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Abstract: In the setting of pronounced inflammation, changes in the epithelium may overlap with
neoplasia, often rendering it impossible to establish a diagnosis with certainty in daily clinical practice.
Here, we discuss the underlying molecular mechanisms driving tissue response during persistent
inflammatory signaling along with the potential association with cancer in the gastrointestinal tract,
pancreas, extrahepatic bile ducts, and liver. We highlight the histopathological challenges encountered
in the diagnosis of chronic inflammation in routine practice and pinpoint tissue-based biomarkers
that could complement morphology to differentiate reactive from dysplastic or cancerous lesions. We
refer to the advantages and limitations of existing biomarkers employing immunohistochemistry
and point to promising new markers, including the generation of novel antibodies targeting mutant
proteins, miRNAs, and array assays. Advancements in experimental models, including mouse and
3D models, have improved our understanding of tissue response. The integration of digital pathology
along with artificial intelligence may also complement routine visual inspections. Navigating through
tissue responses in various chronic inflammatory contexts will help us develop novel and reliable
biomarkers that will improve diagnostic decisions and ultimately patient treatment.

Keywords: inflammation; tissue response; reactive atypia; dysplasia; cancer; immunohistochemistry;
biomarkers; molecular biology; digital pathology; artificial intelligence; pathology
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1. Introduction

“we will take inflammation, which is universally admitted to be the most important
phenomenon in pathology”—E. Metchnikoff.

Inflammation comes from the Latin word inflammare meaning “to set on fire”. It is a
physiological response of innate and adaptive immunity to noxious stimuli such as infection
and tissue damage. Clinically, acute inflammation begins within seconds to minutes and is
characterized by five cardinal signs: rubor (redness), tumor (swelling), calor (heat), and
dolor (pain), identified by C. Celsus in the 1st century A.D., and functio laesa (loss of
function) documented in the 19th century by R. Virchow [1]. In the late 19th and early 20th
century, A.V. Waller, F.D. von Recklinghausen, J.F. Conheihm, E. Metchnikoff, and T. Lewis
addressed the vascular and cellular changes in inflammation, characterized by increased
vascular permeability, leukocyte recruitment, and accumulation, providing insight into the
microscopic events that occur during the inflammatory response. Along this line, a key
histological feature of acute response is the migration of polymorphonuclear neutrophils,
which dominate the area of injury within 24 h. A successful inflammatory response is
coupled with the resolution of inflammation and tissue repair. To effectively mitigate the
acute inflammatory response, proinflammatory signaling pathways are counterbalanced by
anti-inflammatory mediators that favor the return of homeostasis [2]. Notably, resolution
programs are initiated shortly after the inflammatory response begins to prevent collateral
tissue damage [2,3]. Inadequate resolution of inflammation shifts basal homeostasis to a
state of persistent inflammation [4]. In chronically inflamed tissues, various immune and
non-immune stromal cells engage in complex and ill-defined sustained interactions with the
parenchymal cells. Key orchestrators in the choreography of chronic inflammation include
transcription factors (such as Nuclear factor-kappa B (NF-κB)), cytokines, chemokines,
adhesion molecules, angiogenic factors, growth factors, matrix-remodeling proteases,
reactive oxygen and nitrogen species (RONS), and enzymes in the prostaglandin synthase
pathway such as Cyclooxygenase 2 (COX2) [5,6]. In this context, chronicity triggers both
beneficial and maladaptive tissue responses. For instance, in the context of persistent
inflammatory conditions, parenchymal cells adapt to irritant stimuli by changing their
identity, as exemplified by intestinal metaplasia in the esophagus or stomach, and squamous
metaplasia in the lung airway [7]. Metaplasia, a Greek word meaning “to mold into a new
form”, is defined as the conversion of one differentiated cell type to another, which is not
normally present in a specific organ. Despite short-term benefits, such tissue adaptive
responses can result in harmful long-term effects; metaplasia can be a precursor to the
dysplasia–cancer sequence [7].

The first observation associating inflammation with cancer was attributed to R. Vir-
chow, who claimed that the presence of “lymphoreticular infiltration of tumors” reflects the
origin of cancer in a background of persistent inflammation [8]. Epidemiological studies
have shown that chronic inflammation is associated with increased cancer incidence in
the corresponding organs [6,9]. Inflammation is the denominator between cancer and
common cancer-causing agents, including tobacco smoking, obesity, and environmental
pollutants [10]. Moreover, certain infectious agents may establish a persistent infection
within the host, which in turn promotes chronic inflammation and may induce cancer
initiation [11]. An estimated 13% of all cancer cases (excluding non-melanoma skin cancers)
are attributed to infectious agents [12]. Notably, increased levels of circulating inflam-
matory markers, such as C-reactive protein (CRP), are associated with an elevated risk
of cancer in the breast, ovaries, colon, lungs, and prostate [13]. In 2011, Hanahan and
Weinberg introduced the term “tumor-promoting inflammation” as an enabling charac-
teristic, appreciating the impact of persistent inflammation on the acquisition of several
cancer hallmarks by incipient cells [14]. Briefly, long-term exposure to inflammatory medi-
ators leads to the accumulation of genetic and epigenetic changes that alter key cellular
homeostatic pathways and enhance cancer development. Excellent reviews describing the
underlying mechanisms of inflammation-associated carcinogenesis in detail can be found
elsewhere [5,9,15–17].
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Here, we elaborate on the tissue responses to sustained inflammatory signals in differ-
ent organs and their potential association with cancer. While the morphological alterations
are well described, the underlying molecular mechanisms involved in tissue adaptation re-
main poorly defined. We pinpoint the histopathological challenges encountered in chronic
inflammatory settings and refer to tissue-based biomarkers that could help differentiate re-
active atypia from true dysplasia and cancer. As, in the setting of pronounced inflammation,
changes in the epithelium may overlap with neoplasia, often rendering it impossible to es-
tablish a diagnosis with certainty, deciphering the deregulation of tissue integrity in chronic
inflammation offers unlimited opportunities to develop novel tissue-based biomarkers
with clinical utility.

2. Tissue Response during Chronic Inflammation and Diagnostic Dilemmas

This section summarizes clinically significant histopathological responses in different
chronic inflammatory settings, focusing on the gastrointestinal tract, pancreas, gallbladder,
extrahepatic bile ducts and liver, integrating the current knowledge of the underlying
molecular events. The risk of cancer in different organs is also highlighted.

2.1. Gastrointestinal Tract

Chronic inflammation of the mouth and esophagus stratified squamous epithelium and
of the gastric and intestinal simple columnar epithelium can trigger tissue-specific adaptations.

2.1.1. Mouth

Pseudoepitheliomatous hyperplasia (PEH) is the reactive proliferation of epithelial
cells lining the oral mucosa and epidermis in response to different irritating stimuli, in-
cluding chronic inflammatory conditions [18]. Histologically, PEH in the oral mucosa is
characterized by hyperkeratotic, irregular, infiltrative tongue-like cords or nests of squa-
mous cells extending into the dermis with a pseudo-invasion pattern, often associated with
inflammatory cell infiltration. Due to histopathological similarities with well-differentiated
squamous cell carcinoma (SCC), the diagnosis of PEH can be challenging, especially in
superficial or misoriented biopsies (Figure 1A). The histological features that favor the di-
agnosis of SCC include marked nuclear atypia, numerous mitoses, atypical mitotic figures,
necrosis, and epithelial invasion deep into the underlying connective and muscle tissues.
However, the presence of nuclear atypia and typical mitoses in PEH hampers diagnostic
accuracy. On the other hand, the co-existence of inflammatory, infectious, malignant, or
traumatic backgrounds favors PEH. In difficult cases, several biopsies are necessary for a
definitive diagnosis.

Understanding the etiopathogenesis of PEH may help arrive at a correct diagnosis and
avoid unnecessary interventions. Accumulating evidence suggests the involvement of the
epidermal growth factor receptor (EGFR)–epidermal growth factor (EGF) axis, fibroblast
growth factor 7 (FGF7), stem cell factor–c-kit receptor axis, transcription growth factor α
(TGFα), transcription growth factor β1 (TGFβ1), and T helper type I cytokines, namely
interferon γ (INFγ) and TNFα (tumor necrosis factor α) through autocrine and paracrine
pathways in PEH pathogenesis [19–21]. A unique molecular signature has been identified
in PEH and cutaneous SCC, including 703 differentially expressed genes between the
two entities [22]. Interestingly, the most significant differences were found in metabolic
pathways, including oxidative phosphorylation and polyamine biosynthesis, providing
insight into the pathogenesis of PEH and SCC, which may aid in differential diagnosis and
serve as potential targets for therapeutic interventions.



Int. J. Mol. Sci. 2024, 25, 1251 4 of 30

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 4 of 32 
 

 

providing insight into the pathogenesis of PEH and SCC, which may aid in differential 

diagnosis and serve as potential targets for therapeutic interventions. 

 

Figure 1. Tissue response upon chronic injury in the gastrointestinal tract. (A). Representative he-

matoxylin and eosin (H&E) staining micrograph from the oral mucosa showing pseudoepitheliom-

atous hyperplasia, visualized by epithelial hyperplasia along with irregular infiltrative tongue-like 

cords of squamous cells. The latter extend into the dermis with a pseudo-invasion pattern (arrow-

heads) and are accompanied by a marked inflammatory infiltrate. Periodic Acid Schiff (PAS) reac-

tion micrograph highlights hyphae (arrows), supporting a fungal infection. Scale bar: 400 μm 

(H&E); 20 μm (PAS) (B). Representative hematoxylin and eosin (H&E) staining micrograph of 

esophageal mucosa with Barrett’s esophagus; notice the presence of intestinal metaplasia character-

ized by mucin-secreting goblet cells staining intensely blue with Alcian blue (AB). Scale bar: 100 μm 

(upper photo); 20 μm (lower photo). Downregulation of the squamous cell marker TAp63 and SRY 

(sex-determining region Y)-box 2 (SOX2), along with upregulation of the intestinal markers Caudal-

type homeobox 2 (CDX2) and SRY (sex-determining region Y)-box 9 (SOX9), promote reprogram-

ming of squamous cells into columnar epithelium (C). Representative hematoxylin and eosin (H&E) 

staining micrograph of gastric mucosa with intestinal complete (type I) (lower part) and incomplete 

(type II) (upper part) metaplasia; notice the presence of mucin-secreting goblet cells stained in-

tensely blue with Alcian blue (AB). Mucin 2 (MUC2) along with CDX2 drives intestinal metaplasia 

phenotype. Scale bar: 100 μm (upper photo); 20 μm (lower photo). (D). Area indefinite for dysplasia 

in colonic biopsy in the setting of active inflammation due to inflammatory bowel disease. R-spon-

din-Wnt/β-catenin-LGR5 axis plays an essential role for the maintenance and expansion of intestinal 

stem crypt base cells; β-catenin transcriptionally induces Leucine-rich repeat-containing G protein-

coupled receptor 5 (LGR5), while it represses MUC2 that is associated with loss of mucin. Arrows 

depict neutrophils; arrowheads demonstrate mitotic figures. Scale bar: 100 μm (upper photo); 20 

μm (lower photo). 

2.1.2. Esophagus 

Chronic gastroesophageal reflux of gastric acid and bile leads to mucosal injury as-

sociated with inflammation, creating a permissive environment for intestinal metaplasia, 

also known as Barrett’s esophagus (BE). The latter is determined by the replacement of 

differentiated squamous epithelial cells with columnar epithelium and goblet cells, as part 

of the wound-healing process (Figure 1B) [7]. Experimental data show that the glandular 

epithelium has a proliferative advantage over squamous epithelium in an acidic environ-

ment, arguing for the short-term benefits of this tissue response [23]. 

The potential origins for metaplasia in BE are the basal cells of squamous epithelium, 

residual embryonic cells, transitional basal cells at the gastro-esophageal junction, gastric 

gland cells and the esophageal submucosal glands [23]. To date, there has been a lack of 

experimental models to prove the source of esophageal metaplasia. Mechanistically, ac-

cumulating evidence demonstrates that repeated injury of the esophageal epithelium 

Figure 1. Tissue response upon chronic injury in the gastrointestinal tract. (A). Representative hema-
toxylin and eosin (H&E) staining micrograph from the oral mucosa showing pseudoepitheliomatous
hyperplasia, visualized by epithelial hyperplasia along with irregular infiltrative tongue-like cords
of squamous cells. The latter extend into the dermis with a pseudo-invasion pattern (arrowheads)
and are accompanied by a marked inflammatory infiltrate. Periodic Acid Schiff (PAS) reaction
micrograph highlights hyphae (arrows), supporting a fungal infection. Scale bar: 400 µm (H&E);
20 µm (PAS) (B). Representative hematoxylin and eosin (H&E) staining micrograph of esophageal
mucosa with Barrett’s esophagus; notice the presence of intestinal metaplasia characterized by mucin-
secreting goblet cells staining intensely blue with Alcian blue (AB). Scale bar: 100 µm (upper photo);
20 µm (lower photo). Downregulation of the squamous cell marker TAp63 and SRY (sex-determining
region Y)-box 2 (SOX2), along with upregulation of the intestinal markers Caudal-type homeobox 2
(CDX2) and SRY (sex-determining region Y)-box 9 (SOX9), promote reprogramming of squamous
cells into columnar epithelium (C). Representative hematoxylin and eosin (H&E) staining micrograph
of gastric mucosa with intestinal complete (type I) (lower part) and incomplete (type II) (upper part)
metaplasia; notice the presence of mucin-secreting goblet cells stained intensely blue with Alcian blue
(AB). Mucin 2 (MUC2) along with CDX2 drives intestinal metaplasia phenotype. Scale bar: 100 µm
(upper photo); 20 µm (lower photo). (D). Area indefinite for dysplasia in colonic biopsy in the setting
of active inflammation due to inflammatory bowel disease. R-spondin-Wnt/β-catenin-LGR5 axis
plays an essential role for the maintenance and expansion of intestinal stem crypt base cells; β-catenin
transcriptionally induces Leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5), while
it represses MUC2 that is associated with loss of mucin. Arrows depict neutrophils; arrowheads
demonstrate mitotic figures. Scale bar: 100 µm (upper photo); 20 µm (lower photo).

2.1.2. Esophagus

Chronic gastroesophageal reflux of gastric acid and bile leads to mucosal injury
associated with inflammation, creating a permissive environment for intestinal metaplasia,
also known as Barrett’s esophagus (BE). The latter is determined by the replacement
of differentiated squamous epithelial cells with columnar epithelium and goblet cells,
as part of the wound-healing process (Figure 1B) [7]. Experimental data show that the
glandular epithelium has a proliferative advantage over squamous epithelium in an acidic
environment, arguing for the short-term benefits of this tissue response [23].

The potential origins for metaplasia in BE are the basal cells of squamous epithelium,
residual embryonic cells, transitional basal cells at the gastro-esophageal junction, gastric
gland cells and the esophageal submucosal glands [23]. To date, there has been a lack
of experimental models to prove the source of esophageal metaplasia. Mechanistically,
accumulating evidence demonstrates that repeated injury of the esophageal epithelium
deregulates key transcription factors implicated in esophageal embryogenesis. Downreg-
ulation of the squamous cell marker TAp63, a p53 human homolog of p63, retains the
N-terminal activation domain, and SRY (sex-determining region Y)-box 2 (SOX2), along
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with upregulation of the intestinal markers Caudal-type homeobox 2 (CDX2) and SRY
(sex-determining region Y)-box 9 (SOX9), favors the reprogramming of squamous cells
into the columnar epithelium [24] (Figure 1B). BE is a major risk factor for esophageal
adenocarcinoma; the annual risk for esophageal cancer increases up to 6% in patients with
BE who develop high-grade dysplasia [25].

2.1.3. Stomach

Prolonged inflammation in the stomach (also known as chronic gastritis) is triggered
by environmental (such as Helicobacter pylori infection) or autoimmune damage of the
gastric mucosa. Failure of the injured gastric glands to regenerate progressively leads to
fibrosis, resulting in gastric atrophy. Within this context, certain metaplastic changes can
occur, including intestinal, pyloric, pseudo-pyloric, and pancreatic acinar metaplasia [26].
Intestinal metaplasia refers to the replacement of the gastric mucosa by small bowel epithe-
lium with a brush border (complete (type I)) or the large bowel epithelium without a brush
border (incomplete (type II)) (Figure 1C). Type I intestinal metaplasia is characterized by
gain of intestinal type mucin 2 (MUC2) expression and absence or decreased expression of
gastric-related mucins mucin 1 (MUC1), mucin 5AC (MUC5AC), and mucin 6 (MUC6) [27].
On the other hand, in type II intestinal metaplasia, MUC2 is co-expressed with the gastric-
related mucins (Figure 1C). Concerning gastric intestinal metaplasia pathogenesis, the
causative role of intestinal transcription factors caudal-type homeobox 1 (CDX1) and CDX2
has been appreciated [28] (Figure 1C). Interestingly, intestinal metaplasia is stable even
after resolution of inflammation [27]. According to the Correa model, gastric atrophy and
intestinal metaplasia are precursors of gastric adenocarcinoma; therefore, it is important to
detect these lesions to identify at-risk patients [29]. The presence of incomplete intestinal
metaplasia increases the cancer risk [30]. In pyloric metaplasia, the normally occurring
fundic-type glands are replaced by mucus-secreting glands expressing MUC6, while they
are negative for pepsinogen I, which is normally expressed by chief cells in the gastric
oxyntic region. In pseudo-pyloric metaplasia, the metaplastic glands stain positive for
both MUC6 and pepsinogen I [31]. Studies in animal models of acute parietal cell loss
have revealed another type of metaplasia known as spasmolytic polypeptide-expressing
metaplasia (SPEM). During parietal cell loss, IL-33 is released by foveolar epithelial cells
and stromal cells, including alternatively activated macrophages (also known as M2), up-
regulating type II cytokines (including IL-4 and IL-13), which in turn favors SPEM [32].
Transdifferentiation of chief cells into SPEMs is associated with upregulation of trefoil
factor family 2 (TFF2) and CD44 variant 9 (CD44v9) [32]. During SPEM, the expression of
genes related to the secretory phenotype (such as secreting digestive enzymes) is scaled
down, while genes related to wound repair are scaled up [33]. This process exhibits striking
similarities with acinar-to-ductal pancreatic metaplasia (ADM, analyzed below). In hu-
mans, SPEM is found in the fundus of Helicobacter pylori related gastritis and in the mucosa
adjacent to dysplasia-carcinoma areas [32,34]. Pancreatic acinar metaplasia is found in less
than 1% of patients with chronic gastritis and is often associated with Helicobacter pylori
infection [35]. It is more frequent in the antrum than in the corpus and comprises clusters of
pancreatic acinar cell-like cells, along with exocrine cells with basophilic cytoplasm that are
positive for B-cell lymphoma/leukemia (BCL-10) and α-amylase. There is no conclusive
evidence linking pancreatic acinar metaplasia with cancer risk.

2.1.4. Colon

Chronic and relapsing mucosal tissue damage followed by wound healing is a key
feature of Inflammatory bowel disease (IBD), which presents as Crohn’s colitis (CC) and
ulcerative colitis (UC) [36]. Severe intestinal inflammation leads to epithelial loss and
degradation of the extracellular matrix, which is clinically evident as erosions or ulcers.
Tissue regeneration is compromised by recurrent damage. Consistent morphological mark-
ers of chronic injury include crypt architectural distortion, basal plasmacytosis, diffused
mixed lymphoplasmacytic infiltrate within the lamina propria, basal lymphoid aggregates,
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pyloric metaplasia, distal Paneth cell metaplasia and fibrosis [37]. Crypt architectural
distortion which is frequently observed, is considered a hallmark of chronic injury, and
reflects the presence of ongoing inflammation or regeneration with neo-formation of crypts.
It is characterized by irregularly arranged, branched, dilated, or shortened crypts, such as
L-shaped or T-inverted crypts, often adjacent to colonic ulcers [38].

During intestinal inflammation and tissue damage, quiescent stem cells residing at
the bottom of the crypt, along with progenitor and terminally differentiated cells that
re-enter the cell cycle promote intestinal [39]. Mechanistically, the secretion of inflammatory
mediators, including TNFα, induces Wingless-related integration site (Wnt)/β-catenin
signaling, which in turn favors mucosal healing [40,41]. The Wnt/β-catenin pathway is a
key regulator of intestinal homeostasis, regulating the stem cell compartment and favoring
maintenance of the proliferating zone [42]. Intestinal stem cells residing in the bottom crypt
express Leukine-rich repeat-containing G protein-coupled receptor 5 (Lgr5), a receptor for
a family of Wnt agonists called R-spondins secreted by mesenchymal and Paneth cells.
Lgr5 is also a direct downstream target of Wnt/β-catenin signaling [41,43]. Collectively,
the R-spondin-Wnt/β-catenin-LGR5 axis is essential for the maintenance and expansion
of intestinal stem crypt base cells; pathway inhibition leads to the loss of Lgr5+ crypt
base columnar cells, while R-spondin administration improves tissue regeneration [41,42]
(Figure 1D). Interestingly, evidence supports that Lgr5 potentiates Wnt/β-catenin signaling
forming a positive loop [44]. Moreover, β-catenin signaling downregulates MUC-2, an
abundantly expressed mucoprotein produced by goblet cells in the intestine [45] (Figure 1D).
The latter is in line with the fact that in active UC, goblet cells are reduced, and the remaining
goblet cells cannot efficiently synthesize MUC-2 [46], which is associated with defective
mucus secretion and barrier formation.

Gut fibrosis is a common complication of repetitive tissue injury in IBD. Fibrosis
accounts for approximately 50% of Crohn’s disease and less than 11% of UC cases [47].
Cytokines, growth factors, and intestinal microorganisms activate myofibroblasts, thereby
enhancing intestinal fibrosis. During intestinal fibrosis, the equilibrium between anti-
inflammatory matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs) is
deregulated. Increased expression of TIMP1 along with upregulation of fibroblast activation
protein (FAP), plasminogen activator inhibitor 1 (PAI-1), and Cadherin-11 favors the fibrotic
process [47].

Anatomical extent, duration of colitis, and severity of inflammation are well-established
risk factors for colorectal cancer development in patients with IBD [48]. Colitis-associated
cancer (CAC) develops through a chronic inflammation–dysplasia–carcinoma sequence [49].
Importantly, the differentiation of reactive dysplasia from true dysplasia in the setting of
chronic active inflammation can be challenging. Regenerating intestinal epithelium often
shows mucin loss, enlarged hyperchromatic nuclei with prominent nucleoli, nuclear strat-
ification, and increased mitotic figures, mimicking true dysplasia (Figure 1D). Epithelial
surface maturation and lack of atypical mitotic figures in the setting of active inflammation
favors the diagnosis of reactive lesion. Interestingly, gross genomic alterations, such as
DNA aneuploidy, can be widespread in the intestinal mucosa in the absence of dysplasia,
identifying a subset of IBD patients that require more intense surveillance [50]. When
a definite diagnosis cannot be established with certainty, cases are classified as “indefi-
nite for dysplasia” [51]. Notably, in a retrospective analysis, IBD patients with mucosal
changes classified as indefinite for dysplasia had an increased risk of CAC, underscoring
the importance of colorectal neoplasia surveillance [51].

2.2. Pancreas

The pancreas is a gland that includes both exocrine and endocrine components, and
mainly consists of epithelial elements, that is, acini, ducts, and islets of Langerhans, with
minimal intralobular stroma. Chronic pancreatitis (CP) is a fibroinflammatory disorder
characterized by progressive fibrotic destruction of the pancreatic parenchyma, leading
to exocrine and endocrine insufficiency [52]. Fibrosis, atrophy, and duct changes are
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hallmarks of CP; however, there are no specific histological features to distinguish the
different etiologies of CP [53]. Interlobular and intralobular fibrosis accompanied by acinar
loss, distortion, and dilatation of ducts, along with calcification and pseudocysts (cavities
lacking an epithelial lining), are histological characteristics of CP. Although lymphocytic
aggregates may be present, the inflammatory infiltrate is scant.

The exact mechanism underlying CP pathogenesis is not well understood. It has
been postulated that chronic injury leads to cell death and subsequent release of cytokines,
including fibrogenic platelet-derived growth factor (PDGF) and TGFβ1, which in turn
activate the pancreatic stellate cells (PSCs) [54]. Quiescent PSCs are resident cells of the
pancreas that contain retinoid lipid droplets, express vimentin and glial fibrillary acidic
protein (GFAP), and possess stem cell/progenitor features [54]. Activated PSCs acquire
features of myofibroblast-like cells; they express α smooth muscle antigen (αSMA), produce
extracellular matrix such as collagen type I and III, laminin, and fibronectin, and secrete
cytokines. The latter promotes the recruitment of additional inflammatory cells, fueling
a feed-forward loop of pancreatitis identified by a stiff fibrotic tissue. Other factors, such
as alcohol consumption, oxidative stress, and hypoxic conditions can directly activate
PSCs [55]. Accumulating evidence suggests that activation of the mitogen-activated protein
kinase (MAPK) signaling pathway in PSCs promotes proinflammatory cytokine production,
fibrosis, and ADM (analyzed below). On the other hand, systemic inhibition of MAPK
signaling attenuates fibrosis and inflammation while compromising tissue regeneration [56].
Interestingly, treatment with the Peroxisome proliferator-activated receptor-γ (PPAR-γ)
ligand troglitazone inhibited PSC activation, suggesting that PPAR-γ signaling can be
utilized therapeutically in CP [57].

During chronic pancreatic injury, acinar cells may undergo ADM [53,58]. Acinar
cells appear to be more sensitive to irritating stimuli than other pancreatic cell lineages,
suggesting that ADM represents an adaptive tissue response to CP [59]. Experimental
evidence has demonstrated that during ADM, acinar cells revert to a less differentiated
and more proliferating state, giving rise to duct-like cells. Morphologically, the ADM
structure contains both acinar-like and duct-like cells that retain cell polarity and co-express
acinar-specific digestive enzymes (such as amylase elastase and trypsin) and duct markers
including mucin, cytokeratin 19 (CK19), and SOX9 [60]. Furthermore, the pancreatic pro-
genitor markers pancreatic and duodenal homeobox 1 (Pdx1), β-catenin, and Notch are
upregulated in ADM [59] (Figure 2). Therefore, the term metaplasia may be misleading
because there are no mature duct structures. Hence, ADM cannot be considered a pure
trans-differentiation event, as it is also accompanied by a dedifferentiated phenotype. To
this end, Willet et al. [61] introduced the term paligenosis (originating from the Greek
pali (again), gen (birth), and osis (process)) to describe this process of reversion from a
differentiated to a plastic cell state with cell cycle re-entry that may give rise to metaplasia.
Notably, the authors demonstrated parallels between SPEM (occurring in the stomach)
and ADM, suggesting that this process can be conserved across different organs, favoring
tissue repair [61]. From a molecular perspective, upon damaging insult, pancreatic acinar
cells decrease their metabolic activity by reducing mammalian target of rapamycin com-
plex 1 (mTORC1) while increasing autophagic machinery, resulting in a less differentiated
state that favors the expression of embryonic/wound-healing genes such as CD44v and
SOX9 [33]. At the onset of ADM, activating transcription factor 3 (ATF3) promotes au-
todegradation in a RAB7B-dependent manner. At the same time, Basic Helix–Loop–Helix
Family Member A15 (BHA15, widely known as MIST1), a key regulator of secretory cell
architecture, is downregulated, explaining the downscaling of secretion. In addition, the
expression of acinar-associated pancreatic transcription factor 1 subunit α (PTF1α) is also
decreased [62]. At a later stage, cells reactivate their metabolism, shut down the autophagic
process, and re-enter the cell cycle [33]. The inhibition of autophagy and lysosomal activity
fails to downscale differentiation [33]. Similarly, administration of the mTORC1 inhibitor
rapamycin leads to a loss of the capacity to proliferate while retaining the expression of
metaplastic genes [33]. ADM is a reversible process; however, in response to oncogenic sig-
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naling, ADM progresses to pancreatic intraepithelial lesion (PanIN), a common precursor
of pancreatic ductal adenocarcinoma (PDAC) [59] (Figure 2). Activation of TGF-β signaling,
a key pathway involved in the pathogenesis of CP, in pancreatic acinar cells induces ADM
and accelerates KRASG12D mediated pancreatic carcinogenesis [63]. Mechanistically, in a
mouse model of CP, infiltrating macrophages with a classical activated phenotype (also
known as M1) promote ADM in an NF-κB/MMP–dependent manner [64]. The release of
IL-13 by ADM switches macrophage polarization from M1 to M2, which in turn promotes
PanIN development in the presence of oncogenic RAS [65] (Figure 2). In humans, the
juxtaposition of ADM with PanINs harboring the same KRAS mutations further supports
this link [59].
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Figure 2. Chronic inflammation, tissue response and pancreatic ductal adenocarcinoma development.
During chronic pancreatitis (CP), acinar cells may undergo acinar-to-ductal metaplasia (ADM)
that is composed both of duct-like and acinar-like cells with embryonic progenitor cell properties.
ADM cells stain with ductal ((Cytokeratin 19(CK19) and SRY-Box Transcription factor 9 (SOX9)),
acinar (i.e., enzymes including amylase, elastase, etc.), and pancreatic progenitor ((pancreatic and
duodenal homeobox 1 (Pdx1), β-catenin, and Notch)) markers. ADM is a reversible process. Upon
oncogenic KRAS activation, ADM can progress towards pancreatic intraepithelial neoplastic lesion
(PanIN). Macrophages have been shown to drive ADM and play a role in ADM to PanIN transition.
Progression during higher-grade PanIN and pancreatic ductal adenocarcinoma (PDAC) is associated
with mutations and/or allelic loss of Cyclin-Dependent kinase inhibitor A (CDKN2A), TP53, and
Deleted in Pancreatic Cancer 4 (DPC4, also known as SMAD4) genes encoding the tumor suppressors
P16INK4A, P14ARF, P53, and the transforming growth factor β (TGFβ) signal transducer SMAD4,
respectively. Scale bar: 50 µm.

One of the major diagnostic challenges in pathology is the differentiation of CP from
PDAC [66]. In CP, the irregular contour of ducts, lined by epithelium exhibiting nuclear
atypia within dense fibrotic tissue, can generate a diagnostic pitfall. Maintenance of lobular
architecture, regardless of cellular atypia, favors benign diagnosis [67]. On the other
hand, the presence of ducts adjacent to arteries, vascular and perineural invasion, and
ducts suspended in peripancreatic fat are diagnostic features of carcinoma [67]. Ductal
cells in PDAC often have denser eosinophilic cytoplasm than those in benign lesions. In
addition, anisonucleosis (variation in cell nuclei of more than four to one within a gland)
and bizarre nuclei, along with irregular nuclear contours, are considered highly suspicious
for PDAC [67]. Importantly, CP is an established risk factor for PDAC [17]. The cumulative
risk of PDAC is 1.8% and 4.0% at 10 and 20 years, respectively, after CP [68]. Given that
ADM is a precursor for the development of PanIN [59], it is clear that chronic pancreatic
injury plays a key role in the decisive steps during pancreatic carcinogenesis.

2.3. Gallbladder and Extrahepatic Bile Ducts

The gallbladder, the extrahepatic biliary ducts (EHBDs), the liver, and the pancreas all
develop from an outpouching of the endodermal lining of the foregut called the hepatic
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diverticulum. SOX17, along with Pdx1, plays a decisive role in whether Pdx1+ cells
are differentiated towards the pancreas or EHBD; SOX17 expression promotes biliary
tract formation, while SOX17 haploinsufficiency in mice leads to gallbladder and EHBD
hypoplasia [69].

The gallbladder is among the most common surgical specimens in routine practice. It is
associated with the EHBD via the cystic duct. Similar to other organs of the gastrointestinal
tract, prolonged injury to the gallbladder mucosa triggers metaplastic changes, pyloric
(antral type) metaplasia being the most common and intestinal metaplasia occurring less
frequently [70]. The glands in pyloric metaplasia are similar to gastric glands in the
antrum, while glands in intestinal metaplasia contain goblet and absorptive cells with brush
border reminiscent of incomplete metaplasia. Notably, in a large cohort study involving
400 surgically removed gallbladders, a significant association was found between dysplasia
and intestinal metaplasia and between pyloric metaplasia and intestinal metaplasia [71].
The same study also demonstrated an age-dependent occurrence of these changes, with
pyloric metaplasia occurring more frequently in younger patients, intestinal metaplasia
in intermediate mean age, and dysplasia in older patients. Hence, intestinal metaplasia is
believed to be more closely associated with the dysplasia–carcinoma sequence [72]

Nontumoral intraepithelial neoplasms in the gallbladder are microscopic forms of
dysplasia; essentially, these are the counterparts of PanIN (described above) and biliary
intraepithelial neoplasia (BillN, described below). Differentiating dysplasia from reac-
tive atypia is challenging in gallbladder pathology, as mild nuclear atypia is common
in cholecystitis. Given that molecular findings characterizing the neoplastic lesions are
limited, dysplasia is distinguished from reactive lesions mainly based on morphological
features. Specifically, certain architectural patterns like tall (micro)papillary and cribriform
configuration favor dysplasia. Moreover, nuclear enlargement, nuclear hyperchromasia,
prominent nucleoli and loss of polarity are characteristic features of dysplasia, whereas
surface maturation and intraepithelial neutrophils along with ulceration and/or acute
inflammation favor reactive changes [73]. Notably, the sharp demarcation of dysplastic
epithelium from adjacent normal epithelium is very helpful in distinguishing dysplasia
from reactive changes [71]. Rokitansky–Aschoff sinuses with reactive atypia may mimic
adenocarcinoma; Rokitansky–Aschoff sinuses are perpendicular to surface and may contain
luminal bile, whereas cancerous glands are arranged in a haphazard manner or are orien-
tated parallel to the surface, may be adjacent to muscular vessels, and are associated with
desmoplastic reaction [74]. Importantly, dense fibrosis surrounding Rokitansky–Aschoff
sinuses is common in chronic cholecystitis and should not be confused with malignant
desmoplasia [74].

The association between persistent inflammation and cancer is exemplified in the
bile ducts, as chronic inflammation promotes the BillN–cholangiocarcinoma sequence [75].
Mechanistically, inflammatory mediators including Interleukin 6 (IL-6), Tumor Necrosis
Factor alpha (TNFα), and COX2 induce genetic and epigenetic alterations that favor cholan-
giocarcinogenesis [76]. IL-6 alters the promoter methylation of several growth-associated
genes, leading to increased expression of EGFR [77]; moreover, it downregulates a group
of miRNAs that in turn favor the upregulation of DNA methyltransferase-1 (DNMT-1),
resulting in the decreased expression of tumor suppressor genes like p16INK4A [78]. TNFα
stimulates in an NF-κB-dependent manner the upregulation of the DNA/RNA editing
enzyme activation-induced cytidine deaminase (AID) that has a mutagenic activity by
converting cytosine to uracil [79]. The latter leads to the generation of somatic mutations
in key genes related to cancer progression like TP53, c-myc, and the promoter region of
INK4A [79]. High COX-2 promotes tumor growth, whereas COX-2 inhibition promotes
apoptosis and inhibits proliferation in cholangiocarcinoma [80,81].

Distinguishing reactive atypia from BillN and adenocarcinoma in EHBD is challenging
as neoplastic cells can appear deceptively benign. Moreover, in areas with active inflamma-
tion, a diagnosis of BillN is difficult, as non-neoplastic epithelium may exhibit substantial
nuclear changes like hyperchromasia and enlargement [74]. Overall, nuclear enlargement,
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nuclear hyperchromasia, loss of polarity, and nuclear stratification favor BillN. It is rather
unusual for reactive lesions to exhibit all these features [74]. Additionally, maturation
towards the surface along with the presence of intraepithelial neutrophils as well as fine
and pale chromatin favor reactive atypia [82]. Moreover, reactive changes lack a sharp
demarcation from the surrounding adjacent epithelium. On the contrary, the cribriform
pattern along with nuclear irregularity favors BillN. The mutation of the KRAS codon 12
is an early event, while aberrant P53 expression is a late event during the progression to
BillN [83]. An increasing number of data highlight the role of autophagy, demonstrating
the increased expression of autophagy-related proteins early during carcinogenesis at the
BillN step [84,85]. However, additional studies are needed to understand the underlying
molecular events driving the BillN–cholangiocarcinoma carcinoma sequence, which, in
turn, could help us to better distinguish reactive changes from true epithelial dysplasia.

2.4. Liver

Hepatocytes are the liver parenchymal cells. They are arranged in anastomosing cords,
separated by vascular sinusoids that link the portal triad (portal tract) with the central vein
and are supported by the biliary epithelium in the canals of Hering. The hepatocytes are
organized into functional units; the most relevant ones for histopathological assessment
are the hepatic lobule (also known as classic) and hepatic acini. The hepatic lobules are
roughly hexagonal in shape, consisting of a central vein with cords of hepatocytes radiating
to portal triads set at the angles of the hexagon [86]. The acinar model defined by A.
Rappaport is as an elliptical area in which blood flowing from the portal venule and hepatic
arteriole drains through the liver sinusoids and empties into the terminal hepatic venule
(i.e., central vein) [86]. Periportal hepatocytes are the most oxygenated, designated as
zone 1; oxygenation is reduced in the intermediary zone 2 and reaches its lowest in the
centrilobular zone 3, including hepatocytes around the terminal hepatic venules, which
are more susceptible to ischemia and toxic-induced injury. Histologic injury is manifested
as alterations in the liver architecture along with inflammation, steatosis, fibrosis, lobular
injury, and ductular reactions. Chronic hepatitis is a necro-inflammatory liver disease
characterized by portal, interface (periportal) and lobular inflammation, as well as necrosis
and fibrosis [87]. These histopathological features are seen irrespective of the etiology.

In this review, we focus on the tissue response during nonalcoholic fatty liver disease
(NAFLD), which is the most common chronic liver disease affecting 10–24% of the global
population [88]. NAFLD encompasses a range of manifestations from simple steatosis to
nonalcoholic steatohepatitis (NASH), advanced fibrosis, cirrhosis, and cancer [88]. Hep-
atic steatosis is the result of the accumulation of lipid droplets within the cytoplasm of
hepatocytes. The simple form of NAFLD is defined by at least 5% hepatic steatosis [89].
In approximately one third of patients, the addition to steatosis of parenchymal tissue
damage and inflammation (mainly lobular and/or portal) along with a variable degree of
fibrosis results in NASH, which can potentially progress to cirrhosis and hepatocellular
carcinoma (HCC) [89]. Steatosis and liver damage begin in zone 3 and with progression
extending along the entire hepatic lobule [87]. Hepatocellular injury is characterized by
ballooning, apoptosis, and lytic necrosis. Hepatocyte ballooning is a histopathological
hallmark in NASH. It is an ill-defined form of hepatocytic injury characterized at conven-
tional hematoxylin–eosin staining by a rounded 2–3-fold cellular enlargement with rarefied
cytoplasm, often including Mallory–Denk bodies (MDBs) [90]. MDBs were described by
F.B. Mallory and H. Denk; they are cytoplasmic hyaline inclusions composed of various
misfolded and cross-linked proteins including cytokeratin (CK) 8 and CK18, chaperones
like heat shock protein 70 (Hsp70), and components of protein degradation machinery
(i.e., ubiquitin, p62) [91]. Along this line, autophagy activation by rapamycin promotes the
resolution of preformed MDBs and prevents the formation of new MDBs in mice, stressing
out the role of proteasomal degradation and autophagy machinery in MDB formation in
NAFLD [92]. What remains unclear is whether MDBs are inert inclusions representing an
epiphenomenon of chronic injury or actively contribute to NAFLD pathogenesis, exerting
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a protective or harmful mechanism. Interestingly, balloon cells exhibit decreased CK18
immunostaining, confirming cytoskeletal damage, whereas MDBs are positive for CK18
and p62 [90].

Currently, a multi-hit parallel model that comprises insulin resistance (IR), obesity,
genetic predisposition, inflammation, oxidative stress, endoplasmic reticulum (ER) stress,
and the gut microbiota reflects our knowledge of NAFLD pathogenesis [93]. The impair-
ment of insulin signaling is a very early event in NAFLD development. In the context of IR,
there is excessive hepatic fat accumulation, which overwhelms physiologically adaptive
responses, leading to oxidative and ER stress that, in turn, leads to hepatocellular injury,
collectively called lipotoxicity [89,94]. The lipotoxicity of hepatocytes is fundamental in
the pathogenesis of NASH and is associated with inflammatory recruitment. For instance,
lipid accumulation within hepatocytes activates stress-responsive C-Jun N-terminal ki-
nase (JNK), which in turn produces proinflammatory cytokines [95]. Along this line, the
excess uptake of cholesterol by Kupffer cells triggers an inflammatory response by the lat-
ter [96]. Notably, oxidative stress byproducts (i.e., oxidized lipids) act as damage-associated
molecular patterns (DAMPs) that activate Toll-like receptor signaling, triggering an innate
immune response [89]. Liver resident Kupffer cells, bone-marrow-derived macrophages,
neutrophils, and dendritic cells are the key innate immune subpopulations in NASH [97,98].
Moreover, a key histological feature of NASH is the lobular infiltration by T and B lym-
phocytes. To this end, products of peroxidation not only act as DAMPs but also form
epitopes known as oxidation-specific epitopes (OSEs), which trigger adaptive immunity
and anti-OSE IgGs [89]. Liver inflammation is also associated with fibrosis. The production
of cytokines like TNFα and Transforming Growth Factor β (TGFβ) by immune cells, in-
cluding Kupffer cells and parenchymal cells, activates the hepatic stellate cells (HSCs) [99].
Quiescent HSC (also known as Ito cells) are located in the Space of Dissè and store Vitamin
A. High-throughput analysis has revealed significant similarities between HSCs’ and PSCs’
features [100]. Activated HSCs become proliferating and fibrogenic αSMA(+) myofibrob-
lasts, which in turn drive hepatic fibrosis. Interestingly, clinical models have demonstrated
that the clearance of HSCs has a therapeutic benefit favoring the resolution of fibrosis. This
can be mediated through the following mechanisms: (i) reversion; the deactivation of HSCs
to a state similar to quiescence with a downregulation of the expression of fibrogenetic
genes, (ii) apoptosis, which contributes to decreased numbers of HSCs; and (iii) senescence,
which promotes immune clearance through the upregulation of genes related to immune
surveillance by senescent HSCs [99,101]. To this end, an increasing number of data suggest
that senescence is involved in NAFLD pathogenesis and progression to NASH [102]. Hep-
atic senescence promotes liver steatosis, whereas targeting senescent cells reduces steatosis,
opening new therapy perspectives [103].

The risk of hepatocellular carcinoma is a growing concern in both cirrhotic and non-
cirrhotic NAFLD patients. In a large prospective study, nearly 10% of cirrhotic NASH
patients developed hepatocellular carcinoma; however, the risk is lower than for hepatitis C
virus-associated cirrhosis [104]. Importantly, since obesity and type 2 diabetes mellitus, two
established risk factors for cancer, co-exist with NAFLD, assessing the neoplastic potential
of NAFLD can be challenging [89].

3. Tissue-Based Biomarkers Differentiating Reactive from Neoplastic Lesions

To differentiate reactive from neoplastic lesions in the context of chronic inflammation,
morphological features are often complemented with immunohistochemistry (IHC), which
is a cheap, quick, and easily applicable method. Table 1 [19,105–195] includes tissue-based
biomarkers that can be useful for differentiating reactive atypia from neoplasia. For reasons
of completeness, the biomarkers listed in Table 1 extend beyond the gastrointestinal tract,
pancreas, gallbladder, extrahepatic bile ducts and liver and include various organs.
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Table 1. Differentiating reactive from true dysplastic lesions employing immunohistochemistry
(IHC). Immunostaining pattern of tissue-based protein biomarkers in reactive and neoplastic lesions.
(−): immunonegativity; (+): immunopositivity. Abbreviations: ACA: adenocarcinoma; AHNAK2:
Protein AHNAK2; AMACR(P504s): alpha-methylacyl-CoA racemase; BAP1: BRCA1-Associated
Protein-1; BillN: biliary intraepithelial neoplasia; CK-1ε: Casein Kinase 1ε; CIS: carcinoma in situ;
CNS: central nervous system; CK17: Cytokeratin 17; CK20: Cytokeratin 20; CITED1: Glu/Asp-rich
carboxy-terminal domain, 1; COX2: cyclooxygenase 2; CRC: colorectal carcinoma; DEC1: differenti-
ated embryonic chondrocyte gene 1; ECC: extrahepatic cholangiocarcinoma; EHBDCa: carcinoma of
the extrahepatic bile duct; EMA: Epithelial Membrane Antigen; FN1: Fibronectin-1; GBC: gallbladder
carcinoma; FC: follicular carcinoma; FVPC: follicular variant of papillary carcinoma; HBME-1: Hector
Battifora mesothelial–1; HGD: high-grade dysplasia; HMGA1/2: High-mobility group containing
AT-hook; HSIL: high-grade squamous intraepithelial lesion; HGUC: high-grade urothelial carcinoma;
ICC: intrahepatic cholangiocarcinoma; IND: indefinite for dysplasia; IDH: isocitrate dehydrogenase;
IMP3 Insulin-like growth factor II messenger ribonucleic acid (mRNA)-binding protein 3; IND: indef-
inite for dysplasia; Lewis(y) antigen: blood group 8, BG8; LGD: low-grade dysplasia; LSIL: low-grade
squamous intraepithelial lesion; MMP-1: matrix metalloproteinase 1; MTAP: methylthioadenosine
phosphorylase; PCNA: proliferating cell nuclear antigen; PDAC: pancreatic ductal adenocarcinoma;
Pdx1: Pancreatic progenitor and duodenal homeobox 1; PTC: papillary thyroid carcinoma; RA:
reactive atypia; RC: metaplastic cervical squamous epithelium with reactive changes; RUA: reactive
urothelial atypia; SMAD4: SMAD family member 4; SOX2: SRY-box 2; TERT: human telomerase
reverse transcriptase (TERT); VHL: von Hippel–Lindau; VIN: vulvar intraepithelial neoplasia.

Immunostaining Pattern
Anatomical

Position Protein (s) Reactive Lesions Precancerous–Cancerous Lesions Reference

CNS EGFR Gliosis: (+) weak membranous Gliomas: (+) strong membranous [105,106]

IDH1
p.R132H Gliosis: (−)

Gliomas: usually (+) diffused and
strong cytoplasmic and weak

nuclear
[107–109]

P53 Gliosis: (−) Gliomas: occasionally (+) diffused
and strong nuclear [107–109]

Oral cavity CK-1ε Atypical squamous epithelium:
(+) weak nuclear

Carcinoma in situ: (+) strong
nuclear [110]

CD44 Atypical squamous epithelium:
(+) weak membranous

Carcinoma in situ: (+) strong
membranous [110]

E-Cadherin Pseudoepitheliomatous
hyperplasia: (+) membranous

Squamous cell carcinoma:
decreased (+) membranous in the

invasive front
[111]

DEC1 Atypical squamous epithelium:
(+) strong nuclear Carcinoma in situ: (+) weak nuclear [110]

Ki67
Pseudoepitheliomatous

hyperplasia: (+) nuclear restricted
in basal and parabasal cells

Dysplasia: often (+) extended to the
spinous layer [191]

MMP-1
Pseudoepitheliomatous

hyperplasia: (+) cytoplasmic with
a basal cell pattern

Squamous cell carcinoma: (+)
diffused cytoplasmic [19]

PCNA Inflammatory lesion: (+) nuclear
in the basal layer

Dysplasia: consistently (+) nuclear
in the suprabasal layer [112,113]

P16INK4a
Inflammatory lesion: (−) or

minimal (+) cytoplasmic/nuclear
restricted in the basal cells

Dysplasia: (−) or often (+) strong
and diffused cytoplasmic/nuclear in
the middle and upper thirds or (−)

[112,194]

P53

Pseudoepitheliomatosis
hyperplasia: occasionally (+)

moderate-intensity nuclear with a
basal-cell layer pattern

Dysplasia/squamous cell
carcinoma: often (+) intense and

diffused nuclear
[19,111,191]

Esophagus Ki67
Normal/RA: focal (+) nuclear,
usually restricted to the lower

third

HGD/carcinoma: (+) diffused
nuclear [114]
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Table 1. Cont.

Immunostaining Pattern
Anatomical

Position Protein (s) Reactive Lesions Precancerous–Cancerous Lesions Reference

P53 Normal/RA: usually (−) and to a
lesser extent focal (+) weak nuclear

HGD/carcinoma: (+) diffused and
intense nuclear and rarely (−) (null

pattern)
[114]

Esophagus
(Barrett’s)

AMACR
(P504S)

IND: usually (−) and to a lesser
extent (+) with focal cytoplasmic

LGD: often (+) diffused and, to a
lesser extent, focal cytoplasmic;

HGD/ACC: usually (+) diffused and,
to a lesser extent, focal cytoplasmic

[115–117]

IMP3 IND: rarely (+) with cytoplasmic
and membranous

LGD: occasionally (+) with
cytoplasmic and membranous;

HGD: often (+) with cytoplasmic
and membranous

[118,192,193]

Ki67 BE: (+) nuclear at the base of the
crypt Dysplasia: (+) diffused nuclear [119]

P53 BE: (−) LGD: usually (+) diffused nuclear;
HGD: regularly (+) diffused nuclear [120,190]

Stomach AMACR
(P504S)

Non-neoplastic epithelium: (−)
and rarely (+) weak cytoplasmic

Dysplasia/adenocarcinoma: usually
(+) moderate and strong cytoplasmic [121]

Ki67 RA: (+) nuclear with a limited
expression pattern

LGD/HGD: (+) often diffused
nuclear (with an expansion of the

proliferating zone)
[122,123]

IMP3
RA: often (+) with focal

cytoplasmic and membranous (in
the basal part of the cell)

LGD: often (+) weak cytoplasmic
and membranous; HGD: often (+)

diffused moderate/intense
cytoplasmic and membranous

[124]

P53 RA: (−) or (+) focal and rarely
diffused nuclear

LGD: rarely (+) weak-to-moderate
nuclear; HGD: often (+)

moderate/strong nuclear
[122,123]

Colon AMACR
(P504S) IND: rarely (+) focal cytoplasmic LGD/HGD/ACC: (+) often diffused

cytoplasmic [115]

P21WAF1

Regenerative atypia and
indefinite for dysplasia: (+)

strong nuclear mainly located in
the superficial portion of colonic

glands that are p53 (−)

Dysplasia and ACA: (−) in areas
with (+) diffused P53 status [125–127]

P53

Regenerative atypia and
indefinite for dysplasia: (+)

mainly few isolated cells with
weak and moderate and to a lesser

extent basal/nested nuclear

Dysplasia and ACA: (+) strong and
diffused, basal/nested, and to a
lesser extent few isolated cells

nuclear

[125–127]

Biliary tract CD10
Normal/RA: (+) strong

membranous with continuous
apical pattern

HGD/ECC: (−) and rarely (+) focal
moderate membranous [128]

CD24 Normal/RA: (−) or (+) focally
membranous/cytoplasmic

Dysplastic
epithelium/ECC/ICC/GBC: (+)

strong membranous/cytoplasmic
[129]

P-Cadherin Normal/RA: (−) or rarely (+) focal
membranous

Dysplastic
epithelium/ECC/ICC/GBC: often (+)

focal/diffused membranous
[129]

HMGA1,
HMGA2 RA: (+) weak/moderate nuclear Carcinoma: (+) intense nuclear [130]

Mesothelin RA: (−)
High-grade BillN and EHBDCa:

often (+) diffused cytoplasmic and
membranous

[131]

P53 Normal/RA: (−) or (+) focal
weak/moderate nuclear

Dysplastic
epithelium/ECC/ICC/GBC: often (+)

diffused and intense nuclear
[129,130]
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Table 1. Cont.

Immunostaining Pattern
Anatomical

Position Protein (s) Reactive Lesions Precancerous–Cancerous Lesions Reference

S100A,
S100A4

Normal/RA: (−) or rare (+)
cytoplasmic and nuclear

Dysplasia (including high-grade
BillN)/carcinomas arising in

periampullary duodenal
mucosa/EHBD: usually (+) diffused

membranous and cytoplasmic

[131,132]

S100P
RA: (−) or rarely (+) nuclear, weak

cytoplasmic
High-grade BillN and ICC:

occasionally (+) diffused and intense
nuclear and cytoplasmic

[133,134]

Gallbladder P16INK4a Normal/RA: (−) and rarely (+)
nuclear

Dysplasia/carcinoma: often (+)
diffused and intense nuclear [135]

P53 Normal: (−) Dysplasia/carcinoma: often (+)
diffused and intense nuclear [195]

COX2 Normal: (−) and rarely (+) Dysplasia/carcinoma: often (+)
diffused cytoplasmic/nuclear [195]

Pancreas DPC4
(SMAD4)

Benign: (+) diffused cytoplasmic
and occasionally nuclear

PDAC: usually (−), occasionally (+)
diffused cytoplasmic and nuclear [136]

IMP3
Normal/pancreatitis: (−) and

rarely (+) focal membranous and
cytoplasmic

PDAC: usually (+) diffused
membranous and cytoplasmic [137–142]

Maspin Normal: usually (−), rarely (+)
focal nuclear and cytoplasmic

PDAC: usually (+) diffused nuclear
and cytoplasmic [142]

Mesothelin
Pancreatitis: (−) and rarely (+)

with focal membranous and
cytoplasmic

PDAC: usually (+) diffused
membranous and cytoplasmic [140]

P53 Pancreatitis: (−), rarely (+) PDAC: often (+) diffused intense
nuclear [138,139]

S100A4 Normal: (+) focal membranous
and cytoplasmic

PDAC: often (+) diffused
membranous and cytoplasmic [141]

S100P Normal: usually (−), rarely (+)
focal nuclear and cytoplasmic

PDAC: usually (+) diffused nuclear
and cytoplasmic [142]

VHL Normal: (+) diffused cytoplasmic PDAC: (+) focal cytoplasmic [141,142]
Urinary
Bladder AHNAK2 RUA: (−) Urothelial CIS: (+) diffused

cytoplasmic [143]

AMACR
(P504s) RUA: (−) Urothelial CIS: often (+) diffused

and intense cytoplasmic [144,145]

CD44
RUA: usually (+) membranous
with a basal-to-full-thickness

pattern

Urothelial CIS: often (−) or (+) focal
membranous with a basal pattern [146–148]

CK5/6
RUA: (+) diffused and intense

membranous with full-thickness
pattern

Urothelial CIS: (−) and rarely (+)
membranous with a basal pattern [149]

CK20 RUA: (+) membranous limited to
umbrella cells

Urothelial CIS: usually (+)
full-thickness membranous [144–148,150–154]

HER2/Neu
RUA: usually (−) or (+) faint

membranous limited to umbrella
cells

Urothelial CIS: often (+)
moderate-to-intense full-thickness

membranous
[151,152,155]

Lewis(y)
antigen RUA: (+) patchy membranous Urothelial CIS: (+) intense

full-thickness membranous [155]

P16INK4a RUA: occasionally (−) or (+) weak
nuclear and cytoplasmic

Urothelial CIS/HGUC: (+) diffused
and intense nuclear and cytoplasmic [156]

P53 RUA: (−) or (+) patchy and weak
nuclear

Urothelial CIS:often (+) diffused
and intense nuclear or rarely (−) [148,150–153]

Uterine
Cervix Cyclin E

RC and atrophic cervical
epithelium: mainly (−), rarely (+)

nuclear

HSIL: occasionally (+) diffused
full-thickness nuclear [157–159]
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Table 1. Cont.

Immunostaining Pattern
Anatomical

Position Protein (s) Reactive Lesions Precancerous–Cancerous Lesions Reference

IMP3 Normal: (−);
tubular metaplasia: (−)

In situ adenocarcinoma: (+)
diffused and intense nuclear and

cytoplasmic
[160]

Ki67

RC and atrophic cervical
epithelium: few (+) scattered

basal and parabasal nuclei, rarely
(+) in the upper two thirds

HSIL: (+) diffuse full-thickness
nuclear [157–159,161–165]

P16INK4a

Normal, RC, and atrophic
cervical: mainly (−) and

occasionally (+) weak, in the lower
half of the epithelium nuclear and

cytoplasmic

LSIL: (+) varying intensity, mainly
in the lower half of the epithelium
nuclear and cytoplasmic; HSIL: (+)
diffuse and intense full-thickness

nuclear and cytoplasmic

[157–160,166–169]

P53 Atypical tubal metaplasia: (−)
and often focal weak (+)

Uterine serous carcinoma:
frequently (+) diffused and

moderate-to-intense nuclear; rarely
moderate (+) nuclear or (−)

[163–165]

TERT Atypical tubal metaplasia: (−) Uterine serous carcinoma: (+) weak,
moderate, and intense nuclear [163–165]

Vulva CK17

Normal/reactive entity: usually
(−); to a lesser extent (+) patchy
and weak suprabasal and rarely
(+) moderate–intense suprabasal

membranous

VIN: usually (+) moderate–strong
full-thickness or suprabasal

membranous and, to a lesser extent,
patchy moderate–intense suprabasal

membranous

[170,171]

P53 Reactive entity: (+) patchy and
weak nuclear

VIN: often (+) diffused and intense
nuclear [170,171]

SOX2

Normal/lichen sclerosus: usually
(+) scattered faint or

moderate/intense basal and
suprabasal nuclear

VIN: usually (+) moderate/intense
and full-thickness nuclear [172]

Pleura BAP1 Reactive mesothelial hyperplasia:
(+) diffused nuclear

Malignant mesothelioma: frequent
(−) [173–178]

Desmin
Reactive mesothelial hyperplasia:

usually intense and diffused (+)
cytoplasmic

Malignant mesothelioma: usually
(−), occasionally focal, and rarely

diffused (+) cytoplasmic with
faint/moderate intensity

[179,180]

EMA

Reactive mesothelial hyperplasia:
usually (−), occasionally (+) focal

membranous, and rarely (+)
diffused membranous

Malignant mesothelioma: usually
(+) intense and diffused

membranous
[179,180]

MTAP Reactive mesothelial hyperplasia:
(+) diffused cytoplasmic

Malignant mesothelioma: frequent
(−) [173–178]

P53
Reactive mesothelial hyperplasia:
usually (−) and rarely (+) intense

nuclear

Malignant mesothelioma: often
diffused and intense (+) nuclear [179,180]

Thyroid gland BRAF
p.V600E Normal: (−) PTC: (+) diffused cytoplasmic [181,182]
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Table 1. Cont.

Immunostaining Pattern
Anatomical

Position Protein (s) Reactive Lesions Precancerous–Cancerous Lesions Reference

CITED1 Normal/RA: (−) PTC: (+) diffused cytoplasmic and
nuclear

[181–188]

CK19
Normal/RA: mainly (−) and to a

lesser extent (+) focal
weak/moderate membranous

PTC: frequently (+)
moderate/intense membranous

CD56 Normal/RA: (+) intense
membranous

PTC: mainly (–) and, to a lesser
extent, (+) weak membranous

FN1 Normal/RA: (−) PTC: (+) cytoplasmic and
membranous

Galectin-3 Normal/RA: (−) PTC: frequently (+) diffused
cytoplasmic

HBME-1 Normal/RA: (−) PTC: frequently (+) diffuse and
intense membranous

IMP3 Thyroiditis Hashimoto: (−) FVPC, FC: often (+) with diffused
membranous and cytoplasmic [189]

As shown in Table 1, the tumor suppressor p53 is often assessed using IHC to differenti-
ate reactive atypia from neoplasia. Mutations in TP53 (encoding p53) and the chromosomal
loss of 17p, where TP53 resides, are among the most common genetic defects documented
in cancer [196]. Notably, p53 mutations often occur in the early phases of carcinogene-
sis [196], as exemplified by TP53 missense mutations in dysplastic Barrett’s mucosa [190].
TP53 non-synonymous mutations occur at a high frequency in patients with noncancerous
inflamed gastric mucosa exhibiting intestinal metaplasia [197] and in colon tissue from
patients with UC [198], suggesting that irreversible genetic alterations occur very early in
inflammation-associated carcinogenesis. Notably, an accumulation of mutant p53 early in
inflamed colonic tissues, through gain of function, acquires a proinflammatory activity in an
NF-κB-dependent manner, which in turn promotes cancer [199]. Therefore, the evaluation
of p53 status is implemented as a sensor of oncogenic transformation. Given the good
correlation between IHC patterns and the presence of p53 mutations, p53 immunostain-
ing is applicable in routine practice. For the interpretation of p53 immunostaining, the
following should be taken into consideration: (a) wild-type p53 has a very short half-life,
and its presence in routine practice is often below sensitivity, resulting in a mixture of
negative, faint, and intense immunostaining; (b) missense mutations in TP53 often pro-
long the half-life of p53, resulting in protein nuclear accumulation that, in turn, allows its
detection by diffuse and intense nuclear immunostaining; and (c) homozygous deletions
or truncating mutations are associated with negative p53 immunostaining, which may
provide an explanation for the discrepancies between IHC and sequencing [200]. To make
things more complicated, in some tumors (including melanoma and astrocytoma), there
is a nuclear accumulation of p53 without overt mutations in TP53 [201,202]. Integrating
our experience from routine practice, rare cases of common cancers exhibiting intense and
diffused p53 immunostaining turned out to be wild-type after sequencing. The immunohis-
tochemistry of downstream p53 targets, such as p21WAF1, can improve accuracy. Wild-type
p53 promotes the transcription of several downstream target genes; however, some forms
of mutant p53 may also induce p21WAF1 expression [125]. Additionally, p21WAF1 can be
induced in a p53-independent manner, adding to the complexity of this topic [125].

The proliferating marker Ki67 is commonly used to differentiate reactive lesions from
dysplastic lesions (Table 1). In principle, Ki67 expression is limited to the proliferating
zone, whereas in dysplastic lesions, Ki67 immunostaining is often expanded beyond the
proliferating area. However, being a proliferating marker, Ki67 can be overexpressed
in benign inflamed tissues undergoing tissue repair [203]. For instance, Ki67 has poor
discriminating value for reactive urothelial atypia versus urothelial carcinoma in situ [148].
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Hence, Ki67 reactivity alone is not reliable and is often complemented with additional
markers in routine practice. For instance, in the uterine cervix, Ki67 expression was
examined along with the status of the cell cycle inhibitor p16INK4a to differentiate reactive
atypia from dysplasia (Table 1). In addition, Maspin, Insulin-like growth factor II messenger
ribonucleic acid (mRNA)-binding protein 3 (IMP3), and S100P improve sensitivity and
specificity in differentiating pancreatic ductal adenocarcinoma from chronic pancreatitis
(Table 1). IMP3, an RNA-binding protein involved in RNA processing, is believed to
play an important role in cell growth and migration [204]. IMP3 is an oncofetal protein
expressed in developing organs but is almost silenced in adult tissues, whereas it is diffusely
re-expressed in malignant tissues, contributing to tumor progression [205]. An increasing
number of data emphasize its role as a potential biomarker for differentiating benign from
malignant lesions in different organs (Table 1) [206]. Like all biomarkers, IMP3 status
must be evaluated within the context of histology and clinical presentation. In general, to
allow for a more confident distinction between reactive and dysplastic lesions, a panel of
markers is often essential; for example, IHC analysis of CK20, p53, and CD44 improves the
diagnostic accuracy of urinary bladder cancer detection and has been included in workups
or urinary biopsies (Figure 3, Table 1).
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Figure 3. Panel of immunohistochemical markers in the differential diagnosis between reactive
urothelium and urothelial carcinoma in situ. Representative hematoxylin and eosin (H&E) staining
and immunohistochemistry micrographs showing CK20 expression limited to the umbrella cells,
faint and patchy nuclear p53, and full-thickness CD44 immunostaining in non-neoplastic urothelium
(upper photos), in contrast to full-thickness CK20, intense and diffused nuclear p53, and CD44 basal
expression in urothelial carcinoma in situ (lower photos). Scale bar: 100 µm.

Novel promising biomarkers for differentiating benign from malignant mesothe-
lial lesions include enhancer of zeste homolog 2 (EZH2) and 5-hydroxymethylcytosine
(5hmC) [207]. Increased nuclear EZH2, along with the loss of nuclear 5hmC immunos-
taining, favors malignant mesothelioma over reactive mesothelial lesions; however, this
requires further validation [207]. Bcl-2-associated athanogene 3 (BAG3), a protein involved
in the stress response, is a promising biomarker for cervical intraepithelial neoplasia [208].
A benign squamous epithelium is negative for BAG3 immunostaining, whereas all precan-
cerous lesions display cytoplasmic/nuclear BAG3 immunostaining, which is significantly
associated with the grading of intraepithelial dysplasia [208]. The expression of BAG3 has
also been documented in ovarian and endometrial carcinomas, highlighting its potential
use in the gynecological field [209]. However, BAG3 remains to be established for routine
diagnostic practice.

4. Future Perspectives

To develop new and better biomarkers for routine practice, it is necessary to identify
the underlying mechanisms of inflammation-associated carcinogenesis.
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Research models are important tools for obtaining insights into inflammation, tissue
response, and cancer. Despite challenges in recapitulating complex human pathology,
rodents, such as mammals, share several anatomical and physiological similarities with hu-
mans, providing dynamic research models to assess histopathological alterations and define
underlying molecular mechanisms (Figure 4A) [210]. Genetically engineered immunocom-
petent mouse models with loss or gain of gene function have substantially contributed to the
study of intestinal mucosal responses in IBD [40,199], gastric metaplasia, and ADM [61,63].
To better model the human immune response, the employment of humanized mice, in
which immunodeficient mice are engrafted with human hematopoietic cells, improves
our understanding of human inflammatory signaling pathways [211]. Recently, Flavell
and colleagues generated a humanized mouse model that enabled the presence of human
neutrophils in the mouse blood periphery for the first time [212] (Figure 4A).

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 21 of 32 
 

 

Recently, D. Hanahan incorporated the term “polymorphic microbiomes” as an enabling 

characteristic, highlighting the role of the microbiome in the acquisition of cancer hall-

marks [238]. Despite advances in understanding the role of the microbiome, we are clearly 

at the beginning of capturing the host–microbiome interplay. 

 

Figure 4. Future perspectives in differential diagnosis between reactive non-neoplastic and neo-

plastic lesions. (A) Immunocompetent mouse models including gain or loss of gene function com-

plemented with humanized mouse models could improve our understanding of human inflamma-

tory-associated diseases. (B) Three-dimensional human models providing a mechanistic insight into 

the tissue response to chronic inflammatory stimuli: representative hematoxylin and eosin (H&E) 

staining and immunofluorescent micrographs of a three-dimensional human colonic immunocom-

petent model with embedding of CD45+
 

cells. The localization of CD3+
 

lymphocytes in
 

the organo-

typic
 

3D model was assessed by immunofluorescence, using an antibody specific for CD3 (red). Nu-

clei were counterstained with DAPI. Scale bar: 50 μm (upper photo); 25 μm (lower photo). (A. 

Bergonzini and T. Frisan, personal communication) (C) Novel biomarkers: incorporation of mutant-

specific antibodies like against p53 hotspot mutants, as well as miRNAs, and DNA microarray ap-

plications could improve diagnostic accuracy. (D) Artificial intelligence (AI)-based prediction mod-

els analyzing routine histopathological H&E-stained sections. 

5. Conclusions 

Differentiating reactive atypia from true dysplasia is challenging, as non-neoplastic 

epithelial lesions often exhibit significant cytological and architectural atypia that can be 

accompanied by dense fibrosis, often making it impossible to render a definite diagnosis. 

Morphological evaluation remains in the A-to-Z towards diagnosis. Immunohistochemis-

try can be employed as an adjunct to distinguish reactive lesions from dysplasia, although 

the results are often inconclusive. In this review, we described the morphological altera-

tions along with the underlying mechanisms involved in tissue response during persistent 

inflammation, focusing on the digestive system, and provided an update of tissue-based 

biomarkers that could help in such diagnostic dilemmas. Ongoing advances in molecular 

biology and AI are expected to yield novel biomarkers that will complement visual in-

spection and facilitate optimal pathological diagnosis. 

We are beginning to understand the precise molecular and cellular events that shape 

tissue changes during persistent inflammation. Future perspectives point to promising 

Figure 4. Future perspectives in differential diagnosis between reactive non-neoplastic and neoplastic
lesions. (A) Immunocompetent mouse models including gain or loss of gene function complemented
with humanized mouse models could improve our understanding of human inflammatory-associated
diseases. (B) Three-dimensional human models providing a mechanistic insight into the tissue
response to chronic inflammatory stimuli: representative hematoxylin and eosin (H&E) staining
and immunofluorescent micrographs of a three-dimensional human colonic immunocompetent
model with embedding of CD45+ cells. The localization of CD3+ lymphocytes in the organotypic
3D model was assessed by immunofluorescence, using an antibody specific for CD3 (red). Nuclei
were counterstained with DAPI. Scale bar: 50 µm (upper photo); 25 µm (lower photo). (A. Bergonzini
and T. Frisan, personal communication) (C) Novel biomarkers: incorporation of mutant-specific
antibodies like against p53 hotspot mutants, as well as miRNAs, and DNA microarray applications
could improve diagnostic accuracy. (D) Artificial intelligence (AI)-based prediction models analyzing
routine histopathological H&E-stained sections.

The advancement of 3D models is growing exponentially, bridging the gap between
traditional 2D monolayer cultures and complex animal models [213]. Three-dimensional
assays have been employed to study the esophageal response to inflammation [214], pan-
creatic ADM [215], IBD [216], and colorectal cancer carcinogenesis [217]. In addition, the
development of immunocompetent 3D mucosal models that recapitulate the colonic mu-
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cosa offers a unique opportunity to study different immunological scenarios mimicking
human physiology and pathology (Figure 4B). Similarly, human organ on-a-chip models
recapitulating human organs allow for the study of disease development [218].

In situ assays, including IHC, currently play a central role in pathology [219]. The
introduction of R132H mutation-specific isocitrate dehydrogenase 1 (IDH1) for the dif-
ferential diagnosis of astrocytoma from astrocytosis has brought about a revolution in
pathology (Table 1) [107]. Along this line, the generation of antibodies against p53 hotspot
mutants tested in paraffin-embedded tumors highlights their potential applications in
routine immunostaining (Figure 4C) [220]. Currently, the commonly used p53 antibodies,
DO-1 and DO-7, detect both wild-type and mutant p53 [221]; hence, the introduction of
p53-mutant specific antibodies could improve diagnostic accuracy in differentiating reac-
tive from dysplastic lesions. Additionally, miRNA tissue expression could be exploited in
routine practice for the differential diagnosis of reactive and dysplastic lesions, as miRNAs
are stable, allowing their examination in archival material (Figure 4C). Indeed, several
studies have revealed that miRNAs can aid in the differential diagnosis between benign
and malignant entities [222–225]. Furthermore, miRNAs are candidate clinical biomarkers
in patients with IBD [226]. DNA microarrays, as tools to study gene expression signatures
and genotyping, are promising for pathology research and practice (Figure 4C). DNA
microarray analysis revealed that C15orf48 and KRT9 have distinct expression profiles in
PHE and SCC, allowing an accurate distinction between these two entities [227]. Of course,
the introduction of array-based applications in routine practice is challenging because
evaluation and validation are not straightforward.

Recent advances in the field of digital pathology, facilitated by the use of state-of-
the-art slide scanners, broadband internet connection, and enhanced storage capacity, are
expected to significantly improve pathological diagnosis and provide vital information
related to prognosis and therapy. With digital pathology, it is now possible to apply
artificial intelligence (AI) algorithms in both clinical and research settings [228,229]. As AI
is becoming increasingly capable, features extracted from whole-slide digital pathology
images could reveal novel aspects of tissue that complement the visual inspection of
hematoxylin and eosin (H&E) sections. Deep learning based on convolutional neural
networks fragments histopathological sections, allowing classification based on different
morphological patterns (Figure 4D) [230]. Successful AI models have enabled the prediction
of microsatellite instability in solid cancers [231], as well as histological and molecular
subtyping in non-small-cell lung carcinomas [232] and endometrial cancer [233]. Deep
learning models enable the association of histological H&E images, including healthy and
pathological tissues, with gene expression status, allowing the study of how gene expression
shapes tissue morphology [234]. Notably, the implementation of AI incorporating collagen-
based features could differentiate CP from PDAC with 91.3% accuracy [235], suggesting
that AI can aid in such histopathological challenges (Figure 4D). Furthermore, AI could help
us decipher the interactions among the cells of the tumor microenvironment, in addition to
accurately predicting the presence of specific molecular alterations and response to various
cancer immunotherapies [229].

The role of the microbiome in tissue homeostasis is highly appreciated, emphasizing
the necessity of incorporating microbes into experimental design. We have demonstrated
the immunomodulatory role of genotoxigenic Salmonella in the mouse intestine, stress-
ing the complex crosstalk between the microbiome and intestinal homeostasis [236,237].
Recently, D. Hanahan incorporated the term “polymorphic microbiomes” as an enabling
characteristic, highlighting the role of the microbiome in the acquisition of cancer hall-
marks [238]. Despite advances in understanding the role of the microbiome, we are clearly
at the beginning of capturing the host–microbiome interplay.

5. Conclusions

Differentiating reactive atypia from true dysplasia is challenging, as non-neoplastic
epithelial lesions often exhibit significant cytological and architectural atypia that can be
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accompanied by dense fibrosis, often making it impossible to render a definite diagnosis.
Morphological evaluation remains in the A-to-Z towards diagnosis. Immunohistochemistry
can be employed as an adjunct to distinguish reactive lesions from dysplasia, although the
results are often inconclusive. In this review, we described the morphological alterations
along with the underlying mechanisms involved in tissue response during persistent in-
flammation, focusing on the digestive system, and provided an update of tissue-based
biomarkers that could help in such diagnostic dilemmas. Ongoing advances in molecu-
lar biology and AI are expected to yield novel biomarkers that will complement visual
inspection and facilitate optimal pathological diagnosis.

We are beginning to understand the precise molecular and cellular events that shape
tissue changes during persistent inflammation. Future perspectives point to promising
avenues for research and clinical interventions that could allow the introduction of novel
tissue-based biomarkers that will improve treatment decisions and ultimately benefit
patient health care.
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Abbreviations

ACA: adenocarcinoma; ADM: acinar-to-ductal metaplasia; AHNAK2: Protein AHNAK2; AID:
activation-induced cytidine deaminase; AMACR(P504s): alpha-methylacyl-CoA racemase; AI: ar-
tificial intelligence; ATF3: activating transcription factor 3; BAG3: Bcl-2-associated athanogene 3;
BAP1: BRCA1-Associated Protein-1; BCL-10: B-cell lymphoma/leukemia 10; BE: Barrett’s esopha-
gus; BHA15: Basic Helix–Loop–Helix Family Member A15 (widely known as MIST1); BillN: biliary
intraepithelial neoplasia; BME-1: Hector Battifora mesothelial–1; CAC: colitis-associated cancer;
CD44v9: CD44 variant 9; CDKN2A: cyclin-dependent kinase inhibitor 2A; CDX1: Caudal-type
homeobox 1; CDX2: Caudal-type homeobox 2; CK-1ε: Casein Kinase 1ε; CK19: Cytokeratin 19 CC:
Crohn’s colitis; CIS: carcinoma in situ; CNS: central nervous system; CK17: Cytokeratin 17; CK20:
Cytokeratin 20; CITED1: Glu/Asp-rich carboxy-terminal domain, 1; COX2: cyclooxygenase-2, CP:
chronic pancreatis; CRC: colorectal carcinoma; CRP: C-reactive protein, DEC1: differentiated embry-
onic chondrocyte gene 1; DNMT-1: DNA methyltransferase-1; DPC4: Deleted in Pancreatic Cancer
4; ECC: extrahepatic cholangiocarcinoma; EGF: epidermal growth factor; EGFR: epidermal growth
factor receptor; ECM: extracellular cell matrix; EGFR: epidermal growth factor receptor; EHBD: extra-
hepatic bile duct; EMA: Epithelial Membrane Antigen; ERK: extracellular signal-regulated kinase;
EZH2: Enhancer of zeste homolog 2; FAP: fibroblast activation protein; FC: follicular carcinoma;
FVPC: follicular variant of papillary carcinoma; GFAP: Glial fibrillary acidic protein; H&E: hema-
toxylin and eosin; FGF7: fibroblast growth factor 7; FN1: Fibronectin-1; GBC: gallbladder carcinoma;
HGD: high-grade dysplasia; HMGA1/2: High-mobility group containing AT-hook; HSIL: high-grade
squamous intraepithelial lesion; HGUC: high-grade urothelial carcinoma; IBD: inflammatory bowel
disease; ICC: intrahepatic cholangiocarcinoma; Ihh: Indian hedgehog; IND: indefinite for dysplasia;
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INFγ: interferon γ; IDH: isocitrate dehydrogenase; IL-13: Interleukin 13; IMP3: Insulin-like growth
factor II messenger ribonucleic acid (mRNA)-binding protein 3; IND: indefinite for dysplasia; JNK:
c-jun N-terminal kinase; Lewis(y) antigen: blood group 8, BG8; LGD: low-grade dysplasia; LGR5:
Leucine-rich repeat-containing G protein-coupled receptor 5; LSIL: low-grade squamous intraep-
ithelial lesion; MAPK: mitogen-activated protein kinase; miRNAs: microRNAs; MMP-1: matrix
metalloproteinase 1; MTAP: methylthioadenosine phosphorylase; mTORC1: mammalian target of
rapamycin complex 1; MUC1: Mucin 1; MUC2: Mucin 2; MUC5AC: Mucin 5AC; MUC6: Mucin 6;
NF-κB: Nuclear factor-kappa B; PAI-1: plasminogen activator inhibitor 1; PanIN: pancreatic intraep-
ithelial lesion; PCNA: proliferating cell nuclear antigen; PDAC: pancreatic ductal adenocarcinoma;
PEH: pseudoepitheliomatous hyperplasia; PDGF: fibrogenic platelet-derived growth factor; Pdx1:
pancreatic and duodenal homeobox 1; PPAR-γ: Peroxisome proliferator-activated receptor-γ; PSCs:
pancreatic stellate cells; PTC: papillary thyroid carcinoma; PTF1α: pancreas transcription factor 1
subunit α; RA: reactive atypia; RC: metaplastic cervical squamous epithelium with reactive changes;
RONS: reactive oxygen and nitrogen species; RUA: reactive urothelial atypia; SCC: squamous cell
carcinoma; αSMA: α smooth muscle antigen; SMAD4: SMAD family member 4; Shh: Sonic hedgehog;
SOX2: SRY-box 2; SOX9: SRY-box 9; SPEM: spasmolytic polypeptide-expressing metaplasia; TERT:
human telomerase reverse transcriptase; TFF2: trefoil factor family 2; TGFα: transforming growth
factor α; TGFβ1: transforming growth factor β1; TIMPs: inhibitors of MMPs; TNFα: Tumor necrosis
factor α; UC: ulcerative colitis; VHL: von Hippel–Lindau; VIN: vulvar intraepithelial neoplasia; Wnt:
Wingless-related integration site.
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