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Abstract: Fibrosis, characterized by excessive extracellular matrix accumulation, disrupts normal
tissue architecture, causes organ dysfunction, and contributes to numerous chronic diseases. This
review focuses on Krüppel-like factor 10 (KLF10), a transcription factor significantly induced by
transforming growth factor-β (TGF-β), and its role in fibrosis pathogenesis and progression across
various tissues. KLF10, initially identified as TGF-β-inducible early gene-1 (TIEG1), is involved in key
biological processes including cell proliferation, differentiation, apoptosis, and immune responses.
Our analysis investigated KLF10 gene and protein structures, interaction partners, and context-
dependent functions in fibrotic diseases. This review highlights recent findings that underscore
KLF10 interaction with pivotal signaling pathways, such as TGF-β, and the modulation of gene
expression in fibrotic tissues. We examined the dual role of KLF10 in promoting and inhibiting fibrosis
depending on tissue type and fibrotic context. This review also discusses the therapeutic potential of
targeting KLF10 in fibrotic diseases, based on its regulatory role in key pathogenic mechanisms. By
consolidating current research, this review aims to enhance the understanding of the multifaceted
role of KLF10 in fibrosis and stimulate further research into its potential as a therapeutic target in
combating fibrotic diseases.
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1. Introduction

Fibrosis is a critical pathological process characterized by the aberrant accumulation
of extracellular matrix (ECM) components in response to chronic tissue injury or persistent
inflammation [1–6]. It starts as a protective mechanism aimed at wound repair and restora-
tion of tissue integrity but can evolve into a detrimental condition leading to significant
scarring, loss of organ function, and eventual organ failure [1–6]. This complex process is a
hallmark of numerous chronic diseases and can progress to liver failure, heart dysfunction,
kidney failure, and severe respiratory dysfunction depending on the affected organ. Fibro-
sis is also a major pathological feature of many chronic autoimmune diseases, including
rheumatoid arthritis, systemic scleroderma, systemic lupus erythematosus, Crohn’s disease,
ulcerative colitis, and myelofibrosis. The widespread prevalence and severe impact of these
diseases highlight the urgent need for a deep understanding of their underlying molecular
mechanisms and potential therapeutic targets.

Although the progression and impact of fibrosis varies with each organ system, the
underlying pathological basis remains consistent, characterized by chronic inflammation,
activation of fibroblasts, excessive deposition of ECM, and dysregulated remodeling and
repair processes (Figure 1) [2–4,6]. The initiation of fibrosis is often triggered by various
factors such as infection, autoimmune reactions, mechanical stress, or toxic insults [1].
These events set off a cellular cascade aimed at repairing the damaged tissue. The acute in-
flammatory response that follows brings immune cells like macrophages and lymphocytes
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to the injury site [6]. These cells are not only essential in the initial defense and clearance of
debris but also secrete cytokines and growth factors, most notably transforming growth
factor-β (TGF-β), platelet-derived growth factor (PDGF), and connective tissue growth
factor (CTGF), that coordinate the fibrogenic response [7–9].
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Figure 1. The pathological process of fibrosis. Fibrosis commences with an inflammatory response
triggered by various stressors, insults, and the infiltration of immune cells, which in turn secrete
cytokines. A pivotal event in this sequence is the activation of myofibroblasts which arises through
multiple mechanisms, including EndMT, EMT, and the proliferation and differentiation of resident
fibroblasts and endothelial cells. Myofibroblasts can originate from various cellular sources, with
vascular smooth muscle cells/pericytes undergoing EndMT and epithelial cells transitioning through
EMT to fibrocytes before differentiating into myofibroblasts. This transition is further influenced
by immune cells such as macrophages, T-cells, and dendritic cells, which secrete TGF-β, a key
cytokine that facilitates the transformation into myofibroblasts. Subsequently, these myofibroblasts
are instrumental in the accumulation of the ECM, leading to increased tissue stiffness, disrupted
cellular interactions, and impaired blood supply. The pathological endpoint of these interconnected
processes is fibrosis, characterized by the excessive and disruptive deposition of ECM, ultimately
impairing the normal architecture and function of the tissue.

Central to fibrosis is the activation of fibroblasts, which are prevalent in most tissues.
Under the influence of cytokines, particularly TGF-β, these fibroblasts transform into myofi-
broblasts (Figure 1) [6]. Fibroblasts involved in fibrosis can originate from vascular smooth
muscle cells, pericytes, fibrocytes, endothelial and epithelial cells, or resident fibroblasts,
while emerging myofibroblasts/activated fibroblasts excessively synthesize and secrete
ECM proteins that contribute to fibrosis [10]. Depending on their origin, these cells un-
dergo proliferation, differentiation, and endothelial/epithelial-to-mesenchymal transition
(EndMT/EMT). Myofibroblasts, marked by their expression of α-smooth muscle actin
(α-SMA), become prolific producers of ECM components, especially collagen. They are
more contractile than regular fibroblasts, contributing to the increased stiffness and altered
mechanical properties of the affected tissue [7,11–14]. This excessive ECM deposition is
exacerbated by an imbalance in matrix metalloproteinases (MMPs) and tissue inhibitors of
metalloproteinases (TIMPs) [15,16]. Reduced tissue elasticity, altered cellular interactions,
and impaired blood supply are clinical consequences of fibrosis, making it a significant
clinical concern.

In recent years, Krüppel-like factor 10 (KLF10), initially designated as TGF-β-inducible
early gene-1 (TIEG1), has emerged as a critical player in fibrosis [17–19]. As a member of
the KLF family of zinc-finger transcription factors, KLF10 is significantly induced by TGF-β
and is implicated in various biological processes such as cell proliferation, differentiation,
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apoptosis, and immune responses [20]. The role of KLF10 in fibrosis has gained attention,
particularly its interaction with pivotal signaling pathways, including TGF-β/SMAD3, ER
stress, and metabolic reprogramming [18,21]. Although the precise mechanisms and down-
stream targets of KLF10 in fibrosis are still being unraveled, its potential as a therapeutic
target against fibrotic diseases is becoming increasingly recognized.

This review aims to thoroughly examine the role of KLF10 in tissue fibrosis. By
analyzing recent studies, we seek to provide a deep understanding of KLF10 characteristics,
including its gene and protein structures, as well as its interaction partners. Moreover, we
examine its context-dependent functions in various fibrosis-affected tissues and organs. By
integrating the existing knowledge, we hope to identify the potential mechanisms through
which KLF10 regulates fibrotic processes and discuss its therapeutic implications.

2. KLF10 Characteristics

KLFs, named after the Drosophila melanogaster protein Krüppel, are a family of Sp1-like
transcription factors characterized by zinc-finger domains that regulate various cellular
processes, including proliferation, development, and apoptosis. The KLF family currently
comprises 18 members with diverse expression profiles across multiple tissues [22,23].
KLF10, initially identified as an early gene induced after TGF-β treatment in human fetal
osteoblast cells (hFOB), was named TIEG1 [17]. Thus, its functions can be investigated in
various biological contexts. Notably, KLF10 is expressed in several tissues, including the
liver, pancreas, adipose tissue, and skeletal muscles [24].

2.1. KLF10 Gene Structure and Variations

The KLF10 gene, localized on the 8q22.2 locus of the human chromosome, spans
approximately 7.0 kb and comprises four exons and their corresponding introns [25]. In
other species such as Mus musculus and Rattus norvegicus, klf10 is located on chromosomes
15 and 7q22, respectively [26]. A comparison of the human and mouse KLF10 genes revealed
significant sequence similarity in the exons (Figure 2). The mouse gene, which extends over
approximately 6.3 kb, contains four exons, with exon 1a being 9 bp shorter than its human
counterpart. Additionally, the mouse gene contains an extra exon, 1c. Zinc-finger motifs
crucial for DNA binding are located in exons 3 and 4.
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Figure 2. KLF10 gene structure of mice and humans. Exon sequence similarity is represented by
black lines. The light green box indicates 79% sequence conservation between the mouse and human
KLF10 genes over 500 bp upstream of the transcription start sites. The orange lines depict identical
sequences in mouse exon 1c and human KLF10 gene (58%), as well as human exon 1b and mouse klf10
gene (64%). Exons are represented by rectangles with base pair length. In the mouse gene, the blue
rectangle signifies a sequence obtained from an expressed sequence tag. An open white rectangle
represents a region of the mouse gene that might encode mEGRα. The transcript information has
been obtained using Ensembl database [27].

The hKLF10 splice variant, termed early growth response α (hEGRα), was identified
in human prostate cancer cells [28]. Both hKLF10 and hEGRα originate from the same
gene but use distinct promoters, resulting in proteins differing by only 12 amino acids at
their N-termini (Figure 3). The primary sequence similarity, except for the first exon, is
noteworthy: exon 1a (159 base pairs) aligns with KLF10, while exon 1b (471 base pairs) is
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specific to EGRα. Mouse klf10 lacks an EGRα-specific exon but includes the unique exon 1c,
suggesting the possibility of an unidentified mouse transcript [28,29].
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specific 1b (bottom). Introns 1, 2, 3, and 4 are 1.6 kb, 1.1 kb, 103 bp, and 758 bp long, respectively.

Computational analysis of the 5′-upstream regions of KLF10 and EGRα reveals the
absence of a canonical TATA box but identifies a consensus sequence (5′-GGTGTG-3′) and
binding sites for transcription factors such as JunB, c-myc, and Sp1. For instance, the KLF10
gene promoter contains a JunB binding site, which facilitates KLF10 transcription [30].

2.2. KLF10 Protein Structure

KLF10 is a 480 amino acid protein with an approximate molecular weight of 72 kDa. It
is rich in proline and serine residues, constituting 12.8% and 11.6% of its total amino acid
composition, respectively [31]. The protein structure includes several functional domains
(Figure 4). The N-terminus contains R1 (10 amino acids), R2 (12 amino acids), and R3
(approximately 80 amino acids) repression domains and a proline-rich sequence [32]. The
R1 domain is crucial for interacting with the co-repressor mSin3A, inhibiting the transcrip-
tional activation of target genes through histone deacetylation and subsequent chromatin
remodeling [33]. Therefore, the R1 domain is commonly referred to as the mSin3A in-
teracting domain. Additionally, KLF10 possesses multiple proline-rich Src homology-3
(SH3)-binding domains for interaction with proteins such as Sp1, facilitating transcriptional
activation [34]. The C-terminus features three conserved C2H2 zinc-finger motifs crucial for
DNA binding, separated by a seven-amino-acid spacer region [31]. By binding to specific
GC-rich Sp1-like cis-regulatory sequences, KLF10 regulates the transcriptional activity of
target genes. Notably, the N-terminus of KLF10 is highly dynamic and distinct from that
of other genes in the GenBank database, except KLF11, which contrasts with the shared
zinc-finger motif of the C-terminus with Sp family transcription factors [17].

2.3. KLF10 Activation, Interactions, and Protein Stability

KLF10 is a versatile transcription factor whose activity and downstream effects are
regulated through interaction with various proteins including Jumonji AT-rich domain
1B/lysine-specific demethylase 5 B (JARID1B/KDM5B), Seven in Absentia homologue-1
(SIAH1), FBW7, cyclin-dependent kinase 2 (CDK2), and AMP-activated protein kinase
(AMPK) (Figure 4).
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demethylase 5 B (JARID1B; 1–360), and AMP-activated protein kinase (AMPK) and cyclin-dependent
kinase 2 (CDK2) phosphorylation sites at Thr189 and Ser206, respectively.

JARID1B/KDM5B was the first identified interaction partner of KLF10, interacting within
amino acid 1–360 [35]. As a transcriptional repressor, KLF10 recruits JARID1B/KDM5B to
the SMAD7 promoter, removing methyl groups from trimethylated lysine 4 on histone H3,
thereby inhibiting transcriptional initiation [35]. SMAD7 inhibits intracellular TGF-β signaling;
thus, the interaction between KLF10 and JARID1B may enhance the tumor suppressive effects
of TGF-β.

Johnsen et al. discovered that KLF10 protein stability is controlled via ubiquitination
by its interaction partner SIAH1 [36]. SIAH1, a ubiquitin ligase, participates in TGF-
β/SMAD signaling activation by binding to the amino acids 1–210 at the N-terminus of
KLF10. SIAH1 co-expression inhibits TGF-β signaling by proteasomal degradation of
KLF10, thus limiting TGF-β signaling magnitude and interval [36]. FBW7 is another E3
ubiquitin ligase involved in KLF10 protein degradation. FBW7 can bind to Thr82–Ser86
of KLF10 and mediate SMAD7 expression [37]. CDK2 phosphorylates KLF10 at Ser206,
disrupting its association with SIAH1 and preventing proteasomal degradation [38], thus
linking cell cycle progression to increased KLF10 protein levels.

AMPK is a key metabolic regulator that phosphorylates KLF10 at Thr189, thereby modu-
lating its stability and transcriptional activity [39]. These interactions with JARID1B/KDM5B,
SIAH1, FBW7, CDK2, and AMPK demonstrate the complex regulatory network of KLF10
in TGF-β signaling and related pathways. The interplay between KLF10 and its interaction
partners finely tunes gene expression and modulates various cellular processes. Further
investigation is necessary to fully understand the functional significance of these interactions
in tissue fibrosis and other biological contexts.

3. KLF10 Functional Regulation

KLF10, initially recognized as a key TGF-β signaling mediator, plays diverse roles in
cell biology, notably in inhibiting cell proliferation, promoting apoptosis, and regulating
energy metabolism. These functions suggest its role as a tumor suppressor and its involve-
ment in coordinating metabolic processes with the circadian clock and in responding to
nutrient availability.

3.1. TGF-β Regulation

KLF10 responds to TGF-β and related family members, such as activin A, bone mor-
phogenetic protein (BMP) 2, BMP4, and glial cell-derived neurotrophic factor, making it
a crucial participant in the canonical TGF-β signaling pathway [17,25,40]. The signaling
cascade begins when TGF-β ligand binds to a heterodimeric receptor complex comprising
TβRII and TβRI (Figure 5). TβRII activates TβRI through phosphorylation, catalyzing
SMAD2/SMAD3 (R-SMADs) phosphorylation. This phosphorylated complex, along with
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SMAD4, translocates to the nucleus and stimulates KLF10 expression. KLF10 then modu-
lates this pathway, particularly by inhibiting SMAD7 transcription, a key negative regulator
of TGF-β signaling [41]. TGF-β also triggers physiological responses via non-canonical
SMAD signaling pathways involving proteins such as mitogen-activated protein kinase
(MAPK) and NF-κB [42].
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R-SMADs phosphorylation. This activated TGF-β/SMAD signaling enhances KLF10 expression,
which further activates TGF-β/SMAD signaling through transcriptional activation of SMAD2 and
repression of SMAD7.

KLF10 overexpression increases apoptosis and reduces the proliferation of various
cell types, including human osteosarcoma cells [43–46]. This regulation is predomi-
nantly SMAD2-dependent, affecting its phosphorylation, and affects sparing SMAD3
and SMAD4 [47]. KLF10 influences the apoptotic pathway by upregulating Bax/Bim and
downregulating Bcl-2/Bcl-XL, thus triggering mitochondrial disturbances and caspase
3 activation [43]. KLF10 also modulates TβRII expression in CD8+ T lymphocytes [48]
and murine macrophages [49], demonstrating its broad regulatory impact across different
cell types.

3.2. Nutrient and Metabolic Pathway Regulation

The liver, as a primary metabolic organ, operates under a complex network of regula-
tory mechanisms that are sensitive to nutritional states such as feeding, fasting, and dietary
variations. Among these regulators, KLF10 plays a critical role in regulating metabolic
pathways, particularly those influenced by circadian rhythms, carbohydrate response
element-binding protein (ChREBP), and AMPK.

KLF10 is deeply intertwined with circadian rhythms, which are fundamental in orches-
trating metabolic processes [50,51]. The oscillatory nature of the circadian clock regulates
the expression of KLF10, aligning it with daily metabolic cycles [51]. KLF10 also exhibits
robust circadian expression in the liver, regulated by core clock proteins such as BMAL1.
This circadian regulation is crucial for maintaining metabolic homeostasis, emphasizing
the importance of KLF10 in synchronizing liver metabolism with circadian rhythms [51].
Beyond circadian control, KLF10 is also responsive to nutrient signaling, particularly to
fluctuations in glucose levels. Ruberto et al. demonstrated that glucose and fructose induce
Klf10 expression in the liver [52]. This induction plays a key role in mitigating metabolic
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challenges such as glucose intolerance and hepatic steatosis, especially under conditions of
high sugar intake. Thus, KLF10 acts as a transcriptional moderator, integrating nutritional
signals into the metabolic regulatory network [52].

ChREBP is a glucose-induced transcription factor that is stimulated by dietary carbohy-
drates. Fasting suppresses ChREBP activation, whereas refeeding with a high-carbohydrate
diet stimulates ChREBP expression and activity [53,54]. ChREBP directly regulates KLF10
expression by binding to ChoRE in the KLF10 promoter region [55,56]. KLF10 deletion
increases the activity of ChREBP target genes in the liver, while KLF10 overexpression
inhibits ChREBP target genes. The interaction between KLF10 and ChREBP, a central
glucose metabolism regulator, forms a feedback loop that is crucial for maintaining hepatic
metabolic homeostasis.

AMPK, a cellular energy sensor, integrates metabolic pathways in response to energy
demand [57]. KLF10, functioning as a substrate for AMPK, plays a crucial role in the
regulation of hepatic lipogenesis [39]. It acts as a post-translational repressor of SREBP1c
and its associated genes involved in lipogenesis. When phosphorylated by AMPK, KLF10’s
ability to repress Srebp1 transcription is enhanced, leading to a reduction in lipogenesis
in HepG2 cells [39]. This mechanism indicates that under low-energy conditions, AMPK
activation leads to the phosphorylation of KLF10, which in turn suppresses energy-intensive
metabolic processes. These findings reveal that KLF10 expression is not only regulated by
dietary nutrients but also influenced by a network of factors including ChREBP, AMPK,
and SREBP1, all of which contribute to the control of hepatic metabolism.

3.3. Inflammation and Metabolic Regulation

CD4+ T-cells, particularly regulatory T-cells (Tregs), are crucial for controlling inflam-
mation and metabolic processes in obesity. An imbalance in Treg cells contributes to insulin
resistance and diabetes. In CD4+-T-cell-specific KLF10 knockout mice, a predisposition to
obesity, insulin resistance, and fatty liver was observed, attributed to impaired CD4+ Treg
mobilization to liver and adipose tissues and reduced TGF-β3 release [58]. This deficiency
in CD4+-T-cell-specific KLF10 knockout Tregs was linked to reduced mitochondrial res-
piration, glycolysis, and PI3K–Akt–mTOR signaling, thereby affecting their chemotactic
abilities. This study underscores that CD4+ T-cell KLF10 is a key regulator of obesity and
insulin resistance by modulating Treg metabolism and mobilization.

4. Effect of KLF10 in Tissue Fibrosis

The diverse functional roles of KLF10 significantly contribute to its involvement in
tissue fibrosis in various organs. The regulation of TGF-β signaling, circadian rhythms, and
metabolic pathways by KLF10 forms the basis for its central role in fibrotic processes.

4.1. KLF10 in Hepatic Fibrosis

Hepatic fibrosis is a consequence of chronic liver injury caused by various factors
such as viral hepatitis, alcohol abuse, non-alcoholic fatty liver disease (NAFLD), metabolic
disorders, and autoimmune diseases [59]. It is closely associated with sustained inflam-
mation and activation of hepatic stellate cells (HSCs), the major cellular mediators of liver
fibrosis. NAFLD is characterized by fat accumulation in the liver, which causes chronic
inflammation and liver damage [60]. It encompasses a spectrum of liver conditions, ranging
from simple hepatic steatosis (fatty liver) to non-alcoholic steatohepatitis (NASH), and in
some cases, progression to advanced liver fibrosis and cirrhosis. NAFLD progression to
NASH and subsequent hepatic fibrosis represents a continuum of disease severity. Several
lines of evidence suggest that KLF10 is involved in hepatic diseases.

Kim et al. first examined the role of KLF10 in NASH progression [61] and found
that NASH progression in mice fed a high-fat, sucrose diet significantly increased with
klf10 expression, as well as increased TGF-β and collagen genes expression in the liver.
KLF10 upregulation correlated with NASH severity and the degree of liver inflamma-
tion and fibrosis, suggesting its involvement in NASH progression. Fat diet-induced
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NAFLD models using hepatocyte-specific KLF10 KO mice display severe NAFLD because
of triglyceride accumulation and steatosis in the liver [39]. AMPK phosphorylates the
KLF10 protein at Thr189 to activate and stabilize it, thereby suppressing srebp-1c expression
and regulating lipogenesis and metabolic disorders. Similarly, AMPK activation in the
liver reduces lipogenesis in vivo and protects against high-fructose diet-induced hepatic
steatosis [62], indicating that AMPK–KLF10 axis activation could be a beneficial target for
liver fibrosis treatment.

The circadian system is an internal biological clock that regulates various physio-
logical processes in the body, including the sleep–wake cycle, hormone production, and
metabolism. Many biological functions are regulated by the circadian clock, and recip-
rocally, metabolic interruptions can alter the rhythmic activity of metabolic pathways.
Circadian rhythm disruption is involved in several diseases, including tissue fibrosis [63].
Recent studies have shown nutritional challenges in reprogramming circadian physiol-
ogy and increased susceptibility to metabolic diseases in KLF10 KO mice. Leclère et al.
investigated the involvement of KLF10 in liver pathology in a diet-induced steatohep-
atitis model [64]. They used mice fed a methionine- and choline-deficient (MCD) diet,
which induced liver injury and inflammation resembling NASH in humans. The MCD
diet disrupted the normal diurnal rhythm of liver biomarkers including inflammatory- and
fibrosis-related genes. KLF10-deficient mice subjected to the MCD diet exhibited exacer-
bated liver injury, enhanced inflammation, and increased fibrosis compared to wild-type
mice. These findings suggest that KLF10 may protect against steatohepatitis develop-
ment by regulating the circadian regulation of associated biomarkers, and its deficiency
aggravates liver injury.

KLF10 is a circadian regulator that plays important roles in liver injury and fibrosis.
Guillaumond et al. and Hirota et al. have demonstrated that KLF10 expression in the liver
followed a circadian rhythmic pattern, with high levels during the inactive period [51,65].
KLF10 also regulates the expression of glucose and lipid metabolism-related genes, high-
lighting its role in the coordination of metabolic processes with the circadian clock [52].
In addition, KLF10 expression is significantly reduced in clock-deficient Bmal1 KO mice,
suggesting that Bmal1 is an upstream positive regulator of KLF10 during liver fibrosis.

Bmal1 is a master transcriptional regulator of the circadian clock that regulates bi-
ological rhythms [66] and is involved in various metabolic, inflammatory, and fibrotic
diseases. Zhang et al. demonstrated that the liver-specific Bmal1 deletion caused severe
liver injury and steatosis after chronic ethanol feeding [67]. In addition, a recent study
has shown that Bmal1 is downregulated in the fibrotic liver tissues of mice and primary
HSCs [68]. Bmal1 inhibits glycolysis in activated HSCs through regulating the isocitrate
dehydrogenase 1/α-ketoglutarate (IDH1/α-KG) pathway.

Our recent studies further elucidated the role of KLF10 in hepatic health following
a high-sucrose diet (Figure 6) [18,21]. Triglyceride and cholesterol concentrations as well
as plasma ALT and AST levels were elevated in the KLF10 KO mice liver, whereas WT
mice had minor hepatic steatosis but no apparent liver damage. Furthermore, reduced
VLDL secretion may encourage lipid accumulation in the KLF10 KO mice liver. Hepatic
fibrosis was observed in sucrose diet-fed KLF10 KO mice due to ER stress, inflammation,
and TGF-β-dependent SMAD3 signaling activation. The most significant finding was that
KLF10 deficiency increased fibrosis and collagen deposition in the mouse liver, causing
hepatocyte death. In addition, KLF10 deletion activates HSCs, thus aggravating liver
fibrosis [18]. Recent studies have identified that KLF10 suppresses TGF-β-induced HSC
activation by targeting activating transcription factor 3 (ATF3) expression [21].

These results suggest that KLF10 acts as an anti-fibrotic regulator in the context of liver
fibrosis. The role of KLF10 in liver injury and fibrosis may be linked to its role in circadian
rhythms, ER stress, and TGF-β signaling regulation. Further studies should elucidate the
mechanisms underlying the action of KLF10 in liver fibrosis.
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4.2. KLF10 in Cardiac Fibrosis

Cardiac fibrosis is characterized by excess ECM component deposition, primarily
collagen, within the myocardium. This is a common feature of various cardiovascular
diseases, including hypertrophic cardiomyopathy, ischemic heart disease, and heart failure.
The TGF-β signaling pathway is involved in cardiomyocyte proliferation and fibrosis.

Rajamannan et al. first investigated the effects of KLF10 deficiency on cardiac hy-
pertrophy, which is closely associated with cardiac fibrosis [69]. KLF10 is expressed in
the normal human myocardium. KLF10 KO male mice exhibited cardiac hypertrophy
symptoms, such as elevated heart/body weight ratio, wall thickness, and ventricular size,
compared to the control group. KLF10 is a hypertrophy suppressor that binds to the Pttg1
promoter as one of its target genes and plays a key role in cardiac hypertrophy expansion.
Gene array analysis of cardiac tissue from the left ventricles of old KLF10 KO male mice
showed significantly upregulated Pttg1 and myofibroblast fibrosis and myocyte disarray
development (Figure 7) [69]. In contrast, the female mice did not develop hypertrophy
or fibrosis.

Cen et al. have reported that cardiomyocytes isolated from KLF10 KO mice showed
enhanced proliferation and reduced apoptosis [70]. KLF10 KO mice with myocardial
infarction showed better cardiac function and smaller scar areas than C57BL/6J mice.
KLF10 deficiency in myocytes and endothelial cells reduced PTEN/Akt expression and
elevated Bcl-2/Bax signaling pathway levels, indicating a cardioprotective role of KLF10
(Figure 7). Although KLF10 deficiency was initially reported to be involved in cardiac
hypertrophy in 2007 [69], they identified a functional role for KLF10 in myocardial infarction.
Therefore, KLF10 KO provides a novel strategy for alleviating heart infarction.

KLF10 protects against virus-induced acute viral myocarditis (VMC), particularly
coxsackievirus B3 (CVB3) [71]. KLF10 interacts with the MCP-1 promoter and inhibits
monocyte and macrophage migration into the myocardium (Figure 7). In VMC, KLF10
levels are significantly inhibited after CVB3 infection, leading to mononuclear cell infiltra-
tion into the myocardium and VMC progression aggravation. This study elucidates the
possible role of KLF10 in VMC pathophysiology and provides a new therapeutic concept
for VMC immunotherapy.
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KLF10 expression is elevated in hypertensive human peripheral blood mononuclear
cells (PBMCs) and Ang II-treated mouse CD4+ T-cells [72]. In response to Ang II therapy,
KLF10 binds to the interleukin-9 (IL-9) promoter and interacts with HDAC1 to prevent
IL-9 transcription. Mice with CD4+ T-cell-specific KLF10 KO, exhibiting elevated IL-9
levels, demonstrate enhanced fibroblast intracellular calcium mobilization, activation, and
differentiation. This is accompanied by an increase in collagen and ECM production,
leading to the progression of perivascular fibrosis and impaired function in target organ
(Figure 7). These findings suggest that the KLF10–IL-9 axis in CD4+ T-cells firmly regulates
Ang II-induced perivascular fibrosis development and organ failure, potentially providing
new treatment options for hypertension-related diseases.

4.3. KLF10 in Renal Fibrosis

Renal fibrosis is a common manifestation of various chronic kidney diseases including
diabetic nephropathy, glomerulonephritis, and interstitial nephritis. It is characterized by
tubulointerstitial fibroblast proliferation, excess ECM deposition, and inflammatory cell
infiltration. Fibrosis disrupts the normal kidney structure, leading to progressive renal
function loss and, eventually, kidney failure.

The TGF-β/SMAD signaling pathway is involved in renal fibrosis development and
progression. SMAD7 is a negative feedback regulator of TGF-β/SMAD signaling pathways
and KLF10 represses SMAD7 transcription. Wahab et al. investigated TGF-β/SMAD
signaling modulation in mesangial cells by CTGF, a profibrotic factor involved in fibrosis
in multiple tissues [73]. CTGF induces KLF10 and concurrently enhances TGF-β/SMAD
signaling via transcriptional repression of SMAD7. SMAD7 expression decreased in various
fibrotic diseases including renal fibrosis [74]. Although the specific role of KLF10 in renal
fibrosis was not explored in this study, their findings suggest its potential involvement in
TGF-β signaling modulation and renal fibrosis development.

Diabetes-induced renal fibrosis (DN), the most frequent complication of type 2 di-
abetes, is a major cause of end-stage renal diseases worldwide [75]. A recent study has
demonstrated the involvement of KLF10 in renal fibrosis, specifically diabetic nephropa-
thy [75]. Various fibrosis markers, such as TGF-β, collagen, and fibronectin, were sig-
nificantly downregulated in KLF10 KO mice compared to those in control diabetic mice.
KLF10 depletion improved diabetes-induced renal fibrosis by downregulating Dickkopf-1
(DKK-1) expression, which was associated with reduced Wnt/β-catenin signaling activity
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(Figure 8). DKK-1 induction by β-amyloid (Aβ) significantly activates KLF10 expression in
primary neuronal cultured cells and causes Alzheimer disease [76]. These results suggest
that KLF10 could be a potential therapeutic target for diabetes-induced renal fibrosis.
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Figure 8. Role of KLF10 in renal and muscle fibrosis. KLF10 knockout (KO) ameliorates diabetic renal
fibrosis by the downregulation of DKK-1 expression and inhibition of TGF-β1. Under diabetic condi-
tions, podocytes exhibit increased expression of KLF10 and KMD6A, leading to podocyte dysfunction
through the inhibition of nephrin. In dystrophic skeletal muscles, KLF10 KO leads to increased
expression of collagen and fibronectin genes, a process that is enhanced by TGF-β1/SMAD signaling.

KLF10 also modulates crucial physiological functions in the kidney, including glomeru-
lar endothelial cell maintenance and podocyte function [77]. Podocytes are specialized
kidney cells that play a vital role in maintaining the renal glomerular filtration barrier.
Podocyte dysfunction is a characteristic feature of diabetic kidney disease. KLF10 expres-
sion was positively regulated by histone demethylase lysine demethylase 6A (KDM6A) in
podocytes under diabetic condition (Figure 8) [78]. In addition, KLF10 directly binds to the
promoter region of the nephrin gene, specifically an SP1-binding site, and subsequently
recruits the methyltransferase Dnmt1. Through this interaction, KLF10 acts as a transcrip-
tional repressor of the nephrin promoter. Nephrin is a genetic marker of podocytes, and
its absence causes kidney dysfunction. Importantly, both KLF10 and KDM6A mRNA and
protein levels increased in kidney tissues of patients with diabetic nephropathy. Therefore,
KLF10 plays a distinct role in promoting DN, making it a promising therapeutic target for
diagnosing diabetic nephropathy.

4.4. KLF10 in Muscular Fibrosis

Fibrosis can occur in other organs, such as the skeletal muscle and skin. Skeletal
muscle fibrosis is a defining feature of muscular dystrophies where large myofiber areas
are replaced by the progressive deposition of collagens and other ECM proteins produced
by muscle fibroblasts. KLF10 is abundant in the skeletal muscles and plays a vital role
in regulating skeletal muscle function [19]. DiMario et al. compared the effects of KLF10
depletion in wild-type and X-linked muscular dystrophy mice [19]. KLF10 depletion in
dystrophic skeletal muscles increased collagen and fibronectin gene expression, thus en-
hancing fibrosis (Figure 8). The grip strength of KLF10 KO dystrophic mice also decreased.
Further, Smad2 was scarcely detectable in both wild-type and X-linked muscular dystrophy
mice diaphragms, suggesting that KLF10 may suppress Smad2 expression in the diaphragm.
The findings of this study indicate that KLF10 plays a crucial role in mediating the fibrotic
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effects of TGF-β signaling in chronically damaged regenerative muscles. Recently, KLF10
has been identified as a key regulator of the contractile behavior of skeletal muscle fibers,
exhibiting muscle fiber-type-specific functions that contribute to muscle homeostasis [79].
These findings not only emphasize the significance of KLF10 in skeletal muscle function but
also provide valuable insights into the molecular mechanisms governing the contractility
of skeletal muscle fibers.

4.5. KLF10 in Pulmonary Fibrosis

Pulmonary fibrosis (PF) is a chronic and progressive disease characterized by irre-
versible scarring and remodeling of the lung tissue. Idiopathic pulmonary fibrosis (IPF),
the most common type of PF, presents particular challenges due to its unknown etiology
and lack of curative treatment. Although the pathophysiology of PF has not yet been well
clarified, it is believed to involve the activation of inflammatory cells by extrinsic irritants,
fibroblast recruitment, and a sustained fibrotic response [80].

The role of KLF10 in suppressing TGF-β-induced EMT was reported in lung cancer,
demonstrating that KLF10 functions as a transcriptional repressor, particularly of the EMT-
promoting transcription factor SLUG/SNAI2, thereby limiting the ability of TGF-β to
induce EMT [81]. This finding is particularly relevant to PF, as EMT plays a central role in
the disease’s progression.

While KLF10’s role in fibrosis in various tissues is established, its specific role in PF
remains less defined. However, Huang LT et al.’s investigation into KLF10 in regulating the
inflammatory response in bronchoalveolar lavage (BAL) fluid immune cells and lung tissue
highlights its significance in chronic pulmonary disease pathogenesis [82]. KLF10 deficiency
in mice exacerbates pulmonary inflammation, as evidenced by increased expression of
the pro-inflammatory molecule Natriuretic Peptide Receptor Type A (NPRA), indicating
KLF10’s critical role as a transcriptional repressor of NPRA. KLF10 KO mice exhibited
heightened sensitivity to lipopolysaccharide or ovalbumin challenge, showing severe
pulmonary neutrophil accumulation and inflammatory changes in the lungs.

These findings suggest NPRA as a potential KLF10-regulated target in PF. Prior re-
search has shown that NPRA knockout can prevent lung inflammation in allergic asthma
models, indicating a similar therapeutic potential in PF. Targeting the KLF10-NPRA path-
way could offer new treatment avenues for pulmonary inflammation and potentially
fibrosis in PF and IPF.

In summary, while the specific role of KLF10 in PF and IPF is yet to be fully defined,
emerging research points to its significant impact on pulmonary inflammation and po-
tential fibrotic processes. Understanding KLF10’s role in these pathways opens up new
possibilities for therapeutic interventions in PF, particularly in modulating inflammatory
responses that contribute to fibrotic progression.

4.6. KLF10 in Skin Fibrosis

Keloids, a skin fibrosis-associated disorder, are characterized by an abnormal wound
healing process that deposits excess ECM components in the dermis. The TGF-β pathway
plays a crucial role in keloid pathogenesis, contributing to fibroblast proliferation and
collagen accumulation in these fibrotic lesions. SMAD7 is downregulated in keloid scars
and fibroblasts [83,84]. Hu et al. demonstrated that KLF10 expression increased significantly
in keloid fibroblasts, while SMAD7 levels decreased [41]. KLF10 knockdown decreased
collagen content, proliferation, and migration of keloid fibroblasts. These findings offer
valuable insights into the role of KLF10 in mediating TGF-β signaling and its implications
in keloid scar development.

5. Conclusions and Perspectives

KLF10, a member of the KLF family of transcription factors, plays a crucial role in
tissue homeostasis and fibrosis, a condition marked by excessive ECM accumulation and
fibrous tissue formation. It regulates genes involved in ECM production, such as collagen
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and fibronectin, and balances ECM production and degradation, impacting tissue remod-
eling and repair. KLF10 also affects fibroblast-to-myofibroblast differentiation and HSC
activation, and regulates immune responses and inflammation, which are key in fibrosis.

Its role in fibrosis is complex and varies by tissue. KLF10 acts as a positive regulator in
TGF-β/SMAD signaling, contributing to renal and skin fibrosis, while protecting against
cardiac and skeletal muscle fibrosis. Its deficiency exacerbates liver injury and fibrosis,
highlighting its potential anti-fibrotic effects through mechanisms like ER stress, TGF-β
signaling, and circadian rhythm regulation.

Understanding the tissue-specific regulation and molecular mechanisms of KLF10
in fibrosis, as well as its interactions with other regulators and pathways, is essential
for comprehensive insights. Its clinical relevance in fibrotic diseases could make KLF10
a potential diagnostic marker or therapeutic target. Dysregulated KLF10 expression in
various fibrotic conditions, correlating with severity or improvement, suggests its diagnostic
potential. Measuring KLF10 expression could aid in fibrosis diagnosis and monitoring,
though more research is needed to confirm its diagnostic value and clinical utility.

Targeting KLF10 in therapeutic strategies seems promising, given its involvement in
fibrogenesis. Modulating KLF10 or its downstream pathways could influence the fibrotic
process. Since KLF10 is integral to various signaling pathways, targeting these pathways
might affect KLF10 activity, offering anti-fibrotic strategies. In summary, KLF10 is a key
emerging player in tissue fibrosis. Understanding its roles and dysregulation is vital to
develop diagnostic and therapeutic strategies. Continued research on its mechanisms,
diagnostic value, and therapeutic potential will enhance fibrosis research and potentially
improve clinical outcomes in fibrotic diseases. The potential of KLF10 as an early biomarker,
supported by current research and non-invasive diagnostic techniques, is particularly
promising in cases of liver and lung fibrosis.
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