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We are pleased to present our Editorial to this Special Issue on “Adipokines, Myokines,
and Physical Exercise in Health and Disease 2.0” published by IJMS. The intricate interplay
between adipose tissue, skeletal muscle, and exercise has become a fascinating research
area with profound implications for human physiology and the treatment of various
diseases [1,2]. Participation in physical activity and regular exercise play an essential role
in the prevention and management of chronic diseases such as cardiovascular disease,
obesity, type 2 diabetes, cognitive impairment, and various forms of cancer. These activities
improve the immune system, extend the health system, promote longevity, and foster
resilience [3].

By examining the roles of adipokines and myokines, we recognised the evolving impor-
tance of these molecular messengers. Skeletal muscles, which make up approximately 40%
of the body mass, have more than a simple mechanical power. As Legård and Pedersen [4]
suggested, it is one of the largest endocrine organs alongside white adipose tissue [5,6].
Our understanding of the muscle as an endocrine organ has expanded with the discovery
of myokines that exert paracrine and endocrine effects, including proteins, miRNA, and
exosomes [7]. Skeletal muscles secrete numerous myokines, including myostatin, IL-4, IL-6,
IL-7, IL-15, myonectin, follistatin-like 1, leukemia inhibitory factor, and irisin [1,8]. These
myokines act locally in the muscle and regulate physiological processes in other tissues.
The release of myokines from contracting muscle contributes to the health-promoting
effects of physical activity, protecting against low-grade inflammatory diseases, such as
type 2 diabetes, insulin resistance, and metabolic syndrome [8].

Obesity, characterised by an excessive accumulation of adipose tissue, is an increasing
societal concern with detrimental health implications. Adipose tissue, a complex metabolic
organ comprising brown adipose tissue (BAT) and white adipose tissue (WAT), plays a
crucial role in energy homeostasis [9]. Adipose tissue is more than just a fat store and a
place of lipid metabolism; it functions as a dynamic endocrine organ. It produces a range
of bioactive substances, including adipokines, which are key in controlling the overall
metabolism [10–12].

Dysregulation associated with obesity precipitates a state of chronic low-grade inflam-
mation and alters adipokine production, increasing the risk of metabolic and cardiovascular
diseases [13,14], as well as certain malignancies [15].

The increasing prevalence of lifestyle-related diseases underscores the potential sig-
nificance of crosstalk between adipose tissue and skeletal muscle, a dialogue that may be
pivotal for understanding and combating these health conditions.

In this Special Issue, we delve deeper into the intricate world of adipokines and
myokines and their interactions with physical exercise. Our goal was to bridge the gap
between the scientific understanding of these molecular messengers and their practical
implications for health and disease management. The articles in this issue provide a
comprehensive overview of recent advances and developments, highlighting the promising
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use of adipokines and myokines as therapeutic targets. The articles presented in this Special
Issue shed light on the molecular intricacies of exercise from various perspectives.

An Overview of Published Articles

The role of the mitochondrially derived MOTS-c peptide in the regulation of nuclear
responses during exercise-induced stress was investigated by Domin et al. A positive
correlation was found between MOTS-c levels and lower body muscle strength, suggesting
that higher MOTS-c levels may enhance explosive strength. MOTS-c was also associated
with total muscle mass and BMI, but not with maximal oxygen uptake (VO2 max), indi-
cating that it may not directly affect muscle endurance. Previous studies revealed that
MOTS-c can act as a mitochondria-derived peptide (MDP) and a potential myokine, which
is released in response to exercise and is involved in energy metabolism [16]. MOTS-c may
facilitate communication between muscles and other organs, contributing to energy balance
during exercise; however, there is a need for further research into the role of MOTS-c in
exercise physiology.

Cathelicidin antimicrobial peptide (CAMP), a potent antimicrobial peptide produced
by adipocytes, is a cornerstone of the innate immune defence system within subcuta-
neous AT, specifically targeting Gram-positive bacterial pathogens [17]. The study by
Höpfinger et al. adds complexity by examining the regulation of cathelicidin antimicro-
bial peptide (CAMP) and its functions as an adipokine. A study of 86 metabolically
healthy participants examined postprandial variations, providing insight into the role of
CAMPs in defence against infection and innate immunity in adipose tissue. Circulating
CAMP levels increased shortly after oral glucose ingestion. Moreover, the differences
in glucose-related systemic CAMP regulation were observed between men and females,
as well as between normal-weight and overweight individuals, which indicated a link
between glucose metabolism and the immune-metabolic factor CAMP, thus helping to
understand metabolic dysregulation and immune modulation in adipose tissue. However,
the question concerning the specific effects on CAMP regulation remains, which warrants
further investigation.

The role of apelin as a cardiokine/myokine, a signaling molecule, in the regulation of
cardiac and skeletal muscle homeostasis during peak athletic performance has not been
fully explained [18]. Ligetvári et al. explored the role of apelin as a cardiokine/myokine,
a signaling molecule, in regulating cardiac and skeletal muscle homeostasis during peak
athletic performance. The effect of maximal cardiorespiratory exercise testing on the plasma
concentrations of apelin-13 and apelin-36 in professional soccer players was investigated.
The results showed that apelin-13 levels increased transiently after exercise, with significant
inter-individual variability. Baseline apelin-13 levels were inversely correlated with exercise-
induced changes and positively correlated with indices of physical performance. Apelin-13
may be a determinant of peak athletic performance and is considered an index of physical
effort, offering novel insights into the role of apelin in exercise physiology. This implies the
need for further research in the field of sports medicine.

Sarcopenia is known as a disease characterised by a decrease in muscle mass, func-
tionality, and strength loss associated with aging; however, its complex relationship with
obesity and metabolic consequences in the context of exercise in mitigating these effects
should be examined [19,20]. Recent developments in this field, including the functional as-
sessment of organokines in sarcopenia, indicated an important role of these molecules in the
pathophysiology and metabolic sequelae of sarcopenia [20]. Minniti et al. comprehensively
studied sarcopenia, a disease characterised by muscle mass, functionality, and strength loss
associated with aging. The authors highlighted the complex relationship between sarcope-
nia, obesity, and metabolic consequences, emphasising the role of exercise in mitigating
these effects. They discussed the function of organokines in sarcopenia and explored how
these molecules contribute to the disease’s pathophysiology and metabolic sequelae. The
authors concluded by emphasising the significance of understanding the physiology of
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organokines in unravelling the molecular aspects of sarcopenia and highlighting the role of
physical exercise as a non-invasive intervention for sarcopenic obesity.

Nintou et al. undertook a unique approach by analysing the in vitro protocols used
for the electrical pulse stimulation of cultured cells to mimic in vivo exercise. The research
conducted a systematic review and meta-analysis of studies using EPS to mimic exercise
in cell cultures, contributing to our understanding of the potential of in vitro exercise as
a tool for discovering mechanistic effects. The in vitro protocols used for the electrical
pulse stimulation (EPS) of cultured cells that mimic in vivo exercise are a unique approach
to analyse the mechanistic effects of exercise-induced health benefits [21]. A total of
985 records were screened, resulting in 41 eligible studies in which an in vitro exercise
showed considerable heterogeneity in terms of duration, type (acute or chronic), and
intensity (aerobic, resistance, and endurance). Key biological parameters related to exercise,
including AMPK, Akt, IL-6, PGC1a, GLUT4, and glucose uptake, were identified. For
example, in vitro exercise using EPS follows the exercise motifs in humans, demonstrating
a significant impact on key biological parameters related to exercise. Further research is
recommended to achieve a consensus and improve the translation of these findings to
human studies. Understanding the molecular responses in cell cultures can help unravel the
effects of exercise, which could lead to improved applications in health and disease research.
The beneficial effects of exercise may depend on its intensity [22], and Wojcik-Grzybek et al.
documented that forced exercise using treadmill running exacerbated experimental colitis
in mice fed a high-fat diet to induce obesity. Interestingly, the exogenous administration
of intestinal alkaline phosphatase (IAP) attenuated experimental colitis in obese mice
subjected to forced treadmill exercise. IAP administration resulted in a significant reduction
in pro-inflammatory biomarkers, attenuation of oxidative stress markers, improved gene
expression of intestinal barrier tight junction proteins, and modified intestinal microbiota. A
particularly noteworthy observation was that IAP treatment in obese mice with colitis was
manifested by a significant reduction in plasma leptin levels, suggesting that IAP may not
only attenuate inflammation but also potentially contribute to weight control in overweight
patients who want to lose weight but suffer from lower gastrointestinal diseases, such as
IBD, which may worsen because of intense physical exercise. Exercise intensity plays a
crucial role in attaining human health benefits; notably, very low-volume interval training,
as opposed to high-intensity exercise training, improved non-alcoholic fatty liver disease
and overall cardiometabolic health in patients with obesity and metabolic syndrome [18].
Thus, IAP may be an alternative to pharmacological agents as a therapeutic option for the
treatment of IBD, especially in obese patients who would like to lose weight urgently. IAP
treatment can also improve the quality of life of these patients by reducing the severity of
colitis and mitigating the negative effects of excessive exercise. Further research is needed
to fully elucidate the mechanisms underlying the beneficial effects of IAP and to confirm
the IAP efficacy in ameliorating colitis in the clinical setting. Nevertheless, the investigation
of IAP as a new therapeutic approach for the treatment of IBD deserves attention.

We sincerely appreciate the authors’ contributions and are confident that this Special
Issue will spark further scientific interaction and researcher dialogue. Taken together,
these collective advances improve our understanding of the intricate interactions between
adipokines and myokines concerning health and disease. Elucidating the signaling mecha-
nisms of these substances holds great potential for the development of novel biomarkers
and targeted therapies for the treatment of common diseases, such as obesity, diabetes,
and sarcopenia.

Future research should prioritize examining the impact of intervention on the gut
microbiome and its role in regulating the myokine–adipokine profile. To successfully
translate these findings, it is necessary to bridge the gap between animal models and
human clinical settings. As highlighted in this issue, much more remains to be understood
regarding adipokines, myokines, and their complex interactions affecting physiology and
well-being. We hope that the articles published in this Special Issue will further illuminate
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this captivating area at the intersection of metabolism, immunology, microbiology, and
exercise science.
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