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Abstract: To explore the processes of epileptogenesis/ictogenesis, this study determined the age-
dependent development of the functional abnormalities in astroglial transmission associated with
pannexin1-hemichannel using a genetic rat model of autosomal dominant sleep-related hypermotor
epilepsy (ADSHE) named ‘S286L-TG’. Pannexin1 expression in the plasma membrane of primary
cultured cortical astrocytes and the orbitofrontal cortex (OFC), which is an ADSHE focus region,
were determined using capillary immunoblotting. Astroglial D-serine releases induced by artificial
high-frequency oscillation (HFO)-evoked stimulation, the removal of extracellular Ca2+, and the P2X7
receptor agonist (BzATP) were determined using ultra-high performance liquid chromatography
(UHPLC). The expressions of pannexin1 in the plasma membrane fraction of the OFC in S286L-
TG at four weeks old were almost equivalent when compared to the wild type. The pannexin1
expression in the OFC of the wild type non-statistically decreased age-dependently, whereas that
in S286L-TG significantly increased age-dependently, resulting in relatively increasing pannexin1
expression from the 7- (at the onset of interictal discharge) and 10-week-old (after the ADSHE seizure
onset) S286L-TG compared to the wild type. However, no functional abnormalities of astroglial
pannexin1 expression or D-serine release through the pannexin1-hemichannels from the cultured
astrocytes of S286L-TG could be detected. Acutely HFO-evoked stimulation, such as physiological
ripple burst (200 Hz) and epileptogenic fast ripple burst (500 Hz), frequency-dependently increased
both pannexin1 expression in the astroglial plasma membrane and astroglial D-serine release. Neither
the selective inhibitors of pannexin1-hemichannel (10PANX) nor connexin43-hemichannel (Gap19)
affected astroglial D-serine release during the resting stage, whereas HFO-evoked D-serine release
was suppressed by both inhibitors. The inhibitory effect of 10PANX on the ripple burst-evoked
D-serine release was more predominant than that of Gap19, whereas fast ripple burst-evoked D-
serine release was predominantly suppressed by Gap19 rather than 10PANX. Astroglial D-serine
release induced by acute exposure to BzATP was suppressed by 10PANX but not by Gap19. These
results suggest that physiological ripple burst during the sleep spindle plays important roles in the
organization of some components of cognition in healthy individuals, but conversely, it contributes to
the initial development of epileptogenesis/ictogenesis in individuals who have ADSHE vulnerability
via activation of the astroglial excitatory transmission associated with pannexin1-hemichannels.
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1. Introduction

Recently, functional abnormalities in tripartite synaptic transmission or astroglial
excitatory transmission have been considered to play important roles in the development of
epileptogenesis and/or ictogenesis [1–8]. Functional abnormalities of astroglial hemichan-
nels containing connexin43 [9–13] have been demonstrated in a validated genetic rat model
of autosomal dominant sleep-related hypermotor epilepsy (ADSHE), named “S286L-TG”;
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it bears the missense S286L-mutant rat Chrna4, which corresponds to the S284L-mutant
human CHRNA4 of patients with ADSHE [8,14]. It is critical evidence that loss of function
of the S284L-mutant α4 subunit of nicotinic acetylcholine receptors (α4-nAChR) plays a
primary role in the initial stages of the development of ADSHE in epileptogenesis [8,14];
however, α4-nAChR selectively expresses in neurons but not in astrocytes [14]. These
discrepancies between the expression of mutant α4-nAChR in neurons and the observed
major functional abnormalities in astrocytes suggest that the epileptogenesis/ictogenesis of
ADSHE is probably composed of complexes among the various age-dependent functional
abnormalities [8,11,12,14].

Some of the mechanisms of epileptogenesis/ictogenesis in S286L-TG that have been
revealed so far are as follows. Initially, the loss of function of mutant nAChR leads to
GABAergic disinhibition in the thalamus, resulting in activation of glutamatergic neurons
from the thalamus to various projecting regions [9,10]. In particular, under the GABAergic
disinhibition, thalamic glutamatergic neurons also propagate excitabilities with physiologi-
cal sleep spindle bursts to the cortex and basal ganglia [9,10]. Accumulating propagated
excitabilities accelerate tripartite synaptic transmission in the frontal cortex and basal gan-
glia through the activation of astroglial connexin43-hemichannels [12,13], resulting in the
enhancement of the intracellular signaling of both extracellular signal-regulated kinase
(Erk) and protein kinase B (Akt) [8,11,12]. Combinations of enhanced electrophysiological
excitability and activated signaling of Erk/Akt accelerate the trafficking of connexin43 to
the plasma membrane [8–10,12,13]. Finally, the synergic interactions between hyperacti-
vated astroglial hemichannels, GABAergic disinhibition, enhanced signaling of Erk/Akt,
and sleep-related high-frequency oscillations (HFOs) during sleep spindle bursts (ripple
bursts) lead to the generation of epileptogenic fast ripple bursts [11,12]. These findings
suggest that functional abnormalities in neurotransmission and tripartite synaptic transmis-
sion play fundamental roles in the development of epileptogenesis/ictogenesis in ADSHE
patients with S284L-mutation or S286L-TG [8]. Considering the recently reported findings
regarding the functional abnormalities in tripartite synaptic transmission for development
processes in the epileptogenesis/ictogenesis of S286L-TG and exploring the possibility that
functional abnormalities of pannexin1 are also involved in the developmental processes in
the epileptogenesis/ictogenesis of S286L-TG can provide the basis for understanding the
pathomechanisms of not only ADSHE but also epilepsy.

Pannexin1 and connexin43 do not share homologies in their peptide sequences,
whereas connexin43 and pannexin1 are assembled in hexamers to form connexon and
pannexon in the plasma membrane, respectively [15–17]. The topologies and structures
between connexon and pannexon in proteins comprise a similar group of transmembrane
pores, which are permeable to ions, second messengers, and several signaling mediators
up to 1.5 kDa [4,5,16–18]. Therefore, both connexon and pannexon serve as routes of ionic
and large molecular interchange between the cytoplasm and the extracellular compart-
ment [16,17]; however, connexon also forms the pore for the gap junction between the
cytoplasm of two adjacent cells, but pannexon is considered to be unable to constitute gap
junctions [19–21]. Furthermore, during the resting stage, connexin43-hemichannels exhibit
low opening probability during the resting stage, whereas pannexin1-hemichannel can
open due to its lower negative threshold potentials [22,23]. Both connexin43-hemichannels
and pannexin1-hemichannels are activated by depolarization, but pannexin1-hemichannels
can reach to maximum currents with faster kinetics [22,24]. Furthermore, the gating prop-
erties of connexin43-hemichannels are regulated by extracellular Ca2+ dependency (the
physiological range of the extracellular Ca2+ level inhibits connexin43-hemichannel opening
probability); however, the pannexin1-hemichannel opening is independent of the extra-
cellular Ca2+ level, but it is activated by increasing the intracellular Ca2+ level [23,25–28].
Additionally, sustained/repetitive exposure to adenosine triphosphate (ATP) leads to the
formation of functional complexes between the P2X7 receptor (P2X7R) and the pannexin1-
hemichannels, resulting in the transformation of the features of P2X7R from cation channels
to non-selective channels permeable to large molecules [29–31].
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These functional features of pannexin1-hemichannels can provide a candidate hypoth-
esis regarding the pathomechanisms of ADSHE in S286L-TG. The activation of pannexin1-
hemichannels induced by HFOs may make an earlier and more sensitive contribution to
the development of epileptogenesis in S286L-TG compared to connexin 43 hemichannels,
since pannexin1-hemichannels are more sensitive to depolarization and are independent of
extracellular Ca2+ compared to connexin43-hemichannels. In other words, the functional
abnormalities of pannexin1-hemichannels probably play fundamental roles in the develop-
ment of the epileptogenesis/ictogenesis of ADSHE in S286L-TG. Based on our hypothesis,
therefore, we determined the age-dependent fluctuation of pannexin1 expression in the
plasma membrane and development of functional abnormalities associated with astroglial
pannexin1-hemichannels in S286L-TG.

2. Results
2.1. Age-Dependent Expression of Pannexin1 in the Plasma Membrane in Orbitofrontal Cortex
(OFC) of Wild Type and S286L-TG

The expressions of connexin43 in the wild type and in S286L-TG at 4 weeks of age
(before the onset of interictal discharge [8,14]) are almost equal, but at 7 weeks of age
(after the onset of interictal discharge) or 10 weeks of age (after the onset of ADSHE
seizure), those in S286L-TG increased compared to the wild type [11,12]. Therefore, the
age-dependent expressions of pannexin1 in the OFC (an ADSHE focus region) of the wild
type and S286L-TG were determined using capillary immunoblotting.

The expression of pannexin1 in the OFC of the wild type non-significantly and age-
dependently decreased, whereas that of S286L-TG increased age-dependently from 4 to
10 weeks of age (Figure 1). In particular, the pannexin1 expressions at 4 weeks of age in
the wild type and in S286L-TG were almost equal, but at 7 and 10 weeks of age, those of
S286L-TG increased compared to the wild type (Figure 1).
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Figure 1. Age-dependent fluctuations of pannexin1 expression in the plasma membrane in OFC of 

wild type and S286L-TG. Panel A indicates expressions of pannexin1 in the plasma mem-brane 

Figure 1. Age-dependent fluctuations of pannexin1 expression in the plasma membrane in OFC of
wild type and S286L-TG. Panel (A) indicates expressions of pannexin1 in the plasma mem-brane frac-
tion of OFC of wild type (brown columns) and S286L-TG (green columns) at 4, 7, and 10 weeks of age,
respectively. Ordinates indicate the mean ± SD (n = 6) of relative expression of pannexin1 per GAPDH,
and abscissas indicate ages (weeks). ** p < 0.01, relative to pannexin1 expression at 4 weeks of age, @@
p < 0.01, relative to the wild type of the same age using two-way ANOVA with Scheffe’s post hoc test.
F value was [Fage(2,30) = 0.7 (p > 0.1), Fgenotype(1,30) = 30.7 (p < 0.01), Fage*genotype(2,30) = 11.0
(p < 0.01)]. Panel (B) indicates the pseudo-gel images of pannexin1 and GAPDH using
capillary immunoblotting.
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In S286L-TG, the onset of interictal discharges was from 6 to 8 weeks of age, and
ADSHE seizures were observed after 8 weeks of age [8,14]. Considering the phenotypic
features of S286L-TG, these results suggested that pannexin1 was a candidate pathological
molecule associated with epileptogenesis and/or ictogenesis in S286L-TG, since increasing
pannexin1 expression in the OFC of S286L-TG was synchronized with the epileptic events,
the onset of interictal discharge (from 6 to 8 weeks of age), and ADSHE seizure (after
8 weeks of age).

2.2. Expression of Pannexin1 on the Astroglial Plasma Membrane in Wild Type and S286L-TG

The expressions of connexin43 in the astroglial plasma membrane in the wild type
and S286L-TG have been reported to be almost equal [8,12]. Therefore, the expressions of
pannexin1 in the plasma membrane fraction of the primary cultured cortical astrocytes of
the wild type and S286L-TG were also determined using capillary immunoblotting. The
basal expressions of pannexin1 in the plasma membrane fraction in the cultured astrocytes
from the wild type and S286L-TG were also almost equal (Figure 2).
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Figure 2. Astroglial expression in the plasma membrane evoked by ripple burst and fast ripple
burst stimulations in wild type and S286L-TG. Panel (A) indicates expression of pannexin1 in the
astroglial plasma membrane fraction. Ordinates indicate the mean ± SD (n = 6) of relative expression
of pannexin1 per GAPDH. Gray and green bars indicate pannexin1 expression in astrocytes of wild
type and S286L-TG after chronic fast ripple-evoked stimulation, respectively. * p < 0.05, ** p < 0.01
using two-way ANOVA with Scheffe’s post hoc test. F value was [Fgenotype(1,20) = 16.6 (p < 0.01),
Fage(1,20) = 2.0 (p > 0.1), Fgenotype*age(1,20) = 5.4 (p < 0.05)]. Panel (B) indicates the pseudo-gel images
of P2X7R and GAPDH, using capillary immunoblotting.

Chronic exposure (for 7 days) to HFO-evoked stimulations, such as physiological
ripple burst [32–34] (10 stimuli at 200 Hz and 10 bursts (50% duty cycle) at burst intervals
of 100 msec/sec) [11] and epileptogenic fast ripple burst [35–37] (10 stimuli at 500 Hz and
10 bursts (50% duty cycle) at burst intervals of 40 msec/sec) [11] frequency-dependently
increased the expression of connexin43 in the astroglial plasma membrane via activation of
its trafficking to the plasma membrane induced by the signaling of Erk and Akt [11].

Therefore, the effects of chronic (for 7 days) ripple burst- and fast ripple burst-evoked
stimulations in the expression of pannexin1 in the astroglial plasma membrane of the wild
type and S286L-TG were also determined using capillary immunoblotting. The expression
of pannexin1 in the astroglial plasma membrane of both the wild type and S286L-TG also
increased frequency-dependently, since the increasing pannexin1 expression evoked by fast
ripple burst was larger than those evoked by ripple burst-evoked stimulation (Figure 2).
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These results indicate that astroglial pannexin1 expression is possibly increased by
chronic exposure to hyperexcitability. Therefore, astroglial pannexin1 is a candidate target
molecule for the ADSHE epileptogenesis/ictogenesis of S286L-TG, since the astroglial pan-
nexin1 expression in the plasma membrane was increased by HFO frequency-dependently
and was similar to that of connexin43 [11].

2.3. Astroglial Transmission Associated with HFOs
2.3.1. Effects of Acute HFO-Evoked Stimulations on D-Serine Releases from Cultured
Astrocytes between Wild Type and S286L-TG

In the above study, the abnormalities of the pannexin1 expression in the astrocytes of
S286L-TG could not be detected when compared to the wild type. Therefore, consequently,
to explore the functional abnormalities in the astroglial transmission in S286L-TG, the
release of D-serine, a major gliotransmitter, from cultured astrocytes of the wild type and
S286L-TG was determined. The basal astroglial release of D-serine was almost equal in the
wild type and S286L-TG (Figure 3).
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Figure 3. Acutely artificial high-frequency oscillation burst (HFO)-evoked releases of D-serine from
cultured astrocytes of wild type and S286L-TG. Histogram represents the effects of HFO-evoked
stimulation (ripple burst and fast ripple burst) on D-serine releases from cultured astrocytes of wild
type (blue) and S286L-TG (red). Ordinates indicate the mean ± SD (n = 6) of extracellular D-serine
level (µM) during the ripple burst- and fast ripple burst-evoked stimulation. * p < 0.05, ** p < 0.01
relative to control (basal release: non-stimulation) using two-way analysis of variance (ANOVA)
with Scheffe’s post hoc test. F value was [FHFO(2,30) = 51.0 (p < 0.01), Fgenotype(1,30) = 0.7 (p > 0.1),
FHFO*genotype(2,30) = 0.2 (p > 0.1)].

It has been already revealed that the astroglial release of L-glutamate was frequency-
dependently increased by artificial HFO-evoked stimulation [11]. Based on the previous
findings, the D-serine releases induced by HFO-evoked stimulation from cultured astro-
cytes in the wild type and S286L-TG were also determined. As with L-glutamate, any
differences in the D-serine release from cultured astrocytes between the wild type and
S286L-TG induced by acute HFO-evoked stimulations, including ripple burst- and fast
ripple-evoked stimulations [11], could not be detected.
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These results suggest that the astrocytes in S286L-TG possibly have no functional
abnormalities in the astroglial transmissions directly induced by genetic abnormalities
in Chrna4, since the differences in both the pannexin1 expression and the HFO-evoked
D-serine release could not be detected. Thus, to clarify, the mechanisms underlying the
increasing pannexin1 expression and enhancing the tripartite synaptic transmission in the
OFC were investigated using cultured astrocytes of the wild type.

2.3.2. Effects of Extracellular Ca2+ Removal on Astroglial HFO-Evoked D-Serine Release

It has been demonstrated that pannexin1 and connexin43 form unopposed func-
tional hemichannels in astrocytes [38–42]. Astroglial gliotransmitter release through
connexin43-hemichannels was enhanced by decreasing the extracellular Ca2+ level, whereas
that through pannexin1-hemichannels was probably independent of the extracellular
Ca2+ level [23,27,28]. Exocytotic transmitter release is dependent on the extracellular
Ca2+ level [43]. Therefore, the functional features of gliotransmitter release through the
connexin43-hemichannels and pannexin1-hemichannels are quite different from those of
exocytotic transmitter release. Based on these findings, to explore the mechanisms of
HFO-evoked astroglial D-serine release, the effects of the removal of the extracellular Ca2+

level on HFO-evoked astroglial D-serine release were determined.
Incubation in a Ca2+-free artificial cerebrospinal fluid (FC-ACSF) enhanced HFO-

evoked astroglial D-serine release without affecting basal release, compared to incubation in
normal artificial cerebrospinal fluid (ACSF) (Figure 4). Additionally, the stimulatory effects
of the removal of the extracellular Ca2+ level were enhanced by HFO-evoked stimulations
frequency-dependently (Figure 4).
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Figure 4. Effects of removal extracellular Ca2+ on astroglial HFO-evoked D-serine release. Histogram
represents the HFO-evoked astroglial D-serine release from cultured astrocytes of wild type incubated
in normal artificial cerebrospinal fluid (ACSF: blue) and Ca2+-free artificial cerebrospinal fluid (FC-
ACSF: red). Ordinates indicate the mean ± SD (n = 6) of extracellular D-serine level (µM) during the
ripple burst- and fast ripple burst-evoked stimulation. ** p < 0.01 relative to control (basal release:
non-stimulation), @ p < 0.05, @@ p < 0.01 relative to ACSF using multivariate analysis of variance
(MANOVA) with Scheffe’s post hoc test. F value was [FHFO(2,20) = 314.8 (p < 0.01), FACSF(1,10) = 9.4
(p < 0.05), FHFO*ACSF(2,20) = 15.0 (p < 0.01)].
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Although the energization amounts of the ripple-evoked and fast ripple-evoked stim-
ulations were set to be equivalent, the fast ripple-evoked stimulation predominantly in-
creased astroglial D-serine release compared to ripple-evoked stimulation. Therefore,
astroglial D-serine release was dependent on the decreasing extracellular Ca2+ level and
the frequency of the depolarizations.

2.3.3. Effects of Selective Inhibitors of Connexin43 and Pannexin1 on HFO-Evoked
Astroglial D-Serine Release

To identify the fundamental molecules underlying increased astroglial D-serine re-
lease induced by HFO-evoked stimulation and the removal of extracellular Ca2+, the
effects of the selective inhibitors of connexin43, the N-terminal transactivator of transcrip-
tion Gap19 (Gap19) [44], and pannexin1, 10PANX [31,45], on astroglial D-serine release
were determined.

According to our speculation, both 20 µM Gap19 and 100 µM 10PANX suppressed
HFO-evoked D-serine release (Figure 5). The inhibitory effects of 10PANX on ripple
burst-evoked D-serine release incubated in ACSF were predominant compared to Gap19;
however, fast ripple-evoked stimulation in either ACSF or FC-ACSF was suppressed by
Gap19 predominantly rather than by 10PANX (Figure 5). The inhibitory effects of Gap19
and 10PANX on ripple-evoked D-serine release in FC-ACSF were almost equal (Figure 5).
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Figure 5. Effects of Gap19 and 10PANX on HFO-evoked astroglial D-serine release. Panel A indicates
the effects of inhibitors of connexin43 (Gap19) and pannexin1 (10PANX) on ripple burst-evoked
astroglial D-serine releases in ACSF and FS-ACSF. Panel B indicates the effects of Gap19 and 10PANX
on fast ripple burst-evoked astroglial D-serine releases in ACSF and FS-ACSF. Ordinates indicate
the mean ± SD (n = 6) of extracellular D-serine level (µM) during the ripple burst- and fast ripple
burst-evoked stimulation. * p < 0.05, ** p < 0.01 relative to control, @ p < 0.05 relative to Gap19, using
MANOVA with Scheffe’s post hoc test. F values in effects of ripple-evoked stimulation in ACSF and
FC-ACSF on D-serine release from cultured astrocytes (in panel (A)) were [F(2,10) = 29.4 (p < 0.01)]
and [F(2,10) = 26.4 (p < 0.01)] using MANOVA, respectively. F values in effects of fast ripple-evoked
stimulation in ACSF and FC-ACSF on D-serine release from cultured astrocytes (in panel (B)) were
[F(1.0,5.0) = 135.6 (p < 0.01)] and [F(2,10) = 77.0 (p < 0.01)] using MANOVA, respectively.

These results suggest that the gating properties of the connexin43-hemichannels
are more sensitive to the decreasing extracellular Ca2+ level compared to the pannexin1-
hemichannels [23,25–28], whereas the sensitivity to membrane depolarization of the pannexin1-
hemichannels is shown to be dominant compared to the connexin43-hemichannels [22,24,44].
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2.3.4. Effects of Hemichannel Inhibitors on HFO-Evoked Astroglial D-Serine Release

It has been established that probenecid and carbenoxolone are non-peptide hemichan-
nel inhibitors [2,45–47]. Probenecid is a relatively selective pannexin1-hemichannel in-
hibitor [46,48], whereas carbenoxolone is a non-selective inhibitor for the pannexin1-
hemichannel, connexin43-hemichannel, gap junctions, and other channels [12,49–54]. To
identify the fundamental molecules underlying increased astroglial D-serine release in-
duced by HFO-evoked stimulation and the removal of extracellular Ca2+, the concentration-
dependent effects of probenecid and carbenoxolone on astroglial D-serine release were
also determined.

Both probenecid and carbenoxolone concentration-dependently suppressed HFO-
evoked astroglial D-serine release (Figure 6). In particular, 100 µM carbenoxolone abolished
the enhanced ripple-evoked and fast ripple-evoked D-serine releases induced by the re-
moval of extracellular Ca2+; however, probenecid did not affect the stimulatory effects of
removal of extracellular Ca2+ on HFO-evoked D-serine releases (Figure 6). These results
suggest that decreasing extracellular Ca2+ activates the connexin43-hemichannel but not
the pannexin1-hemichannels.
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Figure 6. Concentration-dependent effects of probenecid and carbenoxolone on HFO-evoked as-
troglial D-serine release. Panels (A,C) indicate the concentration-dependent effects of probenecid
(from 100 to 1000 µM) on ripple-evoked and fast ripple-evoked astroglial D-serine releases in ACSF
(opened circles) and FC-ACSF (blue circles), respectively. Panels (B,D) indicate the concentration-
dependent effects of carbenoxolone (from 1 to 100 µM) on ripple-evoked and fast ripple-evoked
astroglial D-serine releases in ACSF (opened circles) and FC-ACSF (blue circles), respectively. Or-
dinates indicate the mean ± SD (n = 6) of extracellular D-serine level (µM) during the ripple burst-
and fast ripple burst-evoked stimulation. Abscissas indicate concentration of probenecid and car-
benoxolone (µM). ** p < 0.01 relative to control (0 µM), @ p < 0.05, @@ p < 0.01 relative to ACSF, using
MANOVA with Scheffe’s post hoc test. F values in effects of probenecid on D-serine release in panels
(A,C) were [Fprobenecid(3,30) = 21.1 (p < 0.01), FACSF(1,10) = 10.9 (p < 0.01), Fprobenecid*ACSF(3,30) = 0.3
(p > 0.1)] and [Fprobenecid(3,30) = 49.5 (p < 0.01), FACSF(1,10) = 27.2 (p < 0.01), Fprobenecid*ACSF(3,30) = 0.3
(p > 0.1)], respectively. F values in effects of carbenoxolone on D-serine release in
panels (B,D) were [Fcarbenoxolone(3,30) = 71.7 (p < 0.01), FACSF(1,10) = 2.1 (p < 0.01),
Fcarbenoxolone*ACSF(3,30) = 21.6 (p < 0.01)] and [Fcarbenoxolone(3,30) = 338.9 (p < 0.01), FACSF(1,10) = 7.5
(p < 0.05), Fcarbenoxolone*ACSF(3,30) = 25.5 (p < 0.01)], respectively.

2.4. Effects of Inhibitors of Connexin43 and Pannexin1 on Astroglial D-Serine Release Induced by
P2X7R Activation

It is well known that the activation of P2X7R enhances astroglial gliotransmitter release
via the enhanced opening of the P2X7R and pannexin1-hemichannels [31,55]. P2X7R was
co-immunoprecipitated with pannexin1 as part of the P2X7R/pannexin1 complex [30,56].
Additionally, the P2X7R agonist-evoked ATP release was mediated through the pannexin1-
hemichannels in astrocyte [57,58]. Therefore, the effects of the inhibitors of connexin43, pan-
nexin1, and P2X7R on astroglial D-serine release induced by acute exposure to the P2X7R
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agonist, 2′(3′)-O-(4-benzoylbenzoyl)adenosine-5′-triphosphate tri(triethylammonium) salt
(BzATP), were determined.

BzATP concentration-dependently increased D-serine release from the cultured astro-
cytes of both the wild type and S286L-TG (Figure 7). BzATP-evoked astroglial D-serine
release was completely inhibited by the selective P2X7R antagonist, 3 µM 2-(phenylthio)-
N-[[tetrahydro-4-(4-phenyl-1-piperazinyl)-2H-pyran-4-yl]methyl-3-pyridinecarboxamide
(JNJ47965567). Therefore, the concentration-dependent increasing BzATP-evoked astroglial
D-serine release was primarily generated by the activation of P2X7R. The astrocytes in
S286L-TG probably also have no functional abnormalities associated with P2X7R, since
the concentration-dependent responses of astroglial D-serine releases to BzATP-evoked
stimulation in the wild type and S286L-TG were almost equal (Figure 7). The selective
pannexin1 inhibitor, 100 µM 10PANX, also inhibited BzATP-evoked astroglial D-serine
release, whereas the selective connexin43 inhibitor, 20 µM Gap19, did not affect it. These
results suggest that BzATP-evoked astroglial D-serine release is mainly generated by the
complex between the P2X7R and pannexin1-hemichannels.
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Figure 7. Effects of BzATP-evoked stimulation on astroglial D-serine release. Panel (A) indicates
the concentration-dependent effects of BzATP (P2X7R agonist from 1 to 100 µM) on D-serine release
from cultured astrocytes between wild type and S286L-TG. Panel (B) indicates the effects of selective
inhibitors of connexin43-hemichannel (Gap19), pannexin1-hemichannel (10PANX), and P2X7R (JNJ:
JNJ47965567) on BzATP-evoked astroglial D-serine release. Ordinates indicate the mean ± SD (n = 6)
of extracellular D-serine level (µM) during the BzATP-evoked stimulation. In panel (A): ** p < 0.01
relative to control (BzATP free) using two-way ANOVA with Scheffe’s post hoc test. F value in
panel (A) was [FBzATP(3,40) = 10.5 (p < 0.01), Fgenotype(1,40) = 0.5 (p > 0.1), FBzATP*genotype(3,40) = 0.1
(p > 0.1)]. In panel (B): @ p < 0.05, @@ p < 0.01 relative to control (without inhibitors) using MANOVA
with Scheffe’s post hoc test. F value was [FBzATP(3,60) = 105.2 (p < 0.01), Finhibitor(3,20) = 0.7 (p > 0.1),
FBzATP*inhibitor(9,60) = 7.5 (p > 0.1)].

3. Discussion

The present study demonstrated that any functional abnormalities in primary cultured
astrocytes of S286L-TG could not be detected when compared to those of the wild type; how-
ever, the pannexin1 expression in the plasma membrane in the OFC (a major ADSHE focus
region) of S286L-TG increased age-dependently. These findings suggest that enhanced as-
troglial transmission in the OFC of S286L-TG is not directly induced by genic abnormalities
in S286L-mutant Chrna4; rather, they indicate that some abnormalities in tripartite synaptic
transmission play important roles in the development of epileptogenesis/ictogenesis in
the ADSHE of S286L-TG [8]. According to previous findings regarding the functional
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abnormalities in connexin43-hemichannels [9–12], the present study explored the impacts
of electrophysiological excitabilities, such as physiological ripple burst and epileptogenic
fast ripple bursts, on pannexin1 expression in the astroglial plasma membrane and D-serine
release from cultured astrocytes. The results, which showed that pannexin1 expression in
the plasma membrane in the OFC of S286L-TG age-dependently increased within a range of
4, 7, and 10 weeks of age, are also interpreted to be consistent with the age-dependent devel-
opment process of epileptogenesis/ictogenesis in S286L-TG, since the onset of interictal and
ictal discharges in S286L-TG was observed from 6 to 8 weeks of age and after 8 weeks of age,
respectively [8,11,14]. Furthermore, the fast ripple burst occurrence was synchronized with
the initiation of the ictal discharges [11]. In healthy individuals, ripple burst is considered
to play an important role in the generation of several components of cognition within
the thalamo-hippocampal and thalamocortical pathways [32,34,59,60]. Therefore, ripple
burst, which contributes to generation of procognitive components in healthy individuals,
may lead to the development of epileptogenesis/ictogenesis in individuals with ADSHE
vulnerability, such as the S284L-mutant Chrna4, under the intrathalamic GABAergic disin-
hibition induced by the loss-of-function mutant nAChR [8–10,13,14]. These demonstrations
can provide a reasonable hypothesis stating that the ripple burst during sleep spindles
contributes to the development of epileptogenic fast ripple burst in S286L-TG. Additionally,
a reasonable explanation for the pathomechanism by which ADSHE seizures typically
occur during sleep can also be provided [61–64]. Our proposed hypothesis regarding the
pathomechanisms of ADSHE in S286L-TG is described in Figure 8.
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Figure 8. Hypothetical age-dependent pathomechanisms of ADSHE in S286L-TG. Impaired S286L-
mutant nAChR leads to GABAergic disinhibition, resulting in enhanced propagation of physiological
ripple burst excitabilities [8–10,13,14]. The hyperexcitability increases intracellular signaling of
Akt and Erk, which enhance trafficking of pannexin1 and connexin43 to the astroglial plasma
membrane [8,11,12]. Increased expression of pannexin1 and connexin43 is also functionally activated
by ripple burst [8,11]. The activation of pannexin1-hemichannels is probably more sensitive and
earlier than that of connexin43-hemichannels due to the pannexin1-hemichannel functional features,
such as depolarization dependency and extracellular Ca2+ independency. These signaling cascades
contribute to development of epileptogenic fast ripple bursts.

Pannexin family proteins are ubiquitously expressed in the somatic and central ner-
vous systems, including those of neurons and astrocytes in the cortex [65–67]. Clinical
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studies revealed that the expression of pannexin1 in the focus regions of patients with
temporal lobe epilepsy and focal cortical dysplasia increased [68,69]. Preclinical studies
also demonstrated that cobalt-induced seizure increased pannexin1 expression, which was
inhibited by tetrodotoxin via the suppression of hyper-depolarization [70]. Taken together
with these previous findings, although pannexin1 is expressed ubiquitously, the present
results, which demonstrate that the increasing expression of pannexin1 was observed
selectively in the focus region and was temporally synchronized with the onset of interictal
discharge in S286L-TG, support the derivation of pannexin1 activation by the propagation
of HFOs. Both the pannexin1-hemichannels and the connexin43-hemichannels are activated
by plasma membrane depolarizations, but the pannexin1-hemichannels are more sensitive
to depolarization compared to the connexin43-hemichannels [71–74]. Indeed, in this study,
ripple burst-evoked stimulation predominantly activated the pannexin1-hemichannels
compared to the connexin43-hemichannels, whereas fast ripple burst-evoked stimulation
predominantly activated the connexin43-hemichannels. These findings strongly indicated
the possibility that pannexin1 might receive functional abnormalities (hyperexcitability)
earlier than connexin43 at the initiation of ADSHE epileptogenesis development in S286L-
TG. We shall report on this in further studies to clarify the detailed contribution of increased
pannexin1-hemichannels to epileptogenesis/ictogenesis in vivo.

It has been reported that sustained/repetitive exposure to P2X7R agonists changes
the features of P2X7R from cation channels to non-selective channels that are permeable to
large molecules and also facilitates the complex formation of P2X7R/pannexin1 complex,
which can also permeate large molecules [29–31]. In this study, the acute application of
BzATP increased astroglial D-serine release, which was inhibited by the P2X7R antagonist,
JNJ47965567, and the pannexin1-hemichannel inhibitor, 10PANX, but was not affected
by the connexin43-hemichannel inhibitor, Gap19. Increased ATP release contributes to
epileptic excitability; however, extracellular ATP is immediately degraded to inhibitory
adenosine by ectonucleotides [75]. Adenosine metabolized from released ATP in the extra-
cellular space activates both anticonvulsive A1 and proconvulsive A2A receptors [76–78].
Therefore, purinergic transmission functions are a double-edged sword in terms of the
epileptogenesis/ictogenesis regulation of the excitatory/inhibitory balance of tripartite
synaptic transmission [6,7,79,80]. To explore the functional abnormalities of purinergic
transmission in S286L-TG, age-dependent extracellular levels of ATP and adenosine in the
ADSHE focus region of S286L-TG should be determined using microdialysis. This study
elucidated the fact that the activated pannexine1-hemichannel played important roles in the
endogenous glutamate receptor agonistic gliotransmitter, D-serine [81,82]. The findings in
this study regarding increasing astroglial D-serine release through pannexin1-hemichannels
can provide some of the mechanisms of the epileptogenesis/ictogenesis of S286L-TG. To
identify the more detailed pathomechanisms underlying the epileptogenesis/ictogenesis
of S286L-TG, we shall report on the impacts of enhanced pannexin1-hemichannels in
S286L-TG in further studies.

4. Materials and Methods
4.1. Experimental Animals

All the experimental procedures, including those for animal care and the protocols for
animal experiments, were approved by the Animal Research Ethics Committee of the Mie
University School of Medicine (No. 24-37-R3, 7 March 2018) and performed in accordance
with the ethical guidelines established by the Institutional Animal Care and Use Committee
at Mie University, Japan, and the Animal Research: Reporting of In Vivo Experiments
guidelines [83].

A total of 102 male rats, wild-type littermates (n = 72), and S286L-TG (n = 30) (Sprague
Dawley strain background, SLC, Shizuoka, Japan), and pregnant female wild type (n = 6)
and S286L-TG (n = 3) (Sprague-Dawley rat background: SLC) were housed individually in
cages and kept in air-conditioned rooms (temperature, 22 ± 2 ◦C) with a 12 h light/dark
cycle, with ad libitum access to food and water. Neonatal rats (0–48h of age: total n = 66),
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including wild-type Sprague-Dawley rats (n = 54) and S286L-TG rats (n = 12), were used
for culturing astrocytes in vivo.

4.2. Chemical Agents

The 2′(3′)-O-(4-benzoylbenzoyl)adenosine-5′-triphosphate tri(triethylammonium) salt
(BzATP: potent rat P2X7R agonist) [84,85], 2-(phenylthio)-N-[[tetrahydro-4-(4-phenyl-1-
piperazinyl)-2H-pyran-4-yl]methyl-3-pyridinecarboxamide (JNJ47965567: selective P2X7R
antagonist) [86], TAT-Gap19 (Gap19: selective connexin43 inhibitor) [87], 10PANX (selective
pannexin1 inhibitor) [31], probenecid (pannexin1 inhibitor) [31,47], and carbenoxolone
(CBX: non-selective astroglial hemichannel inhibitor) [2] were obtained from Funakoshi
(Tokyo, Japan).

All the compounds were prepared on the day of the experiment. JNJ47965567 and
probenecid were initially dissolved in 1 N HCl (50 mM) and DMSO (50 mM), respectively.
BzATP, Gap19, 10PANX, and CBX were dissolved directly in the experimental medium.

4.3. Primary Cultured Astrocytes

Cortical primary cultured astrocytes from the wild type and S286L-TG were prepared
according to previous studies [11,88]. The cerebral hemispheres were then removed using a
dissection microscope. The brain was chopped into fine pieces using scissors and triturated
using a micropipette. The suspension was filtered through a 70 µM nylon mesh (BD,
Franklin Lakes, NJ, USA) and then centrifuged. The pellets were resuspended in Dulbecco’s
modified Eagle’s medium (D6546; Sigma-Aldrich, St. Louis, MO, USA) containing 10%
fetal calf serum (fDMEM). After 14 days of culture (DIV14) to DIV28, the astrocytes were
trypsinized and seeded directly on a translucent polyethylene terephthalate membrane
(1.0 µm) in 24-well plates (BD, Franklin Lakes, NJ, USA) at density of 100 cells/cm for the
experiments. fDMEM was changed twice a week between DIV14 and DIV28. On DIV28,
the astrocytes were washed out using artificial cerebrospinal fluid (ACSF) (150 mM Na+,
3.0 mM K+, 1.4 mM Ca2+ and 0.8 mM Mg2+ and 5.5 mM glucose adjusted to pH = 7.3 using
20 mM HEPES buffer) for the experiments (ACSF was prepared before the experiment) [12].

4.4. Artificial HFO-Evoked Stimulation and BzATP-Evoked Stimulation

The accumulation of HFOs, including either physiological ripple burst or epileptogenic
fast ripple burst [11,89], has been reported to play an important role in the epileptogenesis
of S286L-TG [8,12,14]. HFOs have physiological and pathological/epileptogenic oscillatory
activities within a limited frequency band ranging from 80 to 500 Hz that clearly stands
out from the baseline and persists for at least four oscillation cycles [11,89]. HFOs are
composed of two frequency ranges: a relatively slow physiological procognitive ripple
burst (80–250 Hz for tens of milliseconds in duration) and an epileptogenic fast ripple burst
(250–500 Hz and millisecond duration). Cultured astrocytes were activated by artificial
ripple burst or fast ripple burst stimulations using a bus drive amplifier (SEG-3104 MG;
Miyuki Giken, Tokyo, Japan). The ripple burst- and fast ripple burst-evoked stimulations
were set at a square-wave direct-current pulse output with a magnitude of 300 mV/mm [11].
The ripple burst-evoked stimulation was composed of 10 stimuli at 200 Hz and 10 bursts
(50% duty cycle) at burst intervals of 100 msec/sec [11]. A set of fast ripple-evoked
stimulations was composed of 10 stimuli at 500 Hz and 10 bursts (50% duty cycle) at
burst intervals of 40 msec/sec. These HFO-evoked stimulation patterns were regulated
using LabChart v8.2 software (AD Instruments, Dunedin, New Zealand). The amounts of
energization during the ripple burst- and fast ripple burst-evoked stimulations were set to
be equal.

To explore the acute effects of HFO-evoked stimulation on astroglial D-serine release,
on DIV28 after the washout, the cultured astrocytes received a set of 100 ripple-evoked or
fast ripple-evoked stimulations incubated in ACSF or FC-ACSF containing target agents
(20 µM Gap19, 100 µM 10PANX, 1–100 µM carbenoxolone, or 100–1000 µM probenecid).
The composition of NaCl in FC-ACSF was modified to maintain isotonicity and ionic
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strength. To explore the chronic effects of HFO-evoked stimulation on pannexin1 expression
in the astroglial plasma membrane fraction, the cultured astrocytes were received a set of
100 ripple-evoked or fast ripple-evoked stimulations for 7 days in fDMEM (DIV21–28).

To explore the acute concentration-dependent effects of BzATP on DIV28 after the
washout, the cultured astrocytes were incubated in ACSF containing BzATP (1–100 µM)
with or without 3 µM JNJ47965567, 20 µM Gap19, or 100 µM 10PANX.

4.5. Determination of Levels of D-Serine

The D-serine levels were determined using ultra-high-performance liquid chromatog-
raphy (UHPLC) (PU-4185, Jasco, Tokyo, Japan) with fluorescence resonance energy transfer
detection (FP-4020, Jasco), after dual derivatization with isobutyryl-L-cysteine and o-
phthalaldehyde [14]. Derivative reagent solutions were prepared by dissolving isobutyryl-
L-cysteine (2 mg) and o-phthalaldehyde (2 mg) in 0.1 mL of ethanol, followed by the
addition of 0.9 mL of sodium borate buffer (0.2 M, pH 9.0) [14]. Automated pre-column
derivatives were prepared by drawing up a 5 µL aliquot of the sample, standard, or blank
solution and 5 µL of the derivative reagent solution and allowing the two to react in reaction
vials for 5 min before injection. The derivatized samples (5 µL) were injected using an au-
tosampler (AS-4150, Jasco). The analytical column (Triat C18, particle 1.8 µM, 50 × 2.1 mm,
YMC, Kyoto, Japan) was maintained at 45 ◦C, with the flow rate set at 500 µL/min. A
linear gradient elution program was performed over 10 min with mobile phases A (0.05 M
citrate buffer, pH 5.0) and B (0.05 M citrate buffer containing 30% acetonitrile and 30%
methanol, pH 3.5). The excitation/emission wavelengths of the fluorescence detector were
set at 345/455 nm [14]. To correct the deviations of the D-serine level due to the cultured
cell number, the total protein level was determined after the experiments using a protein
assay reagent kit (FUJIFILM Wako Pure Chemical Corporation; Osaka, Japan) [14].

4.6. Capillary Immunoblotting

The orbitofrontal cortex (OFC) of S286L-TG and the wild type was removed, and their
plasma membrane fractions were extracted using the Minute Plasma Membrane Protein
Isolation Kit (Invent Biotechnologies, Plymouth, MN, USA). On DIV28, after the washout,
the plasma membrane fraction of the cultured astrocytes was also extracted using the
Minute Plasma Membrane Protein Isolation Kit.

A capillary immunoblotting analysis was performed using Wes (ProteinSimple, Santa
Clara, CA, USA) [90] according to the ProteinSimple user manual. The plasma membrane
fractions were mixed with a master mix (ProteinSimple) until the final concentration of
1 × sample buffer, 1 × fluorescent molecular weight marker, and 40 mM of dithiothreitol
was obtained; then, they were heated at 95 ◦C for 5 min. The samples, blocking reagent,
primary antibodies, horseradish peroxidase (HRP) conjugated secondary antibody, chemi-
luminescent substrate (SuperSignal West Femto; Thermo Fisher Scientific, Waltham, MA,
USA), and separation and stacking matrices were also distributed into designated wells in
a 25-well plate. After plate loading, separation electrophoresis and immunodetection were
performed in a capillary system, which was fully automated. Capillary immunoblotting
was performed at room temperature using the default settings of the instrument. The capil-
laries were first filled with a separation matrix, followed by a stacking matrix and a sample
loading of approximately 40 nL. During electrophoresis, the proteins were separated based
on molecular weight through stacking and separation matrices at 250 V for 40 min and
then immobilized on the capillary wall using proprietary photoactivated capture chemistry.
The matrices were then washed again. Next, the capillaries were incubated with a blocking
reagent for 15 min and the target proteins were probed with primary antibodies, followed
by incubation with HRP-conjugated secondary antibodies (anti-rabbit HRP-conjugated
IgG, A00098, 10 µg/mL, GenScript, Piscataway, NJ, USA). The antibodies against GAPDH
(NB300–322, 1:100, Novus Biologicals, Littleton, CO, USA) and pannexin1 (12595-1-AP,
1:100, Proteintech, Rosemont, IL, USA) were diluted in Immuno Shot Platinum (CosmoBio,
Tokyo, Japan).
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4.7. Data Analysis

All the experiments were designed with groups containing equal numbers of animals
(n = 6), without a formal power analysis, in accordance with previous studies. All the values
are expressed as the mean ± standard deviation (SD), and p values of <0.05 (two-tailed)
were considered statistically significant in all the tests.

The levels of drugs for administration were selected based on the values reported in
previous studies. Where possible, we aimed to randomize and blind the data. To determine
the levels of D-serine and pannexin1, the sample order of the autosamplers was selected
using random number tables.

The age-dependent fluctuation of pannexin1 expression between the wild type and
S286L-TG was analyzed using two-way analysis variance (ANOVA) with Scheffe’s post hoc
test using BellCurve for Excel version 3.2 (Social Survey Research Information Co., Ltd.,
Tokyo, Japan). The chronic effects of HFO-evoked stimulation on pannexin1 expression in
the wild type and S286L-TG were also analyzed using two-way analysis variance (ANOVA)
with Scheffe’s post hoc test. The use-dependent effects of HFO-evoked stimulations on
D-serine release from the cultured astrocytes in the wild type and S286L-TG were also
analyzed using two-way ANOVA with Scheffe’s post hoc test. The effects of the extracellular
Ca2+ level and the inhibitors of pannexin1 and connexin43 on HFO-evoked D-serine release
from the cultured astrocytes of the wild type were analyzed using multivariate analysis
of variance (MANOVA) with Scheffe’s post hoc test using BellCurve for Excel version
3.2. When the data did not violate the assumption of sphericity (p > 0.05), the F value
of the MANOVA was analyzed using assumed degrees of freedom of sphericity. When
the assumption of sphericity was violated (p < 0.05), the F value was analyzed using Chi-
Muller-corrected degrees of freedom. When the F value of the MANOVA was significant,
the data were analyzed using Scheffe’s post hoc test.

5. Conclusions

The present study demonstrated several candidate pathomechanisms of ADSHE as-
sociated with pannexin1-hemichannels using S286L-TG. It has been already revealed that
before the onset of ADSHE seizure in S286L-TG (during 4–8 weeks of age), the physiological
ripple burst contributes to the development of epileptogenic fast ripple burst induced by
the enhancement of the trafficking of connexin43 to the plasma membrane via the activation
of the intracellular signaling of Akt and Erk [8–14]. In an in vivo study using S286L-TG, no
abnormalities of pannexin1 expression in the ADSHE focus region (OFC) of S286L-TG at
4 weeks of age (before the onset of epileptic discharge) were observed; however, at 7 (critical
period of onset of interictal discharge) and 10 (after the onset of ADSHE seizures) weeks of
age, the pannexin1 expression age-dependently increased. In in vitro experiments using
cultured astrocytes of both the wild type and S286L-TG, the transmission function of the
astrocytes from S286L-TG did not differ from that of the astrocytes from the wild type; this
was similar to that of the connexin43-hemichannels [8,11,12]. However, the application of
chronic HFO-evoked stimulation increased pannexin1 expression in the plasma membrane.
These demonstrations regarding the age-dependent activation of the astroglial pannexin1-
hemichannel function in S286L-TG were observed to be similar to the temporal patterns in
the astroglial connexin43-hemichannels. Therefore, these results suggest that the hyperacti-
vation of both ripple burst and fast ripple burst under the GABAergic disinhibition is, at
least partially, involved in the development of the epileptogenesis/ictogenesis of ADSHE
in S286L-TG through increasing pannexin1 expression in the astroglial plasma membrane.
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