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Abstract: Late-onset Alzheimer’s disease is the leading cause of dementia worldwide, accounting for
a growing burden of morbidity and mortality. Diagnosing Alzheimer’s disease before symptoms are
established is clinically challenging, but would provide therapeutic windows for disease-modifying
interventions. Blood biomarkers, including genetics, proteins and metabolites, are emerging as power-
ful predictors of Alzheimer’s disease at various timepoints within the disease course, including at the
preclinical stage. In this review, we discuss recent advances in such blood biomarkers for determining
disease risk. We highlight how leveraging polygenic risk scores, based on genome-wide association
studies, can help stratify individuals along their risk profile. We summarize studies analyzing protein
biomarkers, as well as report on recent proteomic- and metabolomic-based prediction models. Finally,
we discuss how a combination of multi-omic blood biomarkers can potentially be used in memory
clinics for diagnosis and to assess the dynamic risk an individual has for developing Alzheimer’s
disease dementia.
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1. Introduction

Late-onset Alzheimer’s disease (AD), the leading cause of dementia worldwide, is
projected to affect more than 150 million individuals globally by 2050, with the increase
mainly driven by population growth and ageing [1]. AD diagnosis is made clinically
based on a syndrome of progressive cognitive impairment, typically with a predominant
amnestic profile, though the constellation of symptoms can vary considerably. Diagnosis
can be supported with the use of biomarkers, such as those derived from biofluids and
brain imaging. However, there is significant global variation in the use of these ancillary
investigations partly due to the invasiveness of some tests, such as obtaining cerebral
spinal fluid (CSF), and the accessibility of advanced imaging including magnetic resonance
imaging (MRI) and positron emission tomography (PET) [2]. The clinical interpretation of
these biomarkers within different disease stages and in the setting of comorbid cerebral
disease also remains challenging. These barriers have thus far prevented the widespread
implementation of biomarkers into a unified diagnostic pathway for AD, though there is
a movement towards defining and diagnosing AD biologically through the presence of
biomarkers [3].

A rapidly expanding body of research has centered around using blood biomarkers
to diagnose AD. Blood tests offer a less invasive and more accessible means of assessing
biomarkers in patients, especially in the setting of frailty or where geographic or socioeco-
nomic factors prevent access to other biomarker technologies. Genetic analysis using blood
samples has also become more widely available due in part to the significant reduction in
costs and this has led to the identification of numerous genetic markers associated with
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AD risk. Technical advances have improved the detection of blood-based proteins and
metabolites implicated in AD, such as amyloid-beta (Aβ), tau species, branched-chain
amino acids and lipid subspecies [4]. Blood biomarkers have differing temporal profiles,
allowing for a more refined characterization of the disease course. They also offer the
potential to more accurately predict the risk of an individual developing AD than clinical
information alone; thereby, they provide opportunities for earlier diagnoses, improved
participant selection for clinical trials and appropriate use of emerging therapies.

In this review, we summarize the recent advances in genomic, proteomic and
metabolomic blood biomarkers for AD. We discuss how these types of blood biomarkers
can be leveraged to provide a dynamic understanding of AD risk in individuals as they
progress through the disease spectrum and respond to treatment. We also highlight how
multi-omic blood biomarkers could be incorporated into memory clinics to guide AD
diagnosis, especially as revised diagnostic criteria are likely to define AD by the presence
of these blood biomarkers [3].

Box | Definitions Related to Large Population Studies
Single-Nucleotide Polymorphisms (SNPs) | Single nucleotides that vary between

individuals, with each variation usually occurring at a frequency of >1% in a population.
Genome-wide Association Studies (GWASs) | Large-scale genome-wide SNP analyses

comparing variation frequencies between populations of individuals with the trait of
interest and populations of control individuals to statistically quantify associations between
the SNPs and the trait risk.

Heritability | Statistical value estimating the proportion of variation seen in a trait
that is due to genetic variation between individuals within a population.

Proxy Case | An individual who does not exhibit the trait but has at least one relative
(usually first degree) that is affected by the trait of interest and is treated as a case for the
purpose of GWASs.

Effect Size | Magnitude of the effect of a specific SNP on the studied trait.
Linkage Disequilibrium | Frequency of association of one allele with another nearby

allele in a population, with high linkage disequilibrium indicating an increased observed
frequency of association between the two alleles than what would be expected if alleles
were associated randomly.

Polygenic Risk Score (PRS) | Risk of trait quantified by sum of effect sizes across
multiple trait-associated SNPs.

Receiver Operating Characteristic (ROC) Curve | Curve generated by plotting the
true positive rate versus the false positive rate of a diagnostic model.

Area under the ROC Curve (AUC) | The calculated area represents the probability
that a diagnostic model provides a higher numerical value for a random positive case than
a random negative case.

2. Genetic Markers as a Measure of Baseline Risk

The genetic contribution to AD is substantial with heritability (see Box) estimated
to be between 60% and 80% based on twin-studies [5]. Early linkage studies in familial
Alzheimer’s disease identified a strong association with the apoliprotein E (APOE) ε4 allele
on chromosome 19 [6–8]. While this is the strongest associated locus for AD, accounting
for ~5% of the heritability [9] and a three- to four-fold increased risk [10], it is clear that
the APOE ε4 is not the only genetic contributor as roughly 50% of individuals with AD
do not carry the ε4 allele [11]. Moreover, the population frequency of the APOE ε4 allele
ranges from 0.05 to 0.30, decreasing with age but varying considerably by region and
ancestry [12–15]. These findings demonstrate the need to discern the ‘missing heritability’
of AD.

2.1. Genome-Wide Association Studies and Polygenic Risk Scores

Genome-wide association studies (GWASs) have allowed the identification of single
nucleotide polymorphisms (SNPs) associated with AD risk using case-control cohort stud-
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ies. While the initial GWAS, with only a few thousand cases and controls, confirmed the
association of the APOE locus [16], recent studies with substantially larger and overlapping
cohorts have implicated significantly more risk loci (Table 1) [17–21]. New risk loci have
been elucidated due to meta-analyses of previous large GWASs as well as including ‘proxy’
cases, in which individuals who are otherwise cognitively unaffected are considered AD
cases if either parent had AD [22]. In this way, an AD GWAS meta-analysis of 111,326 clini-
cal and ‘proxy’ AD cases and 677,663 controls of predominantly European ancestry found
75 risk loci, of which 42 were new compared to prior analyses [17]. Interestingly, the
genes associated with these risk loci cluster to cellular pathways related to Aβ, tau, lipids,
endocytosis and immunity, in line with the current understanding of AD neuropathology.

Table 1. Characteristics of recent Alzheimer’s disease genome-wide association studies [21].

Study Number of
Cases

Number of
Controls

Percentage of
Proxy Cases

Total Significant
Loci Identified

Novel Significant
Loci Identified

Bellenguez et al., 2022 [17] 111,326 677,663 42% 75 42

Wightman et al., 2021 [18] 90,338 1,036,225 52% 38 7

de Rojas et al., 2021 [19] 97,796 369,827 43% 35 6

Jansen et al., 2019 [22] 71,880 383,378 65% 29 13

Kunkle et al., 2019 [23] 34,274 59,163 0% 25 5

In addition to generating hypotheses about implicated genes and pathways in
AD [17,23], GWAS results can be leveraged to stratify individuals along their AD risk
based on their combination of SNPs through the use of polygenic risk scores (PRSs) [24].
The objective of PRSs is to predict an individual’s predisposition for a certain disease,
such as AD, by summing effect sizes, also known as odds ratios (ORs), of risk-associated
SNPs [25]. Therefore, the PRSs numerically represent a baseline risk of developing AD
based solely on an individual’s combination of genetic variants (Figure 1) [26]. An AD-
PRS based on 83 SNPs derived from the GWAS meta-analysis described above [17] is
significantly associated with risk of incident AD in prospective population-based cohorts
(hazard ratio [HR] = 1.93 [1.75–2.13 95% confidence interval]) as well as with the risk of
conversion from mild cognitive impairment (MCI) to AD over time (HR = 1.63 [1.42–1.87]).
Importantly, the AD-PRS risk is additive to that of age and APOE status, demonstrating
how risk prediction can be improved with the inclusion of polygenic information. In a
targeted study of over 2000 Swedish individuals over 70 years old, a 39-SNP AD-PRS
was associated with incident dementia in individuals who were APOE ε4 non-carriers
(HR = 1.22 [1.10–1.35], p = 2 × 10−4) [27]. With respect to APOE ε4 homozygosity, the
AD-PRS was significantly higher in individuals with young-onset Alzheimer’s disease
(onset before 65 years old) compared to individuals who were cognitively unimpaired and
older than 75 years (OR = 8.39 [2.0–35.2], p = 0.003) [28]. These findings further support the
previous observations that a substantial proportion of the genetic risk for AD is derived
from outside the APOE locus.

Information from GWASs can also be vital in designing clinical trials. Utilizing
GWAS data to construct a polygenic hazard score (PHS) enables prediction of the lifetime
trajectory of AD risk, even during the preclinical state (defined as having evidence of AD
neuropathology in the absence of symptoms or cognitive impairment), by indicating an
individual’s instantaneous risk of developing AD [25,29]. In a European-based cohort study,
non-APOE ε4 carriers with a PHS in the tenth decile had an AD age-of-onset 10 years earlier
than those in the first decile [30]. These findings were replicated in another European-based
cohort study, where those individuals in the top 5% for PHS had on average a 20-year
earlier age-of-onset compared to those in the bottom 5% for PHS [31]. In a prospective study
of asymptomatic Europeans, individuals in the sixth sextile for PHS developed AD roughly
8 years earlier than those in the first sextile [32]. Furthermore, individuals with MCI in the
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tenth decile of risk (based on AD-PRS, APOE, age and sex) had nearly a five-fold higher
rate of conversion to AD than those in the lowest decile [33]. These studies demonstrate
how GWAS data can inform genetic-based risk scores to predict instantaneous risk and to
estimate age-of-onset for AD.
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frequency based on the static genetic risk, to understand the trajectory of biomarker change and to 
develop a contemporaneous risk prediction. This will help identify those individuals in whom the 
blood biomarkers are rising quickly (solid red and yellow curves), compared to others in whom the 
change is more gradual (pink and green lines). With the onset of clinical disease (solid red curve), 
and potentially prior to the onset (solid yellow curve), treatment can be initiated, altering proteomic 
and metabolomic blood biomarker levels (dashed red and yellow curves). Depicted with the dashed 
lines is a treatment response that is reducing blood biomarker levels. 
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dows constraining clinical trials [34]. AD clinical trials usually enroll genetically hetero-
genous participants with genetic-based analyses typically performed in a post-hoc man-
ner, especially for the APOE genotype [35–37]. Such heterogeneity within the trial may 
have the unintended consequence of confounding the therapeutic effects, as seen in Par-
kinson’s disease [38]. Therefore, using polygenic scores to identify appropriate study par-
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Figure 1. Temporal changes in multi-omic blood biomarkers. At birth, an individual may have a
high (red) or low (yellow) static genetic risk for Alzheimer’s disease, which can be identified by
genomic profiling. After the onset of neurodegeneration, the dynamic risk for developing Alzheimer’s
disease can be assessed with proteomic and metabolomic profiles. Changes in blood biomarker levels
may be detected well before clinical disease onset, as shown with the rising solid red and yellow
curves. Proteomic and metabolomic levels can be reassessed over time, with assessment frequency
based on the static genetic risk, to understand the trajectory of biomarker change and to develop
a contemporaneous risk prediction. This will help identify those individuals in whom the blood
biomarkers are rising quickly (solid red and yellow curves), compared to others in whom the change
is more gradual (pink and green lines). With the onset of clinical disease (solid red curve), and
potentially prior to the onset (solid yellow curve), treatment can be initiated, altering proteomic and
metabolomic blood biomarker levels (dashed red and yellow curves). Depicted with the dashed lines
is a treatment response that is reducing blood biomarker levels.

2.2. Clinical Applications of Polygenic Risk Scores

Utilizing polygenic scores may help design more efficient clinical trials in AD, particu-
larly by overcoming the slow rates of cognitive decline and time-limited study windows
constraining clinical trials [34]. AD clinical trials usually enroll genetically heterogenous
participants with genetic-based analyses typically performed in a post-hoc manner, espe-
cially for the APOE genotype [35–37]. Such heterogeneity within the trial may have the
unintended consequence of confounding the therapeutic effects, as seen in Parkinson’s
disease [38]. Therefore, using polygenic scores to identify appropriate study participants
can help reduce the size and costs of clinical trials [39]. For example, by dichotomizing
individuals who have MCI at baseline using an AD-specific PHS30, clinical studies may
require up to 60% percent less participants by 3 years when they are limited to participants
with the 50% highest PHS risk [40]. However, when such a strategy is applied to individuals
with normal cognition at baseline, it is estimated that over 3 years are needed to observe a
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significant therapeutic effect. Moreover, when a PRS is applied to patients with established
AD, it can only account for a small amount of the variability seen in cognitive decline,
suggesting that the applicability of an AD-PRS in clinical trials depends heavily on where
the study population sits along the AD continuum [41].

The interaction between lifestyle and genetic factors affects the timing and risk of
developing AD [42,43]. While lifestyle changes alone will not completely eliminate AD
risk, they can potentially, partially mitigate the burden of having a high genetic risk. In
a prospective cohort study of individuals with European ancestry from the Rotterdam
Study, cognitively unimpaired individuals with a low to intermediate AD-PRS had a lower
risk of dementia when coupled with a favorable set of lifestyle factors (such as alcohol
abstinence, non-diabetic, healthy diet, social engagement and physical activity), compared
to an unfavorable profile of lifestyle factors [44]. However, in this study, the converse was
not true as a favorable lifestyle profile did not reduce the risk of cognitively unimpaired
individuals with a high score for AD-PRS. Contrastingly, in a separate retrospective study
of over 500,000 individuals from the UK Biobank, a high AD-PRS was ameliorated with
a healthy lifestyle compared to an unhealthy one (OR = 0.68 [0.51–0.90], p = 0.008) [45].
Of note, this study demonstrated that lifestyle factors did not vary considerably based on
the genetic risk, indicating that lifestyle factors and behaviors are not merely a proxy for
the genetic predisposition of AD but have independent associations with AD risk. When
looking at diet alone, a strong adherence to a Mediterranean diet is associated with a lower
dementia risk, irrespective of polygenic risk scores [46], though the association between
diet and cognitive decline is unclear [47]. These studies demonstrate emerging evidence, at
times conflicting, of the interaction between genetic and lifestyle risk factors for AD. More
work is needed in this area to further elucidate these relationships.

The cost-effectiveness of generating and utilizing an AD-PRS has not been well stud-
ied, partly due to the uncertainty of when to apply the PRS in individuals given the
long duration between the preclinical and symptomatic stages of AD. However, the
potential benefits of an AD-PRS can be extrapolated from studies demonstrating im-
proved resource allocation when a disease-specific PRS is applied to cardiovascular dis-
ease [48,49], and breast cancer [50]. Evidence of behavior change based on knowledge of
one’s PRS is seen with cardiovascular disease, where a healthy behavior change, albeit
slight, is more likely to be undertaken in those who knowingly have a high genetic risk
(OR = 1.10 [1.03–1.17, p = 0.044) [51]. A total of 97% of participants in this study believed
that genetic factors influenced disease risk, providing optimism for uptake by individuals
before symptom onset.

Caution is needed when applying PRSs to diverse populations, as the PRSs are mostly
derived from studies with an over-representation of individuals with European ancestry,
potentially limiting their applicability to non-European cohorts and increasing health
disparities in already under-resourced communities [52]. Large cohort studies such as
BioBank Japan [53], H3Africa [54] and China Kadoorie Biobank [55] are providing a broader
base for developing more equitable and applicable PRSs for various diseases. Supporting
a need for these diverse biobanks is a study that identified two novel loci not identified
in prior European-centric GWAS analyses by performing a multi-ancestry (of East Asian,
African American, Caribbean Hispanic populations and European) meta-analysis using
existing AD GWAS databases [56]. Bioinformatic methods are also being developed to
effectively apply existing PRSs derived from one ancestral group (such as European)
to more diverse study populations [57,58]. Using such techniques, an AD-PRS derived
from individuals with European ancestry demonstrated improved prediction in a Korean
population (OR = 1.95 [1.40–2.72], p < 0.001) [59]. These different lines of research will help
improve the transferability of existing PRSs, thereby addressing some of the research-based
societal inequalities inherent in genetic studies.

These types of studies clearly demonstrate that genetic information can be used
to develop a PRS to represent an individual’s genetic risk of developing AD over their
lifetime. This has the advantage of potentially identifying those at the highest genetic
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risk as early as birth as this is a static risk. Targeted intervention and resources, such as
lifestyle measures and earlier cognitive screening programs, can be considered in such
individuals to minimize the rate of cognitive decline and potentially abort disease progress.
However, this has important ethical and societal ramifications as the above genetic studies
have also shown that not all individuals with a high PRS develop AD (Figure 1). Therefore,
more dynamic and real-time blood biomarkers are needed to better stratify an individual’s
contemporaneous risk of developing AD.

3. Blood-Based Protein Biomarkers as a Measure of Dynamic Risk

While considerable progress has been made in uncovering the genetic architecture of
AD through large GWASs, the resulting PRSs represent a static risk that is embedded within
an individual’s genetics. The analysis of more dynamic biomarkers may provide further
insights into the real-time risk of AD at a particular stage of life (Figure 1). Technological
improvements in biomarker detection have led to improved utility for AD diagnosis.
In particular, ultrasensitive detection is possible with the use of single molecule array
(Simoa) and mass spectrometry, allowing for the quantification of ultralow concentrations
(pico- and femtomolar ranges) [4,60,61]. Blood levels of AD-implicated proteins such as
neurofilament light chain (NfL), Aβ and tau (including hyperphosphorylated species)
demonstrate strong concordance with CSF levels [62–64], thereby increasing their utility in
diagnosing AD. Potential applications of different protein blood biomarkers in assessing
AD risk are discussed below.

3.1. Neurofilament Light Chain

NfL is a cytoskeletal protein found predominantly in neuronal axons with a role in
axonal growth and stability, with CSF and blood levels increasing after axonal damage [65].
Elevated plasma NfL levels are detected in a wide range of neurodegenerative diseases [66]
including AD [67,68], frontotemporal dementia (FTD) [69], amyotrophic lateral sclero-
sis [70] and HIV-associated dementia [71]. However, NfL can also be elevated in acute
non-neurodegenerative causes of brain injury including stroke [72] and encephalitis [73],
highlighting that clinical context is important for biomarker interpretation. The role of
NfL may be in discriminating between neurological disorders and psychiatric disorders,
both of which can present with cognitive and memory dysfunction, a common clinical
dilemma [74,75].

The ‘real world’ utility of blood NfL levels for assessing AD risk has been studied
in memory clinics. In one prospective study of over 100 patients assessed in a tertiary
memory clinic, physicians found knowledge of serum NfL levels diagnostically useful
in patients under 62 years of age (60% useful) and in male patients (62% useful), as well
as in those with a diagnostic uncertainty (67% vs. 51% useful in those patients with no
diagnostic uncertainty) [76]. These findings were independent of knowledge of CSF NfL
levels, suggesting that there is growing confidence in the use of blood NfL levels amongst
physicians. Analysis of plasma NfL levels in over 550 patients with established diagnoses
in a retrospective memory clinic study also found higher values in those with neurode-
generative conditions compared to non-neurodegenerative conditions [77]. Moreover, the
increase in NfL levels correlates with the degree of cognitive impairment (higher levels
seen in dementia compared to those with MCI, which was in turn higher than those with
subjective cognitive impairment) [77–79]. However, the addition of plasma NfL levels to
a diagnostic model based on clinical factors (age, cognitive test scores and APOE status)
does not significantly increase the area under the receiver operating characteristic curve
(AUC, 0.83 [0.78–0.87] versus 0.81 [0.77–0.85] for a model without NfL levels) for dis-
criminating neurodegenerative from non-neurodegenerative conditions in patients with
established cognitive impairment, suggesting that knowledge of blood NfL level may not
be as relevant once substantial symptoms have developed [77]. Further, longitudinal blood
NfL levels are not predictive of conversion to AD [80,81].
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While NfL is emerging as an attractive biomarker for neurodegenerative conditions,
its low specificity reduces its ability to serve as an AD-specific biomarker [4,82]. Moreover,
cut-off values have not been well established for clinical use, though NfL levels increase
in an age-dependent manner [82,83] and age-adjusted models have been proposed [84].
Importantly, the effects of ancestry on normative values for NfL are unclear with conflicting
results [75,85–87]. These open questions need to be addressed before NfL can be used
robustly in a clinical setting to identify neurodegeneration [88].

3.2. Amyloid-Beta

Accumulation of Aβ plaques is a key component of AD pathology, with levels of
Aβ1-42 changing decades before symptom onset. While a decrease in Aβ1-42 levels within
the CSF has been robustly associated with AD [89], the association of blood levels was less
clear due to concentrations being up to 100-fold lower in blood compared to CSF. Early meta-
analyses of blood Aβ1-42 levels measured using plate-based immunoassays such as ELISA
did not find significant differences between AD and healthy controls [90]. Measurements
using mass spectrometry demonstrate a stronger correlation between plasma and CSF
Aβ1-42 levels [91,92], suggesting that earlier equivocal results for Aβ likely reflect techno-
logical challenges rather than true pathobiology. Still, plasma Aβ levels and robustness
differ significantly based on the assay used, limiting widespread uptake as a useful clinical
blood biomarker [91].

To assess how plasma Aβ1-42 may serve as a biomarker for AD risk, a subgroup
analysis of the Rotterdam study of over 450 older individuals (mean age of 68 years)
found that lower plasma Aβ1-42 levels were associated with increased dementia incidence
(HR = 1.27 [1.02–1.58]), especially among those individuals that were non-APOE ε4 carriers
(HR = 1.47 [1.09–1.99]) [93]. In older individuals with subjective cognitive concerns but
without a dementia diagnosis on the initial visit, a lower plasma Aβ42/40 ratio (value of
Aβ1-42/Aβ1-40) demonstrated a steeper cognitive decline over a median follow-up of
3.9 years compared to those individuals with a higher Aβ42/40 ratio [94,95]. A lower
plasma Aβ42/40 ratio is also seen in individuals with MCI who develop dementia com-
pared to those who do not [96]. Moreover, individuals with the highest Aβ42/40 ratio
have a significantly lower dementia risk (HR 0.52 [0.31–0.86]) over a 3-year period. Of note,
plasma levels of Aβ (either as Aβ1-42, Aβ1-40 or Aβ42/40 ratio) do not significantly differ
along the AD continuum (from cognitively unimpaired Aβ+ individuals to MCI to AD),
indicating that it may not be useful in prognosticating disease progression [81,97].

As discussed above, Aβ deposition within the brain starts well before symptom onset.
Detecting deposition non-invasively in vivo is possible with Aβ-PET emerging as a pow-
erful imaging tool [98]. While diagnostically sensitive, Aβ-PET is resource intensive and
not easily accessible in many countries. Plasma Aβ1-42 levels show excellent performance
characteristics with high AUC values (above 0.9) in predicting Aβ-PET levels [99,100].
Consequently, new and efficient investigation pathways can be developed for individuals
suspected for AD. For example, by using plasma Aβ to screen individuals with cognitive
concerns and only proceeding to a Aβ-PET scan if plasma levels are abnormal, there would
be over a 50% reduction in the number of PET scans needed to diagnose AD via PET
imaging [101,102]. These findings highlight the potential role of blood Aβ measurements as
a population-screening tool for AD, especially in those populations with a lower prevalence
of AD.

Aβ deposition is not restricted to AD and is detected in non-AD causes of dementia,
including dementia with Lewy bodies (DLB), Parkinson’s disease dementia (PDD), FTD
and vascular dementia (VaD). In these non-AD cases, Aβ levels, as measured by Aβ-PET,
also increase with age and APOE ε4 carrier status but vary in cortical distribution relative
to the underlying dementia diagnosis [103,104]. With respect to blood biomarkers, plasma
Aβ levels also vary amongst non-AD dementia types and may be higher in VaD compared
to AD [105–108]. However, it is not well established how accurately blood Aβ levels, either
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as Aβ1-42 or as Aβ42/40, can discriminate between dementia subtypes early in the disease
process and studies are needed to further investigate this.

3.3. Tau

Tau tangles, like Aβ, are a quintessential feature of AD, with tau-hyperphosphorylation
leading to significant pathology [109]. Total-tau (t-tau) increases in the CSF and plasma
following various causes of neuronal injury such as ischemic stroke and cardiac injury, as
well as in neurodegenerative conditions including AD, DLB and FTD. The non-specific
nature of elevated t-tau limits its ability to discriminate between AD and non-AD dementia.

In contrast to CSF, blood t-tau levels reflect production from the central nervous system
(CNS) as well as from peripheral tissues (such as liver, heart and kidney), explaining why
blood t-tau levels are not considered diagnostic. Given that only one-fifth of plasma
t-tau originates from the CNS [110], assays that specifically measure brain-derived tau
levels are needed. By exploiting the fact that peripherally derived tau contains exon 4a,
which is not found in CNS-derived tau109, a unique tau antibody has been developed to
specifically measure plasma levels of brain-derived t-tau (BD-tau) [111]. Using this antibody,
BD-tau levels correlate with CSF t-tau levels and are able to differentiate between autopsy-
confirmed AD vs. non-AD cases (AUC = 0.86 [0.76–0.97]). When tested in memory clinics,
BD-tau analysis is able to differentiate AD from non-AD neurodegenerative causes with
AUC ranging from 0.78 (for progressive supranuclear palsy) to 0.99 (for the agrammatic
variant of primary progressive aphasia due to a progranulin mutation).

In addition to t-tau and BD-tau, there are nearly 100 known post-translational modifi-
cations of tau [109]. Some of the tau species are phosphorylated at unique threonine sites
(p-tau) and have been found to be highly specific for AD [112,113]. The role of these p-tau
species in AD prediction is highlighted below.

3.3.1. P-Tau181

Tau phosphorylated at threonine 181 (p-tau181) is one of the most studied tau species
in AD. Using mass spectrometry and ultra-sensitive immunoassays, blood p-tau181 levels
can differentiate between cognitively unimpaired individuals and those that have MCI
or AD. In a prospective cohort study of 589 individuals from the Swedish BioFINDER
cohort, plasma p-tau181 levels were strongly correlated with CSF p-tau181 levels, Aβ-PET
and tau-PET [114]. Plasma p-tau181 was elevated in preclinical AD cases (individuals
who were cognitively normal but with Aβ-PET positivity), and was able to discriminate
between AD and non-AD dementia cases (AUC = 0.94 [0.90–0.99]). Similarly, in a retro-
spective North American cohort study of over 400 individuals, plasma p-tau181 levels
were 3.5-fold higher in AD than cognitively unimpaired individuals and successfully dis-
criminated between both clinically diagnosed and autopsy-confirmed AD and FTD cases
(AUC = 0.87–0.89) [115]. The discriminatory power of blood p-tau181 was again demon-
strated in a UK cohort of [115] individuals (AUC = 0.97 [0.94–1.00], autopsy-confirmed
AD vs. non-AD dementia) [116] as well in separate North American and Swedish cohorts,
with an AUC = 0.83–1.00 for AD vs. FTD and AUC = 0.92 for clinically diagnosed AD vs.
VaD [117]. Importantly, p-tau181 tracks along the AD continuum (as measured by CSF
Aβ levels and Aβ-PET load) and with cognitive decline, further supporting its role as a
dynamic AD risk marker [81,97].

The robustness of plasma p-tau181 across ancestries was demonstrated by a prospec-
tive Spanish cohort study of 349 individuals (AUC = 0.96 for clinically diagnosed AD
vs. cognitively unimpaired individuals) [118] and in a small Thai cohort study of 51 in-
dividuals (AUC = 0.84 [0.73–0.94]) [119]. However, p-tau181 performance was reduced
among non-Hispanic White Americans (AUC = 0.69 [0.59–0.80]) and Black Ame-
ricans (AUC = 0.63 [0.51–0.74]), and was considerably lower in Hispanic Americans
(AUC = 0.51 [0.40–0.64]) [120]. More studies are needed to assess the generalizability of
plasma p-tau181 amongst patients with different ancestral backgrounds.
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3.3.2. P-Tau217

Other phosphorylated tau species are being investigated for their ability to discrimi-
nate between AD and non-AD dementia along the disease continuum. One such species
is p-tau217 (phosphorylated at threonine 217), which has demonstrated improved per-
formance in CSF, compared to CSF p-tau181, in distinguishing clinically diagnosed AD
from non-AD dementia [121,122]. Similarly, plasma p-tau217 has also been found to better
discriminate between autopsy-confirmed AD and non-AD cases (AUC = 0.89 [0.81–0.97])
compared to plasma p-tau181 (AUC = 0.72 [0.60–0.84]) [123]. Similarly, p-tau217 was shown
to be superior to p-tau181 in discriminating between clinically diagnosed AD and non-AD
cases (p-tau217 AUC = 0.96 [0.93–0.98], p-tau181 AUC = 0.81 [0.74–0.87], p < 0.001) as well
as being more specific for Aβ-PET positivity than p-tau181 [110]. The specificity of p-tau217
for AD compared to other neurodegenerative tauopathies is further supported by a North
American multicohort study where p-tau217 differentiated clinically diagnosed AD from
FTD, with an AUC = 0.93 (0.91–0.96), compared to an AUC = 0.91 (0.88–0.94) for p-tau181
(p = 0.01) [124]. With respect to p-tau performances amongst individuals from different an-
cestral backgrounds, similar to p-tau181, plasma p-tau217 performed better in non-Hispanic
White Americans (AUC = 0.71 [0.61–0.82]) and Black Americans (AUC = 0.68 [0.57–0.78]),
but had a poor performance in Hispanic Americans (AUC = 0.52 [0.40–0.64]), considerably
lower accuracy than those seen in European studies [120].

With respect to PET imaging, plasma p-tau217 levels can distinguish cognitively unim-
paired individuals who are Aβ-PET positive from Aβ-PET negative cognitively unimpaired
individuals even when the former individuals’ tau-PET scans are negative in the entorhinal
cortex, a region involved early in AD-related tau pathology [125]. Furthermore, individuals
with negative tau-PET imaging within the entorhinal cortex demonstrate a 2.2% increase per
year of tracer uptake if they have higher baseline levels of plasma p-tau217. Interestingly,
plasma p-tau217 levels in PSEN1 E280A mutation carriers (a form of autosomal dominant
Alzheimer’s disease) are significantly altered at 24.9 years of age compared to non-carriers,
which is approximately 20 years earlier than the expected age for symptom onset within
the PSEN1 mutation carrier population [123]. This finding has been replicated in another
cohort of cognitively unimpaired PSEN1 E280A mutation carriers, where plasma p-tau217
levels are higher compared to non-carriers and predict a higher burden of Aβ and tau as
measured using PET imaging [126].

P-tau217 is also associated with AD progression risk. In cognitively unimpaired
individuals who are Aβ-PET positive, a higher baseline plasma p-tau217 level confers
an increased risk of conversion to clinically defined AD over a median follow-up time
of 6 years (HR = 2.03 [1.57–2.63], p < 0.001]) [127]. Longitudinal plasma p-tau217 mea-
surements demonstrate a greater increase in individuals with MCI who convert to AD
compared to those who did not [128]. These studies demonstrate the potential utility of
p-tau217 in identifying individuals at risk for AD well before symptoms and PET imaging
changes emerge.

3.3.3. P-Tau231

P-tau231 (phosphorylated at threonine 231) is emerging as another potential blood
biomarker which is highly sensitive for AD. Using a newly developed ultra-sensitive Simoa
assay, p-tau231 was detected in all clinical stages of AD, including in individuals with MCI
and sub-threshold signals in Aβ-PET, with levels increasing alongside disease progres-
sion [129]. Plasma p-tau231 is also seen in the early stages of AD and able to differentiate
between Braak 0 (no deposition of Aβ plaque) and Braak I-II (Aβ plaque confined to the
transentorhinal region) stages, which has not been observed with p-tau181 [129,130]. How-
ever, plasma p-tau231 is similar to p-tau181 in differentiating between AD and non-AD
neurodegenerative cases, including limbic age-related TDP-43 encephalopathy and hip-
pocampal sclerosis, both of which can clinically present similarly to AD [130,131]. Further
studies are needed to elucidate the role of p-tau231 in dynamic AD risk profiling and how
it differs from the other p-tau species.
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These studies highlight that novel blood tau antibody development, including different
assay systems that target known p-tau species [132], can further improve the utility of p-tau
and brain-specific tau as sensitive blood biomarkers for AD prediction.

3.4. YKL-40

The role of neuroinflammation in AD is becoming increasingly recognized [133]. YKL-
40, also known as chitinase 3-like protein 1 (CHI3L1), is a highly conserved acute-phase
glycoprotein involved in inflammation-activated remodeling and may be an indicator
of neuroinflammation, but its exact function within the brain is not completely under-
stood [134]. Interest in YKL-40 as a biomarker for AD was generated by early studies that
found higher CSF YKL-40 levels in those with MCI and mild AD compared to cognitively
unimpaired individuals; these levels also correlated well with CSF Aβ and p-tau181 [135].
Similarly, blood YKL-40 levels are higher in individuals with AD compared to healthy con-
trol, with levels increasing with disease severity [136–139]. Interestingly, CHI3L1-associated
SNPs correlated with blood protein levels and AD risk in a Han Chinese population [136].
Blood YKL-40 levels are also negatively correlated with structural (regional volume and
cortical thickness) MRI changes in individuals with AD, but not with cognitive decline,
suggesting it may serve as a generic marker of neurodegeneration [138,140,141]. The ex-
act association of blood YKL-40 and AD needs further study as prospective analyses in
cognitively unimpaired individuals suggest higher levels may be potentially protective
(with reduced Aβ accumulation and improved cognitive testing) [142], while other studies
suggest YKL-40 as a detrimental marker [143,144] and possibly specific to certain ethnic
groups [145].

3.5. Soluble Triggering Receptor Expressed on Myeloid Cells 2

Triggering receptor expressed on myeloid cells 2 (TREM2) is a transmembrane receptor
expressed in many immune-related cells, including CNS microglia [146]. Rare SNPs in this
gene are second only to APOE in terms of magnitude of associated genetic risk of AD, with
the R47H variant of TREM2 increasing AD risk two- to three-fold [147,148]. While there
has been immense interest in TREM2 with respect to the pathogenesis of AD, its use as a
peripheral biomarker has been recently proposed given the finding of an increase in blood
TREM2 expression in AD patients compared to those cognitively unimpaired [149,150].
However, the association of AD status with levels of the soluble form of TREM2 (sTREM2)
within the CSF and blood is inconsistent, possibly reflecting technological challenges in
detecting this protein [151–155]. Considerably more work is needed to determine if TREM2
and/or sTREM2 are robust biomarkers for AD risk.

3.6. Glial Fibrillary Acidic Protein

Glial fibrillary acidic protein (GFAP) is an abundant intermediate filament cytoskeletal
protein highly expressed in astrocytes, with a role in neuro-inflammation and astrocyte
reactivity. As such, GFAP’s use as an AD blood biomarker is promising as higher levels
are found in individuals with AD compared to those cognitively unimpaired [156,157]
and MCI [158]. Moreover, plasma GFAP levels predict conversion to AD in indivi-
duals with MCI over a 5 year period, independent of APOE ε4 status and age
(AUC = 0.84 [0.77–0.91]) [159]. Plasma GFAP levels also correlate with Aβ-PET positiv-
ity [160,161], but not tau-PET [162,163], and can more accurately reflect CNS Aβ levels
than other markers of inflammation such as YKL-40 or sTREM2 [162]. Interestingly, plasma
GFAP may discriminate Aβ-PET positivity better than CSF GFAP (plasma AUC = 0.69–0.86
vs. CSF AUC = 0.59–0.76), as well as demonstrating a higher magnitude of change along
the AD continuum [164]. Of note, a rise in plasma GFAP levels is also seen in Lewy body
dementia [157] and FTD [165], suggesting that plasma GFAP levels are reflective of the re-
active astrogliosis occurring in neurodegeneration more broadly. Nonetheless, the growing
importance of GFAP in AD risk is evidenced by its potential inclusion in revised diagnostic
criteria for AD [3].
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3.7. Comparing Blood-Based Protein Biomarkers as Risk Predictors

As blood biomarkers demonstrate improved diagnostic performance, a natural ques-
tion arises as to which of these protein biomarker(s) is/are most powerful in identifying
AD risk. Recent studies have compared the various biomarkers at different stages along
the AD continuum (Table 2). With the increasing rate of publications in this field, publicly
available databases such as AlzBiomarker [166] provide updated biomarker meta-analyses,
allowing for comparisons of multiple proteins of interest.

Table 2. Illustrative performance comparisons of blood protein biomarkers for classifying Alzheimer’s
disease from recent large studies.

Disease
Comparison Study Blood Biomarker Performance (AUC [95% Confidence Interval Range])

GFAP
0.79 (0.69–0.89)

NfL
0.61 (0.47–0.74)

t-tau
0.61 (0.48–0.75)

p-tau181
0.74 (0.63–0.85)

p-tau231
0.77 (0.68–0.87)Preclinical AD vs.

CU

Chatterjee et al.,
2022 [167]

(n = 95) p < 0.005 p < 0.05 vs. GFAP Not significant vs. GFAP
p-tau181

0.91 (0.86–0.96)
NfL

0.82 (0.79–0.92)
GFAP

0.69 (0.57–0.77)
t-tau

0.70 (0.61–0.79)
Aβ42/40

0.67 (0.58–0.76)AD vs. CU
Simren et al., 2021 [158]

(n = 202) p < 0.001 Not significant vs. p-tau181
p-tau181

0.77 (0.61–0.84)
Aβ42/40

0.67 (0.51–0.82)
NfL

0.62 (0.45–0.78)
t-tau

0.60 (0.42–0.79)
GFAP

0.61 (0.54–0.72)
MCI Conversion

to AD vs.
Non-Conversion

Simren et al., 2021 [158]
(n = 107) p < 0.05 Not significant vs. p-tau181

p-tau217
0.93 (0.91–0.96)

p-tau181
0.91 (0.88–0.94)AD vs. FTD

Thijssen et al.,
2021 [124]
(n = 349) p = 0.01

p-tau217
0.89 (0.81–0.97)

p-tau181
0.72 (0.60–0.84)AD vs. non-AD

Dementia

Palmqvist et al., 2020
[123]

(n = 81) p = 0.04

Bolded blood protein biomarkers are those significant compared to biomarkers in grey boxes. AD, Alzheimer’s
disease; CU, cognitively unimpaired; MCI, mild cognitive impairment; FTD, frontotemporal dementia; AUC, area
under the ROC curve; GFAP, glial fibrillary acidic protein; NfL, neurofilament light chain; t-tau, total tau; p-tau,
phosphor-tau; Aβ, amyloid-β.

In a study of over 300 individuals of European background, plasma p-tau181 outper-
formed other blood biomarkers (GFAP, NfL, t-tau and Aβ42/40) when dis-
tinguishing between clinically diagnosed AD and cognitively unimpaired individuals
(AUC = 0.91 [0.86–0.96] vs. AUC = 0.67–0.82 for other blood biomarkers) as well between
individuals with MCI who converted to AD and those who did not (AUC = 0.77 [0.61–0.84]
vs. AUC = 0.60–0.67 for other blood biomarkers) [158]. Interestingly, combining p-tau181
with the other biomarkers did not increase the diagnostic accuracy in this study. Con-
trastingly, three separate observational cross-sectional studies totaling over 800 indi-
viduals with North American and European backgrounds found no significant diffe-
rence in diagnostic accuracy of AD between p-tau181 (AUC 0.67–0.87) and GFAP
(AUC 0.69–0.86) [164]. In preclinical AD (defined as Aβ-PET positive with normal cog-
nitive profiles), GFAP (AUC = 0.79 [0.69–0.89]) was also not statistically different to p-
tau181 (AUC = 0.74 [0.63–0.85]) in discriminating against Aβ-PET negative cognitively
unimpaired individuals [167]. In a prospective study of over 110 Swedish and North
American preclinical AD individuals, plasma p-tau217 was superior to p-tau181, p-tau231
and GFAP in predicting cognitive decline [127].

Predicting levels of amyloid burden, a risk factor for AD development, is important
to facilitate screening of preclinical AD individuals. Plasma p-tau217 and p-tau231 are
emerging as potential blood biomarkers for detecting low but abnormal levels of amyloid
burden (as quantified by Aβ-PET), compared to p-tau181, GFAP and NfL. The 168 Plasma
p-tau231 levels are abnormal at a significantly lower Aβ-PET Centiloids (26.4) than p-tau217
(35.4 Centiloids). The Centiloid scale is a standardized metric for the amyloid signal in
Aβ-PET imaging, with 30 Centiloids considered to a cut-off for Aβ-PET positivity. Both
p-tau217 and p-tau231 also demonstrate the strongest association with disease progression
(compared to p-tau181, GFAP and NfL) [168]. Interestingly, p-tau231 is significantly ele-
vated at lower thresholds of Aβ-PET Centiloids compared to p-tau217, p-tau181, GFAP
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and NfL [169]. However, it is p-tau217, and not p-tau231, that demonstrates longitudinal
changes (over 4 years) that are correlated with AD progression. These findings suggest that
p-tau231 may be useful in identifying at-risk individuals for AD early in the disease process,
while p-tau217 is useful in tracking disease progression, both of which have implications
for dynamic AD risk profiling.

Other combinations of blood biomarkers demonstrate limited utility. In cognitively
unimpaired individuals, a biomarker combination of plasma p-tau181 and p-tau217 along
with the APOE genotype is not significantly better at predicting conversion to AD
(AUC = 0.88 [0.82–0.95]) compared to p-tau181 alone (AUC = 0.84 [0.77–0.92]) [170]. In
individuals with MCI, a combination of p-tau181, p-tau217 and Aβ42/40 ratio more ac-
curately predicts AD conversion (AUC = 0.87 [0.82–0.92]) compared to that of any single
biomarker, but it was not statistically different than a model with five blood biomarkers
(p-tau181, p-tau217, Aβ42/40, NfL and APOE ε4 status) with an AUC = 0.89 [0.85–0.93]
(p = 0.10) [170]. A combination of p-tau217 levels and Aβ42/40 ratio measured in ante-
mortem plasma strongly predicts AD amyloid and tau load in postmortem analysis with
an AUC = 0.89 [0.82–0.96], but not significantly better than p-tau217 alone (p = 0.124) [171].
While further studies are needed, these findings suggest that simply testing more biomark-
ers will not necessarily improve diagnostic accuracy. Instead, in order to maximize the
predictive power of the test, selecting the appropriate biomarker(s) may depend on the
stage along the AD continuum at which an individual is being assessed [172].

3.8. Dynamic Changes in Blood-Based Protein Biomarkers in Response to Anti-Amyloid Therapy

The emergence of anti-amyloid therapies is making disease modification in AD a
possibility. Three monoclonal antibodies (aducanumab, lecanemab and donanemab) tar-
geting various Aβ species demonstrate a slowing in progression in early clinical stages
of AD, with lecanemab demonstrating up to a 35% reduction in the rate of cognitive de-
cline [173–175]. While the main biomarkers used in these studies included Aβ-PET, plasma
blood biomarkers were used as exploratory endpoints and showed dynamic changes in
response to anti-amyloid therapies. For example, a steady increase in plasma Aβ42/40
ratio and decrease in p-tau181 and GFAP were observed with lecanemab treatment com-
pared to placebo; a lesser magnitude of change was observed with plasma NfL [175]. With
donanemab, there was nearly a one-third reduction in levels of p-tau217 and a one-sixth re-
duction in levels of GFAP compared to placebo [174,176]. Similarly, high-dose aducanumab
led to a 20% reduction in levels of p-tau181 compared to placebo [173]. While these stud-
ies have demonstrated how blood biomarkers can be used to monitor for responses to
anti-amyloid therapy (Figure 1), it is unclear if blood biomarkers further change (in either
direction) after therapy is discontinued, indicating remission or progression of AD pathol-
ogy, and how these changes correspond to AD symptom progression. Nonetheless, the
new anti-amyloid therapies are facilitating a paradigm shift in how blood biomarkers are
helping to understand AD pathology and treatment. Such a shift in the utilization of blood
biomarkers may also shed light on the effects of existing treatments, such as cholinesterase
inhibitors and memantine, as well as molecules currently under investigation—an area of
research where insufficient data exist [177,178].

4. The Metabolomic Profile as a Dynamic Risk Predictor

Age, sex and APOE ε4 genotype are not only some of the strongest risk factors for AD,
but also have a significant role in metabolism [179], thus, implicating metabolic pathways
in AD [180]. Neuropathological examination of brains with AD demonstrates metabolite
dysregulation, indicating a potential role for the metabolome as a risk marker for AD [181].
Large population studies show that metabolic profiles are able to improve prediction
models for all-cause dementia [182] and that profiles assessed at midlife correlate with
dementia risk over the subsequent 20 years [183].

An emerging area of research is whether metabolite profiles can be leveraged to
distinguish AD from other conditions. A panel of 11 metabolites (Table 3) measured in blood
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was able to identify individuals with AD from non-AD causes of dementia (PDD, FTD,
DLB and VaD) as well as from cognitively unimpaired individuals in a replication cohort
of over 300 Chinese individuals, with an AUC of 0.96–0.97 (p < 0.001) [184]. While each of
the 11 metabolites was differentially distributed between AD and cognitively unimpaired
individuals (p < 0.001), the diagnostic ability of each metabolite was much lower than
the 11 metabolite panel, with the former having AUCs between 0.63 and 0.73. Similarly,
an 8 metabolite index score, derived using machine-learning, was able to discriminate
between individuals with MCI that progress to AD and those that remained stable over a
3- to 5-year period [185]. Further evidence of the improved AD risk prognostication was
provided through a pilot study that demonstrated increased diagnostic accuracy for MCI
and AD using a model incorporating a broad metabolomic panel (AUC = 0.95) compared
to baseline models consisting of only age, sex and APOE ε4 status (AUC = 0.72–0.79) [186].

Table 3. List of 11 replicated metabolites associated with Alzheimer’s disease compared to cognitively
unimpaired individuals [184].

Direction Change Metabolite

Increased level associated with higher risk

Glycerophosphocholine
Aspartic acid

Hydroxypalmitic acid
Choline

Decreased level associated with higher risk

Hexanoylcarnitine AcCa (6:0)
4-Decenoylcarnitine AcCa (10:1)

Tetradecadiencarnitine AcCa (14:2)
Piperine

Decanoylcarnitine AcCa (10:0)
L-Acetylcarnitine

Serotonin
AcCa, acylcarnitine.

Branched-chain amino acids (leucine, isoleucine and valine) are associated with AD
risk, with lower blood levels of circulating branched-chain amino acids corresponding to
higher AD risk [187–189]. Interestingly, the blood levels of these amino acids are largely
determined by dietary intake, so the biological significance of lower levels seen in AD is
unclear and may represent a nutritional and/or metabolic impact on AD. Lipid species
profiles have also been interrogated, given the altered metabolism and lipid-associated
GWAS loci noted in individuals with AD [17,22,190]. A meta-analysis of metabolites from
1912 individuals found that an addition of 10 species representative of different lipid
clusters to a prediction model consisting of age, sex, body mass index and APOE ε4 status
improved the diagnostic accuracy for AD cases compared to controls [191]. Similarly,
specific lipid subspecies predicted risk of progression in individuals with MCI compared to
preclinical AD individuals (with increased CSF p-tau/Aβ1-42 ratio), even when adjusted
for APOE ε4 status (HR = 1.97–1.99) [192]. Interestingly, these effects are sex-dependent
with different lipid subspecies profiles predicting progression risk according to sex. Other
subclasses of metabolites, such as acylcarnitines [193] and sphingolipids [194], are also
associated with AD risk and conversion from MCI, but further work is needed to clarify
these findings.

Metabolites may reflect more subtle changes due to AD pathology compared to
protein biomarkers as the former represents the combined influence of genetic, protein and
environmental factors and are more adept at crossing the blood–brain barrier. However,
given the complexities of the mass spectrometry technology needed to measure metabolites,
resulting in heterogenous results, the regular use of metabolites as part of AD work-up
needs further validation and feasibility studies [195]. Metabolites may also have a role in
assessing participants in clinical trials, especially for response to treatments, but research in
this area is lacking.
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5. Large-Scale Proteomic Studies Predict Alzheimer’s Disease Risk

As discussed above, specific proteins such as p-tau species and Aβ provide strong
predictive power for AD-risk. Soley focusing on the blood levels of these proteins may
confound how the response to AD therapies, such as with anti-amyloid and potentially anti-
tau antibodies, is interpreted; ideally, blood biomarkers that are not targets of such therapies
should be used to monitor for therapy effects. Large-scale proteomic studies have been
performed to help identify such non-targeted protein blood biomarkers. Moreover, as seen
with genomic and metabolomic studies, unbiased proteomic studies can be leveraged to
quantify AD risk. Proteomic studies performed in blood are motivated by promising results
found using CSF and postmortem brain tissue [196,197] as well as studies showing that
midlife proteomic signatures predicted all-cause dementia diagnosed 15 years later [198].

Meta-analyses of proteomic studies have identified various proteins associated with
AD, compared to cognitively unimpaired individuals, but none of these proteins were indi-
vidually able to effectively differentiate between MCI and AD or predict conversion from
MCI to AD [199–201]. Interestingly, a panel of seven proteins was able to predict the AT(N)
status (indicated by the presence of Aβ, tau or other markers of neurodegeneration) of Eu-
ropean individuals when combined with age and APOE ε4 status (AUC = 0.83 [0.82–0.84])
compared to a model using only age and APOE ε4 status (p < 0.05) [202]. In comparing pro-
teomic panels to conventional AD blood biomarkers (Aβ, p-tau181 and NfL), a 19-protein
panel is more accurate in diagnosing AD compared to cognitively unimpaired individuals
(AUC = 0.98 for protein panel and 0.87 for traditional blood biomarkers, p < 0.001) in Hong
Kong Chinese individuals [203]. Furthermore, the 19-protein panel correlates with AD
progression as measured by plasma p-tau181 and cognitive scores. In a separate Swedish
BioFINDER study, a large 74-protein panel classified AD from cognitively unimpaired indi-
viduals (AUC = 0.94 [0.87–0.98]) and a 53-protein panel predicted MCI among Aβ-positive
individuals (AUC = 0.78 [0.68–0.87]) but did not predict MCI in Aβ-negative individu-
als, suggesting a unique proteomic profile related to both Aβ deposition and cognitive
impairment [204].

In a large proteomic analysis of 931 plasma proteins from 105 individuals with AD
and 254 healthy controls, 26 proteins were associated with AD with 16 of them also present
in the brain and the CSF proteome; of these, 9 proteins have been replicated in external
datasets [205]. Incorporation of these 9 proteins (Table 4) in a prediction model including
age and sex yielded an AUC of 0.79, similar to a model using CSF p-tau/Aβ42/40 ratio
(AUC = 0.82, p > 0.05). Interestingly, a prediction model based on 21 plasma proteins
was able to accurately distinguish individuals with AD and TREM2 genetic variants from
non-TREM2 AD cases (AUC = 0.90), which was considerably more powerful than using
the CSF p-tau/Aβ42/40 ratio (AUC = 0.63, p = 1.5 × 10−4). This study illustrates that
proteomic studies which do not include conventional AD protein biomarkers can accurately
predict AD as well as identify individuals who may be harboring high-risk genetic variants,
such as those affecting TREM2.

Compared to the more conventional protein blood biomarkers including Aβ and p-tau,
knowledge of the temporal changes seen in the AD continuum using blood proteomics
is relatively nascent. Nonetheless, there is evidence that such temporal profiles can be
developed to help predict AD progression based on findings from the CSF proteome. In
the CSF proteome, extracellular matrix-associated proteins and synaptic proteins steadily
become abnormal throughout disease progression while levels of proteins involved in
glycolytic metabolism and stress responses are more dynamic [206]. Whether a similar
temporal profile is also seen in the blood proteome is yet to be determined but may be
important in capturing the dynamic changes along the AD continuum.

As with metabolomic studies, there are also limitations with proteomic studies. First,
they both utilise mass spectrometry, resulting in the potential for heterogenous results
given the variability inherent in this type of technology. Second, as the measurements
typically result in relative abundance values, rather than true quantification, it is difficult to
interpret values across different studies. Consequently, defining cut-off values for abnormal
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levels of metabolites and proteins is not straightforward. Finally, as both metabolomic and
proteomic approaches are untargeted, it may be difficult to find biological plausibility for
certain results. Moreover, findings may be heavily influenced by confounders (both known
and unknown), thereby requiring extensive validation studies to increase confidence in
and transferability of the results.

Table 4. List of 9 replicated plasma proteins predictive of Alzheimer’s disease [205].

Protein Full Name p-Value AD vs. CU

ERK-1 Mitogen-activated protein kinase 3 1.79 × 10−9

BARK1 Beta-adrenergic receptor kinase 1 2.13 × 10−8

GNS N-acetylglucosamine-6-sulfatase 4.10 × 10−7

CAMK2D Calcium/calmodulin-dependent protein kinase type II subunit delta 7.65 × 10−7

CDON Cell adhesion molecule-related/down-regulated by oncogenes 2.25 × 10−6

HMG-1 High mobility group protein B1 6.76 × 10−6

tPA Tissue-type plasminogen activator 1.22 × 10−5

RELT Tumor necrosis factor receptor superfamily member 19L 1.94 × 10−5

Integrin α1β1 Integrin alpha-I: beta-1 complex 1.44 × 10−4

AD, Alzheimer’s disease; CU, cognitively unimpaired.

6. Integrating Blood-Based Biomarkers in Memory Clinics

Establishing the utility of blood biomarkers in ‘real world’ clinical practice is necessary
to improve patient care. The appropriate use guidelines for blood biomarkers such plasma
p-tau, Aβ, NfL and GFAP are available [207] and are being updated based on recent
findings [3]. Currently, it is recommended these biomarkers should only be used in
symptomatic individuals with follow-up confirmatory testing using CSF or PET studies.
Further studies are needed to help refine the appropriate use of these blood biomarkers
without the need of follow-up invasive and costly testing, especially as a panel of markers
for patients with undifferentiated symptoms visiting memory clinics.

To this effect, in a pilot study of nearly 30 participants visiting memory clinics in the
UK, the average duration from blood collection to plasma p-tau181 results was 3 months,
indicating a reasonable turnaround time [208]. Moreover, the p-tau181 result was un-
derstandable for 93% of clinicians and it informed AD diagnosis in 44% of cases. In
a separate study of 51 patients attending a specialized Thai memory clinic, plasma p-
tau181 collection and analysis was less expensive and just as accurate as an Aβ-PET scan
(AUC = 0.84 [0.73–0.94]), indicating a more feasible means to measure biomarkers in this
community [119]. Similarly, in a prospective study of over 350 patients attending a Span-
ish memory clinic, plasma p-tau181 demonstrated Class I evidence for correlation with
AD [118]. Moreover, by taking a multi-omics approach and incorporating an AD-PRS with
plasma p-tau181, prediction of Aβ-PET status improved from 68% (for p-tau181 alone) to
88% (p = 0.001) [209]. Similarly, the prediction accuracy of the underlying cause of cognitive
impairment in individuals from specialized memory clinics followed over a 4-year period
was higher with a diagnostic model combining p-tau217 or p-tau181 with cognitive tests
and APOE status (AUC 0.90 [0.86–0.94]), compared to predictions made by memory clinic
specialists (AUC 0.72 [0.65–0.78], p < 0.001) [210]. These studies indicate that incorporating
blood biomarkers into the clinical work-up of patients with cognitive symptoms is feasible
and improves diagnostic accuracy.

Unlike participants in research studies, patients in memory clinics are more diverse
with a wider range of co-morbidities and ethnicities. Studies have shown an increase in
plasma biomarkers levels in cognitively unimpaired individuals with various medical
conditions [211–213]. For example, in a large community-based cohort of over 1300 par-
ticipants, levels of plasma p-tau181 and p-tau217 were associated with body mass index,
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chronic kidney disease, hypertension and prior stroke and myocardial infarction, even
when levels were adjusted for age, sex and Aβ status [214]. Plasma NfL and GFAP levels
also correlated with renal function [215,216]. Interestingly, while individual biomarkers
can be affected by renal function, use of ratios, in particular that of p-tau217 to total-tau217,
is less sensitive to renal impairment and correlates with AD [217]. Overall, co-morbidities,
especially renal impairment, affect how biomarker values are interpreted for AD diagno-
sis [218]. Another variable in clinic patients is their fasting status with studies showing that
blood biomarkers are strongly affected by the postprandial status [219,220].

The influence of ancestral background on protein blood biomarkers is not clear yet.
Plasma Aβ42/40 ratio is more robust than p-tau181, NfL and p-tau231 when comparing
AUC values for association with brain Aβ levels in African Americans, different than
what is reported in European populations [221]. Some studies have found that levels of
these biomarkers differ significantly amongst African Americans, non-White Hispanics
and Latino Americans while others found non-significant differences [86,222,223].

It is clear that variabilities inherent to patients in memory clinics, compared to partici-
pants in research studies, can significantly impact blood biomarker results. Further research
with a diverse population is desperately needed to clarify preliminary findings as well as
determine clinically appropriate cut-off values for blood biomarkers based on confounders
such as co-morbidities, ethnicity and fasting status. There is also an equally important
and outstanding question about which assays for blood biomarkers are most robust in the
clinical settings. Many studies with head-to-head comparisons between different assays,
including retest variability, have recently been published [169,224–228], and offer insights
into this question. However, a consensus testing method has not yet been established.

7. Discussion and Future Directions

There has been an explosion of studies delineating blood biomarkers in AD, largely
driven by improved technology, lower costs and increased access. Genomic, proteomic
and metabolomic biomarkers have all demonstrated the ability to characterize AD risk
and discriminate from other causes of dementia with a high degree of accuracy within the
tested populations. Furthermore, each type of ‘omic’ data contributes uniquely to the AD
risk with PRS capturing the static and baseline risk, while proteomics and metabolomics
represent a more dynamic risk profile along the AD continuum. With this ‘multi-omic’
risk stratification approach, individuals can theoretically be stratified initially along their
genetic risk for AD, with high-risk individuals following a different paradigm of clinical
and biomarker assessments than those with low genetic risk. However, prospective cohort
studies are needed to evaluate and validate this model of a personalized diagnostic pathway
for AD diagnosis and risk stratification. In particular, testing these biomarkers in more
diverse populations, especially with respect to ethnicity and co-morbidities, is crucial to
widely implementing biomarker-based assessments in memory clinics. Early results in
this area are promising and provide hope for an integrated ‘multi-omics’ approach to AD
risk prediction.

8. Search Methodology

PubMed was searched for articles, including advanced online publications published
up until 28 September 2023, using the following search terms “Alzheimer’s disease”,
“genome wide association studies”, “polygenic risk scores”, “blood biomarkers”, “p-tau”,
“amyloid beta”, “neurofilament light chain”, “glial fibrillary acidic protein”, “YKL-40”,
“TREM2”, “proteome”, “metabolome” and “memory clinic”. Full versions of review and
original articles were assessed for appropriateness. References were also examined to
identify additional articles not identified using the search terms listed.
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