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Abstract: Inflammatory bowel disease (IBD), including Crohn’s disease and ulcerative colitis, is a
disease of chronic inflammatory conditions of the intestinal tract due to disturbance of the inflamma-
tion and immune system. Symptoms of IBD include abdominal pain, diarrhea, bleeding, reduced
weight, and fatigue. In IBD, the immune system attacks the intestinal tract’s inner wall, causing
chronic inflammation and tissue damage. In particular, interlukin-6 and interlukin-17 act on immune
cells, including T cells and macrophages, to amplify the immune responses so that tissue damage and
morphological changes occur. Of note, excessive calorie intake and obesity also affect the immune
system due to inflammation caused by lipotoxicity and changes in lipids supply. Similarly, individ-
uals with IBD have alterations in liver function after sustained high-fat diet feeding. In addition,
excess dietary fat intake, along with alterations in primary and secondary bile acids in the colon,
can affect the onset and progression of IBD because inflammatory cytokines contribute to insulin
resistance; the factors include the release of inflammatory cytokines, oxidative stress, and changes in
intestinal microflora, which may also contribute to disease progression. However, interfering with
de novo fatty acid synthase by deleting the enzyme acetyl-CoA-carboxylase 1 in intestinal epithelial
cells (IEC) leads to the deficiency of epithelial crypt structures and tissue regeneration, which seems
to be due to Lgr5+ intestinal stem cell function. Thus, conflicting reports exist regarding high-fat diet
effects on IBD animal models. This review will focus on the pathological basis of the link between
dietary lipids intake and IBD and will cover the currently available pharmacological approaches.
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1. Background Information

Inflammatory bowel disease (IBD) is the immune-associated inflammation of the
gastrointestinal tract. IBD includes ulcerative colitis (UC) and Crohn’s disease (CD) with
persistently increasing co-morbidities [1]. The exact pathological mechanism for the pro-
gression of IBD is still a debate and includes both environmental and genetic factors [1,2].
Studies have shown that polymorphic loci regulate cytokines, chemokines signaling, and
antibacterial peptides, further modulating autophagic and immune cell activity by elevat-
ing the risk of ileal or colonic CD and UC [2,3]. Clinically, IBD features disclose a variety of
ranges based on age groups and gender; for instance, more than 60% of women suffering
from CD also report rectal bleeding. Conversely, 62% of UC cases in males exhibit reduced
rectal bleeding and abdominal pain events. The results of prevalence data show that nearly
1 million people in the USA were reported with CD. Interestingly, more than 80% of re-
ported cases of CD reveal that the patients’ distal part of the small intestine is affected [4,5].
Nevertheless, patients suffering from UC appeared on the board with inflammatory lesions,
especially in the distal part of the colon [6]. The expected increase in IBD cases might be
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2.5-fold in Iran, 2.3-fold in North Africa, and 1.5-fold in India by 2035 compared to 2020 [7].
The prevalence of IBD in men was reported to be higher as compared with women [8].

1.1. Liver to the Gut Pathway

Gut-associated lymphoid tissue (GALT) plays a role in strengthening the mucosal
immune system by acting as both protective and tolerant tissues against any pathogenic
response. The liver also abundantly contains innate immune cells and acts as a primary
immunological organ because of its continuous exposure to the circulating antigens and
endotoxins from the gut microbiota. The portal vein takes gut-derived materials to the liver
and feedback of bile from the liver to the intestine, suggestive of a reciprocal association
between the microbiomes and the liver. In addition, bile acids affect the gut microbiota and
interact with nuclear receptors in hepatocytes and intestinal epithelial cells to modulate
metabolic activities [9]. The liver-to-gut disorders are correlated with gut and liver immune
system abnormalities [10] because the liver is linked to the GALT and synergizes its immune
reconnaissance [10,11]. Thus, hepatic–gut disorders comprise abnormalities of the gut and
liver immune systems [10].

1.2. Association of Metabolic Disorder and IBD

Obesity is usually associated with a variety of metabolic syndromes, such as type
2 diabetes [12], ischemic vascular disease [13], elevated serum lipids levels, and NAFLD [14].
Any pathological disruption due to chronic caloric intake results in a metabolic syndrome
(i.e., diabetes [15], obesity, and fatty liver disease [15]) [16] (Table 1).

Developing countries around the world have reported increased incidences of IBD
due to Westernized lifestyles with the elevated surge of obesity [17]. The findings of the
studies reveal that obesity was reported more commonly in patients with Crohn’s disease
in comparison with ulcerative colitis [18]. The result of the study, including 1598 children
(aged between 2 and 18 years) with IBD, reveals that 23.6% were suffering from CD while
30.1% had ulcerative colitis [19]. The prospective case-control study analysis showed that
overweight/obesity was primarily common in outpatients with CD, which was ~40% of
the patients [20]. Briefly, visceral obesity is interlinked with stress and leads to elevated
visceral fat, which eventually leads to the activation of proinflammatory markers such as
interleukins and considerably stimulates M1 macrophages [21]. Visceral adipose tissue
was found to be elevated in obese patients suffering from CD and showed pronounced
upregulation of various inflammatory genes such as CCL2, leptin, and IL6 [22]. In addition
to this, the serum levels of adiponectin, resistin, and active ghrelin were found to be
significantly elevated in IBD patients [23].

Studies report that the experimental animal models, i.e., leptin-deficient ob/ob mice,
can alter the microbiome [24] to develop insulin resistance and diabetes via the regulation
of several molecular cascades, such as altered fatty acid metabolism in the liver and
modulation of the glucagon-like peptide [25].

The findings of several clinical and experimental findings lead to the firm belief of
scientists that gut microbiota is potentially linked with Crohn’s disease and ulcerative
colitis. The results of a Spanish cohort study show that dysbosis was more efficiently linked
to CD patients than UC [26]. A high-fat diet and sugar combination, which mimics the
effects of the Western diet, results in intestinal dysbiosis with pronounced elevation of
Akkermansia, Alistopes, Bacteroides, Bilophila, Enterobacteria, and Ruminococcus torques
with reduced levels of Bifidobacterium, Lactobacillus, Prevotella, and Roseburi [27].

Since the liver regulates lipid metabolism by fatty acid oxidation and lipogenesis and
maintains the human body’s energy under normal physiological conditions, the metabolic
disorder is often accompanied by non-alcoholic fatty liver disease (NAFLD), which was
recently renamed as metabolic dysfunction-associated fatty liver disease (MAFLD), ac-
counting for ~25% of all cases worldwide [28]. NAFLD comprises clinicopathological
abnormalities and leads to steatosis with or without mild inflammation (non-alcoholic
fatty liver) and a neuroinflammatory variant (non-alcoholic steatohepatitis), distinguished
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by the presence of hepatocellular damage such as hepatocyte ballooning [29]. The patho-
physiology of liver symptoms includes lipotoxicity, autophagy dysregulation, endoplasmic
reticulum stress, and IR [14], which may mechanistically account for systemic metabolic
dysfunction defined by MAFLD [30,31].

Table 1. Association between obesity and IBD.

Number of Patients and
Characteristics Results References

153 Crohn’s disease (CD) and 229 ulcerative
colitis (UC) patients, respectively

The risk of developing CD is 2.3 times higher in obese women
(18 years), and there is no significant association for UC

patients with obesity
[32]

CD (n = 138) and UC (n = 394)
The risk of CD was found to be increased by 1.9 times in

obese non-pregnant women, but no significant association
was reported for UC

[33]

CD (n = 75) and UC (n = 177) According to the findings of the study, obesity alone is not
enough to trigger the development of either CD or UC [34]

CD (n = 297) and UC (n = 284), respectively
No statistically significant association was found between

obesity and either UC or CD in the studied
patient populations

[35]

377,597 men with increased BMI have an
associative risk of developing CD and UC

The results of the COX regression analysis showed a positive
correlation between BMI and CD in the group of 1523 patients,

while an inverse correlation was observed in UC patients
(n = 3323)

[36]

A pooled analysis of cohort studies, including
CD (n = 563) and UC (n = 1047) patients

The findings suggest that there is a significant association
between CD and obese patients with BMI ≥ 30 kg/m2, while
there is no significant relation between UC and obese patients

[17]

Systemic studies comprising 14,947 IBD subjects Notably, 13.6% of IBD patients with NAFLD were found to
have liver fibrosis [37]

The complications of NAFLD are confined to not only T2D but also IBD [14,38]. For
the first time, Thomas documented the link between colon ulceration and fatty liver early
in 1873 [39]. However, the frequency of NAFLD in IBD patients varies greatly, ranging
from 1.5% to 40%, depending on the diagnostic criteria [40,41]. In recent days, NAFLD
progression belongs to the chronic caloric intake. Based on hospitalization diagnosis, IBD
patients have a high body mass index because of high-fat diet (HFD) consumption, which
exhibits deleterious effects [42]. The effect of liver disease on IBD progression is still unclear
because a few dilemmas still support the theory that HFD intake damages the liver and
exacerbates IBD, while others believe that HFD deleteriously affects the liver only and
protects the intestine from its progression to IBD [43]. This review aims to summarize the
molecular basis as to how dietary lipids intake acts as a dual sword in the case of IBD.

2. IBD Pathophysiology
2.1. Intestinal Permeability and Barrier

Human health depends on the structural veracity of epithelial and endothelial barriers
in the body. The intestine accompanies the largest internal barrier and takes part in
body protection against the harmful chemicals and bacteria found in the gut. The barrier
comprises the mucus layer, commensal bacteria, epithelial cells, and immune cells in
the lamina propria [44]. Intestinal epithelial goblet cells conceal mucus glycoproteins
and inhibit the micro-organism and colonocytes’ direct contact with the gut, whereas
mucus released in the small intestine allows bacteria to move freely [45]. Paneth cells are
responsible for releasing anti-microbial proteins, which neutralize the effects of bacterial
cells in the small intestine, whereas B cells secrete IgA in the lamina propria, which binds
to bacteria, and its related toxins hinder their entry into the body [46].
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Recent scientific advancements have significantly improved our understanding of IEC
functions and their subtypes, such as enterocytes and goblet cells [47]. However, intestinal
enteroendocrine cells comprise various subgroups, including enterochromaffin cells, D
cells, and G cells [47,48]. Gunnar C. Hansson and his colleagues discovered a new subtype
of goblet cells and named it sentinel goblet cells found at the apex of colonic crypts [49].
Unlike traditional goblet cells, the cells have a distinct ability to sense bacteria and respond
by secreting mucin, which results in the adjacent environment becoming red in response
to noxious stimuli [49]. Tuft cells exhibit cellular differentiation and exist in two subtypes:
one type of epithelial cell expresses cytokine Tslp, whereas the other one articulates the
immunological marker CD45 [50].

Germ-free animal studies reveal that microbes play a role in fostering appropriate
intestinal development and function. Germ-free mice have thin mucosa, resulting in
diminished IEC proliferation and compromised fabrication of mucins and other IEC-
producing mediators [51]. Because of the loss of the mucin layer, germ-free mice result in
the candid disclosure of colitogenic toxins, emphasizing the gut microbiome’s function
in intestinal tissue protection and healing [52]. The reduction of microbiota and their
substitution by pathogens, known as dysbiosis, may have the capability to alter the gut
barrier. Intestinal nutrients and water absorption occur through the transcellular and
paracellular pathways and junctions. Intestinal pore channels are charged and size-selective,
so pore size varies; the lowest limit is 8 Å diameter, whereas the largest diameter is ~100 Å,
a non-selective leaky pathway [53,54].

2.2. Inflammatory Mediators

Although several variables are engaged in the pathophysiology of IBD, a disruption
in the epithelial barrier is primarily found. The initial injury causes inflammation, causing
additional damage and a vicious spiral. Tumor necrosis factor α (TNF-α) is a prototype
proinflammatory cytokine released by activated macrophages, monocytes, and T lympho-
cytes. Study results on CD patients found enhanced TNF-α proteins and mRNA levels in
mucosal biopsies [55].

TNF is majorly found via actuated macrophages and T lymphocytes having 26 kDa.
TNF binds to TNF receptor 1 and leads to the generation of TNF receptor signaling complex
(complex-I), which encompasses the core proteins, TRADD [56], TRAF2, RIPK1, cIAP1/2,
and the linear ubiquitin chain assembly complex [57]. The results of the experimental
studies have proven that TNF-α is involved in mucosal inflammation in CD [58]. TNF-
α modulates gut inflammation in CD patients via a variety of mechanisms. In in vitro
experiments using patient specimens in clinical trials of anti-TNF-α therapy, the levels
of TNF-α were found to be reduced with subsequential downregulation of IFN-γ in the
mucosa [59]. Hence, TNF-neutralizing monoclonal antibodies (e.g., vedolizumab) are used
to deal with CD and UC [60], whereas antibodies to IL-12/IL-23 p40 are for the management
of CD [61,62].

The interleukin family of cytokines (i.e., IL-1α, IL-1β, IL-18, IL-33, and IL-36) play roles
in the modulation of the proinflammatory pathway, resulting in intestinal inflammation
through NF-κB [63–65]. Studies have reported a significant drop in the IL-1 receptor
antagonists to IL-1 ratio in IBD patients, suggestive of the significance of the IL-1 pathway
in the exacerbation of IBD [66]. Furthermore, in severe infant-onset IBD and animal
experiments, decreased IL-10 signaling, which may account for the enhanced production of
IL-1 in macrophages, also results in CD4+ T cell activation [67–69]. IL-10-related cytokines,
such as IL-19, IL-20, IL-22, IL-24, IL-26, IL-28, and IL-29, are all involved in the modulation
of inflammatory and immune responses (Figure 1) [70]. In mice studies, IL-1β may be a
potential inducer of Helicobacter hepaticus-mediated colitis by stimulating innate lymphoid
cells and conscription of neutrophils via the IL-1 receptor signaling pathway [71], which
modulates mucosal aggregation of T cells and produces TH17, resulting in colitis [72,73]
and further carcinogenesis [74]. Retinoic acid-related orphan receptor-γt (RORγt) is a
transcription factor that is involved in the development of TH17 [75]. The results from other
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studies reveal that IL-1β activation leads to chronic intestinal inflammation by endorsing
the accretion of IL-17A-secreting innate lymphoid cells and CD4+ Th17 cells, resulting
in intestinal pathology [76]. Consistently, IL-1 receptor antagonist treatment in mice
ameliorates acute colitis [77].

Int. J. Mol. Sci. 2024, 25, 1311 5 of 25 
 

 

colitis [72,73] and further carcinogenesis [74]. Retinoic acid-related orphan receptor-γt 

(RORγt) is a transcription factor that is involved in the development of TH17 [75]. The 

results from other studies reveal that IL-1β activation leads to chronic intestinal inflam-

mation by endorsing the accretion of IL-17A-secreting innate lymphoid cells and CD4+ 

Th17 cells, resulting in intestinal pathology [76]. Consistently, IL-1 receptor antagonist 

treatment in mice ameliorates acute colitis [77]. 

 

Figure 1. A scheme showing TLR2 and interleukin-mediated activation of key transcription factors 

responsible for the activation of genes associated with IBD progression. CARD15 (formerly NOD2) 

and homologous intracellular receptors bind to diaminopimelic acid and muramyl dipeptide to ac-

tivate NF-κB. Abbreviations: TLR2, toll-like receptor 2; IL-6R, interlukin-6 receptor; CARD15, 

caspase activating recruitment domain 15; NF-κB, nuclear factor kappa-light-chain-enhancer of ac-

tivated B cells. 

IL-6 is generated by several cells present inside the tumor, such as tumor-infiltrating 

cells and stromal cells. IL-6 in normal blood concentration (1.6 pg/mL) facilitates a mild 

immune response against the defense of incessant pathogens [78]. Studies have proven 

that IL-6 association with the vagus nerve may have effects on the smooth muscle cells or 

secretory cells, which results in intestinal motility and secretion [78,79]. The classic path-

way of IL-6 signaling includes the binding of IL-6 with the membrane-bound receptor IL-

6 receptor-α, also known as IL-6R. This binding results in the development of a heterohex-

americ complex comprising two IL-6, IL-6R, and the β subunit of IL-6 receptor (gp130) 

[80,81]. This complex then leads to the stimulation of the JAK/STAT3 pathway, consequently 

integrating STAT3 target genes (Figure 2). Interestingly, the complex also triggers the 

PI3K/AKT/mTOR and RAS/RAF/MEK/ERK pathways [82]. The major role of the classical 

pathway is to provoke anti-inflammatory impacts during the acute-phase response [83]. 

IL-6 also induces a trans-signaling cascade, including soluble IL-R6 (sIL-R6) binding 

to IL-6. sIL-6 is produced due to alternative splicing of IL-6R mRNA or via the breakdown 

of membrane-bound IL-R6 through ADAM 10 or ADAM 17 [84,85]. The interaction of IL-

6 to sIL-6R results in a complex formation, provoking the dimerization of gp130 and stim-

ulating the downstream signaling cascade (Figure 2). The complex of IL-6/IL-6R is bound 

by disulfide bonds and activates Box-1 and Box-2 in the cytoplasmic domain of gp130; this 

results in JAK activation leading to phosphorylation at a tyrosine residue of gp130 cyto-

plasmic domain [86]. The phosphorylated pTyr-X-X-Gln motif (X = amino acid) on gp130 

Figure 1. A scheme showing TLR2 and interleukin-mediated activation of key transcription factors
responsible for the activation of genes associated with IBD progression. CARD15 (formerly NOD2)
and homologous intracellular receptors bind to diaminopimelic acid and muramyl dipeptide to
activate NF-κB. Abbreviations: TLR2, toll-like receptor 2; IL-6R, interlukin-6 receptor; CARD15,
caspase activating recruitment domain 15; NF-κB, nuclear factor kappa-light-chain-enhancer of
activated B cells.

IL-6 is generated by several cells present inside the tumor, such as tumor-infiltrating
cells and stromal cells. IL-6 in normal blood concentration (1.6 pg/mL) facilitates a mild
immune response against the defense of incessant pathogens [78]. Studies have proven
that IL-6 association with the vagus nerve may have effects on the smooth muscle cells
or secretory cells, which results in intestinal motility and secretion [78,79]. The classic
pathway of IL-6 signaling includes the binding of IL-6 with the membrane-bound recep-
tor IL-6 receptor-α, also known as IL-6R. This binding results in the development of a
heterohexameric complex comprising two IL-6, IL-6R, and the β subunit of IL-6 receptor
(gp130) [80,81]. This complex then leads to the stimulation of the JAK/STAT3 pathway,
consequently integrating STAT3 target genes (Figure 2). Interestingly, the complex also
triggers the PI3K/AKT/mTOR and RAS/RAF/MEK/ERK pathways [82]. The major role
of the classical pathway is to provoke anti-inflammatory impacts during the acute-phase
response [83].

IL-6 also induces a trans-signaling cascade, including soluble IL-R6 (sIL-R6) binding
to IL-6. sIL-6 is produced due to alternative splicing of IL-6R mRNA or via the breakdown
of membrane-bound IL-R6 through ADAM 10 or ADAM 17 [84,85]. The interaction of
IL-6 to sIL-6R results in a complex formation, provoking the dimerization of gp130 and
stimulating the downstream signaling cascade (Figure 2). The complex of IL-6/IL-6R is
bound by disulfide bonds and activates Box-1 and Box-2 in the cytoplasmic domain of
gp130; this results in JAK activation leading to phosphorylation at a tyrosine residue of
gp130 cytoplasmic domain [86]. The phosphorylated pTyr-X-X-Gln motif (X = amino acid)
on gp130 conscripts Src homology domain in STAT3. Phosphorylation of STAT3 in response
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to IL-6 impedes the binding of Suppressors of Cytokine Signaling 3 (SOCS3) to STAT3
(Figure 2) [87]. The phosphorylation of STAT3 by JAK at the tyrosine residue leads to
STAT3 dimerization and nuclear translocation and target gene transcription (i.e., intestinal
inflammation and cancer) [88–90]. The result of another study shows that STAT3 and STAT4
act reciprocally on intestinal inflammation. The stimulation of STAT4 via either IL-12 or
leukemia inhibitory factor via STAT3 inhibits the action of Th17 and promotes the repair of
intestinal epithelial damage in IBD.

Int. J. Mol. Sci. 2024, 25, 1311 6 of 25 
 

 

conscripts Src homology domain in STAT3. Phosphorylation of STAT3 in response to IL-6 

impedes the binding of Suppressors of Cytokine Signaling 3 (SOCS3) to STAT3 (Figure 2) 

[87]. The phosphorylation of STAT3 by JAK at the tyrosine residue leads to STAT3 dimer-

ization and nuclear translocation and target gene transcription (i.e., intestinal inflamma-

tion and cancer) [88–90]. The result of another study shows that STAT3 and STAT4 act 

reciprocally on intestinal inflammation. The stimulation of STAT4 via either IL-12 or leu-

kemia inhibitory factor via STAT3 inhibits the action of Th17 and promotes the repair of 

intestinal epithelial damage in IBD. 

 

Figure 2. The role of IL-6R interaction with gp130 for Stat3-mediated inflammatory target gene ex-

pression. Gp130 chain dimerization by the IL-6-IL6R complex stimulates the non-overlapping intra-

cellular signaling pathway via phosphorylation of the cytoplasmic region of gp130 linked with the 

Janus kinase family. Abbreviations: IL-6, interlukin-6; IL-6R, interlukin-6 receptor; gp130, glycopro-

tein 130. 

Interestingly, gp130 chain dimerization by the IL-6-IL6R complex stimulates the non-

overlapping intracellular signaling pathway via phosphorylation of the cytoplasmic re-

gion of gp130 linked with the Janus kinase family (Figure 2). The resultant stimulation 

leads to activator protein 1 (AP-1) phosphorylation and induces the inflammatory genes 

[91,92]. 

IL-9 is initially found as a synergistic growth factor for T and mast cells and plays a 

role in asthma [93]. Studies have shown that IL-9 mRNA levels were raised in UC patients. 

Mechanistically, IL-9 is secreted by peripheral blood lymphocytes and binds to its receptor 

in the gut and polymorphonuclear leukocytes. Astonishingly, IL-9 stimulation potentiates 

IL-8. IL-9 is overexpressed in epithelial cells and activates STAT5 [94]. 

In addition, IL-18 is normally in a proactive form and is stimulated by the action of 

cleavage enzyme caspase-1 into the stimulation of NLRP3, which enhances the risk of 

metabolic and autoimmune disorders [95,96]. NLRP3 inflammasome activation has been 

demonstrated in patients with IBD. Systematically, IL-18 is produced via overstimulated 

intestinal epithelial cells or macrophages, leading to goblet-cell depletion and churning 

out proinflammatory cytokines, including IFN-γ and TNF-α [97,98]. 

Recently, IL-36α and IL-36γ levels have been shown to be significantly increased in 

patients with IBD. In experimental studies, IL-36γ was identified in intestinal epithelium 

nuclei, while IL-36α was detected in CD14+ inflammatory macrophages in the cytoplasm 

[99]. Reduced IL-36 levels potentiated the dextran sodium sulfate (DSS)-induced acute 
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intracellular signaling pathway via phosphorylation of the cytoplasmic region of gp130 linked
with the Janus kinase family. Abbreviations: IL-6, interlukin-6; IL-6R, interlukin-6 receptor; gp130,
glycoprotein 130.

Interestingly, gp130 chain dimerization by the IL-6-IL6R complex stimulates the non-
overlapping intracellular signaling pathway via phosphorylation of the cytoplasmic region
of gp130 linked with the Janus kinase family (Figure 2). The resultant stimulation leads to
activator protein 1 (AP-1) phosphorylation and induces the inflammatory genes [91,92].

IL-9 is initially found as a synergistic growth factor for T and mast cells and plays a
role in asthma [93]. Studies have shown that IL-9 mRNA levels were raised in UC patients.
Mechanistically, IL-9 is secreted by peripheral blood lymphocytes and binds to its receptor
in the gut and polymorphonuclear leukocytes. Astonishingly, IL-9 stimulation potentiates
IL-8. IL-9 is overexpressed in epithelial cells and activates STAT5 [94].

In addition, IL-18 is normally in a proactive form and is stimulated by the action of
cleavage enzyme caspase-1 into the stimulation of NLRP3, which enhances the risk of
metabolic and autoimmune disorders [95,96]. NLRP3 inflammasome activation has been
demonstrated in patients with IBD. Systematically, IL-18 is produced via overstimulated
intestinal epithelial cells or macrophages, leading to goblet-cell depletion and churning out
proinflammatory cytokines, including IFN-γ and TNF-α [97,98].

Recently, IL-36α and IL-36γ levels have been shown to be significantly increased in
patients with IBD. In experimental studies, IL-36γ was identified in intestinal epithelium nu-
clei, while IL-36α was detected in CD14+ inflammatory macrophages in the cytoplasm [99].
Reduced IL-36 levels potentiated the dextran sodium sulfate (DSS)-induced acute colitis
by impairing cell proliferation and enhancing the effect of IL-22 associated with fibrob-
last stimulation [99,100]. In another study of humans with IBD, fibrotic intestinal tissues
showed enhanced levels of IL36A, which is responsible for the regulation of the genes
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involved in the fibrogenesis in fibroblast. However, a reciprocal effect was observed in
IL-36 knockout mice treated with either 2,4,6-trinitrobenzene sulfonic acid (TNBS) or DSS,
showing diminished chronic colitis and intestinal fibrosis [101].

Interleukin-37 has anti-inflammatory and innate immunity suppressor activity, while
the IL-37b epithelial expression level was raised in IBD patients. Experimentally, IL-37b
blocks the TNF-α-induced-interferon-γ-inducible protein-10 expression in human colonic
subepithelial myofibroblasts [102]. Overexpression of IL-37 reduces DSS-induced colitis in
transgenic mice [103]. Another study’s results demonstrate that the IL-37b gene transfer
by an adenovirus vector causes the potentiation of mesenchymal stem cells against DSS-
induced colitis via stimulating the Treg cell activity and inhibiting cytokines release [104].

2.3. Immune Mechanisms

Patients with IBD lack resistance to enteric commensal bacteria and show macrophage,
neutrophil, and T/B cell responses [105,106]. Resistance is facilitated in normal hosts by
governing T/B lymphocytes, NK cells, and dendritic cells [58,107]. TNF and IL-12 p40
have been related to the etiology of CD in antibody-neutralization studies, whereas T cells
have been associated with UC by T-cell-ablative medications [108] such as cyclosporin
and tacrolimus [109,110]. Recent study findings show that reduced epithelial expression
of microbiota-sensitive histone deacetylase 3 (HDAC3) leads to the elevated accretion of
commensal-specific CD4+ T cells in the intestine [111]. In both CD and UC, the cells engaged
in innate responses are triggered, resulting in the enhanced production of cytokines and
chemokines. In all types of IBD, macrophages and dendritic cells in the lamina propria are
augmented in an absolute quantity. However, in CD, TH1- and TH17-related cytokines
implicated in innate immunity are preferentially activated and have been rarely reported
in UC [112] (Figure 3). Moreover, TH17-associated transcription factor RORγt levels were
elevated in the lamina propria of IBD patients [75].

TLRs on the cell membrane bind to bacterial and viral targets. TLRs are least expressed
in the normal physiological intestinal environment, whereas in the case of pathogenesis,
TLRs are expressed in intestinal, respiratory, and urogenital epithelial cells. Overexpression
of TLRs in the epithelial layer leads to the enhanced release of cytokines, chemokines, and
anti-microbial peptides. Ligand activation of TLR then activates the NF-κB and MAPK
signaling pathways [107,113]; the transcription factors promote pro- and anti-inflammatory
gene expression. CARD4 (also known as NOD1) and CARD15 (formerly NOD2) homologous
intracellular receptors bind to diaminopimelic acid and muramyl dipeptide to activate NF-κB.
TLR2 activation affects CARD15 and NF-κB activation [114,115]. Most of the cytokines can be
selectively inhibited to delay colitis.

The epithelial layer is the primary line of defense against infections. Epithelial
chemokines can be found on the luminal surface of the vascular endothelium in both
local tissue and draining lymph nodes and there, they contribute to cell recruitment [116].
Monocytes and PMNs bind to injury sites, generating more proinflammatory mediators
than resident macrophages. IBD patients show increases in proinflammatory cytokines
and overexpression of adhesion molecules and co-stimulatory molecules [110]. To facilitate
the migration of the cells, ICAM1 is required for cells in the blood to adhere and activate
endothelium. It is worth noting that adhesion molecules, such as ICAM-1, have been shown
to bind CD11b/CD18. However, ICAM-1 is produced only on the apical epithelial surface
during inflammation [117]. Intestinal macrophages that reside in the gut have a reduced
capacity to respond to bacterial components. This leads to the dysregulation of bacterial
eminent receptors, including TLRs and CD14, which act as co-ligands of LPS [118].
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Figure 3. Roles of infiltrating inflammatory cells for the activation of different T cell subsets engaged
in intestinal injury, barrier, and inflammation resolution in IBD. IBD increases the production of
inflammatory mediators. In IBD, cells engaged in innate immune responses are triggered. In all types
of IBD, macrophages and dendritic cells are augmented in an absolute quantity. Abbreviations: IBD,
inflammatory bowel disease; TH, T helper cells; DC, dendritic cells; NK, natural killer cells; Treg,
regulatory T cells.

2.4. Lipids and Inflammation

The dysregulation of lymphocyte trafficking and immune cell migration can lead to
the dissemination of chronic inflammation, prompting researchers to investigate potential
agents responsible for lymphocyte migration and infiltration via the bloodstream to in-
flamed targets in the intestinal mucosa. One area of interest is sphingolipids (S1Ps), which
are active metabolic products involved in the inflammatory cascade and immune response.
S1Ps contribute to the maintenance of structural components of eukaryotic membranes,
and their cascades participate in de novo synthesis and catabolic recycling with various
physiological functions, leading to the recruitment of lymphocytes in injurious areas of the
intestine, which intensifies inflammation by enhancing proinflammatory cytokines [39].

2.5. Intestinal Stem Cell Niche and Cell Signaling

Acute inflammation kills Lgr5+ stem cells in both the small intestine and the colon [119].
Infections caused by bacteria, viruses, or parasites can damage significant regions of the
gut, such as a plethora of crypt–villus units [120]. In addition, radiation, chemotherapeutic
drugs, and antibiotics all cause intestinal injury in the crypts and villi [121]. Since the
developed cells at the villi show a short life cycle of a few days, removing the stem or its
progenitor cells in the crypts impairs the recovery of epithelial cells in the wound-associated
lesion [122,123]. Since the cells do not perform all of the necessary intestinal tasks, this is
only a temporary solution. The cells are then replaced within a week by creating functioning
crypts from scratch. The fission of freshly generated crypts is necessary to compensate for
lost crypts on a massive scale [124,125], a process slowed by crypt fusion [126].

Intestinal stem cells interact physically with those having epithelial and mesenchymal
nature. The intestinal stem cell niche is made up of these cells and their interactions.
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Damage can be generated in several ways to examine the regeneration response. High-dose
radiation exhausts Lgr5+ cells [127], which has been experimentally used to explore the
regeneration response [128]. DSS, an experimental agent used to induce both acute and
chronic colitis [129], also elicits crypt loss [130]. Using an animal model, the targeted knock-
in of Lgr5 has been shown to provide a sophisticated strategy for understanding stem cell
biology [131]. Interestingly, Lgr5+ specific deletion did not bring any visual changes in
intestine architecture [131,132].

Stem cells inside the niche are subdivided and compete for limited niche space [133,134].
As a result, cells towards the niche’s boundary are more likely to be pushed out of the
niche [134,135]. Consequently, stem cell-promoting stimuli facilitate cell differentiation to
progenitors, which move towards the transit-amplifying zone at crypt compartments. They
thereafter undergo many cycles of cell division. The most common lineage option involves
choosing between the secretory and absorptive lineages [136]. The results of the in vivo
experiments show that the intestinal epithelium is sustained after Paneth cell depletion,
which supports the alternate cascade activation [137,138]. Thus, a decrease in Paneth cells
corresponds to a decrease in stem cells; their retention is required in the activity of in vitro
stem cells [46]. WNT, specifically WNT3, EGF, and DLL4, are produced in epithelial Paneth
cells [46,139], which assists stem cell metabolism by providing lactate as a substrate for
oxidative phosphorylation [140].

Enteroendocrine and tuft cells may substitute for deleted PCs and provide a juxtaposed
origin of Notch signals, even though the mesenchyme adjoining the epithelium releases ad-
equate concentrations of Wnt ligands [141,142]. In the gut, the mesenchymal compartment
comprises fibroblasts, creating extracellular matrix components and myofibroblasts [143].
Many subpopulations have been shown to assist stem cells. Gli1+ cells express Wnt2b,
whereas CD34+ cells express Rspo1 and Wnt2b [144]. Foxl1+ cells that express Wnt2b and
Rspo3 and Pdgfra+ myofibroblasts are examples [145,146]. Mesenchymal cells thereby
contribute to the activity of intestinal stem cells by establishing a healthy gradient of BMP
signaling [147]. According to McCarthy et al. (2020), Pdgfra1low mesenchymal cells secrete
gremlin 1. On the other hand, mesenchymal telocytes Pdgfra1high are found in the villus,
and after their stimulation, they promote BMP signaling [148]. Apart from Paneth cells,
deep crypt cells in the colon activate Notch [149]. Because canonical Wnt ligands are not
generated in the epithelium, they must be obtained from the adjacent mesenchyme. As
a result, when Wnt-secreting Gli1+ mesenchymal cells in the colon are diminished, the
colonic architecture collapses [150].

2.6. Role of Extracellular Matrix in Intestinal Regeneration

Healthy cells do not proliferate in fluid, implying that they require anchoring to a solid
matrix [151]. Thus, the characteristics of the extracellular matrix (ECM) have a substantial
impact on the cells. Cells can assess ECM stiffness via receptors such as integrins and adjust
their intracellular significance as per requirements. The stiffness is a critical parameter for
stem cell differentiation [152]. Consequently, the ECM regulates cellular characteristics
such as differentiation.

YAP/TAZ is considered the primary effector of stiffness sensing, contributing to
intestinal regeneration and stem cell proliferation. In an in vitro model, matrix stiffening
leads to the activation of YAP [153]. Under the umbrella of matrix stiffness, YAP/TAZ
modulates the transition to proliferation in mammary epithelial cells [154]. The results of
in vitro experiments reveal that intestinal stem cells demand a rigid matrix for optimal
growth [155]. Gα12/13-coupled receptors block the Hippo pathway kinases (i.e., Lats1/2),
triggering YAP and TAZ transcription coactivators [156].

It has been shown that DSS treatment in the genetic model with deletion of integrin
leads to a protective effect [157]. FAK-YAP-mTOR signaling cascade may be involved in
the proliferation and differentiation of progenitor cell tissue [158].
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3. Dietary Lipids and IBD Progression
3.1. The Effects of Fats on IBD

The incidence of IBD is increasing concurrently with the rise in overweight and obesity
rates. Contrary to traditional belief, a notable portion of IBD patients (31.5%) are obese,
and this could potentially be linked to the development and progression of IBD [159].
Cystic fibrosis, another example of a disease characterized by extensive intestinal damage
due to a genetic deficiency in CFTR, decreases fluid production in epithelial cells [160].
CF patients with increased inflammation and damage at the static mucus layer lead to
ineffective protection against bacterial infections [161].

A recent published study including seven case-control and two prospective cohorts
comprising 1491 IBD patients and 5309 normal subjects reveals that the Western diet is
associated with the progression of IBD [162]. Experimentally, animal models fed with high-
fat diets have been systematically studied, and scientific evidence shows that consumption
of a Western diet, which is high in fat, is directly linked to increased inflammation in the
large intestine. Recent experimental studies have shown that mice fed a Western diet were
protected from colonic inflammation compared to those fed a normal diet [43]. However,
whether fat consumption triggers defensive cascades against DSS-induced inflammatory
pathways or impedes the well-known DSS-induced colitis remains unclear.

It should be noted that the metabolic functions of fatty acids exhibit distinct character-
istics in the function of intestinal epithelial cells. Although there is uncertainty surrounding
the cellular activity of fatty acid oxidation, fatty acid synthesis has been shown to have
an impact on intestinal epithelial cells. Studies suggest that acetyl-CoA-carboxylase 1-
mediated FAS contributes to the maintenance of Lgr5+ stem cell function. As a result,
FAS promotes the production of organoids and the differentiation of crypt structures by
maintaining PPARδ/β-catenin [163]. Inhibition of the FAS pathway in intestinal epithelial
cells reduced epithelial crypt structures and decreased Lgr5+ intestinal epithelial stem cells
(Figure 4).

On the contrary, excess fat intake disturbs the phospholipid membrane structure of the
epithelial cells. Intestines absorb lipids from the intestinal mucosa. In fasting conditions,
the small intestine efficiently uses plasma fatty acid for oxidation and esterification and
increases the uptake capacity of triacylglycerol absorption up to six-fold [164]. Triacyl-
glycerol hydrolysis by pancreatic lipase then yields 2-monoacyglycerol (2-MAG), which
is engulfed by the intestinal enterocytes [165], whereas esterified cholesterol hydrolyzed
by means of cholesterol esterase generates cholesterol and fatty acid. The resulting choles-
terol is taken up into micelles, which mainly contain bile acids, along with lower levels
of phospholipids, FFAs, and 2-MAG [165,166]. The micelles are absorbed into enterocytes
via the brush border, where they secrete fatty acid and 2-MAG and are absorbed, where
it takes part in synthesizing chylomicrons. However, dietary and biliary lipids produce
lysophosphatidylcholine and free fatty acids under the action of pancreatic phospholipase
A2 [167].

3.2. The Effects of Bile Acids on IBD

Primary bile acids (PBA) production occurs in the liver via two cascades (i.e., classical
and alternative pathways) (Figure 5). Cholic acid (CA) and chenodeoxycholic acid (CDCA)
are prevalently abundant PBAs in humans. The classical pathway produces approximately
90% of the bile acid [168]. The 7α-hydroxyl group interacts with cholesterol to produce
7α-hydroxycholesterol in the presence of cytochrome P450s (CYPs). The production of
7α-hydroxycholesterol is a rate-limiting step catalyzed by CYP7A1 [169]. The CYP7A1 gene
ciphers an enzyme named cholesterol 7α-hydroxylase, which is responsible for cholesterol
breakdown and bile acid synthesis [170]. Consistently, the results from animal studies
show that homozygous deletion mutation in CYP7A1 resulted in hyperlipidemia [170]. It
has also been shown that bile acid production is elevated in DSS-induced IBD due to a
compensatory increase in CYP7A1 [171].
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Figure 4. A scheme showing the effects of dietary lipids on intestinal stem cell growth and differenti-
ation. (A) MGAT2 deficiency inhibits fat accumulation in the intestine, protecting IECs in an animal
model with diet-induced obesity and glucose intolerance. (B) Inhibition of de novo FAS in IECs
results in a deficiency of epithelial crypt structures, which in turn leads to a reduction in Lgr5+ stem
cells (ISCs). Abbreviations: MGAT2, monoacylglycerol acyltransferase 2; IECs, intestinal epithelial
cells; FAS, fatty acid synthase, LGR5+, leucine-rich repeat containing G protein-coupled receptor 5.
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Figure 5. A schematic flow of primary and secondary bile acids in gastrointestinal processes and
microbial interactions. Abbreviations: PBAs, primary bile acids; SBAs, secondary bile acids; CA,
cholic acid; CDCA, chenodeoxycholic acid.

BA is transported into the small intestine via the ampulla of Vater in the second
portion of the small intestine and accelerates the reabsorption of lipid molecules in the
jejunum [172]. As BA is unable to get absorbed by the small intestine, it leads to the release
of a significant portion (more than 90%) of BA through the small intestine (Figure 5), which
is resorbed by the hepatic portal vein and named enterohepatic circulation of BAs [172]. The
remnants of bile acids within the intestine undergo a series of chemical transformations, in-
cluding deconjugation, desulfation, dehydrogenation, dehydroxylation, and isomerization,
facilitated by colonic bacteria [173,174].
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PBAs dehydoxylation at carbon-7 leads to deconjugation and produces secondary bile
acids (SBAs) such as lithocholic acid (LCA), deoxycholic acid (DCA), and ursodeoxycholic
acid [175]. The recent mechanistic flow of converting PBAs, i.e., CA and CDCA into SBAs,
LCA, and DCA, may be explained by the group of 7α-dehydroxylating bile-acid-induced
(bai) operon enzymes naming BaiB, BaiCD, BaiA2, BaiE, BaiF, and BaiH found within
Clostridium cluster XIVa species including Lachnospiraceae and Ruminococcaceae families,
and also Eubacterium species [176].

In general, seven species are involved in bacterial/microbial clade, while Subdoligran-
ulum, Gemmiger, and Faecalibacterium genera hold close links as they are involved in
butyrate production, which is found to have beneficial effects on IBD. However, clade
production is decreased by the physiological and immunological reactions, consequently
aggravating the IBD [177]. A group of Subdoligranulum species is involved in forming
new clades and has been found to reduce IBD and IBD-linked metabolites such as bile acids
and polyunsaturated fatty acids [178]. Summarizing the strain-level reporting of inter-
linked micro-organisms with host epithelium reveals the organ-specific microbial species
accountable for the IBD-allied surge of primary unconjugated bile acids and diminution
of SBAs [177]. Post-cholecystectomy patients’ fecal BAs and mucosal microbiome anal-
ysis showed elevated immuno-regulatory activity and SBA negatively associated with
peripheral monocyte levels [179]. The study’s results, including 14 healthy control pa-
tients and 39 CD patients, show that there were significantly low levels of SBA, LCA,
and DCA observed in the serum and fecal of CD patients. Moreover, Enterobacteriaceae
and Lachnospiraceae were robustly found in patients with CD, resulting in psychological
comorbidity by disturbing their bile acids metabolism [180].

Conjugated bile acids make micelles with lipids containing phosphatidylcholine and
cholesterol, while in the stomach, a gastric enzyme lipase acts on the dietary lipids and
converts them into diacylglycerol and fatty acids [181]. Gastric lipase is different from pan-
creatic lipase but has a close resemblance. Newborn infants have low levels of pancreatic
lipase, which puts emphasis on the alternative mechanism for fat digestion fulfilled by
extra-pancreatic lipases (i.e., gastric lipase and ligual lipase in humans and rats) to meet
the physiological demands [182,183]. The fatty acids in the stomach assist in the emulsifi-
cation of lipids, followed by their movement towards the small intestine, where they are
further emulsified via bile acids, strengthening the lipolytic activity of pancreatic lipases.
Alternatively, the small intestine promotes the production of microbes that either promote
lipid absorption or inhibit lipid intake [183,184]. These events may facilitate epithelial cell
turnover, if in excess, injuries, potentially aggravating IBD progression. Hence, it remains
to be established what the exact roles of appropriate amounts of dietary fat supplies and
types of lipids are for the prevention of injury and promotion of stem cell regeneration.

4. Therapeutic Approaches and New Candidates

The available treatments for IBD, including filgotinib, tofacitinib, infliximab, and
adalimumab, along with others, are being practiced by physicians to relief the symptoms
of IBD (Table 2).

Table 2. Drugs available for IBD treatment.

Drugs Mechanisms of Action Doses References

Adalimumab Monoclonal antibody to TNF-α Subcutaneous injection
5–10 µg/mL leads to reduced TNF-α levels [185]

Filgotinib JAK1 inhibitor 100 mg O.D.
While 200 mg resulted in a primary embolism [186,187]

Golimumab Monoclonal antibody to TNF-α

Initial starting with 200 mg and reduced to 100 mg
after 2 weeks, and the dose is maintained by either

50 mg or 100 mg administered at intervals of
4 weeks for UC treatment

[188]
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Table 2. Cont.

Drugs Mechanisms of Action Doses References

Infliximab Monoclonal antibody to TNF-α

Highest blood concentration via
intravenous infusion

80–100 µg/mL and not less than 5 µg/in
4–6 weeks

[185]

Mesalazine (5-ASA) Anti-inflammatory effect on colonic
epithelial cells

0.5 g and can be increased to 1 g 5-aminosalicylic
acid T.I.D. against ulcerative colitis [189]

Methotrexate Inhibition of the enzymes
responsible for nucleotide synthesis 12.5–25 mg/week p.o or i.p. [190]

Tofacitinib JAK1, JAK3 inhibitor 5 or 10 mg B.I.D. for moderately to severe UC [191–193]

Vedolizumab Anti-α4β7 integrin 300 mg within 2 weeks [194]

In addition, new drug candidates for IBD are described below:

1. The standard therapy for IBD patients typically involves the use of aminosalicy-
lates [195] and corticosteroids [196], which have been utilized for many years to
alleviate pain and inflammation.

2. It has been shown that IL-6 was raised in mice treated with 5% DSS-induced acute
colitis, while IL-6 was reduced after treatment with SM934 (artemisinin analog) and
ameliorated experimental colitis [197]. The result of the tocilizumab trial on 36 patients
with CD has been reported with clinical significance [198]

3. In experimental models, it has been observed that deficiency of monoacylglycerol
acyltransferase (MGAT) 2 provides protection against obesity. Moreover, the specific
deletion of MGAT2 deters fat accumulation in the intestine [199]. In another study,
monoacylglycerol lipase (MAGL) inhibition enhances the 2-arachidonoglycerol levels
and results in decreased macroscopic and histological colon alterations, lowering cy-
tokine levels [200]. MGAT2 deficiency in the intestine safeguards mice from metabolic
disorders induced by high-fat feeding [201]. JTP-103237, currently in the preclini-
cal stage, is an inhibitor of MGAT2 and impairs the absorption of luminal lipids in
mice [202]. TNBS-induced murine colitis was reversed by the potent MAGL inhibitor
JZL184 [200], and another MAGL inhibitor URB602 significantly repressed whole gut
transient [203].

4. Recent research suggests that ketogenic diets (KD) can increase the levels of circulating
ketone bodies and have an anti-inflammatory effect [204]. However, the effects of
this particular diet on colitis are still not well-understood. Animal studies have been
conducted using KD, a low-carbohydrate diet, and a normal diet [204]. Following
colitis, KD was found to protect intestinal barrier function and reduce inflammatory
cytokines. Thus, KD may alleviate colitis by modifying microbiota.

5. IBD frequently leads to liver injury. Milk fat globule membrane (MFGM) has been
shown to mitigate colitis and liver injury [205]. Prophylactic MFGM therapy was
found to be effective against colitis, improving weight loss, disease activity index, and
pathological scores. Moreover, MFGM reduced levels of inflammatory mediators with
an increase in IL-10 levels. MFGM thus alleviated DSS-induced injury, enhancing the
mucosal barrier. It appears that MFGM may decrease oxidative stress in the liver [205].

6. Signaling agents, including Wnt, EGF, Notch, and BMP ligands, promote the prolifer-
ation of Lgr5+ stem cells [206].

7. Sphingosine-1-phosphate (S1P) is a signaling molecule involved in physiological
processes. In IBD, the excessive infiltration of immune cells into the intestinal tissue is
a significant contributor to the pathogenesis of the disease. Studies have shown that
targeting S1P receptors could be a viable therapeutic strategy for IBD. Monoclonal
antibodies directed to S1P have been tested in preclinical models of prostate and
kidney cancer, but no studies have been conducted in IBD [207–209]. However, S1P
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receptor modulators have shown promising effects in preclinical studies [210] and are
currently being evaluated in clinical trials for inflammatory disorders. These agents
work downstream of S1P receptors to limit lymphocyte recruitment to inflammatory
areas, reducing immune cell infiltration and mitigating inflammation in the intestine.
Recently, it was reported that ozanimod has been in phase II for CD and phase III for
UC treatment. Etrasimod is currently in phase II trials for UC, while amiselimod has
completed phase II trials for CD [211].

8. Therapeutic agents that enhance insulin sensitivity, such as GLP-1, SGLT-2, and PPAR-
γ ligands, have shown benefits for IBD patients by improving insulin-sensitized
supplies of fuel and building block sources [212]. However, the potential impact of
obesity on IBD treatment efficacy is still not well understood. Studies on various
autoimmune diseases suggest that obesity can significantly affect therapeutic efficacy,
leading to suboptimal treatment outcomes due to rapid clearance and decreased
trough concentrations of medications. Therefore, further investigation is needed to
better understand the interplay between obesity and IBD treatment outcomes.

9. Aryl hydrocarbon receptor (AhR) activation upregulates IL-22 production, which may
protect the intestine from inflammation [213]. Vegetables like broccoli and cabbage
can stimulate AhR, which is highly expressed in intestinal intraepithelial lymphocytes
and may be involved in the protection against luminal attacks [214].

10. Formula-defined feed enteral nutrition showed positive results in CD patients, with
40% relapse chances within 6 months [215].

5. Conclusions

1. IBD results from the dysregulated immune system and the release of inflammatory
mediators and lipotoxicity. Since inflammatory cytokines and lipotoxicity contribute
to insulin resistance generation, the patients with IBD and those with metabolic
disorders have common characteristics in the context of proinflammatory cytokines
and oxidative stress.

2. Inhibition of de novo FAS affects intestinal stem cell function and regeneration ca-
pacity, so the intake of dietary lipids should be carefully interpreted to understand
epithelial tissue repair and regeneration for IBD patients (Figure 6).
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Figure 6. A flow chart illustrating the interdigitating effects of lipids on inflammation and intestinal
epithelial regeneration.

3. Anti-inflammatory agents and insulin-sensitizing drugs are therapeutically beneficial
to patients with IBD due to the inhibition of inflammatory injury, efficient cellular fuel
oxidation, and increased tissue regeneration capacity.
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Abbreviations

IBD Inflammatory bowel disease
Lgr5 Leucine-rich repeat-containing G-protein coupled receptor 5
IEC Intestinal epithelial cell
UC Ulcerative colitis
CD Crohn’s disease
NAFLD Non-alcoholic fatty liver disease
MAFLD Metabolic dysfunction-associated fatty liver disease
T2D Type 2 diabetes
HFD High-fat diet
Tslp Thymic stromal lymphopoietin
TNF Tumor necrosis factor
TRADD Tumor necrosis factor receptor type 1-associated death domain protein
TRAF2 TNF receptor-associated factor 2
RIPK1 Receptor-interacting serine/threonine-protein kinase 1
cIAP Calf intestinal alkaline phosphatase
IFN Interferon
TH17 T helper 17 cells
JAK Janus kinase
STAT Signal transducer and activator of transcription proteins
PI3K Phosphoinositide 3-kinases
AKT Protein kinase B (PKB), also known as Akt
mTOR Mammalian target of rapamycin
RAS Renin–angiotensin system
RAF Rapidly accelerated fibrosarcoma
MEK MAPK/ERK kinase
ERK Extracellular signal-regulated kinases
ADAM A Disintegrin and metalloproteinase domain-containing protein
SOCS3 Suppressors of cytokine signaling 3
AP-1 Activator protein 1
NLRP3 NLR family pyrin domain containing 3
DSS Dextran sodium sulfate
TNBS 2,4,6-Trinitrobenzene sulfonic acid
RORγt RAR-related orphan receptor gamma
MAPK Mitogen-activated protein kinases
NOD Nucleotide-binding oligomerization domain-containing protein
TLR2 Toll-like receptor 2
PMNs Polymorphonuclear leukocyte
ICAM1 Intercellular adhesion molecule 1
S1Ps Sphingosine-1-phosphate
WNT Wingless-related integration site
EGF Epidermal growth factor
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DLL4 Delta like canonical notch ligand 4
PCs Paneth cells
Gli1 Glioma-associated oncogene family zinc finger 1
Rspo1 R-Spondin 1
Pdgfra Platelet derived growth factor receptor alpha
BMP Bone morphogenetic protein
ECM Extracellular matrix
YAP Yes-associated protein
TAZ Transcriptional coactivator with PDZ-binding motif
FAK Focal adhesion kinase
CF Cystic fibrosis
FAS Fatty acid synthesis
2-MAG 2-Monoacyglycerol
FFA Free fatty acids
PBA Primary bile acids
CA Cholic acid
CDCA Chenodeoxycholic acid
LCA Lithocholic acid
DCA Deoxycholic acid
SBA Secondary bile acids
MAGL Monoacylglycerol lipase
MFGM Milk fat globule membrane
S1P Sphingosine-1-phosphate
GLP-1 Glucagon-Like Peptide 1
SGLT-2 Sodium-Glucose Cotransporter 2
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