroinflammation.
It can either prevent the initiation of inflammatory responses or attenuate the ongoing
inflammation [29].

2. Melatonin and Its Metabolites as Determinants in Oxidative Stress

Melatonin is the oldest antioxidant with the ability to reduce oxidative damage through
non-receptor-mediated mechanisms, by scavenging the toxic radicals directly (both ROS
and RNS) [30–32], and via the inhibition of their generation, especially at the mitochondrial
level [27]. It can be found in sufficiently high concentration in mitochondria, either due
to rapid uptake [33] or due to its synthesis on site [34]. Melatonin, with its positional
advantage, is able to immediately scavenge the toxic free radicals formed in abundance
in mitochondria [35,36], as well as to reduce the formation of the superoxide anion rad-
ical (O2•−), a process referred to as radical avoidance [37]. The advantage of melatonin
over classical antioxidants is that its final kynuric metabolites, N1-acetyl-N2-formyl-5-
methoxykynuramine (AFMK) and N1-acetyl-5-methoxykynuramine (AMK), share the
ability to scavenge and detoxify reactive oxygen and nitrogen species, creating a cascade of
antioxidant reactions [38,39].

Additionally, melatonin demonstrates highly effective antioxidant properties, through
its capacity to stimulate the production of antioxidant enzymes [40], Sirtuin (SIRT) 3, etc.,
via indirect melatonin receptors (MT1/MT2)-mediated action [41]. Indeed, through the ac-
tivation of MT1/MT2, melatonin up-regulates the expression of antioxidant genes [42]. The
antioxidant enzymes, e.g., superoxide dismutase (SOD), catalase (CAT), and glutathione
peroxidase (GPx), are able to degrade the weakly reactive ROS [43,44]. But the most reactive
and destructive species, like peroxynitrite (ONOO−) and the hydroxyl radical (•OH), are
not degraded by the enzymes mentioned above. They can only be removed by direct highly
efficient scavengers like melatonin, AFMK, and AMK, thereby limiting the ROS-generated
oxidative damage on different cell structures and molecules including lipids, b-oxidation
cycle compounds, or mitochondrial DNA (mtDNA) [30].

Recently, some SIRTs (class of nicotinamide adenine dinucleotide (NAD+)-dependent
deacetylases) demonstrated the epigenetic ability to deacetylate histone and non-histone
targets, thus modulating the expression of the genes implicated in oxidative stress response
and apoptosis [45]. Therefore, SIRTs could play crucial roles in the regulation of brain
function during the ageing process.

3. Melatonin in Aging

Biological aging is a natural phenomenon characterized by a progressive loss of func-
tional capacity, physiological integrity, and morphological features of the human body.
Mechanisms underlying the aging process include oxidative stress, mitochondrial dys-
function, inflammaging, disruption of circadian rhythms, proteostasis, telomere attrition,
genomic instability, epigenetic alterations, and decreased capacity of tissue repair [46,47].
Circadian clocks are vital for the regulation of the human health, by orchestrating physio-
logical and neuroendocrine functions. Chronobiological aging is associated with a decrease
in melatonin secretion, a decline in circadian rhythm, and a dampening of circadian gene
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expression [48] that can augment oxidative damage through an increased generation and
accumulation of ROS and RNS [49]. The “free radical theory of aging” has been the focus
of many scientists for over 50 years [50]. During the process of aging, ROS and RNS are
produced through cellular oxidative metabolism. At the subcellular level, mitochondria are
the major source of generation of •OH and ONOO− [51]. The excessive production of these
destructive species, causes enhanced mitochondrial oxidative stress as well as mtDNA
mutations, and occurs along with human aging and age-related pathologies [52–54].

Accumulating evidence supports a strong connection between the process of aging
and the decline in mitochondrial quality and function. The aging of mitochondria is charac-
terized by a significant increase in ROS generation, a decrease in antioxidant defense, and
a reduction in oxidative phosphorylation and ATP production. Disturbances in the mito-
chondrial redox balance further drive cellular senescence. This age-linked mitochondrial
impairment enhances mitochondria-mediated apoptosis, thus leading to an increase in the
number of apoptotic cells. In addition, mtDNA with functional decline, as a consequence
of aging, results in the further enhancement of ROS production [55]. Lately, it has been
thought that most mtDNA mutations are caused by replication errors made by the mtDNA
polymerase [56]. During the process of aging, such defects in mtDNA replication, along
with the failure of their repair mechanisms might lead to an accumulation of mutations
which could further increase mitochondrial impairment and the augmentation of oxidative
damage. Therefore, mitochondrial dysfunction determines the rate of aging [54,57].

Some intracellular enzymes outside the mitochondria (e.g., xanthine oxidase, monoamine
oxidase, and NADPH oxidases) also impact ROS production, with advancing age [58–60].

Experimental studies on young rats with surgical pinealectomy showed accelerated
oxidative damage in many tissues, as well as premature and faster aging [61], highlighting
the vital role of the indolic hormone melatonin in the process of aging.

Melatonin is a mitochondria-targeted comprehensive antioxidant that is able to reduce
the mitochondrial production of free radicals or to detoxify them, as well as indirectly
activating the mitochondria-located SOD2, which may lead to the retardation of the rate of
skin [62–64] and systemic aging [27,65,66]. Melatonin’s concentration is found at higher
levels in mitochondria than in other cellular organelles, suggesting its significant role in
mitochondrial processes [67]. The multiple beneficial protective actions of this indolic
hormone, at the mitochondrial level, are well documented [68]. With the stimulation of
SIRT3, localized in mitochondria, melatonin gives rise to the deacetylation and stimulation
of SOD2. The activation of the SIRT3/SOD2 antioxidant signaling pathway due to mela-
tonin limits the mitochondrial oxidative damage and cytochrome C release, thus reducing
mitochondria-related apoptosis [41,69].

Indeed, independent of receptors, melatonin works as a mitochondrial protector,
maintaining optimal mitochondrial physiology [27,70] not only by quenching ROS, but
also by inhibiting the mitochondrial permeability transition pore (MPTP) [71], activating
uncoupling proteins, regulating mitochondrial biogenesis and dynamics [37], optimizing
respiratory chain complexes, enhancing mitochondrial ATP production, and regulating the
process of mitophagy (removal of damaged mitochondria) [67,72].

During the process of aging, increasing levels of inflammatory cytokines are frequently
measured. The imbalance between inflammatory and anti-inflammatory mechanisms in the
aging phenotype causes a low-grade chronic inflammation, known as the “inflammaging”
state [73]. “Inflammaging” is caused by both chronic antigen stimulation over the human
lifespan and also a continued exposure to oxidative stress. These factors contribute to a
remodeling of the immune system, with changes in cellular and humoral immunity poten-
tially leading to a shift of the immune system to an inflammatory mode, in advanced age.
In fact, immunity appears to play a significant role in the process of aging and age-related
diseases [74]. Overall, melatonin may act like either a pro- or anti-inflammatory molecule
in different conditions [29,75]. During the aging process, melatonin acts preferentially as
an anti-inflammatory agent on aging-related, low-grade inflammation [76]. Melatonin
stimulates SIRT1 and their anti-inflammatory activities overlap during the process of
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aging [77]. SIRT1 functions as an epigenetic regulator of aging that alleviates inflamma-
tion by down-regulating Toll-like receptor (TLR)-4, which mediates pro-oxidant effects
through the NF-κβ signaling pathway [29]. Melatonin, via the inhibition of either TLR-4 or
toll-receptor-associated activator of interferon (TRIF), can suppress the release of several
pro-inflammatory cytokines like TNFα, IL-1β, IL-6, and IL-8 [78,79].

Summarizing, melatonin, with its capacity to mitigate oxidative stress, to protect
mitochondrial functions, to modulate the immune system, to ameliorate inflammation, to
enhance circadian rhythm amplitudes, and to exhibit neuroprotection, beneficially results
in the retardation of aging.

4. Brain Aging Defense of Melatonin

The brain is the most complex human organ, built from two main cell types—neurons
and glia. They use different metabolic pathways to produce energy. As the center of the
nervous system, the brain orchestrates many processes required for body homeostasis. It
has an important role in physiology and metabolism; therefore, it may also be at the center
of aging. Brain aging is an irreversible process and its progression is a consequence of
the interactions between genetic and environmental factors (infections, trauma, drugs or
neurotoxin exposure, etc.). In the aging brain, pathological changes at both the cellular and
tissue level can cause cognitive and motor impairment, memory loss, and other phenotype
characteristics.

Microglia represent macrophage-like cells, which are the resident immune cells of the
brain. During the process of aging, microglial cells increase in both number and size and un-
dergo morphological changes. Moreover, aging induces a shift between pro-inflammatory
and potentially cytotoxic (M1), as well as anti-inflammatory and regenerative (M2), mi-
croglial phenotypes [80]. Microglial activation due to aging can lead to neuroinflammation
and neurodegeneration. Aberrant activated microglia generate an excessive ROS/RNS
production that triggers the NF-κB signaling cascade and neuroinflammation, promoting
neuronal damage and cell death [81]. During the process of aging, there is an accumulation
of mtDNA oxidative damage of microglia [82]. Additionally, neuronal cells demand high
amounts of energy in order to function and are highly sensitive to any mitochondrial dys-
function and oxidative phosphorylation system (OXPHOS) defects [83]. Due to metabolic
differences, neuronal and glial mitochondria produce different amounts of ROS/RNS. Al-
though they produce less mitochondrial ROS (mtROS), neurons are more vulnerable than
glia to oxidative damage, because they have fewer antioxidants [84]. In fact, neurons are
rarely replaced during the human lifespan. Some areas of the brain like the hippocampus,
substantia nigra, amygdala, and frontal cortex are more sensitive to oxidative stress [85].
Spontaneous errors in the mtDNA replication machinery and failure in mtDNA repair
might cause the accumulation of mutations, resulting in mitochondrial dysfunction and the
bioenergetic failure of the neural cell. mtROS initiate and maintain a permanent cell-cycle
arrest, known as cellular senescence [53,86]. Therefore, mitochondria are a key factor in
the development of pro-aging characteristics of brain cells’ senescence [87–89]. Studies
have shown that senescent microglia exhibit increased mitochondrial DNA damage [82], a
reduced ability to clear debris (reduced phagocytosis), and increased secretion of molecules
that promote inflammation (pro-inflammatory cytokines) [90,91]. These changes can further
contribute to the spread of senescence to surrounding cells. The prevention of microglial
activation and the normalization of mitochondrial function in aged individuals represent
potential therapeutic strategies, which guarantee a healthy brain aging process.

Brain aging also leads to the altered function of the main biological clock, the hypotha-
lamic suprachiasmatic nucleus (SCN), resulting in a decrease in melatonin synthesis in the
pineal gland and circadian rhythm disruption [92]. The disruption of the circadian rhythm,
in turn, leads to various physiological changes, such as disturbances in the sleep–wake
cycle, metabolic abnormalities, neurodegeneration, oxidative stress, etc. [93]. The age-
related decline of melatonin release impairs mitochondrial homeostasis in neurons, thus
playing a major role in the emergence of neurological abnormalities and accelerated aging.
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Exogenous melatonin has been proposed not only as a potential circadian synchronizer [94],
but also as a regulator of redox homeostasis in the brain during aging [95].

Brain mitochondrial functional changes within aging are thought to be the major
contributor to the aging process. The clearance of malfunctioning or damaged mitochondria
is essential for controlling brain cells’ homeostasis. A recent study demonstrates a new
way in which melatonin combats brain inflammation. This novel mechanism involves the
activation of mitophagy that selectively removes damaged mitochondria. By eliminating
these damaged structures, melatonin helps to maintain a healthy brain environment [96].

Melatonin also controls microglial activation by inhibiting the production of pro-
inflammatory cytokines and chemokines both in vitro and in vivo [97–100]. It is able to
inhibit TLR-4 expression and caspase-3 activation in hypoxic BV-2 microglial cells [100].
Melatonin has been shown to effectively suppress IL-1β and TNF-α at both the mRNA
and protein levels, as well as to down-regulate the inducible nitric oxide synthase (iNOS)
in activated BV2 microglial cells [101]. In fact, iNOS is a marker of the M1 microglia
phenotype, but not of the M2 type [80]. It was suggested that melatonin may promote the
M2 polarization of microglia and suppress pro-inflammatory responses in an injured spinal
cord, facilitating functional recovery [102]. Also, the administration of melatonin can lead
to the decreased expression of the NLRP3 (nucleotide-binding domain leucine-rich repeat
and pyrin domain containing receptor 3) inflammasome in rats with spinal cord injury,
thus exerting neuroprotective effects on motor neurons [103]. Furthermore, melatonin is
able to inhibit NLRP3 activation and to reduce pro-inflammatory factors, via promoting the
activation of Nrf2/ARE signaling [104]. The NLRP3 inflammasome is a protein complex
that initiates an inflammatory form of cell death and triggers the release of IL-1β and
IL-18 and has also been implicated in neurodegenerative diseases [105,106]. Therefore, the
suppression of the NLRP3 inflammasome by melatonin controls neuroinflammation and
attenuates mitochondrial dysfunction.

Another study evaluated the effect of melatonin and its final metabolites, AMK and
AFMK, on neuronal NOS (nNOS) both in vitro and in rat striatum in vivo. It was found
that only melatonin and AMK, but not AFMK, inhibit nNOS in a dose–response manner.
In vivo, the potency of AMK to inhibit rat striatal nNOS activity was higher than that
of melatonin [107]. Additionally, melatonin and AMK have been reported to enhance
cognitive processes. Melatonin crosses the blood–brain barrier and immediately converts to
AMK, in brain tissue. Endogenous or exogenous AMK enhance long-term object recognition
memory in aging mice, suggesting a therapeutic potential of AMK to improve or retard
memory decline [108,109]. Based on these findings, melatonin and kynuramine AMK
possess the power to decrease the low-grade inflammation and alleviate neuroinflammation
in the aging brain.

5. Melatonin in Neuroprotection
5.1. Pathogenesis of Neurodegeneration

Brain aging and neurodegeneration very often overlap. Advancing age is a major
risk factor for most neurodegenerative disorders, which occur prevalently in aged in-
dividuals [110]. Signs of brain aging have been observed in both patients and animal
models with Alzheimer’s [111,112] and Parkinson’s disease [113], because aged brains
become highly susceptible to neurodegeneration [114,115]. Redox dysregulation [116],
mitochondrial dysfunction [25,26,117,118], and cellular senescence [115,119] are the key
modulators implicated in many neurodegenerative diseases. Additionally, a growing body
of research indicates that these different age-related neurodegenerative conditions share
a common inflammatory mechanism with the activation of the NLRP3 inflammasome
complex in microglia and peripheral monocytes, with a consequent increased production
of pro-inflammatory cytokines (e.g., IL-1β and IL-18) [120]. The overactivation of NLRP3 is
linked to mitochondrial damage and abnormal mitophagy.

Further, in numerous neurological diseases, amyloid deposits composed of α-synuclein
protein, microtubule-associated protein tau, and amyloid beta (Aβ) peptide are found.
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These deposits have a different nature and localization in the brain, which helps in the
sub-classification of the neurodegenerative disorders. An abnormal extracellular Aβ de-
position due to the suppression of Aβ clearance from damaged astrocytes during aging is
characteristic for Alzheimer’s disease [121]. Abnormal intracellular inclusions containing
hyperphosphorylated and aggregated tau protein (p-tau), an integral component of the fila-
ments of neurofibrillary tangles, are additionally found in the same disorder [122]. Deposits
of Aβ and p-tau are pathological hallmarks in patients with Alzheimer’s, which positively
correlates with progressive cognitive decline [123]. The presence of aggregated and phos-
phorylated α-synuclein protein (Lewy bodies) in the subcortical regions of the brain is
a pathological characteristic for Parkinson’s disease [124], but it is not only restricted to
this disorder [125]. The α-synuclein pathology is a feature of other synucleinopathies with
progressive dementia, such as Parkinson’s disease with dementia (PDD) and dementia with
Lewy bodies (DLBs). It also frequently occurs in Alzheimer‘s disease, where α-synuclein
contributes to secondary symptoms. Moreover, the concomitance of α-synuclein and tau
pathology is not rare [126]. Both are often found in neurons of the amygdala in DLBs
patients [127]. α-synuclein was initially demonstrated to bind to tau and to interfere with
its normal interaction with tubulin, thereby interrupting tau’s physiological functions [128].
Furthermore, α-synuclein may recruit kinases that promote tau phosphorylation, poten-
tially leading to the formation of tau/α-synuclein co-oligomers [129–131].

Large amounts of oxidative stress are thought to be a major contributing factor in most
neurodegenerative diseases, playing a role similar to its involvement in the process of brain
aging [116,132–136]. Oxidized proteins and lipid peroxidation were observed in patients
with mild cognitive impairment and early stage Alzheimer’s disease, which possibly
precede Aβ accumulation [137]. Aβ peptides also exhibit pro-oxidant and proinflammatory
properties. The most toxic ones are Aβ monomers and oligomers. For example, a synergic
effect between the amyloid β1-42 oligomer and oxidative stress was observed in the
development of the Alzheimer’s disease-like neurodegeneration of hippocampal cells [138].
In vivo studies confirmed this observation. By using the single intracerebroventricular (icv)
injection of protofibrillar Aβ1-42 in the hippocampus of rats, amyloid deposits have led
to both an increase in ROS production and enhanced lipid peroxidation, as well as the
inhibition of antioxidant enzyme activity in the hippocampus, cortex, and striatum regions
of the brain, along with impaired long-term memory and anxiety-like behavior [139]. An
elevated oxidative stress near Aβ deposits predisposes to neurotoxicity and neuronal loss.
Further, oxidative stress is aggravated by mitochondrial dysfunction and endoplasmic
reticulum stress (Scheme 1). Conversely, Aβ peptides induce the lipid peroxidation of
brain cell membranes that, in turn, trigger Aβ production, by increasing the activity of
β-secretase (BACE1) and γ-secretase. The presence of both β-amyloid and tau deposits
drives early Alzheimer’s disease decline [140].

Additionally, the release of pro-inflammatory mediators due to Aβ peptides and
oligomers are seen in microglia [141] and neurons [142]. Since Aβ peptides are present
in the cerebrospinal fluid (CSF) of healthy individuals, their efficient removal, especially
during sleep, is critically important [143]. Therefore, sleep disturbances, which appear to
be a common finding in many neurodegenerative disorders, impair Aβ clearance [144,145].

Mitochondrial dysfunction is a common feature also in Parkinson’s disease because
aggregated α-synuclein preferentially binds to mitochondria, and its interaction with mito-
chondrial electron transport chain (ETC) increases the production of mitochondrial ROS,
stimulating mtDNA damage. This interaction also results in decreased both respiratory
capacity and ATP production. Mitochondrial aggregation of α-synuclein promotes MPTP
opening, calcium diffusion, cytochrome C release, and mitochondrial swelling, which
ultimately leads to apoptosis [146]. It has been found that α-synuclein interaction with
fusion proteins (e.g., OPA1, MFN-1, and MFN-2) is associated with enhanced mitochondrial
fragmentation and bioenergetic alterations in induced pluripotent stem cell (iPSC)-derived
dopaminergic neurons [147]. Furthermore, pathological α-synuclein and reactive microglia
can potentiate each other, causing loss of dopaminergic neurons and accelerated neurode-
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generation in Parkinson’s disease [148,149]. Additionally, activated microglia facilitate the
transfer of α-synuclein, including via exosomal pathways, contributing to the progression
of α-synuclein pathology [150–152].
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5.2. Neuroprotection of Melatonin

Numerous experimental studies and clinical trials confirm the therapeutic neuropro-
tective potential of melatonin and its derivatives. They exert powerful neuroprotection
through myriad of different mechanisms, allowing for the prevention of neurodegener-
ation and/or cognitive improvement, along with sleep maintenance [153–158]. Studies
have demonstrated that melatonin inhibits the nuclear translocation of NF-κBp65 and the
activation of glycogen synthase kinase (GSK)-3β, through melatonin receptor activation
in Aβ1-42-treated SH-SY5Y neuroblastoma cells [159]. GSK3β serves as a crucial link be-
tween the beta-amyloid and τ-tangle pathologies. It regulates Aβ production, possibly by
interfering with β-amyloid precursor protein (APP)-cleaving secretases [160]. By blocking
the GSK3β pathway from melatonin, a partial decrease in Aβ1-42-induced elevation in
BACE1 has also been seen [159]. Several in vivo studies demonstrate that melatonin is able
to prevent neurodegeneration and cognitive deficits in Aβ1-42-induced neurotoxicity in
the hippocampus of mice [161,162]. Aβ1-42, injected icv, would cause synaptic dysfunction,
memory impairment, and hyperphosphorylation of the tau protein. The intraperitoneal
(i.p) administration of melatonin (10 mg/kg/24 h) for 3 weeks has attenuated the impair-
ment of memory and has decreased tau hyperphosphorylation, through PI3K/Akt/GSK3β
signaling in Aβ1-42-treated mice. In addition, melatonin has decreased apoptosis in the
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same model, by suppressing the overexpression of caspase-3, caspase-9, and PARP-1 [163],
as well as demonstrating a significant increase in the Bcl-2/β-actin and PP2A/β-actin
proteins [160]. Similarly, early melatonin administration in transgenic mice significantly
decreased up-regulated apoptotic-related caspase-3 and Bax, as well as decreasing the level
of thiobarbituric acid-reactive substances (TBRASs) in the brain [164]. It has also been
found that the supplementation of melatonin reduces the number of apoptotic neurons and
increases the choline acetyltransferase activity in the frontal cortex and hippocampus of an
APP 695 transgenic mouse model of Alzheimer’s disease [165].

Exogenous melatonin administration (50 mg/kg, i.p. for 40 days) was able to mitigate
the cognitive decline in pinealectomized (pin) adult Sprague Dawley rats, Aβ1-42 icv
injected rats, and a combination of both a pin and Aβ1-42 (pin+Aβ1-42)-treated rat model,
whereas it could correct the elevated anxiety only in the pin+Aβ1-42 model [166]. As a
result, long-term melatonin administration alleviates behavioral and cognitive deficits and
reduces Aβ aggregation and deposition, probably through promoting Aβ clearance via
glymphatic drainage [167–171]. Of note, about 95% of all patients with Alzheimer’s disease
have the sporadic, late-onset form, which demonstrate only reduced Aβ clearance [172].
Moreover, by using the molecule receptor saturation binding assay, melatonin is established
to bind with high specificity and affinity to β-amyloid [173]. Therefore, melatonin plays a
crucial role in protecting the brain from Aβ-induced neurotoxicity. Unfortunately, there is a
lack of convincing clinical evidence that suggests melatonin affects Aβ pathology. Most
trials in humans with Alzheimer’s disease focus on sleep quality and cognitive performance
after melatonin treatment.

Studies have shown plasma antioxidants enzyme activities are significantly decreased
in patients with mild cognitive impairment, which may be a prodromal stage of neurode-
generative diseases [174]. Moreover, the decline in cognitive function positively correlates
with the depletion of antioxidant defense [175]. Therefore, preventing and treating brain
oxidative damage, one of the earliest pathophysiological processes, necessitates an in-
creased antioxidant intake [176]. The antioxidant activities of the widely known hormone
melatonin and its brain metabolite AMK are well studied and documented in a lot of exper-
imental research papers on the topic of neurodegeneration. As a mitochondrially targeted
robust antioxidant and scavenger of toxic free radicals, melatonin mitigates oxidative stress
in the brain [164,166,177–182]. Decreased oxidative stress markers were also measured
in patients with Parkinson’s disease [183] and amyotrophic lateral sclerosis [184], after
melatonin administration. In addition, in the same placebo-controlled clinical trial, patients
with Parkinson’s disease treated with 25 mg melatonin for 12 weeks showed a significant
increase in mitochondrial complex I enzymatic activity, although membrane fluidity was
unaltered [183]. Another recent randomized clinical study on patients with Parkinson’s
evaluated the impact of melatonin supplementation (10 mg/24 h for 12 weeks) on total
antioxidant capacity (TAC) and total glutathione (GSH) levels. Melatonin supplementation,
in this study, resulted in a concomitant elevation of TAC and GSH, alongside improvements
in clinical and metabolic parameters [185].

Lately, many research data suggest a close relationship between oxidative stress and
impaired mitophagy function in the pathogenesis of major neurodegenerative diseases [186].
Transcription factor EB (TFEB) promotes mitophagy, by regulating the autophagosome–
lysosomal fusion and autophagosome formation [187]. TFEB-mediated mitophagy supports
the clearance of damaged mitochondria and the removal of excessive toxic radicals. A recent
study showed that melatonin, administrated for 3 months through drinking water, was able
to induce TFEB nuclear translocation, promote mitophagy, and increase mitophagy-related
protein PINK1 in the brains of APP/PS1-transgenic mice. Moreover, melatonin inhibited
NLRP3 inflammasome activation, decreased ROS levels, and improved cognitive function
in the same mouse model [188].
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6. Pharmacokinetics of Exogenous Melatonin and Clinical Administration

Oral formulations of melatonin show variability in its absorption and metabolism. The
bioavailability of orally supplemented melatonin ranges from 2.5% to 33% and the food de-
lays its absorption [189,190]. After oral administration melatonin undergoes extensive first-
pass hepatic metabolism that is regulated by cytochrome P450 oxidases [191]. Exogenous,
similar to endogenous melatonin, is metabolized mainly in the human liver but also in the
brain, skin, and lungs through various CYP1 isozymes, mostly CYP1A2 [62,192]. CYP1A2
shows higher activity in men that could cause gender differences after melatonin supple-
mentation [193]. Melatonin is degraded to 6-hydroxymelatonin and N-acetylserotonin
which are excreted in urine.

Melatonin is available as immediate, prolonged-release or a combined formulation
with a great variability in the doses. Immediate-release melatonin has a short half-life
(up to 1 h). Prolonged-release melatonin has longer half-life (about 4 h) and exhibits
more physiologic release in comparison to the pharmacologic delivery of immediate-
release formulations of melatonin. Both galenic forms are well tolerated [194]. Exogenous
melatonin has clinically proven beneficial chronobiotic effect, as well as its effectiveness
in primary insomnia [195,196]. Moreover, most data for efficacy and safety of long-term
administration of melatonin are based on its use in primary insomnia. It should be noted
that exogenous melatonin has a high safety profile and no rebound or suppression of
endogenous melatonin production following discontinuation are seen [197,198].

A possible link between cognitive decline and poor sleep quality has been suggested.
Therefore several clinical trials of melatonin supplementation were performed in neurode-
generative diseases [199]. In a placebo-controlled multicenter trial, melatonin administrated
for 6 months in 2 mg prolonged-release tablets demonstrated a significantly better cog-
nitive performance and sleep efficiency in patients with mild to moderate Alzheimer’s
disease [153]. Another trial with melatonin was performed in Parkinson’s disease patients
with poor sleep quality. After 4 weeks, the supplementation of 2 mg prolonged-release
melatonin showed beneficial effects on sleep disruption together with improved non-motor
symptoms and quality of life of these patients [200]. On the other hand, Gilat M et al. did
not find an effect of prolonged-release 4 mg melatonin for 8 weeks on rapid eye movement
sleep behavior of Parkinson’s disease patients [201].

7. Discussion and Conclusions

The goal of this review is to summarize the action of melatonin and its effects on aging
and degeneration of the brain.

Melatonin’s neuroprotection in various in vitro and animal models of neurodegenera-
tion could be explained by its potential antioxidant, anti-inflammatory, anti-Aβ aggregation
properties, by regulation of apoptosis, and protection of the cholinergic system (Scheme 2).

Numerous clinical trials also confirm melatonin’s beneficial effects in the retardation of
brain aging and in the neuroprotection of progressive neurodegenerative disorders, which
are frequently found with insomnia comorbidity. For optimal neuroprotective effects of
melatonin, early supplementation is crucial.

However, more targeted studies of melatonin supplementation in aged individuals
with signs of brain aging and neurodegeneration are needed and must be performed in the
future. This need for high-quality clinical trials is necessary for a comprehensive research
and for an evaluation of the effect of supplemented melatonin in different doses and
formulations to design the optimal effective treatment for retardation of neurodegeneration.
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Scheme 2. Schematic representation of the multifaceted action of melatonin and its final metabolites
in the key pathological processes of neurodegeneration. Aβ: amyloid-beta peptides; NF-κB: nuclear
factor kappa B; α7nAChR: alpha-7 nicotinic acetylcholine receptor; BACE1: beta-secretase 1; ROS:
reactive oxygen species; AMK: N1-acetyl-5-methoxykynuramine; AFMK: N1-acetyl-N2-formyl-5-
methoxykynuramine; AQP4: aquaporin-4; JAK2: janus kinase 2; SIRT1: sirtuin 1; PLC: phospholipase
C; PI3K: phosphoinositide 3-kinase; PIN1: peptidyl-prolyl cis-trans isomerase NIMA-interacting 1;
GSK3β: glycogen synthase kinase 3 beta; GABA: gamma-aminobutyric acid; MT1/MT2: melatonin
receptors 1 and 2; BDNF: brain-derived neurotrophic factor; TrkB: tropomyosin receptor kinase B;
CREB: cAMP response element-binding protein; mtDNA: mitochondrial DNA; mtMB: mitochondrial
membrane; OXPHOS: oxidative phosphorylation; τ-tangles: Tau protein tangles; cytC: cytochrome c;
[Aβ]I: amyloid beta internalized; DG: dentate gyrus.
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