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Abstract: Exosomal microRNAs (miRNAs) are novel, non-invasive biomarkers for facilitating com-
munication and diagnosing cancer. However, only a few studies have investigated their function and
role in the clinical diagnosis of breast cancer. To address this gap, we established a stable cell line,
MDA-MB-231-CD63-RFP, and recruited 112 female participants for serum collection. We screened
88 exosomal miRNAs identified through microarray analysis of 231-CD63 and literature screening
using real-time PCR; only exosomal miR-92b-5p was significantly increased in patients with breast
cancer. It had a significant correlation with stage and discriminated patients from the control with
an AUC of 0.787. Exosomal miR-92b-5p impacted the migration, adhesion, and spreading ability of
normal human mammary epithelial recipient cells through the downregulation of the actin dynamics
regulator MTSS1L. In clinical breast cancer tissue, the expression of MTSS1L was significantly in-
versely correlated with tissue miR-92b-5p, and high expression of MTSS1L was associated with better
10-year overall survival rates in patients undergoing hormone therapy. In summary, our studies
demonstrated that exosomal miR-92b-5p might function as a non-invasive body fluid biomarker for
breast cancer detection and provide a novel therapeutic strategy in the axis of miR-92b-5p to MTSS1L
for controlling metastasis and improving patient survival.

Keywords: exosomes; breast cancer; miRNAs; miR-92b; MTSS1L

1. Introduction

Breast cancer is the most common cancer and the leading cause of cancer-related
deaths in women worldwide. The overall 5-year survival rate with early-stage (stage 0-II)
breast cancer is about 90%, whereas for later-stage (stage III–IV) breast cancer, it is about
20–60% [1]. Despite improvements in diagnosis and targeted therapy, breast cancer is still
the most prevalent cancer in women and lacks an effective early detection marker. The
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urgency to identify circulating, real-time, and non-invasive biomarkers for breast cancer
detection cannot be overemphasized.

MicroRNAs are non-coding single-strand 21–24 nucleotide RNAs that bind to the
3′-untranslated region (3′-UTR) of the target gene and cause negative regulation by either
translation repression or mRNA cleavage [2]. It has been estimated that more than 60% of
human genes are regulated by miRNAs [3], and these properties render miRNAs vital in
many biological processes and cancer development [4–6]. Moreover, circulating miRNAs
exist in body fluids as the major non-invasive biomarkers for cancer detection [7,8]. These
cell-free miRNAs in serum or plasma were initially reported to be stable in circulation [9].
Later studies demonstrated that the majority of the cell-free miRNAs are packaged into
exosomes [10,11] that protect them from degradation. Therefore, exosomal miRNAs are the
major circulating miRNAs of non-invasive biomarkers.

Exosomes are small secreted membrane vesicles with a diameter of 30–100 nm. The
biogenesis of exosomes is derived from the inward budding of the cellular membrane to
form an early endosome and further sorted to late endosomes of intraluminal vesicles
(ILVs). These form a multivesicular body (MVB) and are released when they fuse with
the cell membrane [12,13]. In 2007, a crucial study brought the field of exosomes into
focus. The author found that exosomes play crucial roles in cellular communication to
deliver genetic information, including mRNA and miRNAs. The study also provided the
first evidence of miRNAs in exosomes [14]. Exosomal miRNAs are stable and enriched
in cancer patients, making them ideal, novel, non-invasive biomarkers for diagnosis and
a communication bridge in breast cancer [15]. However, few studies have demonstrated
the role of exosomal miRNAs in the diagnosis of breast cancer, and their functions have
not yet been fully understood. Therefore, this study aimed to establish non-invasive body
fluid biomarkers from exosomal miRNAs for breast cancer detection and to elucidate the
function of exosomal miRNAs in vitro and in clinical tissues.

2. Results
2.1. Characterization of Isolated Exosomes and Expression Profile of Exosomal miRNA

To investigate the potential exosomal miRNA from breast cancer, we first used a
cell line model and selected the highly metastatic breast cancer cell line MDA-MB-231
to establish a stable cell line, MDA-MB-231-CD63-RFP (231-CD63), which expresses the
exosomal marker CD63 tagged with red fluorescent protein (RFP) to track exosomes. As
shown in Figure 1A, the secretion of exosomes from 231-CD63 was confirmed using West-
ern blots to demonstrate that the extraction part expressed specific exosomal markers for
CD63, Hsp70, and RFP but did not detect the negative exosomal marker for Calnexin. In
addition, nanoparticle tracking analysis (NTA) demonstrated the size distribution and con-
centrations of exosomes. The morphology of exosomes was confirmed using transmission
electron microscopy (TEM), indicating that the isolation part was an exosome and was not
contaminated with other cellular components.

The major function of exosomes is to deliver messengers within exosomes, such as
miRNA. To study the exosomal miRNA from breast cancer, exosomes isolated from 231-
CD63 were delivered into the recipient cells, RMF-EG After 48 h, the recipient cells were
extracted using TRIzol reagents and analyzed using miRNA arrays. As shown in Figure 1B,
compared to the control of RMF-EG (RM), 26 miRNAs revealed increased expression (red
colors in the column of EX and blue dots in the right quadrant of the Volcano plot) after the
uptake of exosomes from 231-CD63 (EX), and these miRNAs were potential candidates for
further literature search and human serum analysis.
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Figure 1. Characterization of the exosomes isolated from 231-CD63 and miRNA profiles after uptake 
by RMF-EG. (A) Isolation of exosomes from a culture medium is confirmed by Western blots, show-
ing strong expression of exosomal markers for CD63, Hsp70, and RFP and absence of negative exo-
somal marker for Calnexin. NTA analysis and TEM also demonstrate that the isolated portion con-
forms to the size distribution, concentrations, and morphology of exosomes. (B) Total RNA is ex-
tracted using TRIzol reagent after 48 h of exosome uptake and analyzed using miRNA arrays. 
Twenty-six miRNAs reveal increased expression (indicated by red colors in the EX column and blue 
dots in the right quadrant of Volcano plot) after the uptake of exosomes from 231-CD63 (EX). 

2.2. Exosomal miR-92b-5p Was Significantly Increased in a Different Stage of Breast Cancer 
Patients 

The main goal of this study was to identify a specific exosomal miRNA in the body 
fluid that functions as a biomarker for distinguishing patients with breast cancer from 
controls and elucidate the function alternation of the target gene by exosomal miRNA. 
Initially, we randomly isolated exosomes from the serum of three patients, and the isola-
tion part strongly expressed exosomal markers for CD63 and GAPDH but did not detect 
the negative exosomal marker for Calnexin. NTA analysis and TEM demonstrated the size 
distribution, concentrations, and morphology of the exosomes (Figure 2A). 

Next, we screened a total of 88 exosomal miRNAs in the partial breast cancer patient’s 
serum using real-time PCR. These candidate miRNAs were selected from microarray data 
and the literature crucial for their significance in breast cancer, and were upregulated in 
the microarray. As shown in Table 1, a Ct value of ≥35 was considered a low expression 
level in patients with breast cancer. Finally, a total of nine miRNAs with a Ct value < 35 
were selected as candidate serum exosomal miRNAs. In the next experiment, we found 
that the levels of serum exosomal miRNAs miR-92b-5p, miR-1273a, and miR-4524a-5p 
were significantly increased with the progression of the stage of breast cancer. With the 
accumulation of samples, only exosomal miR-92b-5p met the goal of significant differen-
tial expression versus control donors (stage I: 5.08-fold increase; stage II: 5.58-fold in-
crease; stage III: 4.57-fold increase; Figure 2B). Exosomal miR-92b-5p also exhibits a 

Figure 1. Characterization of the exosomes isolated from 231-CD63 and miRNA profiles after uptake
by RMF-EG. (A) Isolation of exosomes from a culture medium is confirmed by Western blots, showing
strong expression of exosomal markers for CD63, Hsp70, and RFP and absence of negative exosomal
marker for Calnexin. NTA analysis and TEM also demonstrate that the isolated portion conforms
to the size distribution, concentrations, and morphology of exosomes. (B) Total RNA is extracted
using TRIzol reagent after 48 h of exosome uptake and analyzed using miRNA arrays. Twenty-six
miRNAs reveal increased expression (indicated by red colors in the EX column and blue dots in the
right quadrant of Volcano plot) after the uptake of exosomes from 231-CD63 (EX).

2.2. Exosomal miR-92b-5p Was Significantly Increased in a Different Stage of Breast
Cancer Patients

The main goal of this study was to identify a specific exosomal miRNA in the body
fluid that functions as a biomarker for distinguishing patients with breast cancer from
controls and elucidate the function alternation of the target gene by exosomal miRNA.
Initially, we randomly isolated exosomes from the serum of three patients, and the isolation
part strongly expressed exosomal markers for CD63 and GAPDH but did not detect the
negative exosomal marker for Calnexin. NTA analysis and TEM demonstrated the size
distribution, concentrations, and morphology of the exosomes (Figure 2A).

Next, we screened a total of 88 exosomal miRNAs in the partial breast cancer patient’s
serum using real-time PCR. These candidate miRNAs were selected from microarray data
and the literature crucial for their significance in breast cancer, and were upregulated in
the microarray. As shown in Table 1, a Ct value of ≥35 was considered a low expression
level in patients with breast cancer. Finally, a total of nine miRNAs with a Ct value < 35
were selected as candidate serum exosomal miRNAs. In the next experiment, we found
that the levels of serum exosomal miRNAs miR-92b-5p, miR-1273a, and miR-4524a-5p
were significantly increased with the progression of the stage of breast cancer. With the
accumulation of samples, only exosomal miR-92b-5p met the goal of significant differential
expression versus control donors (stage I: 5.08-fold increase; stage II: 5.58-fold increase;
stage III: 4.57-fold increase; Figure 2B). Exosomal miR-92b-5p also exhibits a significant



Int. J. Mol. Sci. 2024, 25, 1295 4 of 19

increase in the ER and HER-2 subtypes in patients with breast cancer compared with
controls (Supplementary Figure S1). These exosomal miRNAs were further confirmed
using the ROC curve, and only exosomal miR-92b-5p reached an acceptable discrimination
of the AUC, which was 0.787 (p < 0.001, Figure 2C), to discriminate different stages of breast
cancer patients from the controls (stage I: AUC = 0.672, p = 0.022; stage II: AUC = 0.874,
p < 0.001; stage III: AUC = 0.793, p = 0.002). In addition, the clinicopathological parameters
also demonstrated that the expression of exosomal miR-92b-5p was significantly correlated
with stage (p = 0.033), estrogen receptor (ER) status (p = 0.047), progesterone receptor
(PR) status (p = 0.007), and epidermal growth factor receptor 2 (HER-2) status (p = 0.038)
(Table 2), indicating that exosomal miR-92b-5p could be considered a non-invasive body
fluid biomarker for breast cancer detection.
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Figure 2. Exosomal miR-92b-5p functions as a non-invasive body fluid biomarker for breast cancer
detection. (A) Isolation of exosomes from the serum of breast cancer patients is confirmed by Western
blots, showing strong expression of exosomal markers for CD63 and GAPDH and the absence of
negative exosomal marker for Calnexin. NTA analysis and TEM also demonstrate that the isolated
portion conforms to the size distribution, concentrations, and morphology of exosomes. (B) Among
the three candidate exosomal miRNAs, miR-92b-5p exhibits significant increase in different stages
(stage I: N = 21, 5.08-fold increase; stage II: N = 27, 5.58-fold increase; stage III: N = 11, 4.57-fold
increase) in patients with breast cancer compared with controls (N = 53). The p-value is estimated
using a two-tailed t-test, and a p-value of less than 0.05 (denoted as * p < 0.05, ** p < 0.01, and
*** p < 0.001) denotes statistical significance. (C) The receiver operating characteristic (ROC) curve
shows that miR-92b-5p reached an acceptable level of discrimination, with an area under the curve
(AUC) of 0.787 for distinguishing patients with breast cancer from controls.
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Table 1. Total 88 serum exosomal miRNAs from microarray data and the literature detected by
real-time PCR.

Ct < 35 Ct ≥ 35

miRNA ID miRNA ID miRNA ID miRNA ID miRNA ID

miR-21 miR-7 miR-140 miR-204-5p miR-502-5p
miR-92a-3p miR-10b miR-141 miR-204-3p miR-503
miR-92b-5p miR-17 miR-142-3p miR-205 miR-503-3p
miR-223-3p miR-18a miR-142-5p miR-214 miR-548d-3p
miR-320a miR-19a-3p miR-146a miR-221 miR-550a-5p

miR-483-3p miR-20a miR-148a miR-222 miR-602
miR-1273a miR-22-3p miR-148b miR-223-5p miR-638

miR-4524a-5p miR-23a miR-149 miR-302a miR-642a-3p
miR-4634 miR-34a miR-149-3p miR-302b miR-654-5p

miR-34b miR-150 miR-326 miR-744-5p
miR-92a-1-5p miR-181a miR-361 miR-765

miR-96 miR-181b miR-371a-5p miR-2278
miR-101-3p miR-182 miR-371a-3p miR-3145-5p
miR-101-5p miR-183 miR-372-5p miR-3146

miR-105 miR-186 miR-372-3p miR-3149
miR-122-5p miR-197-3p miR-373-5p miR-3679-5p
miR-125a miR-199b miR-373-3p miR-4644
miR-128b miR-200a miR-449b-3p miR-4653-3p
miR-133a miR-202-3p miR-483-5p miR-4725-3p
miR-133b miR-203 miR-484

Table 2. Correlation of exosomal miR-92b-5p and clinicopathological parameters of breast cancer.

Exosomal miR-92b-5p
p-Value

Total ≤2 >2

Stage 0–I 21 10 11
0.033 *II–III 38 8 30

Lymph node
metastasis

Positive 24 5 19
0.181Negative 35 13 22

ER
Positive 43 10 33

0.047 *Negative 16 8 8

PR
Positive 35 6 29

0.007 **Negative 24 12 12

HER-2
≥3 13 7 6

0.038 *<3 46 11 35

Subtypes Non-TNBC 52 15 37
0.45TNBC 7 3 4

Subtypes ER-positive 39 8 31
0.023 *HER-2-positive 13 7 6

* p < 0.05, and ** p < 0.01.

2.3. miR-92b-5p Was Upregulated in Both Cell Lines and Exosomes of 231-CD63

In addition to clinical serum validation, we utilized a cell line model to analyze these
three exosomal miRNAs in vitro. Compared to the normal M10 cell, only miR-92b-5p was
significantly increased in 231-CD63 cells (Figure 3A). We further analyzed exosome levels
by comparing exosomes isolated from MCF7 and 231-CD63, and only exosomal miR-92b-5p
was overexpressed in the exosomes, indicating that miR-92b-5p was the crucial miRNA
that was upregulated in both the breast cancer cell lines and the exosomes (Figure 3B). As
miR-92b-5p was upregulated in the clinical breast cancer patients’ serum, the in vitro cell
lines, and the exosomes, we focused on it in the next experiment to validate the potential
target of exosomal miR-92b-5p. We selected the normal M10 cell as our recipient cell and
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delivered the PKH-26-labeled exosome. As shown in Figure 3C, the exosomes were taken
up by the recipient M10 cell, as shown by the PKH-26 signal; concomitantly, miR-92b-5p
was upregulated when the exosomes were taken up by the recipient M10 cell (M10-EX).
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Figure 3. miR-92b-5p exhibits upregulation in both breast cancer cell lines and exosomes. (A) Among
the three candidate miRNAs, miR-92b-5p is significantly upregulated in the 231-CD63 cell line
compared to the control M10 cell line. (B) Compared to the exosomes isolated from benign MCF-7,
only miR-92b-5p exhibits an increase in the exosomes isolated from 231-CD63. (C) Exosomes isolated
from 231-CD63 are labeled with PKH-26 and added to the medium of H184B5F5/M10 (M10) normal
human mammary epithelial cells (Scale bar: 100 µm). The uptake of exosomes after 6 h is indicated by
an arrow mark and is concomitant with the increased miR-92b-5p after 48 h of exosome uptake (M10-
EX). Experiments using real-time PCR have been performed in triplicate. The p-value is estimated
using a two-tailed t-test, and a p-value of less than 0.05 (denoted as * p < 0.05, and *** p < 0.001)
denotes statistical significance.

2.4. MTSS1L Was Targeted by miR-92b-5p

Next, we investigated the potential target of exosomal miR-92b-5p. To identify the
target gene affected by miR-92b-5p, we utilized the miRWalk database and found that
MTSS1L was targeted by miR-92b-5p. We verified whether MTSS1L could be affected
by miR-92b-5p in exosomes using a different approach. We found that (1) MTSS1L was
repressed when the M10 cells were delivered with exosomes or co-cultured with 231-
CD63 to mimic the tumor microenvironment (Figure 4A); (2) MTSS1L was repressed and
increased when miR-92b-5p was overexpressed or knocked down in the M10 and 231-CD63
cells (Figure 4B).
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Figure 4. MTSS1L is the targeted gene of miR-92b-5p. (A) The protein level of MTSS1L is reduced
after 72 h of exosome uptake (M10-EX) and co-culture with 231-CD63 (231-M10). (B) The protein
level of MTSS1L is reduced after overexpression of miR-92b-5p (M10-miR-92b); this phenotype is
reversed when miR-92b-5p is inhibited with different doses of anti-miR-92b-5p (Anti-50/100 nM).
(C) Reversal of reduced MTSS1L with co-culture can occur when inhibiting the secretion of exosomes
with different doses of GW4869 (GW10/20 µM). (D) The miR-92b-5p targeting sequence in the
MTSS1L 3′UTR is identified, and a deletion is performed to change the sequence (MTSS1L 3′UTR-Del,
upper panel). MTSS1L 3′UTR reporter activity decreased in miR-92b-5p-treated cells compared to
the control cells, and deletion of the two miR-92b-5p binding sites reversed miR-92b-5p-repressed
reporter activity. Experiments have been performed in triplicate. The p-value is estimated using a
two-tailed t-test, and a p-value of less than 0.05 (denoted as * p < 0.05, and *** p < 0.001) denotes
statistical significance.

To further confirm that the expression of MTSS1L in the recipient cells was affected by
the secretion of exosomes, the co-culture system of the upper transwell insert was treated
with a different dose of GW4869, which inhibited the secretion of exosomes [16]. As shown
in Figure 4C, MTSS1L was significantly reversed when inhibiting the secretion of exosomes.
Indeed, it proved that the downregulation of MTSS1L in the co-culture system was due to
the secretion of exosomes from 231-CD63. We further verified that miR-92b-5p could target
MTSS1L directly by using the MTSS1L 3′UTR reporter assay. As shown in Figure 4D, the
MTSS1L 3′UTR reporter activity of the miR-92b-5p-treated cells was decreased compared
to the control cells, and the deletion of the two miR-92b-5p binding sites reversed the
miR-92b-5p-repressed reporter activity.

2.5. Exosomes Could Alter the Characteristics of the Recipient Cell

Exosomes are secreted from the donor cell and taken up by the recipient cell to alter
some characteristics of the recipient cell. We found that the recipient normal M10 cells
could significantly increase their migration ability when delivered with exosomes (M10-EX)
or co-cultured with 231-CD63 (231-M10, Figure 5A). To further confirm that the alteration
of the migration ability was due to the secretion of exosomes, different doses of GW4869
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were used in co-culture with 231-CD63. As shown in Figure 5B, the migration ability of
recipient normal M10 cells was significantly diminished when the secretion was blocked,
indicating that the induced effect was due to the secretion of exosomes from 231-CD63.
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Figure 5. Exosomes alter the migratory, spreading, and adhesion abilities of recipient cells, potentially
attributed to MTSS1L in exosomal miRNA. (A) The migration ability of recipient M10 cells is increased
with exosome uptake (M10-EX) or co-culture with 231-CD63 (231-M10); this is concomitant with
an alternation in spreading ability. (B) The increased migration ability of recipient M10 cells with
co-culture can be significantly repressed when exosome secretion is blocked with GW4869; this is
concomitant with a reversed spreading ability. (C) Overexpression of miR-92b-5p increases migration
and alters the spreading ability of recipient M10 cells (M10-92b). This effect is repressed when
MTSS1L is overexpressed in 231-CD63 (231-CD63-MT) and inhibits migration and spreading abilities.
Scale bar: 100 µm. (D) The adhesion ability is reduced during incubation with exosomes or co-culture
with 231-CD63; this can be reversed by blocking exosome secretion. This effect is also observed
in the overexpression of miR-92b-5p and reversed with overexpression of MTSS1L in 231-CD63.
Experiments have been performed in triplicate. A p-value of less than 0.05 (denoted as * p < 0.05,
** p < 0.01, and *** p < 0.001) was calculated by comparing each group to the control, including M10-C,
C-M10, M10-pC, and 231-pC.
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We also observed the morphology of the recipient cells. Cell spreading is a short-term
effect in which transformed cells display reduced adhesion ability and small, round cells
with a filopodia structure that fail to spread extensively compared to normal cells [17]. We
found that the morphology of M10 was rounder and there were more filopodia structures at
the cell edge (M10-EX, 231-M10); however, in the control and GW4869 treatment groups, the
morphology tended to be flatter and had more lamellipodia structures (Figure 5A,B, right),
indicating the transformation of the recipient normal M10 cells. Likewise, the adhesion
ability of the recipient normal M10 cells was also reduced in both those delivered with
exosomes and those co-cultured with 231-CD63. This effect was counteracted after GW4869
treatment (Figure 5D, left).

To further realize the functional alternation of MTSS1L and exosomal miRNA, we
established two stable cell lines with M10-92b (overexpression of miR-92b-5p in normal M10
cells to mimic the increased expression of miR-92b-5p due to the uptake of exosomes) and
231-CD63-MT (overexpression of MTSS1L in 231-CD63). Overexpression of miR-92b-5p also
increased the migration ability and altered the morphology of spreading. In contrast, the
migration ability was reduced and the morphology was flatter in 231-CD63-MT (Figure 5C).
Likewise, the adhesion ability was reduced in M10-92b-5p cells and counteracted in 231-
MTSS1L cells (Figure 5D, right). Together, these results indicated that exosomes could alter
the migration, spreading, and adhesion abilities of normal M10 cells, in which these effects
may result from MTSS1L downregulation by exosomal miR-92b-5p.

2.6. MTSS1L Expression Correlated with the Survival of Breast Cancer Patients

In the cell line model, we elucidated MTSS1L as the target of miR-92b-5p, and it
was affected by exosomes to impact migration, spreading, and adhesion. Therefore, we
further investigated the expression of miR-92b-5p and MTSS1L in clinical breast cancer
patient tissues. MiR-92b-5p was analyzed using ISH and MTSS1L using IHC in a total
of 187 tissues. MiR-92b-5p was indeed significantly inversely correlated with MTSS1L
(p = 0.001, Figure 6A and Table 3); however, an interesting phenomenon was that tissue miR-
92b-5p had low expression in most of the cases in stage II-III (Table 3). This phenomenon
contrasted with serum exosomal miR-92b-5p, which was highly expressed in stage II-III
(Table 2).
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Figure 6. Patients with breast cancer exhibiting high expression of MTSS1L have a favorable 10-year
survival rate. (A) The representative figure shows that in situ hybridization of miR-92b-5p expression
has an inverse correlation with MTSS1L protein level in breast cancer tissues. (B) Patients with breast
cancer exhibit improved 10-year survival rates when MTSS1L is highly expressed. The survival
rates are estimated using the Kaplan–Meier estimator, and the survival difference is tested using the
log-rank test. A p-value of less than 0.05 (denoted as ⋆ p < 0.05) denotes statistical significance.
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Table 3. Correlation of tissue miR-92b-5p and clinicopathological parameters of breast cancer.

Tissue miR-92b-5p
p-Value

Total Low High

MTSS1L
Low 68 44 24

0.001 **High 119 101 18

Stage 0–I 70 51 19
0.235II–III 117 94 23

Lymph node 1

metastasis
Positive 81 65 16

0.649Negative 93 72 21

ER 2 Positive 107 82 25
0.51Negative 63 51 12

PR 3 Positive 91 72 19
0.697Negative 77 59 18

HER-2 4 ≥3 57 40 17
0.049 *<3 108 90 18

Subtypes Non-TNBC 130 99 31 0.28
TNBC 33 28 5

Subtypes ER-positive 73 59 14 0.16
HER-2-positive 57 40 17

1 Thirteen cases without records of lymph node metastasis. 2 Seventeen cases without records of ER status.
3 Nineteen cases without records of PR status. 4 Twenty-two cases without records of HER-2 status. * p < 0.05, and
** p < 0.01.

Next, we analyzed 10-year survival rates using different clinicopathological param-
eters. In total, 187 cases had 173 cases with recorded survival rates. We found that the
expression of MTSS1L was significantly correlated with 10-year survival rates and that
high expression of MTSS1L was associated with better survival rates (p = 0.042, Figure 6B).
We further analyzed the relationship among miR-92b-5p, MTSS1L, different receptor sta-
tuses, and therapy regimens. The expression of MTSS1L was significantly correlated with
ER-positive status (Figure 7A, p < 0.001), PR-positive status (Figure 7B, p = 0.002), and stage
II-III (Figure 7E, p = 0.034), indicating that highly expressed MTSS1L had better survival
rates. In the therapy regimen, low expression of miR-92b-5p with hormone therapy (HT)
had better survival than that without HT (p < 0.001), and high expression of MTSS1L with
HT had better survival (p = 0.005) than low expression of MTSS1L with HT (p = 0.01), indi-
cating that MTSS1L may be involved in the survival of breast cancer patients on hormone
therapy (Figure 8C).
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Figure 7. The relationship among miR-92b-5p, MTSS1L, and different receptor statuses. (A–E) Pa-
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Figure 7. The relationship among miR-92b-5p, MTSS1L, and different receptor statuses. (A–E) Pa-
tients with ER-positive (p < 0.001), PR-positive (p = 0.002), and stage II–III (p = 0.034) breast cancer
with high expression of MTSS1L exhibit improved 10-year survival rates. Column 1: all patients with
different receptor/LN/stage status; column 2: miR-92b expression level and receptor positive/LN
positive/stage 0–I status; column 3: miR-92b expression level and receptor negative/LN nega-
tive/stage II–III status; column 4: MTSS1L expression level and receptor positive/LN positive/stage
0–I status; column 5: MTSS1L expression level and receptor negative/LN negative/stage II–III status.
The survival rates are estimated using the Kaplan–Meier estimator, and the survival difference is
tested using the log-rank test. A p-value of less than 0.05 (denoted as ⋆ p < 0.05, ⋆⋆ p < 0.01, and
⋆⋆⋆ p < 0.001) denotes statistical significance.
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miR-106a-363 cluster was another diagnostic biomarker in which four plasma miRNAs 
and four serum miRNAs were constructed to discriminate patients with breast cancer 
from controls with an AUC > 0.8 [24]. Eichelser et al. demonstrated that exosomal miR-
101 and miR-372 were overexpressed in patients with breast cancer compared to healthy 
controls and that exosomal miR-373 was a unique biomarker for the diagnosis of triple-
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Figure 8. The relationship among miR-92b-5p, MTSS1L, and different therapy regimens. (A,B) The
expression of miR-92b-5p and MTSS1L is not correlated with the survival of RT/CT in breast cancer
patients. (C) Patients with breast cancer undergoing hormone therapy (HT) with low expression of
miR-92b-5p (p < 0.001) and high MTSS1L expression (p = 0.005) exhibit improved 10-year survival
rates. Column 1: all patients with different therapy regimens; column 2: low miR-92b expression
level with different therapy regimens; column 3: high miR-92b expression level with different therapy
regimens; column 4: low MTSS1L expression level with different therapy regimens; column 5: high
MTSS1L expression level with different therapy regimens. The survival rates are estimated using the
Kaplan–Meier estimator, and the survival difference is tested using the log-rank test. A p-value of less
than 0.05 (denoted as ⋆ p < 0.05, ⋆⋆ p < 0.01, and ⋆⋆⋆ p < 0.001) denotes statistical significance.

3. Discussion

Studies regarding exosomal miRNAs as non-invasive body fluid biomarkers for cancer
detection have been growing in recent years [18–20]. The abundance of exosomes is
enriched in cancer patients compared to healthy controls [21,22], making exosomal miRNA
an ideal, novel, non-invasive biomarker for cancer detection. Until now, there have been
few studies investigating exosomal miRNAs as diagnostic markers for breast cancer [20].
The combination of exosomal miR-1246 and miR-21 could differentiate patients with
breast cancer from healthy subjects with an AUC of 0.73 [23]. An exosomal miR-106a-
363 cluster was another diagnostic biomarker in which four plasma miRNAs and four
serum miRNAs were constructed to discriminate patients with breast cancer from controls
with an AUC > 0.8 [24]. Eichelser et al. demonstrated that exosomal miR-101 and miR-
372 were overexpressed in patients with breast cancer compared to healthy controls and
that exosomal miR-373 was a unique biomarker for the diagnosis of triple-negative breast
cancer [11]. In our study, we found that a single crucial exosomal, miR-92b-5p, could



Int. J. Mol. Sci. 2024, 25, 1295 13 of 19

discriminate patients with breast cancer from controls with an AUC of 0.787 and was
significantly correlated with stage.

Several studies have demonstrated that miR-92b is a unique oncomir in breast cancer.
In tissue sections, miR-92b is a luminal A subtype-specific miRNA that is upregulated in
breast cancer [25] and presents a distinct miRNA signature in young women with breast
cancer [26]. However, only a few studies have investigated the role of exosomal miR-92b
in breast cancer. Exosomal miR-92b-5p had previously been identified as a diagnostic
biomarker for heart-related diseases [27–29]. In 2013, a plasma miRNA signature was
generated through comparison with a previous public dataset, revealing that miR-92b-
5p is a unique oncomir in breast cancer compared to lung or colorectal cancer [30]. The
above study is the only one to investigate the role of miR-92b-5p in cancer and indicates
that circulating miR-92b-5p may play a crucial role in breast cancer. To the best of our
knowledge, we have provided the first evidence that exosomal miR-92b-5p may function
as a diagnostic biomarker and discriminate different stages of breast cancer patients from
controls. We have also elucidated its function by identifying its unique target, MTSS1L.

In spite of the diagnostic values of exosomal miRNA, in most studies, the function of
these exosomal miRNAs is not fully understood. In our study, we found that a unique target
of MTSS1L was affected by miR-92b-5p to impact the migration, spreading, and adhesion
of recipient normal human mammary epithelial cells and survival rates in clinical tissues.
MTSS1L is a rarely studied member of the inverse BAR (Bin, Amphiphysin, and Rvs, I-BAR)
superfamily, which contains MIM-like members (MTSS1L, MIM) and IRSp53 members
(IRSp53, IRTKS, and FLJ22582). MTSS1L has two major functional domains for a scaffolding
function—including the WASP-homology 2 (WH2) domain of the actin-binding motif and
the IRSp53-MIM domain (IMD), which is also called the I-BAR domain—to promote the
formation of dynamic membrane tubules or membrane protrusions of lamellipodia and
filopodia [31,32]. MTSS1L is an actin dynamics regulator that promotes lamellipodia
formation and cell spreading [33,34]. Recently, another study has shown that MTSS1L may
be involved in membrane curvature, dendritic spine formation, and synaptic function [35].
However, to the best of our knowledge, there are no studies concerning the role of MTSS1L
in cancer. In this study, we provide the first evidence of the role of MTSS1L in cancer by
using in vitro cell lines and clinical tissues.

In the in vitro cell lines (as part of the role of the actin dynamics regulator MTSS1L),
the migration, adhesion, and spreading ability of recipient normal M10 cells were impacted
by exosome uptake, co-culture with 231-CD63 cells, and miR-92b-5p, all concomitant with
the inhibition of MTSS1L. Thus, the transformation ability of exosomes toward recipient
normal M10 cells may be involved in the axis of miR-92b-5p to MTSS1L. In the clinical
tissues, high expression of MTSS1L has better 10-year survival rates. Metastasis is a crucial
process that reduces survival rates and leads to death in most cancer patients. In the
initiation of metastasis, cell migration is the first step that dysregulates and promotes the
dissemination of tumor cells from the primary site to secondary sites. This dysregulation of
migration depends on the dynamics of cytoskeletal proteins such as actin and the formation
of different protrusions such as filopodia that promote migration, leading to metastasis
and low survival rates [36]. We also found under hormone therapy that patients with high
expression of MTSS1L have better survival rates than those with low expression of MTSS1L.
One interesting study demonstrated that hormone therapy might increase local invasion of
the tumor by decreasing cytoskeletal-related protein EVL and that estrogen may prevent
metastasis through actin cytoskeletal remodeling [37], indicating that the expression of
cytoskeletal-related proteins is crucial in controlling metastasis under hormone therapy.
Taken together, the actin dynamics regulator MTSS1L affects cell migration, adhesion, and
spreading in vitro and prolongs survival in clinical patients, which may be due to the
involvement of metastasis control and cytoskeletal remodeling, indicating that MTSS1L
may function as a metastasis suppressor in cancer.

In addition to circulating exosomal miR-92b-5p from blood, we also analyzed miR-
92b-5p expression in clinical tissues using ISH and found that miR-92b-5p was indeed
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significantly inversely correlated with MTSS1L; however, an interesting phenomenon was
that the expression of miR-92b-5p was reduced in most of the cases in stage II-III, which
differed from the serum of exosomal miR-92b-5p. This opposite expression of exosomal
miRNA and tissue miRNA has been observed in several studies, indicating that exosomal
miRNA does not mirror tissue miRNA. One study found a different expression pattern in
exosomal miRNAs and tissue miRNAs in breast cancer patients with and without recur-
rence [38]. Another study provided a comprehensive analysis of exosomal/plasma/tissue
miRNAs in tongue cancer, and different tissue miRNAs were observed in exosomes or
plasma [39]. Until now, the mechanisms controlling the secretion of miRNAs into exosomes
or their retention in tissues remain unknown; however, tumors themselves may release miR-
NAs into circulation [9]. In addition, exosomal miRNAs can reflect a more comprehensive
response to cancer and are more stable and reliable in diagnosis [10,11,38,39].

4. Materials and Methods
4.1. Cell Lines and Reagents

The human breast cancer cell lines MDA-MB-231, MCF-7, and SKBR3, as well as
H184B5F5/M10 (M10) normal human mammary epithelial cells were purchased from
the Bioresource Collection and Research Center (Hsinchu, Taiwan). Immortalized human
breast fibroblasts (RMF-EGs) were kindly provided by Dr. Charlotte Kuperwasser and
Dr. Kelvin Kun-Chih Tsai. These cells were cultured in DMEM/F12 containing 10% fetal
bovine serum (FBS). MDA-MB-231-CD63-RFP (231-CD63) was established by transfec-
tion with pCT-CD63-RFP constructs (System Biosciences, Mountain View, CA, USA) and
selected with puromycin. MiR-92b-5p and MTSS1L expression vectors were purchased
from GeneCopoeia (Rockville, MD, USA). Anti-miR-92b-5p, negative control, and siPORT
NeoFX were obtained from Thermo Fisher Scientific (Waltham, MA, USA). GW4869 was
purchased from Cayman (Ann Arbor, MI, USA).

4.2. Study Population

A total of 112 female participants were recruited into this study for serum collection.
This included 53 control volunteers and 59 breast cancer patients. Of the 59 patients,
21 had stage I, 27 had stage II, and 11 had stage III breast cancer. All serum samples were
collected before receiving any hormone, chemotherapy, or radiotherapy and obtained from
the Division of Breast Oncology and Surgery, Kaohsiung Medical University Hospital,
with approval from the Internal Review Board and informed consent from all patients
(KMUH-IRB-990174, KMUHIRB-F(I)-20200107).

4.3. Exosome Isolation and Labeling

231-CD63 was cultured in a 10 cm dish with a high density of 2 × 106 cells for
24 h and then replaced with a serum-free medium for 48 h. The culture medium was
then centrifuged at 4000 rpm for 10 min, and exosomes were isolated using ExoQuick-TC
Exosome Precipitation Solution (System Biosciences, Mountain View, CA, USA) according
to the manufacturer’s protocol. Exosome labeling was carried out by labeling with PKH26
dye (Sigma, St. Louis, MO, USA) according to the manufacturer’s protocol. Exosomes
isolated from serum were centrifuged at 13,000 rpm for 10 min and precipitated with
ExoQuick Exosome Precipitation Solution (System Biosciences, Mountain View, CA, USA)
according to the manufacturer’s protocol.

4.4. Microarray Analysis

RNA was extracted using TRIzol reagent, and microarray analysis was conducted
using Phalanx Human miRNA OneArray (Phalanx Biotech Group, Hsinchu, Taiwan). The
differentially expressed genes were identified following the criteria of log2 fold change
≥0.8 and p < 0.05.
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4.5. Western Blots

Cells and exosomes were lysed in RIPA buffer with an appropriate protease inhibitor
at 4 ◦C for 20 min. Protein concentrations were normalized using BCA protein assay, boiled
in sample buffer, separated using SDS-polyacrylamide gel electrophoresis (SDS-PAGE),
and then transferred to nitrocellulose paper. Membranes were blocked with non-fat dry
milk in Tris-buffered saline containing 0.05% Tween 20 (TBST) and then incubated with
primary antibodies against CD63 (System Biosciences, Mountain View, CA, USA), RFP
(SignalChem, Richmond, CA, USA), Hsp70, Calnexin (Genetex, Hsinchu, Taiwan), MTSS1L
(Bethyl Laboratories, Montgomery, TX, USA), and Actin (Millipore, Billerica, MA, USA).
Enhanced chemiluminescence reagents (PerkinElmer, Shelton, CT, USA) were used to depict
the protein bands on the blots and visualized using UVP biospectrum 600. Western blot
quantification was performed using the Image J software version 1.52 (National Institutes
of Health, MD, USA).

4.6. Exosome RNA Extraction and Real-Time PCR

Total RNA was isolated from cells using TRIzol reagent, and exosome RNA was
extracted using SeraMir Exosome RNA Amplification kit (System Biosciences, Moun-
tain View, CA, USA) according to the manufacturer’s protocol. cDNA was synthesized
using the Mir-X miRNA First-Strand Synthesis Kit (TaKaRa, Kusatsu, Shiga, Japan) for
microRNA quantification. The target miRNA sequence was synthesized according to
miRBase and quantified using real-time PCR with SYBR green GoTaq qPCR Master Mix
(Promega, Madison, WI, USA), and U6 small nuclear RNA was used as an internal control
for microRNA quantification.

4.7. Nanoparticle Tracking Analysis (NTA)

The extract size distribution and concentration of exosomes were analyzed using
ZetaView PMX 120 (Particle Metrix, Meerbusch, Germany) on the basis of light scattering
and Brownian motion, and the results were analyzed using NTA software version 3.2.

4.8. Transmission Electron Microscopy (TEM)

A purified exosome was dried onto freshly glow-discharged formvar/carbon grids
and negatively stained with 1% uranyl acetate. The samples were visualized using TEM
with an FEI Tecnai G2 F20 S-TWIN.

4.9. Co-Culture System

Recipient cells of M10 were placed in the lower 6 wells and 231-CD63 cells in the
upper wells of a 1 µm polyester membrane transwell insert (Corning, Manassas, VA, USA).
This allowed the 231-CD63 cells to only be in contact with the culture medium of the
recipient cells.

4.10. 3′-UTR Reporter and Dual-Luciferase Assay

Cells were transfected with the 3′-UTR reporters of MTSS1L (Genecopoeia, Rockville,
MD, USA). Deletions were introduced into the two predicted CCGTCCC binding sites of
miR-92b-5p, which were manufactured by Genecopoeia, to delete the CCGTCCC targeting
sequence. After 48 h, the medium was removed, and the cells were washed with cold PBS
and dissolved in Passive Lysis Buffer (Promega, Madison, WI, USA), and 20 µL of cell lysate
was transferred into a luminometer plate. Luciferase activity and Renilla luciferase activity
(as an internal control) were measured using dual-luciferase reporter assay (Promega,
Madison, WI, USA) and TECAN Infinite 200 pro. MTSS1L 3′-UTR reporter activity was
normalized by Renilla luciferase activity and protein concentrations, and the results from
three independent assays in different cell lines were compared.
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4.11. Migration and Spreading Assay

An in vitro migration assay was performed using 24-well transwell units with poly-
carbonate filters coated on the upper side, and 2 × 104 cells were calculated in 100 µL
of serum-free medium and placed onto the upper part of the transwell unit. After 24 h,
non-migrated cells on the upper part of the membrane were removed with a cotton swab.
Cells that migrated to the bottom surface of the membrane were fixed with formaldehyde,
stained with Giemsa solution, and counted under a microscope. In the spreading assay,
1 × 105 cells were calculated and placed onto the fibronectin-coated coverslips in 24 wells
and cultured at 37 ◦C for 6 h, washed with PBS, fixed with 4% paraformaldehyde in PBS
for 10 min, permeabilized with 1% Triton X-100 for 10 min, and blocked with 5% bovine
serum albumin in PBS for 30 min. The cells were then incubated with Alexa Fluor 594
Phalloidin (Invitrogen, Carlsbad, CA, USA) for 30 min according to the manufacturer’s
protocol and imaged with a Leica DM IL LED and Leica DMI 4000 fluorescent microscope
(Hesse, Wetzlar, Germany).

4.12. Cell Adhesion Assay

Collagen IV, fibronectin, and laminin (Sigma, St. Louis, MO, USA; 5 µg/100 µL) were
coated onto 96-well ELISA plates at 4 ◦C overnight. Cells at a density of 20,000/well were
added to each well and incubated at 37 ◦C for 90 min. Wells were washed with PBS, fixed
with 4% formaldehyde, and air-dried. Adhesive cells were stained with crystal violet
(0.05%) and de-stained with DMSO. The optical density of each well was measured using
an ELISA reader at 570 nm and normalized with a blank well (without extracellular matrix).

4.13. In Situ Hybridization (ISH) and Immunohistochemical Staining (IHC)

Human breast cancer tissue was obtained from patients who had undergone surgical
operations at the Division of Breast Oncology and Surgery, Kaohsiung Medical University
Hospital, with de-linkage FFPE samples. All samples received approval from the Internal
Review Board, and informed consent from all patients was obtained (KMUH-IRB-990174,
KMUHIRB-F(I)-20200107). The procedure was performed according to the manufacturer’s
protocol for the IsHyb in situ hybridization kit (BioChain, Newark, CA, USA). Briefly, the
slides were treated with 10 µg/mL Proteinase-K at 37 ◦C for 10 min. The miR-92b-5p
LNA probe (Exiqon, Germantown, MD, USA) was denatured at 90 ◦C for 5 min, diluted to
50 nM, and incubated with the slides at 55 ◦C for 120 min. The slides were incubated with
1:200 AP-conjugated anti-DIG antibody at 4 ◦C overnight, and the substrate NBT-BCIP
was added and incubated in the dark for 1 h to develop a blue signal. The nuclei were
counterstained with Fast Red. The intensity of staining was graded as 0: negative; 1: mild;
2: moderate; and 3: strong.

In immunohistochemical staining, the procedure was performed according to the
manufacturer’s protocol for Mouse/Rabbit PolyDetector HRP with the DAB kit (BioSB,
Santa Barbara, CA, USA). Briefly, the slides were blocked for 10 min with 3% hydrogen
peroxide to deprive endogenous peroxidase activity, and antigen retrieval was conducted
by incubating the slides in 0.01 M citrate buffer (pH 6) with a microwave. The tissues
were incubated with anti-MTSS1L antibody (Bethyl Laboratories, Montgomery, TX, USA,
1:100), detected with horseradish peroxidase-conjugated secondary antibody, and then
developed using diaminobenzidine substrate (DAB). The intensity of staining was graded
as 0: negative; 1: mild; 2: moderate; and 3: strong.

4.14. Statistical Analysis

Appropriate statistical analyses were performed using Graphpad Prism 9 (Graphpad
Software, Inc., La Jolla, CA, USA). For statistical analyses, a comparison of the different
groups was performed using a two-tailed t-test and a chi-squared test. A p-value less
than 0.05 (denoted as * p < 0.05, ** p < 0.01, and *** p < 0.001) was considered statisti-
cally significant. The specificity and sensitivity of the markers were analyzed using the
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receiver operating characteristic curve (ROC curve), and the area under the curve (AUC)
was calculated.

5. Conclusions

In conclusion, this study has demonstrated that exosomal miR-92b-5p has clinical
potential as a non-invasive body fluid biomarker for breast cancer detection. MiR-92b-
5p affects the migration, adhesion, and spreading ability of recipient cells through the
downregulation of MTSS1L. Additionally, we provide the first evidence of the role of
MTSS1L in cancer. High MTSS1L expression is associated with better 10-year overall
survival rates in patients undergoing hormone therapy. The expression of MTSS1L was
significantly inversely correlated with tissue miR-92b-5p. These results indicate the clinical
potential of exosomal miR-92b-5p and novel therapeutic strategies in the axis of miR-92b-5p
to MTSS1L for the control of metastasis and improvement in patient survival.
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