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Abstract: Physical dependence is associated with the formation of neuroadaptive changes in the
central nervous system (CNS), both at the molecular and cellular levels. Various studies have
demonstrated the immunomodulatory and proinflammatory properties of morphine. The resulting
neuroinflammation in drug dependence exacerbates substance abuse-related behaviors and increases
morphine tolerance. Studies prove that fluoride exposure may also contribute to the development of
neuroinflammation and neurodegenerative changes. Morphine addiction is a major social problem.
Neuroinflammation increases tolerance to morphine, and neurodegenerative effects caused by fluo-
ride in structures related to the development of dependence may impair the functioning of neuronal
pathways, change the concentration of neurotransmitters, and cause memory and learning disorders,
which implies this element influences the development of dependence. Therefore, our study aimed to
evaluate the inflammatory state of selected brain structures in morphine-dependent rats pre-exposed
to fluoride, including changes in cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) expres-
sion as well as microglial and astroglial activity via the evaluation of Iba1 and GFAP expression.
We provide evidence that both morphine administration and fluoride exposure have an impact on
the inflammatory response by altering the expression of COX-1, COX-2, ionized calcium-binding
adapter molecule (Iba1), and glial fibrillary acidic protein (GFAP) in brain structures involved in
dependence development, such as the prefrontal cortex, striatum, hippocampus, and cerebellum.
We observed that the expression of COX-1 and COX-2 in morphine-dependent rats is influenced by
prior fluoride exposure, and these changes vary depending on the specific brain region. Additionally,
we observed active astrogliosis, as indicated by increased GFAP expression, in all brain structures
of morphine-dependent rats, regardless of fluoride exposure. Furthermore, the effect of morphine
on Iba1 expression varied across different brain regions, and fluoride pre-exposure may influence
microglial activation. However, it remains unclear whether these changes are a result of the direct or
indirect actions of morphine and fluoride on the factors analyzed.

Keywords: morphine; fluoride; neuroinflammation; environmental exposure

1. Introduction

Opioid dependence is considered one of the most severe and common addictions [1,2],
and the number of people with opioid use disorders is steadily increasing worldwide [3].
The development of this addiction is a result of the indirect action of morphine on dopamine
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receptors. First, the activation of opioid receptors causes a decrease in the activity of gamma-
aminobutyric acid (GABA) receptors, which has an inhibitory effect on dopaminergic
neurons and leads to dopamine release in structures associated with the development of
addiction [4]. However, it is not only sudden changes in dopamine levels that contribute to
the development of opioid addiction. Physical dependence is associated with the formation
of neuroadaptive changes in the central nervous system (CNS), both at the molecular
and cellular levels [3], depending on factors including the type of drug, method and
timing of use, genetic predisposition, and exposure to environmental factors and the
associated development of chronic low-grade inflammation, particularly in the central
nervous system [5,6].

Various studies have demonstrated the immunomodulatory and proinflammatory
properties of morphine [7,8]. Morphine-induced neuroinflammation appears to be par-
ticularly important not only in the mechanism of addiction [9,10], but also in morphine
tolerance, by increasing neuronal excitability [11–13] and activating microglia and CNS
astrocytes [14–16].

Fluoride is an abundant environmental agent with proven neurotoxic effects. It is
naturally present in water and foods such as grains, fish, meat, milk, and tea [17–19], as
well as in artificially enriched products such as fluoridated salt (0.25 mg fluoride per gram
of salt) [17]. In many European countries, the level of fluoride in tap water must not be
higher than 1.5 mg/L and is usually estimated to be between 0.3–0.7 mg/L [17], while a
liter of mineral water may hold up to 5 mg of F− [17,20]. The upper tolerable limit for
fluoride intake is estimated to be 0.12 mg/kg/day (about 5 mg/d for children and 7 mg/d
for adults) [21], whereas the level of 0.05 mg/kg/day (0.01 mg/kg/day for infants) might
be considered an adequate intake level [17]. In non-endemic areas, daily intake in children
and adults reaches an average of 3–4.4 mg/day [22]. However, in endemic areas, the level of
fluoride intake might be on average 8.4 mg [23], 12.1 +/− 4.1 from water, and additionally
3.4 +/− 2.43 mg from diet [24] or even up to 14–19 mg daily in children and adults in
high fluoride endemic areas, and 7.5–11 mg/L in medium endemic areas [25]. Because
fluoride readily crosses the blood–brain barrier, chronic exposure to even low doses of
this element leads to its accumulation in neural tissues and central nervous system dys-
function [26]. In the low-dose studies, 0.5µmol/L (10µg/L) was sufficient to induce lipid
peroxidation and result in biochemical changes in brain cells, while 3µmol/L (57µg/L)
induced inflammatory reactions in brain cells [27]. Although the mechanisms of fluoride
neurotoxicity are still not well understood, it is known that the element contributes to the
induction of oxidative stress and leads to neuronal apoptosis [26,28]. It may contribute
to the development of neuroinflammation and neurodegenerative changes in the striata,
motor cortices, cerebella, and amygdalae of rats [26,29–31].

The development of inflammation is due in part to the activation of cyclooxygenases
(COX) 1 and 2, enzymes that catalyze the committed step in the formation of prostanoids
such as thromboxane A2 and prostaglandin H2 from arachidonic acid [32]. Their expression
may be constitutive or induced via tissue injury and inflammation. COX-1 is a housekeep-
ing enzyme characterized by constitutive expression in all tissues. Glial COX-2 appears
to play an important role in the development of neuroinflammation, and its expression
is necessary to enter the resolution phase [33]. Inflammatory mediators may also include
ionized calcium-binding adapter molecule 1 (Iba1), an indicator of activated macrophages
that is uniquely expressed by microglia in the brain [34,35]; and glial fibrillary acidic protein
(GFAP), expressed by astrocytes, cells that form glial scars after injury [36].

Both fluoride and morphine exhibit neurotoxic and neurodegenerative effects, includ-
ing through the development of inflammation. Morphine addiction is currently a major
social problem. Neuroinflammation increases tolerance to morphine and neurodegener-
ative effects caused by fluoride in structures related to the development of dependence
may impair the functioning of neuronal pathways, change the concentration of neuro-
transmitters, and also cause memory and learning disorders [3,9,13]. Currently, there is
no information in the literature regarding the impact of fluoride-induced inflammation
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in pre- and neonatal period on the development of morphine dependence. The neurode-
generative and neuroinflammatory properties of this element affecting the mesolimbic
and mesocortical systems suggest that this element may influence the development of
dependence [27,29,31]. Our study aims to evaluate the inflammatory state of selected brain
structures in morphine-dependent rats pre-exposed to fluoride. Changes in COX-1 and
COX-2 expression as well as microglial and astroglial activity are characteristic features
of neuroinflammation [37]. Therefore, we analyzed the expression levels of inflammatory
markers, i.e., COX-1 and COX-2, Iba1, and GFAP. The resulting neuroinflammation in
drug dependence exacerbates substance abuse-related behaviors and increases morphine
tolerance. However, it is not clear whether ongoing inflammatory processes in the brain
can modulate the response to morphine.

2. Results
2.1. Gene Expression—rT-PCR Analysis
2.1.1. COX-1

In the prefrontal cortex, morphine administration and further withdrawal increased
COX-1 mRNA expression in the groups pre-exposed to fluoride (vs the group exposed only
to F) and nonexposed to fluoride (vs the control group C), by 44% and 27%, respectively
(p < 0.05). Also in the striatum, the groups exposed to morphine and to morphine and
fluoride showed increased levels of COX-1 by 28% and 55%, respectively, which was statis-
tically significant for M vs. C and MF vs. F (p < 0.05). Similar changes were observed in the
hippocampal structure, where mRNA expression increased by 39% and 50%, respectively
(p < 0.05). The changes observed in the cerebellum were different from the other structures.
The study groups were characterized by a significant decrease in COX-1 mRNA expression,
F by 52%, M by 27% (p < 0.05). However, morphine administration and further withdrawal
did not alter COX-1 expression in the fluoride pre-exposed groups. There was no change
between M and MF (Figure 1).

2.1.2. COX-2

The mRNA expression of COX-2 in the prefrontal cortex was increased in all groups
examined, but this difference was not statistically significant. However, in the striatum and
hippocampus, there was a statistically significant increase. Exposure to fluoride resulted in
a 55% increase in COX-2 expression in the striatum and a 48% increase in the hippocampus
compared to the control group (p < 0.05). When naloxone was administered to morphine-
dependent rats, there was a 34% increase in COX-2 expression in the striatum and a 45%
increase in the hippocampus (p < 0.05). Furthermore, in the striatum and cerebellum,
morphine withdrawal in rats pre-exposed to fluoride altered the mRNA expression of
COX-2 (compared to fluoride exposure), leading to a decrease of 25% and 41%, respectively
(p < 0.05). There were no significant differences between the morphine group and the
morphine-fluoride group (Figure 2).

2.1.3. GFAP

In the prefrontal cortex, striatum, hippocampus, and cerebellum, fluoride exposure
resulted in a significant upregulation of GFAP mRNA expression compared to the control
group, with increases of 148%, 132%, 219%, and 93%, respectively (p < 0.05). Morphine
withdrawal also led to an upregulation of GFAP expression, with increases of 117% in the
prefrontal cortex and 12% in the striatum (p < 0.05). Furthermore, in the prefrontal cortex
and cerebellum, pre-exposure to fluoride altered the response to morphine dependence
(compared to fluoride exposure alone), resulting in additional increases in GFAP mRNA
expression of 33% and 54%, respectively (p < 0.05) (Figure 3).
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Figure 1. The relative mRNA expression of COX-1 in the prefrontal cortices, striata, hippocampi, 
and cerebella of the rat brains in the control (C), fluoride (F), morphine (M), and fluoride + morphine 
(M + F) groups. The results are presented as means ± SD. The analysis was performed for 6 samples 
from each group. The statistical analysis was performed using Kruskal–Wallis one-way ANOVA, * 
p < 0.05. 
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and the morphine-fluoride group (Figure 2). 

Figure 1. The relative mRNA expression of COX-1 in the prefrontal cortices, striata, hippocampi, and
cerebella of the rat brains in the control (C), fluoride (F), morphine (M), and fluoride + morphine
(M + F) groups. The results are presented as means ± SD. The analysis was performed for 6 samples
from each group. The statistical analysis was performed using Kruskal–Wallis one-way ANOVA,
* p < 0.05.

2.1.4. Iba1

In the prefrontal cortex, fluoride exposure increased the expression of Iba1 by 29% com-
pared to the control group (p < 0.05), while morphine dependence in the withdrawal model
increased it by 48% compared to the control group (p < 0.05). Additionally, pre-exposure to
fluoride altered the response to morphine withdrawal, leading to a downregulation of Iba1
expression, with a 26% decrease compared to the morphine group (p < 0.05) (Figure 4). In
the striatum, the expression of Iba1 was significantly lower in the fluoride-exposed group
compared to the control group (p < 0.05), and morphine dependence increased it by 55%
compared to the fluoride-exposed group (p < 0.05). However, no significant changes were
observed in the hippocampus and cerebellum (Figure 4).
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(M + F) groups. The results are presented as means ± SD. The analysis was performed for 6 samples 
from each group. The statistical analysis was performed using Kruskal–Wallis one-way ANOVA, * 
p < 0.05. 
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Figure 2. The relative mRNA expression of COX-2 in the prefrontal cortices, striata, hippocampi, and
cerebella of the rat brains in the control (C), fluoride (F), morphine (M), and fluoride + morphine (M +
F) groups. The results are presented as means ± SD. The analysis was performed for 6 samples from
each group. The statistical analysis was performed using Kruskal–Wallis one-way ANOVA, * p < 0.05.

Raw mean and SD values of the mRNA expression are given in the supplementary file
(Table S1).

2.2. Protein Expression—Western Blot Analysis
2.2.1. COX-1

In the prefrontal cortex, both morphine withdrawal in rats pre-exposed to fluoride
(compared to fluoride exposure alone) and morphine withdrawal in rats not exposed to
fluoride (compared to the control group) resulted in an upregulation of COX-1 protein
expression by 23% and 20%, respectively (p < 0.05) (Figure 5).



Int. J. Mol. Sci. 2024, 25, 826 6 of 24

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 6 of 25 
 

 

 
Figure 3. The relative mRNA expression of GFAP in the prefrontal cortices, striata, hippocampi, and 
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from each group. The statistical analysis was performed using Kruskal–Wallis one-way ANOVA, * 
p < 0.05. 
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Figure 3. The relative mRNA expression of GFAP in the prefrontal cortices, striata, hippocampi, and
cerebella of the rat brains in the control (C), fluoride (F), morphine (M), and fluoride + morphine
(M + F) groups. The results are presented as means ± SD. The analysis was performed for 6 samples
from each group. The statistical analysis was performed using Kruskal–Wallis one-way ANOVA,
* p < 0.05.

In the striatum, the expression of COX-1 protein was significantly elevated by 2 times
in the fluoride-exposed group compared to the control group (p < 0.05). This increase was
also observed in the group of rats with both morphine dependence and fluoride exposure,
with a notably higher elevation of 119% compared to the rats with morphine dependence
alone (p < 0.05) (Figure 5).

Similar changes were observed in the hippocampus, where the fluoride-exposed
group showed a 21% increase in COX-1 protein expression compared to the control group
(p < 0.05). In the group of rats with both morphine dependence and fluoride exposure,
there was an 11% increase compared to the rats with morphine dependence alone (p < 0.05)
(Figure 5).
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F) groups. The results are presented as means ± SD. The analysis was performed for 6 samples from
each group. The statistical analysis was performed using Kruskal–Wallis one-way ANOVA, * p < 0.05.

In the cerebellum, fluoride did not have an impact on the level of COX-1 expression.
However, morphine increased the expression in both the morphine-dependent groups (M
and MF) compared to the control group (p < 0.05) (Figure 5).

2.2.2. COX-2

In the prefrontal cortex, fluoride exposure resulted in the downregulation of COX-2
protein expression compared to the control group (p < 0.05) (Figure 6).
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Figure 5. Representative Western blots and densitometric analysis of COX-1 protein expression levels
(normalized to alpha-tubulin) in the prefrontal cortices, striata, hippocampi, and cerebella of rats
from control (C), fluoride (F), morphine (M), and fluoride + morphine (M + F) groups. The results are
expressed as means ± SD. The analysis was performed for 3 samples from each group. The statistical
analysis was performed using Kruskal–Wallis one-way ANOVA, * p < 0.05.

In the striatum, the fluoride-exposed group showed a 2.5-fold increase in the level of
COX-2 protein expression compared to the control group, and morphine withdrawal led
to a 2-fold increase compared to the control group (p < 0.05). However, in the group of
rats with both morphine dependence and fluoride exposure (MF group), there was a 44%
decrease in COX-2 expression compared to the fluoride-exposed group (p < 0.05) (Figure 6).
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Figure 6. Representative Western blots and densitometric analysis of COX-2 protein expression levels
(normalized to alpha-tubulin) in the prefrontal cortices, striata, hippocampi, and cerebella of rats
from control (C), fluoride (F), morphine (M), and fluoride + morphine (M + F) groups. The results are
expressed as means ± SD. The analysis was performed for 3 samples from each group. The statistical
analysis was performed using Kruskal–Wallis one-way ANOVA, * p < 0.05.

In the cerebellum, fluoride exposure increased the level of COX-2 expression by 51%,
although this change was not statistically significant. Additionally, morphine adminis-
tration increased expression by 32% compared to the control group (p < 0.05), and in the
MF group compared to the fluoride-exposed group, there was a 25% increase in COX-2
expression (p < 0.05). No significant changes were observed in the hippocampus (Figure 6).
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2.2.3. GFAP Protein Expression

Morphine dependence resulted in an increase in GFAP protein expression in both the
fluoride-exposed group (MF vs. F) and the non-exposed group (M vs. C) by 115% and 178%,
respectively (p < 0.05). Similar changes were observed in other brain structures. However,
in the striatum and cerebellum, fluoride exposure alone increased the expression of GFAP
protein by 32% and 63%, respectively (p < 0.05). In the hippocampus, the increase in GFAP
protein expression after morphine administration was 53%, while in the striatum and cere-
bellum, it was 41% and 67%, respectively (p < 0.05). Furthermore, in morphine-dependent
rats pre-exposed to fluoride, there was a 44% increase in GFAP protein expression in the
hippocampus (p < 0.05) (Figure 7).

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 10 of 25 
 

 

2.2.3. GFAP Protein Expression 
Morphine dependence resulted in an increase in GFAP protein expression in both the 

fluoride-exposed group (MF vs. F) and the non-exposed group (M vs. C) by 115% and 
178%, respectively (p < 0.05). Similar changes were observed in other brain structures. 
However, in the striatum and cerebellum, fluoride exposure alone increased the expres-
sion of GFAP protein by 32% and 63%, respectively (p < 0.05). In the hippocampus, the 
increase in GFAP protein expression after morphine administration was 53%, while in the 
striatum and cerebellum, it was 41% and 67%, respectively (p < 0.05). Furthermore, in mor-
phine-dependent rats pre-exposed to fluoride, there was a 44% increase in GFAP protein 
expression in the hippocampus (p < 0.05) (Figure 7). 

 
Figure 7. Representative Western blots and densitometric analysis of GFAP protein expression levels 
(normalized to alpha-tubulin)) in the prefrontal cortices, striata, hippocampi, and cerebella of rats 
from control (C), fluoride (F), morphine (M), and fluoride + morphine (M + F) groups. The results 
are expressed as means ± SD. The analysis was performed for 3 samples from each group. The sta-
tistical analysis was performed using Kruskal–Wallis one-way ANOVA, * p < 0.05. 

Figure 7. Representative Western blots and densitometric analysis of GFAP protein expression levels
(normalized to alpha-tubulin) in the prefrontal cortices, striata, hippocampi, and cerebella of rats
from control (C), fluoride (F), morphine (M), and fluoride + morphine (M + F) groups. The results are
expressed as means ± SD. The analysis was performed for 3 samples from each group. The statistical
analysis was performed using Kruskal–Wallis one-way ANOVA, * p < 0.05.
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2.2.4. Iba1

In the prefrontal cortex, both morphine administration in rats pre-exposed to fluoride
and those not exposed to fluoride resulted in a decrease in Iba1 protein expression by 22%
and 20%, respectively (Figure 8).
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Figure 8. Representative Western blots and densitometric analysis of Iba1 protein expression levels
(normalized to alpha-tubulin) in the prefrontal cortices, striata, hippocampi, and cerebella of rats
from control (C), fluoride (F), morphine (M), and fluoride + morphine (M + F) groups. The results are
expressed as means ± SD. The analysis was performed for 3 samples from each group. The statistical
analysis was performed using Kruskal–Wallis one-way ANOVA, * p < 0.05.

In the striatum, fluoride exposure increased the expression of Iba1 protein by 50%
compared to the control group (p < 0.05), while morphine administration increased it by
18% (p < 0.05). However, in the fluoride-exposed group with morphine administration
(MF vs. F), there was a 19% decrease in Iba1 expression (p < 0.05) (Figure 8).

In the hippocampus, both morphine administration and fluoride exposure increased
the level of Iba1 protein expression compared to the control group, with increases of
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23% and 35%, respectively (p < 0.05). No significant change was observed between the
fluoride-exposed and morphine-administered groups (Figure 8).

In the cerebellum, only morphine dependence had an impact on the level of Iba1
protein expression (p < 0.05), while no significant change was observed between the
fluoride-exposed and morphine-administered groups (Figure 8).

Raw mean and SD values of the protein expression are given in the supplementary
file (Table S2).

2.3. Protein Expression—Immunohistochemistry Analysis
2.3.1. GFAP

Immunohistochemistry (IHC) analysis revealed that the immunoexpression of glial
fibrillary acidic protein (GFAP) in the prefrontal cortex (neocortex) was highest in the brains
of rats treated with both fluoride and morphine (Figure 9M, indicated by red arrows). In
the control group, the expression of GFAP was the lowest (Figure 9A, red arrows), and
the number of astrocytes positive for GFAP was quite similar in rats treated with fluoride
(Figure 9E, red arrows) and morphine (Figure 9I, red arrows).
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In the striatum region of the examined rat brains, there was nearly equal expression
of GFAP in the control group, the fluoride-treated group, and the group treated with both
fluoride and morphine (Figure 9B,J,N, red arrows). The striata of rats treated with fluoride
alone exhibited the highest intensity of GFAP expression (Figure 9F, red arrows).

Figure 9C,G,K,O depict the GFAP reactivity in the hippocampus proper in all four
studied groups (C, F, M, M + F). The level of GFAP reaction appeared to be very similar
to that of the striatum, indicating that in the control group, fluoride-treated group, and
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fluoride plus morphine-treated group (Figure 9C,K,O, red arrows), the expression levels
were quite equal. However, the GFAP expression was higher in the hippocampi from rats
treated with fluoride alone (Figure 9G, red arrows).

In the cerebella of the studied animals (Figure 9D,H,L,P), GFAP immunoexpression ex-
hibited similar patterns in the control group and morphine-treated group
(Figure 9D,L, red arrows), as well as in the fluoride-treated group and the fluoride plus
morphine-treated group (Figure 9H,P, red arrows). After exposure to fluoride and fluoride
plus morphine, the GFAP expression was higher compared to the control and morphine-
treated groups.

The results of the immunohistochemistry were consistent with the findings from
Western blotting analysis.

2.3.2. Iba1

The immunohistochemistry (IHC) analysis revealed differences in the immunoexpres-
sion of Iba1-positive microglia cells in different brain regions and treatment groups.

In their prefrontal cortices (neocortices), control rats showed low immunoexpression
of Iba1-positive microglia cells (Figure 10A, red arrows), while rats treated with fluoride
plus morphine exhibited higher expression (Figure 10M, red arrows). The expression levels
increased further in rats treated with fluoride alone (Figure 10F, red arrows), and the highest
expression was observed in rats treated with morphine alone (Figure 10I, red arrows).
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In the striatum, the intensity of Iba1-immunoreactivity was comparable among the con-
trol group (Figure 10B, red arrows), the morphine-treated group (Figure 10J, red arrows),
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and the fluoride plus morphine-treated group (Figure 10N, red arrows). The lowest im-
munoreactivity for Iba was observed in the striatum of fluoride-treated rats (Figure 10F,
red arrows).

The immunoreactivity for Iba1 in the hippocampus proper appeared to be relatively
equal among all studied groups of rats (Figure 10C,G,K,O, red arrows), although the lowest
immunoreactivity was observed after fluoride treatment (Figure 10G, red arrows).

In the cerebellum, there were no significant differences in Iba1 expression among all
studied groups of rats (Figure 10D,H,L,P, red arrows).

The results of immunohistochemistry were in line with Western Blotting. Table 1
presents summarized results of the IHC analysis.

Table 1. Summary of the expression of Iba-1 and GFAP) in the control and study groups presented as
intensity of immunostaining.

Prefrontal Cortex Striatum Hippocampus Cerebellum

Iba1 GFAP Iba1 GFAP Iba1 GFAP Iba1 GFAP

Control (C) + + ++ + + + + +
Fluoride (F) + ++ +++ +++ ++ ++ + ++

Morphine (M) +++ ++ ++ + + + + +
Morphine +

Fluoride (M + F) ++ +++ ++ + + + + ++

Intensity of immunostaining scored as weakly positive (+), moderately positive (++) or strongly positive (+++).

3. Discussion

The development of addiction is influenced by several factors, including genetic pre-
disposition, age, duration and type of drug use, and exposure to environmental factors.
Neurobiological pathways and processes, such as the modulation of monoamine release, ox-
idative status, and inflammatory processes, play a role in addiction development [3,38,39].
Previous studies investigating the impact of environmental factors such as lead, using the
morphine withdrawal model, have shown that rats pre- and neonatally exposed to lead
exhibit increased morphine tolerance. This effect is associated with neuroadaptive changes
in dopamine D2 and adenosine A1 receptors in the mesocortical limbic system [37,39], as
well as neuroinflammatory processes in the central nervous system [37]. In our study, we
aimed to examine the role of another environmental factor, fluoride, in this phenomenon.
To achieve this, we used a model previously proposed by Kobayashi et al. (2011) and
Morales-González et al. (2010), which allowed us to replicate blood fluoride concentrations
observed in humans environmentally exposed to this element [40,41]. Fluoride contributes
to the development of neuroinflammation by increasing the expression of matrix metallo-
proteinase 9 (MMP9) and matrix metalloproteinase 2 (MMP2) in the striatum, prefrontal
cortex, and cerebellum [42]. These enzymes are involved in tissue remodeling and regener-
ative processes in response to elevated levels of pro-inflammatory cytokines. Furthermore,
fluoride activates microglia [26,29], leading to the increased synthesis of pro-inflammatory
cytokines such as interleukin-1 beta (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor
alpha (TNF-alpha) [43,44].

Previous studies have demonstrated that fluoride has an impact on morphine depen-
dence and tolerance by influencing the levels and metabolism of dopamine in structures
associated with dependence, as well as serotonin and norepinephrine in the hippocam-
pus and neocortex. Additionally, it can modulate the expression of receptors for these
monoamines [45,46]. This evidence highlights the potential of fluoride, as an environmental
factor, to affect the state of dependence.

In our study, we confirmed that morphine dependence in the withdrawal model
leads to changes in COX-1 and COX-2 expression in the analyzed tissues, contributing
to microglia activation and astrogliosis. Furthermore, we observed that fluoride may
contribute to the development of neuroinflammation by increasing the expression of COX-1
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and COX-2 in the striatum and hippocampus. It may also impact microglia activation (as
indicated by increased Iba1 expression) in the prefrontal cortex, striatum, and hippocampus,
as well as trigger reactive astrogliosis (as indicated by increased GFAP expression) in the
prefrontal cortex, striatum, hippocampus, and cerebellum at the mRNA level, and in the
striatum and cerebellum at the protein level. These changes confirm that inflammatory
response is involved in morphine withdrawal in dependent rats.

3.1. COX-1 Dependent Inflammatory Response in Morphine Dependence Is Influenced by Perinatal
Fluoride Exposure

Morphine withdrawal induced the expression of COX-1 in the prefrontal cortex
(mRNA and protein), striatum (mRNA), hippocampus (mRNA), and cerebellum (pro-
tein). Similar changes were observed in the MF group, where the levels of COX-1 were
significantly higher in the analyzed brain regions. COX-1 is known to be overexpressed
by microglia, endothelial cells, and perivascular cells during neuroinflammation in ani-
mals [47,48].

The upregulation of COX-1 leads to increased production of prostaglandins, such as
PgE2 and PgD2, which can have detrimental effects on the formation of amyloid-β plaques,
neuronal loss, and cognitive functioning. COX-1 appears to play a more significant role in
neuroinflammation than COX-2 [48], and its upregulation is required for the overexpression
of COX-2 [47]. Our analysis suggests that fluoride pre-exposure influences the response
to morphine administration in the hippocampus. Previous studies have shown that in
rats perinatally treated with fluoride, morphine can decrease the expression of D1 and
D2 receptors, as well as dopamine concentration in the hippocampus [45]. The impulses
originating from hippocampal areas may stimulate the mesolimbic pathway [3,49], which is
crucial in the initiation and development of dependence [3]. Dopaminergic projections from
the ventral tegmental area (VTA) to the hippocampus and vice versa can induce long-term
potentiation (LTP) in the hippocampus in response to novel stimuli in rodents [50–53].
Furthermore, fluoride pre-exposure also modulates morphine withdrawal in the cerebel-
lum. Cerebellar neurons reach neuronal groups that are important in motivation and
learning, including those involved in the development of addiction, such as the VTA,
striatum, prefrontal cortex, amygdala, hippocampus, and locus coeruleus [54–60]. Carta
et al. demonstrated the existence of a direct excitatory pathway from the cerebellum to the
VTA, the stimulation of which leads to dopamine neuronal activation [61]. Therefore, it
has been suggested that in addition to disruption in corticostriatal–limbic loops, addiction
is also associated with disruptions in cerebellar processing and connectivity [52,62]. The
results presented in this study indicate that fluoride affects morphine-induced inflam-
matory processes, particularly in the hippocampus and cerebellum, and the changes in
dopaminergic transmission caused by morphine [45] may be partially attributed to the
increased inflammatory status.

3.2. COX-2 Expression Changes May Affect Response to Morphine, thus Modulating Dependence
and Tolerance to Morphine in Perinatal Fluoride Exposure

Morphine withdrawal also influenced the expression of COX-2. The substance of
abuse itself increased the expression of COX-2 protein and/or mRNA in the striatum, hip-
pocampus, and cerebellum. However, the expression in the striatum was lower compared
to the fluoride group, suggesting that perinatal fluoride exposure influences the inflamma-
tory response in morphine dependence. In the cerebellum, an increase in COX-2 protein
level was observed, indicating an ongoing inflammatory process. However, withdrawal
from morphine in the fluoride plus morphine group led to a decrease in COX-2 mRNA
expression in this brain region.

COX-2 is primarily an inducible isoform and is considered a major contributor to
the development of inflammation [4]. Its expression and activity are modulated by in-
flammatory signals, and it plays a crucial role as a source of prostaglandins in chronic
inflammation [63,64]. In the central nervous system (CNS), both COX-1 and COX-2 are
constitutively expressed. COX-2, in particular, plays a significant role in synaptic activity,
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long-term potentiation, long-term depression, memory consolidation, and neurovascu-
lar coupling during functional hyperemia [48,65]. It also contributes to the oxygenation
of endocannabinoids, which represents an important metabolic pathway in neurons for
regulating excitatory synaptic transmission [66].

Morphine withdrawal is known to decrease dopamine synthesis or increase its catabolism
in the striatum, as well as decrease dopamine receptor expression [45]. Therefore, changes
in the expression of COX-2 in the striatum, a major component of the reward system,
and the cerebellum in the morphine withdrawal model, both in rats non-exposed and
pre-exposed to fluoride, may affect the response to morphine, thus modulating dependence
and tolerance.

Furthermore, COX-2 activity is necessary to initiate the resolution phase of inflamma-
tion [67], and it has been demonstrated that COX-2 inhibitors, such as celecoxib, can prevent
undesirable effects of morphine, such as increased tumor growth and metastasis [68]. The
decrease in COX-2 expression observed in the striatum in the fluoride plus morphine group
may therefore impede the anti-inflammatory and neuroadaptive processes, potentially
worsening the patient’s condition [48].

Our findings indicate that the expression of both COX-1 and COX-2 in morphine-
dependent rats is influenced by prior fluoride exposure. Importantly, these effects vary
depending on the brain region, with notable impacts observed in the hippocampus, the
striatum, and, intriguingly, the cerebellum.

3.3. GFAP Increased Expression Indicates Active Astrogliosis in Pre- and Neonatal
Fluoride Exposure

In addition to modulating the expression of cyclooxygenases, both morphine de-
pendence and fluoride exposure led to increased GFAP expression in all studied brain
structures, indicating active astrogliosis. This increase was sustained in the fluoride plus
morphine group in the prefrontal cortex and hippocampus. However, in the striatum and
cerebellum, while there was an increase in GFAP protein and mRNA expression in the
morphine group, no increase was observed in the fluoride plus morphine group, suggesting
an influence of fluoride on the response to morphine.

The influence of morphine on toll-like receptors has been previously described, with
toll-like receptor 4 (TLR4) playing a role and being located in microglia and astrocytes.
Activation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB)
pathway leads to the release of cytokines such as TNF-alpha, IL-1β, andIL-6 [12,69,70].
In our study, GFAP, a protein expressed by astrocytes and microglia, was upregulated,
indicating ongoing inflammatory and reparative processes. Iba1, which was also elevated
in our study, seems to be involved in these processes as well [71,72]. The increased level of
GFAP, along with the upregulation of COX-1 expression, suggests the presence of active
inflammatory and reparative processes [47].

Astrogliosis, while undoubtedly necessary for maintaining brain integrity and promot-
ing revascularization for metabolic support of brain tissue, can also have detrimental effects.
Cells within glial scars release various neurodevelopmental inhibitory molecules that hin-
der the complete physical and functional recovery of the central nervous system [72,73].
Glial cells are also involved in neuronal plasticity processes and may play a role in the
development of morphine tolerance. Astroglial cells express opioid receptor µ3, which is
coupled with nitric oxide (NO) release and contributes to tolerance development [74].

In our study, pre-exposure to fluoride increased GFAP mRNA expression after mor-
phine withdrawal in the prefrontal cortex and cerebellum. As previously mentioned, these
structures, and their functional correlations, are associated with addiction [62]. The absence
of an increase in GFAP protein expression in the striatum and cerebellum suggests that
fluoride influences morphine-induced astrogliosis. Altering the inflammatory status of
these structures may impact dopaminergic neurotransmission [75] and subsequently affect
the functioning of corticostriatal–limbic loops.
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3.4. Morphine Treatment Causes Structure-Dependent Iba1 Expression Changes That Are
Influenced by Fluoride Pre-Exposure

Iba1 is predominantly found in activated macrophages and is also expressed by
microglia cells [76]. Its level is increased during ongoing neuroinflammatory processes [77].
Neuroinflammation is believed to contribute to neural adaptations following chronic
exposure to drugs of abuse [10,78,79]. Our study demonstrates that morphine dependence
and/or fluoride exposure affect the response of microglia (as indicated by Iba1 expression)
in a structure-dependent manner.

The immunomodulatory effects of morphine have been extensively studied [80–82].
Recent research has shown that morphine not only contributes to the development of
inflammation [9,83], but also leads to microglial immunosuppression by activating insuffi-
cient mitophagy via NLRX1 and through the differential regulation of toll-like receptors
(TLRs) and acetylcholinesterase (AChE) by modulating P65 and TRAF6 [80,81]. In our
study, downregulation of microglia activity (as indicated by decreased Iba1 protein ex-
pression) was observed in the prefrontal cortex and cerebellum. This suggests that neural
adaptive mechanisms may have limited neuroinflammation [9]. The observed increase
in Iba1 mRNA expression in the prefrontal cortex after withdrawal could be attributed
to the compensatory response. Additionally, in the cerebellum, fluoride treatment prior
to morphine dependence did not result in a decrease in Iba1 expression as observed in
the non-fluoride-treated rats, indicating the influence of fluoride on morphine-induced
immunosuppression in this brain region. Similar modulation of morphine response by
fluoride was also observed in the hippocampus and striatum, where, despite increased
Iba1 protein levels in morphine-dependent and/or fluoride-exposed rats, the expression of
Iba1 remained unchanged in the fluoride plus morphine group. The ongoing inflammation
after 2 months of fluoride exposure may have triggered neuroadaptive changes in these
structures [9], as observed at the mRNA level in the striatum.

In vitro studies using microglial cultures have shown an increase in Iba1 expression
after 6–48 h of morphine treatment [84]. However, both Iba1 and GFAP expression can be at-
tenuated by the inhibition of P2X purinoceptor 4 (P2X4), which inhibits morphine-induced
microglial migration and affects morphine tolerance [84,85]. In some cases, morphine
administration itself can decrease the level of P2X4 in structures associated with the de-
velopment of dependence, such as the striatum and prefrontal cortex [86]. Therefore, the
results obtained in our study confirm the diverse effects of morphine on the inflammatory
response and indicate that fluoride pre-exposure may influence this process.

Taken all together, we documented in that study that long-term perinatal exposure of
rats to fluoride may influence an inflammatory response, and it may produce an effect on
morphine withdrawal. Thus, we found another environmental factor which can take part
in morphine dependence development and in morphine withdrawal.

4. Materials and Methods

The study was approved by the local Ethics Committee of the Medical University in
Lublin (No. 20/2014, approval date 10 November 2014) in accordance with the Directive
2010/63/EU on the protection of animals used for scientific purposes.

4.1. Animal Model

Wistar rats were used in this study. Parental generation (F0) was used to obtain
the next male generation (F1). The mating process started for F0:Control (n = 4) and
F0:Fluoride (n = 4) groups at the same time; subsequently, the age of the parental animals
was comparable. The mating pairs were kept in separate cages. After one week, the
females were separated from the males, and each pregnant female rat was placed in an
individual cage. The control group received tap water (fluoride content 0.1–0.7 mg/L)
for drinking, while the experimental group received water supplemented with sodium
fluoride (50 mg/L) throughout the entire pregnancy.
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Females gave birth to 8 rats on average. Both females and males were used in the study.
The fluoride supplementation continued until 21 days after birth, when the young rats
were weaned from their mothers. The young rats from the experimental group continued
to receive water with fluoride until 2 months of age. The control group had ad libitum
access to tap water during the same period.

The rats drank approximately 31.1 mL (±4.2 mL) of fluoridated water daily, which
equals 1.56 mg F-/rat/day. Based on previous reports [17,87,88], the dose of fluoride was
adjusted to represent its concentration in the rat’s blood similar to that observed in the
serum of people environmentally exposed (water, food) to fluoride (to achieve rat serum F-
concentrations similar to those in humans, 5-fold higher doses should be administrated)
compounds [17,40–42]. Previous studies showed that the level of serum fluoride in rats
treated with 50 ppm F- water was 0.24 mg/L [19], and it did not differ from the level of
F- in the serum of the control group [19,26]. The concentration of fluoride in people from
endemic areas rages between 0.51–1.92 (average 1.07 +/− 0.3 mg/L) [89], and in patients
with symptomatic fluorosis, the concentration was found to be 0.16–1.25 mg/L [90], when
in healthy subjects the level reaches up to 0.045 mg/L [90].

Starting from postnatal day 60 (PND 60), the animals were randomly divided into
groups, and morphine dependence was induced by administering increasing doses of mor-
phine (10.0, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0, 50.0 mg/kg, intraperitoneal) twice a day for eight
consecutive days (PND 60–67). On the following day (PND 68), a final dose of morphine
(50.0 mg/kg) was administered, and one hour later, an opioid receptor antagonist, naloxone
(2.0 mg/kg, intraperitoneal), was injected to induce morphine withdrawal (Figure 11). A
saline+ naloxone group (rats receiving 0.9% NaCl and saline with naloxone (n = 6) on
the last day of the experiment) was excluded from molecular studies. The rats were then
decapitated, and their brains were quickly removed. The striata, hippocampi, prefrontal
cortices, and cerebella were collected for neurochemical analysis and immediately frozen
in liquid nitrogen. The tissues were stored at −80 ◦C until further analysis.
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4.2. Gene Expression Analysis

Quantitative mRNA expression analysis of COX-1, COX-2, Iba1, and GFAP genes was
performed using a two-step reverse transcription PCR method. The GAPDH gene was
used as a reference gene for normalization. RNA was isolated from the tissue samples
stored at −80 ◦C using the RNeasy MiniKit (Qiagen, Hilden, Germany) following the
manufacturer’s instructions. The quality and quantity of RNA were determined using a
NanoDrop ND 1000 (Thermo Fisher Scientific™, Waltham, MA, USA). The isolated RNA
was then transcribed into cDNA using the Omniscript RT Kit (Qiagen, Hilden, Germany)
according to the manufacturer’s instructions.

Quantitative real-time PCR was conducted using a 7500 Fast Real-Time PCR System
(Applied Biosystems, Foster City, CA, USA) and the Power SYBR Green PCR Master Mix
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(Applied Biosystems, Foster City, CA, USA) reagent. The real-time increase in the PCR
reaction product was monitored through fluorescence measurement, which is proportional
to the product’s concentration in the mixture. The mean from two measurements was used
for further calculations. The ∆Ct relative quantification method was employed to calculate
the values.

The following primer pairs were used for amplification:

−GAPDH forward: ATGACTCTACCCACGGCAAG, reverse: CTGGAAGATGGT GATGGGTT
− Iba1 forward: GATTTGCAGGGAGGAAAAGCT, reverse: AACCCCAAGTTTCTCCAGCAT
− GFAP forward: GGTGGAGAGGGACAATCTCA, reverse: CCAGCTGCTCCTGGAGTTCT
− COX-1 forward: GTTCACAGGAGAGAAGGAGATG, reverse: GGAGCCCCCATCTC

TATCATGC
− COX-2 forward: AATGAGTACCGCAAACGCTTCT, reverse: AGCCATTTCTTTCTCTC

CTGTAAG.

4.3. Western Blot Analysis

The tissue samples from the striata, prefrontal cortices, hippocampi, and cerebella were
treated with RIPA lysis buffer containing protease and phosphatase inhibitors (cOmplete™,
Mini Protease Inhibitor Cocktail, Roche, Switzerland, PhosSTOP™, Roche, Switzerland).
The protein concentration in the resulting filtrate was determined using the Pierce™ BCA
Protein Assay Kit (Thermo Fisher Scientific™, Waltham, MA, USA).

For protein analysis, electrophoresis was performed under denaturing conditions
using a 12% polyacrylamide gel (SDS-PAGE), with 30 µg of protein loaded into each
well. The proteins were then transferred onto a 0.45 µm PVDF membrane (Thermo Fisher
Scientific™, Waltham, MA, USA) using a wet transfer method. The membranes were
subsequently incubated in a blocking buffer (5% milk) for 60 min.

The expression of COX-1 (ab81296), COX-2 (ab62331), Iba1 (ab178846), and GFAP
(ab68428) proteins was detected using antibodies from Abcam (Cambridge, UK) at a
dilution of 1:800. HRP-labeled secondary antibodies anti-mouse (ab6789) and anti-rabbit
(ab205718) from Abcam (Cambridge, UK) were used. The expression of alpha-tubulin was
detected using alpha-tubulin antibody (ab7291) from Abcam (Cambridge, UK).

The membranes were developed using an ECL Advance Western Blotting Detection
Kit (GE Healthcare, Chicago, IL, USA), and the protein bands were visualized using the
Molecular Imager ChemiDoc XRS+ (Bio-Rad, Hercules, CA, USA).

4.4. Immunohistochemical Analysis

The dissected brain specimens were fixed in a 4% neutral buffered formalin solution
for 24 h. Subsequently, they underwent a series of washes with distilled water, ethanol,
and methanol to remove any residual fixative. The tissues were then dehydrated using a
series of washes with absolute ethanol and xylene. After saturation with liquid paraffin,
the samples were embedded in paraffin blocks.

Serial sections 3–5 µm in thickness were prepared from the paraffin-embedded tissues
using a microtome (MICROM HM340E) and placed on silane-coated histological slides
(3-aminopropyl-triethoxysilane, Thermo Scientific, Waltham, MA, USA). The sections were
deparaffinized using xylene and ethanol in decreasing concentrations.

To expose the epitopes, the deparaffinized sections were subjected to heat-induced
antigen retrieval using a microwave oven in citrate buffer (pH 6.0). After cooling and
washing with PBS, the sections were incubated with primary antibodies against the glial
fibrillary acid protein (GFAP, a marker of astrocytes; Abcam, cat. no.: ab68428, diluted
1:250) and Iba1 (a marker of microglia cells; Abcam, cat. no.: ab178846, diluted 1:1000) for
60 min at room temperature.

To visualize the antigen–antibody complex, the DAKO LSAB + System-HRP (Dako-
Cytomation, cat. no.: K0679) was used, which employs the avidin–biotin–horseradish
peroxidase reaction with diaminobenzidine (DAB) as the chromogen. The presence of
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brown pigmentation was microscopically observed (Leica DM5000 B, Leica Microsystems,
Wetzlar, Germany) to determine positive staining.

4.5. Statistical Analysis

The statistical analysis was conducted using Statistica 13 software (StatSoft, Poland).
The results are presented as mean values ± standard deviation (SD). The normality of the
data distribution was assessed using the Shapiro–Wilk W test, which indicated a lack of
conformity with the normal distribution. Therefore, Kruskal–Wallis one-way ANOVA was
used to compare the groups. Statistical significance was defined as p < 0.05.

5. Conclusions

Our study provides evidence that both morphine administration and fluoride exposure
have an impact on the inflammatory response by altering the expression of COX-1, COX-2,
Iba1, and GFAP in brain structures involved in dependence development, such as the
prefrontal cortex, striatum, hippocampus, and cerebellum. We observed that the expression
of COX-1 and COX-2 in morphine-dependent rats is influenced by prior fluoride exposure,
and these changes vary depending on the specific brain region, with the hippocampus,
striatum, and cerebellum playing prominent roles. Additionally, we observed active
astrogliosis, as indicated by increased GFAP expression, in all brain structures of morphine-
dependent rats, regardless of fluoride exposure. Furthermore, the effect of morphine
on Iba1 expression varied across different brain regions, and fluoride pre-exposure may
influence microglial activation. However, it remains unclear whether these changes are a
result of the direct or indirect actions of morphine and fluoride on the factors analyzed.
Further in-depth studies are necessary to elucidate the underlying mechanisms responsible
for the observed results.
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Chlubek, D.; Gutowska, I. Changes in Gene and Protein Expression of Metalloproteinase-2 and -9 and Their Inhibitors TIMP2
and TIMP3 in Different Parts of Fluoride-Exposed Rat Brain. Int. J. Mol. Sci. 2020, 22, 391. [CrossRef] [PubMed]

43. Zhang, Y.; Zhou, B.H.; Tan, P.P.; Chen, Y.; Miao, C.Y.; Wang, H.W. Key Role of Pro-inflammatory Cytokines in the Toxic Effect of
Fluoride on Hepa1-6 Cells. Biol. Trace Elem. Res. 2020, 197, 115–122. [CrossRef] [PubMed]

44. Ishijima, T.; Nakajima, K. Inflammatory cytokines TNFα, IL-1β, and IL-6 are induced in endotoxin- stimulated microglia through
different signaling cascades. Sci. Prog. 2021, 104. [CrossRef]

45. Kupnicka, P.; Listos, J.; Tarnowski, M.; Kolasa-Wołosiuk, A.; Wąsik, A.; Łukomska, A.; Barczak, K.; Gutowska, I.; Chlubek, D.;
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