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Abstract: One of the major global health and welfare issues is the treatment of obesity and associated
metabolic disorders, such as type 2 diabetes mellitus and nonalcoholic fatty liver disease. Obesity,
caused by the excessive accumulation of triglycerides in adipose tissues, induces adipocyte dysfunc-
tion, followed by inflammation, in adipose tissues and lipotoxicity in nonadipose tissues. Several
studies have shown that obesity and glucose homeostasis are influenced by sphingolipid mediators,
including ceramide and sphingosine 1-phosphate (S1P). Cellular accumulation of ceramide impairs
pancreatic β-cell survival, confers insulin resistance in the liver and the skeletal muscle, and deterio-
rates adipose tissue inflammation via unknown molecular mechanisms. The roles of S1P are more
complicated, because there are five cell-surface S1P receptors (S1PRs: S1P1–5) which have altered
functions, different cellular expression patterns, and inapparent intracellular targets. Recent findings,
including those by our group, support the notable concept that the pharmacological activation of
S1P1 or S1P3 improves obesity and associated metabolic disorders, whereas that of S1P2 has the
opposite effect. In addition, the regulation of S1P production by sphingosine kinase (SphK) is an
essential factor affecting glucose homeostasis. This review summarizes the current knowledge on
SphK/S1P/S1PR signaling in and against obesity, insulin resistance, and associated disorders.

Keywords: adipocyte; adipogenesis; ceramide; glucose tolerance; inflammation; insulin resistance;
lipotoxicity; S1P receptor; sphingosine kinase; sphingosine 1-phospahte

1. Introduction

Obesity is one of the most common medical and welfare problems worldwide. Ac-
cording to the World Health Organization (WHO), >1.9 billion adults worldwide were
overweight (body mass index [BMI]: ≥25) in 2016, including 650 million who were obese
(BMI: ≥30), with the prevalence of obesity tripling between 1975 and 2016. Obesity is
associated with metabolic syndrome, type 2 diabetes mellitus (T2DM), hypertension, dys-
lipidemia, hepatic steatosis, nonalcoholic fatty liver disease (NAFLD), chronic kidney
disease, and a few forms of cancer. Many metabolic diseases are associated with insulin
resistance. Lifestyle improvement is important for treating obesity, and considerable efforts
have been made to highlight the importance of diet and exercise. However, transform-
ing all patients into healthier conditions is difficult, especially in modern societies with
the prevalent overnutrition and lack of exercise that now occurs in developed and devel-
oping countries. Therefore, there is a compelling need for alternative strategies to treat
obesity, such as easy-to-administer oral therapeutics. Among the numerous candidates,
a few researchers have focused on sphingolipid-derived mediators such as sphingosine
1-phosphate (S1P) and ceramide, which have potent and diverse physiological properties.
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In this review, we summarize the biological roles of S1P/ceramide in obesity and insulin
signaling and discuss the prospects of S1P receptor (S1PR) agonists for use as therapeutics,
partly based on our results [1,2], where obesity and T2DM could be treated by modulating
specific S1PR signaling. Additionally, there is accumulating evidence showing the roles
of S1P/S1PR in the onset and progression of NAFLD and hepatic fibrosis [3–5]. However,
this has not been discussed herein because of the current lack of clear relevance to hu-
man pathology compared to obesity. We have also deferred a discussion on the roles of
S1P/S1PR in cardiovascular, kidney, and inflammatory diseases that has been described in
excellent reviews [6–8].

2. Adipocyte and Obesity
2.1. Adipocyte Proliferation and Differentiation

Obesity develops when excess energy is stored in adipocytes as triglycerides (neutral
fats). Adipocytes are derived from mesenchymal stem cells and specialize in triglyceride
storage. Their cell bodies appear to be occupied by lipid droplets. As the largest en-
docrine organ in the body, the adipose tissue secretes hormones that regulate glucose, lipid
metabolism, and cytokines that regulate systemic inflammation.

Excessive nutrition can increase the size (hypertrophy) and number (hyperplasia) of
adipocytes in the adipose tissue. Much evidence supports the idea that adipocyte hyper-
trophy leads to the onset of insulin resistance and metabolic disorders [9,10]. Adipocytes
are classified based on their anatomical location, with the most representative examples
being visceral adipocytes, including epididymal, intestinal, and perirenal adipocytes, and
subcutaneous adipocytes, such as inguinal adipocytes, although adipocytes exist in the
skin, skeletal muscle, pericardium, breast, and bone marrow. Obese visceral adipose tissue
(VAT) is considered harmful, whereas obese subcutaneous adipose tissue (SAT) is not [11].
Even when body weight increases similarly, metabolic disorders largely differ depending
on whether this increase is associated with adipocyte hypertrophy or hyperplasia or is
mainly caused by obesity in the VAT or SAT. The process of how they are determined is
mostly unknown; however, understanding “adipogenesis” provides certain clues.

Adipogenesis comprises two phases: determination and terminal differentiation. In
the determination phase, mesenchymal stem cells enter the adipocyte lineage through a
stimulus called “adipogenic commitment” to form preadipocytes [12]. Although much
about this process remains unknown, the route to preadipocytes has been examined by
cell lineage tracing. Delta-like homolog 1 (DLK1), a non-canonical Notch ligand, was the
first identified marker for preadipocytes [13]. After that, several cell surface preadipocyte
markers were identified. Two cell populations, CD24+ (Lin−, CD34+, CD29+, Sca-1+, and
CD24+) and CD24− (Lin−, CD34+, CD29+, Sca-1+, and CD24−), were selected from platelet-
derived growth factor receptor α (PDGFRα)-positive stromal vascular cells (SVC) in white
adipose tissue [14,15]; however, these markers have been detected in both stem cells and
hematopoietic cells, and more specific markers are anticipated. For these situations, we
proposed “proliferin” as a novel marker of small proliferative adipocytes, namely, possible
beige cell progenitors (preadipocytes) [16]. In the second terminal differentiation phase,
fibroblast-like preadipocytes transform into round, lipid-laden cells by expressing several
adipocyte-specific genes [17].

Visceral and subcutaneous adipocytes were initially believed to be identical and to
differ only in their anatomical locations and systemic effects [18]. However, the Wilms
tumor gene, WT1, is specifically expressed in visceral preadipocytes [19]. A study using
AdipoChaser mice fed high-fat diets (HFDs) revealed that epididymal adipocytes initiated
adipogenesis by 4 weeks. In contrast, subcutaneous adipocytes underwent hypertrophy
only after 12 weeks [20]. In addition, visceral adipocytes emerged postnatally, whereas
subcutaneous adipocytes developed mainly between embryonic days 14 and 18 [21]. Thus,
visceral adipocytes are substantially different from subcutaneous adipocytes, and single-
cell sequencing has recently been used to reveal heterogeneity in adipogenic cells [21,22].
Currently, no ideal preadipocyte marker is common to all adipocytes but not expressed in
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other progenitor cells [23], and the determinant(s) of adipocyte hypertrophy or hyperplasia
remain uncharacterized. Treatment with thiazolidine converts adipocytes from hypertrophy
to hyperplasia [10]. Genetic deletion of the transmembrane BAX inhibitor motif containing
1 (TMBIM1), an inhibitor of adipogenesis, induces visceral adipocyte hyperplasia and
improves obesity-related metabolic diseases in HFD-fed mice [24]. The distribution of
excess nutrients between the visceral and subcutaneous adipocytes is not well understood.
However, it is influenced by sex hormones [25].

2.2. Lipotoxicity

Several mechanisms have been proposed to explain the association between obesity
and metabolic disease. Adipose tissues are essential for regulating lipid and glucose
homeostasis, and patients with lipoatrophic diabetes, who tend to lack adipose tissues,
exhibit severe insulin resistance, hyperglycemia, dyslipidemia, and hepatic steatosis [26]. If
adipocytes cannot store highly hydrophobic (and, thus, cytotoxic) triglyceride, excessive
fat leaks into the blood as non-esterified fatty acids (NEFA). The NEFA in the circulation
overflows into other tissues, such as the liver, skeletal muscle, heart, and pancreas, via
adipose tissue expandability/expansion [27], and can confer systemic insulin resistance
and organ damage, that is, lipotoxicity (Figure 1) [28,29].
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Figure 1. Systemic insulin resistance and lipotoxic damage caused by excessive lipid accumulation in
both adipose and nonadipose tissues [27–47].

In experimental animals fed HFDs, the chemical composition of fats and the extent of
insulin resistance varied between tissues. Diacylglycerol and short-chain fatty acid-type
ceramides accumulate in the liver and skeletal muscle. In contrast, short-type ceramides
and sphingomyelin (and diacylglycerol after 16 weeks of HFDs) accumulate in the adipose
tissue, which may confer organ-specific insulin resistance [30]. In addition, a lack of adi-
pose tissue causes the loss of “beneficial” hormones, such as leptin and adiponectin. The
exacerbation of insulin resistance is partially recovered by supplementation with these hor-
mones in patients with lipoatrophic diabetes [48]. Thus, obesity inhibits the accumulation
of triglycerides in adipocytes and decreases adiponectin [31]. Moreover, mitochondrial
mass and adipocyte function are suppressed in obese mice [49] and humans [50]. However,
whether adipocytes are damaged by mitochondrial dysfunction remains unclear.

2.3. Adipose Tissue Inflammation

Adipose tissue inflammation was first noticed by tumor necrosis factor α (TNFα)
expression in the adipose tissue and stromal vascular fraction of obese animals [32]. Cy-
tokines such as interleukin (IL)-6, IL-8, IL-10, and granulocyte colony-stimulating factor
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(G-CSF) were reported to be observed in adipocytes [32,33,51]. Monocyte chemoattractant
protein-1 (MCP-1) is highly expressed in obese adipose tissue [33] and induces macrophage
infiltration into adipose tissue, as well as insulin resistance [52]. These findings imply
that MCP-1 secreted by obese adipocytes induces macrophage infiltration into the adipose
tissue, which in turn causes adipose tissue inflammation, insulin resistance, and hepatic
steatosis (Figure 1). Additionally, most of the adipose tissues from obese mice had clas-
sically activated (M1) macrophages that produced various pro-inflammatory cytokines,
such as IL-1, IL-6, and TNFα, and reactive oxygen species. In contrast, most of the tissues
from lean mice had alternatively activated anti-inflammatory (M2) macrophages [34,35].
A crown-like structure composed of dead or dying hypertrophic adipocytes surrounded
by macrophages is a hallmark of chronic inflammation in adipose tissue [36–38]. These
findings suggest that obesity induces adipose tissue inflammation and insulin resistance
(Figure 1) [39–42].

In obese humans and mice, macrophages accumulate more in VAT than in SAT [37,38,53].
Therefore, inflammation in VAT may be caused by the onset of metabolic disorders [54],
although several researchers have observed the importance of inflammation in SAT [55].
Adipose tissue inflammation may induce systemic insulin resistance via the circulating
cytokines (e.g., TNFα and IL-6) secreted by M1 macrophages that attenuate insulin signaling
in the liver and the skeletal muscle [39–42]. Leukotriene B4 (LTB4) and galectin-3 have been
postulated as candidates linking adipose tissue inflammation and insulin resistance [43,44].
Furthermore, macrophage-derived exosomal miRNAs impair insulin action in the liver
and skeletal muscles [45]. By contrast, obesity can induce M1 macrophage accumulation in
the liver, skeletal muscles, and pancreas, which may cause insulin resistance (Figure 1) [42].

The fundamental question is whether obesity-induced adipose tissue inflammation
is comparable to the common chronic inflammation associated with infection and can-
cer. Ordinary chronic inflammation is accompanied by reduced appetite and increased
energy expenditure, leading to weight loss and, in the worst cases, cachexia. In contrast,
inflammation in obesity does not have this effect [41]. Kratz et al. demonstrated that
CD274, CD38, and CD319 were expressed in classically activated M1 macrophages isolated
from patients with cystic fibrosis. In contrast, they were hardly observed in metabolically
activated M1 macrophages isolated from the adipose tissue of patients with obesity [56].
The expression levels of TNFα and IL-6 were much lower in metabolically activated
M1 macrophages than those in classically activated M1 macrophages [56]. Furthermore,
obesity-induced lysosomal-dependent lipid metabolism was not observed in classically
activated M1 macrophages [57]. Recent studies have revealed that the population of adi-
pose tissue macrophages is more complex than previously expected [58,59]. Thus, although
common processes may exist, the inflammation in obese adipose tissues may differ from
classical inflammation.

These findings may be related to the failure of multiple anti-inflammatory treatments
to ameliorate obesity-induced metabolic disorders. In clinical trials using TNFα-targeted
drugs that are effective against rheumatoid arthritis, a few were slightly effective in im-
proving insulin sensitivity [60], while others were not [61,62]. In patients with T2DM, the
blockade of IL-1 receptor signaling improves glycemic control and the ability to secrete
insulin, but not insulin resistance itself, as evaluated by insulin-regulated gene expression
in skeletal muscle and serum adiponectin levels [63]. Although the administration of high
doses of salicylate has been shown to improve blood glucose levels in mice [64], no success
has been observed in treatments that target adipose tissue inflammation in patients with
obese T2DM [39,42].

3. S1P and S1P Receptors

S1P was first described in 1991 as a growth factor derived from membrane sphin-
golipids [65]. Sphingomyelinase converts sphingomyelin to ceramide, which is metabolized
to sphingosine by ceramidase (Figure 2) [66]. Ceramides are synthesized from serine and
palmitoyl-CoA through the activities of enzymes such as serine palmitoyltransferase (ser-
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ine palmitoyltransferase long-chain base subunit: Sptlc) and ceramide synthase (CerS)
(Figure 2) [67]. Obesity causes an excessive flow of saturated fatty acids into adipocytes
and other tissues, along with the accumulation of ceramide, a key lipotoxic player [68].
Sphingosine is phosphorylated by sphingosine kinase 1 (SphK1) and SphK2, which have
similar catalytic properties but differ in subcellular localization and tissue-specific expres-
sion [66]. SphK1 is cytosolic and translocates to the plasma membrane or extracellularly
upon activation [67], whereas SphK2 is located in the endoplasmic reticulum, mitochondria,
and nucleus [69]. S1P is secreted as a paracrine or endocrine molecule and is an intra-
cellular secondary messenger. Circulating (serum) S1P levels are approximately 500 nM
in humans [70], and extracellular S1P binds to high-density lipoproteins via apolipopro-
tein M (apoM) and albumin (Figure 2) [71]. S1P are degraded by S1P lyase (SPL) or S1P
phosphatases (SPP1 and SPP2) [72].
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Figure 2. Sphingosine 1-phosphate (S1P) production and associated cell surface receptor signaling
that regulates adipose function. Ceramide is produced from sphingomyelin by sphingomyelinase
(SMase) or from palmitoyl-CoA and serine via serine palmitoyltransferase (Sptlc), 3-ketosphinganine
reductase (KSR), ceramide synthase (CerS), and dihydroceramide desaturase (DES). Ceramide is
converted to sphingosine by ceramidase (CDase) and S1P by SphK1/2. S1P acts through intracellular
targets (HDAC1/2, PHB2, etc.) or is secreted extracellularly (e.g., in circulation) to affect cell surface
S1P receptors (S1P1–S1P5). S1P1/3 agonists and S1P2 agonists/ceramide have opposing actions
in terms of adipose function: the former prevents obesity and associated adipogenesis, adipocyte
inflammation, and insulin resistance, whereas the latter rather promotes such conditions [1,2].

S1P participates in various cellular signaling pathways, including those involved
in cell survival, proliferation, migration, and differentiation in multiple organs, through
five cognate S1PRs: S1P1–S1P5 (Figure 2) [72,73]. S1P1–S1P3 are expressed in various cell
types, whereas S1P4 and S1P5 are expressed exclusively in lymphocytes and dendritic
cells, respectively [74]. The characteristics and roles of S1PRs have been described in
many reviews [72,73]. Therefore, we only cover the following three issues: First, the
role of S1P2 in inflammation, especially in macrophage function, is complex, and S1P2
has been proposed to suppress [75] or promote [76] macrophage activity. Similarly, the
opposite relationship was observed between S1P3 and inflammation [77,78], probably
attributable to differences in inflammation and the surrounding environment. Second,
these receptors may act cooperatively and antagonistically [79,80], underscoring the diverse
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physiological actions of S1P. Therefore, when we discuss S1P actions, identification of the
S1P receptor subtypes involved becomes indispensable. Third, extracellularly released
S1P often acts against intracellular S1P levels. Activation of SphK1 in response to pro-
inflammatory stimuli may induce M1 macrophage formation when S1P1 activation triggers
anti-inflammatory responses [81]. The intracellular S1P targets (especially those important
in glucose homeostasis) remain to be clarified (Figure 2). However, S1P may directly bind
to and inhibit histone deacetylase 1/2 (HDAC1/2) [82] or bind to prohibitin 2 (PHB2) to
regulate cytochrome c oxidase assembly and mitochondrial respiration [83].

Clinical applications focusing on the potent action of S1P began in the 2010s. FTY720
(Fingolimod™) was the first clinically approved S1P signal modulator for treating mul-
tiple sclerosis [84]. FTY720 binds to and activates all S1PRs, except S1P2, but specifically
downregulates S1P1 in lymphocytes [74,85]. Furthermore, FTY720 suppresses CerS activity
but activates ceramide synthesis in cultured cells under certain circumstances [86]. Next-
generation S1PR modulators with fewer adverse effects and receptor specificities, including
mocravimod (S1P1/4/5 agonist), ozanimod (S1P1/5 agonist), etrasimod (S1P1/4/5 agonist),
amiselimod (S1P1 agonist), ponesimod (S1P1/4/5 agonist), siponimod (S1P1/5 agonist), and
ceralifimod (S1P1/5 agonist), were developed and investigated for clinical application in
diseases other than multiple sclerosis, including inflammatory bowel disease, psoriasis,
atopic dermatitis, rheumatoid arthritis, systemic lupus erythematosus, and certain can-
cers [87]. In the laboratory, SEW-2871 has been used as a S1P1 agonist, VPC-23019 as a
S1P1/3 antagonist, JTE-013 as a S1P2 antagonist, and CYM-50358 as a S1P4 antagonist [1,2].

Several drugs that regulate S1P signaling have been developed in addition to S1PR
agonists/modulators. Several SphK inhibitors have been developed, including isoform-
specific ones [88]. SPL inhibitors LX2931 and LX2932 have also been developed to treat
rheumatoid arthritis [89].

4. Tissue-Specific Roles of S1P/S1PR in Insulin Resistance

Obesity-induced insulin resistance occurs in pancreatic β-cells and peripheral tissues
such as the liver, adipose tissue, and skeletal muscle [90]. Genetic deletion of insulin
receptors in murine adipose tissue, skeletal muscle, or both induces insulin resistance, but
not diabetes [91,92], which contrasts with the liver-specific deletion of insulin receptors
that causes severe insulin resistance and hyperglycemia [93]. Therefore, hepatic insulin
resistance is considered more important in whole-body glucose metabolism. However, the
roles of adipose tissues, especially in obese states, dominate. The levels of S1P/ceramide
(diacylglycerol/sphingomyelin) and the activation status of SphK/S1PR have been investi-
gated in the tissues and plasma of HFD-fed obese mice (Table 1). S1P and ceramide levels
increased in the liver, adipose tissue, skeletal muscle, pancreas, and plasma [30,46], except
for ceramide in the pancreas [47]. SphK1 and SphK2 can be activated in the liver [94,95],
whereas only SphK1 is activated in adipose tissue [96] and skeletal muscle [94]. Information
regarding the S1PR subtypes involved in obesity is limited; however, S1P3 is upregulated
in the liver and adipose tissue [97]. Furthermore, S1P1 is upregulated, whereas S1P3 is
downregulated in the skeletal muscle [98].

Table 1. Lipid levels and SphK/S1PR activation status in tissues of HFD-fed obese mice.

Liver Adipose Tissue Skeletal Muscle Pancreas Plasma

S1P levels ↑ [46] ↑ [46] ↑ [46] ↑ [47] ↑ [46]
Ceramide levels ↑ [30,46] ↑ [30,46] ↑ [30,46] → [47] ↑ [46]

Diacylglycerol levels ↑ [30] ↑ [30] ↑ [30] NE NE
Sphingomyelin levels ↑ [30] NE NE NE NE

SphK activation SphK1↑ [94] SphK1↑ [96] SphK1↑ [94] NE NE
SphK1→/SphK2↑ [95]

S1PR activation S1P3↑ [97] S1P3↑ [97] S1P1↑/S1P2→/S1P3↓ [98] NE NE

NE, not examined; ↑, upregulated; ↓, downregulated; →, no change. The reference numbers are in parentheses.
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4.1. Liver

The effects of S1P/S1PR signal modification on the livers of experimental mice are
summarized in Table 2. As observed in patients with NAFLD, hepatic insulin resistance is
usually associated with hepatic steatosis, resulting from excessive incorporation of fatty
acids into the liver and upregulation of de novo lipogenesis. Inhibition of insulin receptor
kinase by protein kinase C activation induced by diacylglycerol and reduced expression of
insulin receptor substrate 2 (IRS2), a signaling molecule downstream of insulin receptor
kinase, could cause hepatic insulin resistance [99]. The paradoxical state of elevated hepatic
de novo lipogenesis in the presence of insulin resistance is known as “selective hepatic
insulin resistance” [100].

Insulin resistance and NAFLD form a vicious cycle by which they exacerbate each
other. NAFLD can be accompanied by inflammation and fibrosis (nonalcoholic steatohep-
atitis, NASH), which may progress irreversibly to cirrhosis and hepatocellular carcinoma.
These pathogeneses, which begin with insulin resistance, have been extensively studied,
and the involvement of SphK, S1P, and S1PRs has been proposed [94,99,101]. The sources
of sphingolipids and ceramides are long-chain saturated fatty acids deposited in the liver;
hence, the amount of ceramide is upregulated in the liver during hepatic steatosis [102].
Ceramide can affect insulin-stimulated Akt activation and subsequent glucose uptake in
the liver and skeletal muscle [103], which is another cause of insulin resistance. In HFD-fed
obese mouse models, reduced C16:0 ceramide by antisense oligonucleotide knockdown
of ceramide synthase 6 (CerS6) improved glucose resistance and insulin sensitivity [104].
S1P, a terminal metabolite of ceramide whose content is increased in the livers of patients
with NAFLD [105], induces insulin resistance in rat hepatocytes [93]. Injecting the S1P2
antagonist JTE-013 daily for seven consecutive days lowered blood glucose levels and
increased phosphorylated Akt levels in the liver fractions of HFD-fed obese mice [106].
Hepatic glucose intolerance and insulin resistance have been observed in hepatocyte-
specific SphK2-knockout (SphK2−/−) mice [107]. Interestingly, the addition of ARN14974
(an inhibitor of acid ceramidase), but not S1P, restored insulin resistance in SphK2-null
Huh7 hepatic cell lines, suggesting that insulin resistance in hepatocyte-specific SphK1−/−

mice is associated with the accumulation of sphingosine rather than decreased S1P pro-
duction [107]. In contrast, the adenoviral overexpression of SphK1 in the liver improved
glucose tolerance and hepatic steatosis in KK/Ay diabetic mice [108].

Additionally, the reduction in hepatic steatosis and improvement in insulin signals in
the livers of HFD-induced obese mice were accompanied by reduced adiposity induced
by adipocyte-specific genetic deletion of Sptlc2 and treatment with its potent inhibitor,
“myriocin” [97]. Systemic genetic deletion or pharmacological inhibition (with a specific
inhibitor “5C”) of SphK1 reduced hepatic steatosis and upregulated Akt activity in the
livers of HFD-induced obese mice [96]. Systemic genetic deletion of S1P3 exacerbated
HFD-induced hepatic steatosis [109]. In contrast, oral administration of JTE-013 (an S1P2
antagonist) and SEW-2871 (an S1P1 agonist) failed to alleviate hepatic steatosis [2]. In
HFD-induced obese mice, the levels of plasma S1P and its carrier, apoM, were upregulated.
Deterioration of insulin resistance was observed in apoM−/− mice, and improved insulin
resistance was observed in apoM-overexpressing mice [110].

Table 2. Effects of modification of the SphK1/S1P/S1PR axis on insulin actions in the liver.

Intervention Applied Mice Glc. Tol. Ins. Res. Steatosis Insulin Action Ref.

CerS6 ASO
knockdown

HFD obese or
ob/ob Improved Improved Improved NE [104]

JTE-013 (S1P2
blocker) HFD NZ obese Improved NE NE

p-Akt↑;GSK-
3b↑; glycogen

synthesis↑
[106]
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Table 2. Cont.

Intervention Applied Mice Glc. Tol. Ins. Res. Steatosis Insulin Action Ref.

Hepatocyte-
specific SphK2−/−

HFD
SphK2−/− Impaired Impaired Impaired

p-Akt↓; hepatic
glucose

production↑
[107]

Ad-SphK1
overexpression HFD KK/Ay Improved NE Improved p-Akt↑;

GSK-3b↑ [108]

Adipocyte-specific
Sptlc2−/− HFD Sptlc2−/− Improved Improved Improved hepatic glucose

production → [97]

Myriocin (Sptlc2
inhibitor) HFD obese Improved Improved Improved NE [97]

SphK1−/− HFD
SphK1−/− Improved Improved Improved p-Akt ↑ [96]

5C (SphK1
inhibitor) HFD obese Improved Improved NE p-Akt ↑ [96]

S1P3
−/− HFD S1P3

−/− Impaired Impaired Impaired NE [109]

JTE-013 or
SEW-2871 HFD obese Improved NE → NE [2]

ApoM−/− HFD obese Impaired Impaired NE p-Akt ↓ [110]

Ad-apoM
overexpression HFD obese Improved Improved NE p-Akt ↑ [110]

Glc. Tol., glucose tolerance; Ins. Res., insulin resistance; CerS6, ceramide synthase 6; ASO, antisense oligonu-
cleotide; GSK, glycogen synthetase kinase; NE, not examined; Ad, adenoviral; ↑, upregulated; ↓, downregulated;
→, no change. The reference numbers are in parentheses.

4.2. Adipose Tissue

Table 3 summarizes the impact of S1P/S1PR signal modification on adipose tissue.
SphK1/2 expression and S1P content were upregulated at the terminal differentiation
stage of 3T3-L1 adipocytes, and the suppression of SphK1 (but not SphK2) attenuated their
differentiation into mature adipocytes [111]. SphK1 mRNA levels were higher in adipose
tissues from ob/ob mice than in those from control mice [96]. Administration of S1P to
3T3-L1 adipocytes attenuated their adipogenic differentiation [112], and S1P inhibited
adipogenic differentiation and enhanced the osteogenic differentiation of mesenchymal
stem cells [113]. These contradictory results suggest that adipocyte differentiation requires
specific amounts of S1P, and excessive S1P levels may inhibit differentiation.

Table 3. Effects of modification of the SphK1/S1P/S1PR axis on insulin actions in the adipose tissue.

Intervention Applied Mice BW FW Glc. Tol. Ins. Res. Size Inflammation Insulin
Action Ref.

SphK1−/− HFD SphK1−/− → ↑ Improved Improved ↓ CLS ↓;
M1/M2 ↓

glucose
uptake↑ [96]

5C (SphK1
inhibitor) HFD obese NE NE Improved Improved NE M1/M2 ↓ p-Akt↑ [96]

S1P2
−/− S1P2

−/− ↓ ↓ → → ↓ M1/M2 → NE [1]

S1P2
−/− HFD S1P2

−/− → ↓ Improved Improved ↓ CLS ↓;
M1/M2 ↓ NE [1]

JTE-013 ob/ob ↓ ↓ Improved Improved ↓ M1/M2 ↓ NE [1,2]

SEW-2871
(S1P1

agonist)
ob/ob ↓ ↓ Improved NE ↓ M1/M2 ↓ NE [2]
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Table 3. Cont.

Intervention Applied Mice BW FW Glc. Tol. Ins. Res. Size Inflammation Insulin
Action Ref.

S1P3
−/− HFD S1P3

−/− → ↓ Impaired Impaired NE CLS ↑;
M1/M2 ↑ NE [109]

FTY720 HFD obese ↓ NE Improved NE NE M1/M2 ↓ NE [114]

FTY720 HFD obese ↓ ↓ NE NE ↓ NE p-Akt↑;
p-AMPK↑ [115]

Adipocyte-
specific

Sptlc2−/−
HFD Sptlc2−/− ↓ ↓ Improved Improved ↓ CLS ↓;

M1/M2 ↓
glucose
uptake↑ [97]

Myeloid-
specific

Sptlc2−/−
HFD Sptlc2−/− → → → → → CLS → NE [97]

Myriocin
(Sptlc2

inhibitor)
HFD obese ↓ ↓ Improved Improved ↓ CLS ↓;

M1/M2 ↓ NE [97]

BW, body weight; FW, fat weight; Glc. Tol., glucose tolerance; Ins. Res., insulin resistance; NE, not examined;
CLS, crown-like structure; M1/M2, M1 macrophage/M2 macrophage polarization; ↑, upregulated; ↓, downregu-
lated; →, no change.

Compared to the corresponding wild-type mice, HFD-fed SphK1−/− mice exhibited
increased adipose tissue weight; smaller adipocyte size; increased expression of adipocyte
markers; and improved glucose tolerance, insulin sensitivity, and adipose tissue inflamma-
tion [96]. Intraperitoneal injection of 5C (an SphK1 inhibitor) improved glucose tolerance,
insulin resistance, and adipose tissue inflammation in HFD-fed mice [96]. Our group has
demonstrated that the application of S1P and JTE-013 downregulates adipogenesis. In
contrast, the application of VPC23019 (an S1P1/3 antagonist) upregulates the adipogenic
differentiation of 3T3-L1 and F442A adipocytes [1]. These results suggest that S1P1 signal-
ing suppresses adipogenic differentiation, whereas S1P2 accelerates it, and S1P2 dominates
the overall functions of S1P. Regarding preadipocyte proliferation, the blockade of S1P1
signaling by VPC-23019 inhibited the proliferation of 3T3-L1 and F442A preadipocytes; in
contrast, the blockade of S1P2 signaling by JTE-013 accelerated it [1]. These findings are
consistent with the idea that S1P1 signals accelerate preadipocyte proliferation, whereas
S1P2 signals inhibit it, and S1P1 governs the overall S1P actions. We further investigated
the effect of S1P2 deletion on adipose tissue and glucose metabolism in S1P2-knockout
(S1P2

−/−) mice [116]. S1P2
−/− mice fed a normal diet had lower body weights and smaller

epididymal adipocytes than those in wild-type mice, while displaying glucose tolerance
and adipocyte marker gene expression similar to wild-type mice [1]. However, after four
weeks of HFD feeding, S1P2

−/− mice exhibited much smaller adipocytes with improved
glucose intolerance/insulin sensitivity, accompanied by reduced crown-like structures and
improved M1/M2 macrophage polarization in adipose tissue sections [1]. Consequently,
we speculate that S1P2 deletion accelerates preadipocyte proliferation and suppresses
adipogenic differentiation, which may induce adipocyte hyperplasia and prevent glucose
intolerance, insulin resistance, and adipose tissue inflammation. Additionally, oral admin-
istration of JTE-013 to ob/ob mice for four weeks reduced body weight and improved
glucose tolerance and insulin sensitivity [1].

Administration of JTE-013 or SEW-2871 for 12 weeks reduced body weight gain and
adipocyte size in both epididymal and inguinal adipose tissues of ob/ob mice [2], and
improved glucose intolerance and inflammation in epididymal adipose tissue (but not
hepatic steatosis); however, all SEW-2871 effects were canceled by co-administration with
VPC-23019 [2]. Consistent with the results in HFD-fed S1P2

−/− mice [1], preventing
adipose tissue inflammation and glucose intolerance using JTE-013 and SEW-2871 was
attributed to reducing adipocyte size rather than weight loss. Moreover, S1P3-knockout
(S1P3

−/−) mice [117] exhibited phenotypes opposite to those of S1P2
−/− mice, that is,
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impaired glucose intolerance, adipose tissue inflammation, and reduced Adipoq mRNA
expression in the adipose tissue [109]. Conversely, the adenoviral overexpression of S1P2
in 3T3-L1 adipocytes inhibited adipogenic differentiation [118]. Therefore, the discrepancy
in the role(s) of S1P2 in adipogenic differentiation may be attributed to differences between
constitutive S1P2 deletion in mice [1] and transient exogenous S1P2 overexpression in cell
lines [118]. FTY720 administration in HFD-fed obese mice caused decreased body weight
gain, improved glucose tolerance, and adipose tissue inflammation [114], and prevented
body weight and fat weight gain [105]. FTY720 reduces adipocyte size, inhibits adipogene-
sis, and promotes lipolysis via unknown mechanisms [115]. However, if FTY720 acts as an
S1P1/3/4/5 agonist in adipocytes, these findings may be consistent with our results.

Ceramide accumulation in VAT appeared to correlate with metabolic disorders in
mice [97]. In HFD-induced obese mice, adipocyte-specific genetic deletion of Sptlc2 or treat-
ment with its inhibitor myriocin reduced the levels of adipose sphingolipids and improved
adipocyte hypertrophy, systemic glucose tolerance, insulin resistance, and adipose tissue
inflammation [97]. Myeloid-specific Sptlc2 deletions exhibited reduced Sptlc2 expression
and myeloid sphingolipid levels. However, they did not affect body or fat weights, glucose
tolerance, insulin sensitivity, or adipose tissue morphology and inflammation; therefore,
macrophage sphingolipids do not contribute to the adipose phenotypes that result from
global inhibition of Sptlc2 [97].

The regulatory role of S1P in inflammation may be due to either its direct effects
on macrophages or its indirect effects on adipocytes; however, previous in vivo studies
have not fully addressed this question. Several attempts to improve metabolic abnor-
malities by regulating adipose tissue inflammation have been unsuccessful, and studies
employing mice lacking each of the S1PRs in macrophage- or adipocyte-specific manners
are anticipated.

4.3. Skeletal Muscle

The effects of S1P/S1PR signal modification in the skeletal muscle, the most abun-
dant tissue, are summarized in Table 4. The roles of sphingolipids in insulin signaling
in the skeletal muscle are simpler than those in the liver and adipose tissue; ceramide
impairs insulin signals in skeletal muscle, but S1P enhances them [94]. Palmitate induces
ceramide generation, thereby preventing insulin-induced Akt activation and glycogen
synthesis [119], whereas S1P enhances basal and insulin-induced glucose uptake via S1P2
in C2C12 myoblasts [120]. Dexamethasone treatment of C2C12 cells induces atrophy ac-
companied by reduced SphK1 phosphorylation (activation) and reduced intracellular S1P
production while maintaining extracellular S1P production and upregulating cell-surface
S1P2 expression, suggesting pathophysiological roles of S1P/S1PR in skeletal muscle [121].
Global transgenic overexpression of SphK1 using the universal CAG promoter in HFD-fed
mice improved insulin resistance in the whole body and skeletal muscle, which was asso-
ciated with decreased intramuscular ceramide accumulation (but not S1P accumulation)
compared to that in their respective wild-type littermates [122]. FTY720 administration
to HFD-fed mice prevented ceramide accumulation in the skeletal muscle and insulin
resistance in the whole body or skeletal muscle without downregulating any S1PR [98];
therefore, the involvement of S1P/S1PR remains unknown. Skeletal muscle secretes IL-6,
which can improve glucose tolerance via several mechanisms [123]. Excessive exogenous
palmitate induces SphK1 and IL-6 mRNA expression via S1P3 in mouse myotubes, but not
in adipocytes [124]. In addition, adipocyte-specific deletion of Sptlc2, systemic deletion of
SphK1, and treatment with 5C improved glucose tolerance and insulin sensitivity in the
skeletal muscle [96,97]. Akt phosphorylation levels in the skeletal muscle were attenuated
in apoM−/− mice compared to those in wild-type mice, suggesting the involvement of
skeletal muscle in systemic glucose intolerance [110]. Compared to the liver and adipose
tissue, our knowledge regarding the roles of the SphK/S1P/S1PR axis in the skeletal muscle
(and pancreatic β-cells) is rather limited.
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Table 4. Effects of modification of the SphK1/S1P/S1PR axis on insulin actions in the skeletal muscle.

Intervention Applied mice Glc. Tol. Ins. Res. Insulin Action Ref.

SphK1 overexpression HFD SphK1 TG Improved Improved Glucose uptake↑ [122]

FTY720 HFD obese Improved NE Glucose uptake↑; p-Akt↑ [98]

Adipocyte-specific
Sptlc2−/− HFD Sptlc2−/− Improved Improved p-Akt↑ [97]

SphK1−/− HFD SphK1−/− Improved Improved p-Akt→ [96]

5C (SphK1 inhibitor) HFD obese Improved Improved p-Akt→ [96]

ApoM−/− HFD obese Impaired Impaired p-Akt↓ [110]

Glc. Tol., glucose tolerance; Ins. Res., insulin resistance; TG, transgenic; NE, not examined; ↑, upregulated;
↓, downregulated; →, no change.

4.4. Pancreatic β-Cells

The effects of S1P/S1PR signal modification on β-cells are summarized in Table 5.
Obesity-induced insulin resistance forces pancreatic β-cells to secrete more insulin, which
is highly stressful to β-cells, and obesity-induced lipotoxicity causes β-cell failure [90].
Although secreted insulin can exert a negative feedback effect on β-cells through insulin
receptors and/or insulin-like growth factor-1 receptors [125], a deficiency in IRS-2 causes
β-cell dysfunction, indicating that the insulin signal is essential for the survival and main-
tenance of β-cells [126]. The exposure of cultured rat primary islet cells to palmitate caused
ceramide accumulation, β-cell apoptosis, and reduced insulin secretion [127]. SphK1 knock-
down in rat insulinoma INS-1 832/13 cells reduced insulin synthesis and secretion, whereas
SphK1 overexpression restored them [128]. Glucose increases the S1P content by activating
SphK2 in mouse insulinoma MIN6 cells and mouse pancreatic islet cells, whereas SphK2
knockdown reduces glucose-stimulated insulin secretion [129]. Furthermore, treating
mice with an SphK inhibitor induces glucose intolerance and decreases plasma insulin
levels [129].

Table 5. Effects of modification of the SphK1/S1P/S1PR axis on insulin actions in pancreatic β-cells.

Intervention Applied Mice BW Glc. Tol. Ins. Res. Ins. Secretion Survival Ref.

SphK1−/− HFD SphK1−/− → Impaired → ↓ ↓ [47]
FTY720 db/db ↑ Improved → ↑ ↑ [130]

S1P2
−/− STZ-induced diabetic NE NE NE ↑ ↑ [131]

Glc. Tol., glucose tolerance; Ins. Res., insulin resistance; STZ, streptozotocin; NE, not examined; ↑, upregulated;
↓, downregulated; →, no change.

HFD-fed SphK1−/− mice exhibited more evident diabetic conditions, including re-
duced plasma insulin levels associated with reduced β-cell mass and increased β-cell
apoptosis, than the respective wild-type mice [47]. These results imply that S1P increases
insulin synthesis and secretion, although the relationship is more complex. Evidence
suggests that intracellular S1P impairs β-cell function and survival, while extracellular
S1P protects β-cells [101]. Oral administration of FTY720 prevents the development of
diabetes by increasing the proliferation of β-cells without affecting insulin sensitivity, which
is mediated by S1P1/3 receptors [130]. Conversely, streptozotocin-induced apoptosis of
β-cells was attenuated in S1P2

−/− mice, implying that S1P2 signaling interferes with β-cell
survival [131].

4.5. S1P in the Circulation

The physiological roles of S1P in circulation are not fully understood. S1P binds stably
to apoM, primarily associated with HDL, or binds unstably to albumin. ApoM-bound
S1P activates S1P1/3 to protect against IgA nephropathy, whereas albumin-bound S1P
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activates S1P2 to exert deteriorating effects [132]. Therefore, the physiological roles of S1P
in circulation may depend on its carrier protein. The APOM polymorphism, rather than
serum apoM levels, appears to be correlated with the risk of T2DM [133]. However, serum
apoM levels were inversely associated with BMI and the insulin resistance index [110].
ApoM−/− mice exhibited deteriorated insulin resistance, whereas apoM-overexpressing
mice showed improvements in insulin resistance, presumably through the activation of
S1P1/3 signaling [110].

5. Concluding Remarks

Several studies have emphasized the regulatory roles of SphK, S1P, and S1PR signaling
in systemic and local insulin sensitivity. Although adipose-tissue-specific deletion of insulin
receptors has no effect on systemic glucose metabolism [91], obesity and the accompanying
adipose tissue growth are the most important etiologies of insulin resistance. The onset of
insulin resistance is linked to several alterations in adipokine secretion, lipotoxicity, and
inflammation of adipose tissue (particularly VAT) accompanied by adipocyte hypertrophy
(Figure 1). Reduced plasma and adipose tissue S1P levels in SphK1−/− mice improved
insulin resistance, which is associated with reducing adipocyte hypertrophy and inflamma-
tion in adipose tissue [96]. Our observations that either S1P1 activation or S1P2 blockage
ameliorated adipocyte hypertrophy, glucose intolerance, and inflammation in the VAT
of obese mice [1,2] were consistent with previous results showing that apoM-carrying
S1P worked through S1P1/3 to improve insulin resistance, whereas albumin-carrying S1P
activated S1P2 to exacerbate it in obese adipocytes (Figure 2) [110,132] and the liver [106].
Hepatic insulin resistance is caused by the accumulation of ceramide and its metabolite,
sphingosine [103,104,107]. The upregulation of ceramide interferes with insulin action,
whereas S1P improves insulin resistance in C2C12 myoblasts [120]. However, the function
of S1P signaling in regulating insulin sensitivity of skeletal muscles in vivo has not yet been
thoroughly explained. As for pancreatic β-cells, the functions of the SphK/S1P/S1PR axis
in insulin secretion and their survival are points of issue. Several studies have supported
the idea that either the activation of S1P1/3 or the blockade of S1P2 is beneficial to adipose
tissue, liver, and pancreatic β-cells in obese diabetic animals.

Several problems remain before the SphK/S1P/S1PR axis clinical application can
begin. Because S1P exerts pleiotropic actions in any type of cell throughout the body, it
is conceivable that S1P agonists or antagonists demonstrate unexpected actions beyond
the expected actions on target targets. S1P1/3 agonists may affect carcinogenesis. In
this regard, approved FTY720, which acts on ceramide synthesis and S1P1,3,4,5 as either
agonist or antagonist depending on cell types is far from ideal, even though they effectively
improve metabolic abnormalities induced by obesity in adipose tissue, skeletal muscles,
and pancreatic β-cells with rather limited side effects. According to our study, a new class
of S1P1-specific agonists, SEW-2871, and an S1P2 antagonist, JTE-013, could be used as
therapeutic options for obese diabetes patients [1,2]. Because our studies mainly examined
the effects of SEW-2871 and JTE-013 on adipocytes, their influences on the liver, skeletal
muscle, and pancreatic β-cells should be carefully investigated.

In conclusion, the SphK/S1P/S1PR axis, which drastically regulates adipocyte func-
tion and glucose homeostasis, is a potential target for next-generation drugs against obesity
and associated metabolic disorders.
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