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Abstract: Pancreatic cancer represents a formidable challenge in oncology, primarily due to its
aggressive nature and limited therapeutic options. The prognosis of patients with pancreatic ductal
adenocarcinoma (PDAC), the main form of pancreatic cancer, remains disappointingly poor with a
5-year overall survival of only 5%. Almost 95% of PDAC patients harbor Kirsten rat sarcoma virus
(KRAS) oncogenic mutations. KRAS activates downstream intracellular pathways, most notably the
rapidly accelerated fibrosarcoma (RAF)/mitogen-activated protein kinase kinase (MEK)/extracellular
signal-regulated kinase (ERK) signaling axis. Dysregulation of the RAF/MEK/ERK pathway is a
crucial feature of pancreatic cancer and therefore its main components, RAF, MEK and ERK kinases,
have been targeted pharmacologically, largely by small-molecule inhibitors. The recent advances
in the development of inhibitors not only directly targeting the RAF/MEK/ERK pathway but also
indirectly through inhibition of its regulators, such as Src homology-containing protein tyrosine
phosphatase 2 (SHP2) and Son of sevenless homolog 1 (SOS1), provide new therapeutic opportunities.
Moreover, the discovery of allele-specific small-molecule inhibitors against mutant KRAS variants
has brought excitement for successful innovations in the battle against pancreatic cancer. Herein,
we review the recent advances in targeted therapy and combinatorial strategies with focus on the
current preclinical and clinical approaches, providing critical insight, underscoring the potential of
these efforts and supporting their promise to improve the lives of patients with PDAC.

Keywords: pancreatic cancer; RAF/MEK/ERK pathway; small-molecule inhibitors; KRAS; targeted
therapy

1. Introduction

Pancreatic cancer is one of the deadliest tumors and is expected to become the second
leading cause of cancer-related mortality in the US. The 5-year overall survival (OS) of
patients with pancreatic ductal adenocarcinoma (PDAC), the most common form of pancre-
atic cancer, has only minimally improved to only 11%, presenting a modest improvement
compared to other malignancies [1,2]. The role of the rapidly accelerated fibrosarcoma
(RAF)/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated ki-
nase (ERK) pathway as the main RAS effector pathway in initiation and progression of
pancreatic cancer is well established [3]. Targeted therapy using small-molecule inhibitors
against components of the RAF/MEK/ERK pathway has shown significant potential for
PDAC. The Kirsten rat sarcoma virus (KRAS) mutation is a hallmark of PDAC, and only
recently has there been progress in drug development, with compounds that directly target
the once considered “undruggable” RAS. These compounds include KRAS-mutant-specific
inhibitors, that are foreseen to change the landscape in PDAC management [4] (Figure 1).
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Figure 1. RAF/MEK/ERK pathway inhibitors and combination therapies under clinical evaluation for
pancreatic cancer. EGFR, epidermal growth factor receptor; SHP2, Src homology 2 domain-containing
phosphatase 2; SOS1, Son of sevenless homolog 1; KRAS, Kirsten rat sarcoma viral oncogene homolog;
GDP, guanosine diphosphate; GTP, guanosine triphosphate; RAF, rapidly accelerated fibrosarcoma;
MEK, mitogen-activated protein kinase kinase; ERK, extracellular signal-regulated kinase; CDK4/6,
cyclin-dependent kinase 4/6; HDAC, histone deacetylase; PARP, poly-adenosine diphosphate (ADP)
ribose polymerase; eIF4A, eukaryotic translation initiation factor 4A; ULK1/2, unc-51-like autophagy-
activating kinases 1 and 2; NLRP3, Nod-like receptor protein 3; FAK, focal adhesion kinase; JAK1/2,
Janus kinase 1/2; PD-1, programmed cell death protein 1; PD-L1, programmed death ligand 1;
VEGF-A, vascular endothelial growth factor A; PI3Kα, phosphoinositide 3-kinase α; IL6R, interleukin
6 receptor; Asp, asparagine. This figure was created using the tools provided by BioRender.com
(accessed on 21 January 2024).

Here, we discuss rational treatment approaches with the currently available therapeu-
tic options for PDAC patients, including novel targeting strategies using current and new
compounds. We focus on the combinatorial strategies and the current clinical attempts for
evaluation of the RAF/MEK/ERK pathway inhibitors that are currently in clinical develop-
ment. This is significant because there is an urgent need to establish new frameworks and
improve future treatments. Our aim is to contribute to understanding the complexity of
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the RAF/MEK/ERK pathway inhibition, which holds substantial promise for developing
effective treatment modalities against this aggressive malignancy.

2. RAF/MEK/ERK Signaling Pathway in Pancreatic Cancer

The RAF/MEK/ERK pathway which controls cell growth, differentiation and sur-
vival is often upregulated in pancreatic cancer. The orchestrator of this upregulation
is the small GTPase KRAS, which is mutated in 95% of patients with pancreatic can-
cer [2]. The most common KRAS mutations in PDAC are substitutions in position G12,
with KRASG12D (41%), KRASG12V (34%) and KRASG12R (16%) being the most fre-
quent and G12C (1–2%) the least [5]. KRAS in its active GTP-bound form promotes
RAF kinase activation through dimerization and phosphorylation, resulting in phos-
phorylation of its substrate MEK kinase. MEK phosphorylates and activates the ter-
minal kinase ERK. Activated ERK regulates growth-promoting transcription [2]. The
RAF/MEK/ERK pathway is the key effector pathway for initiation and progression of
KRAS-driven PDAC [3]. Therefore, apart from targeted efforts against the key mem-
bers of the RAF/MEK/ERK pathway, several drugs, targeting different components of
this pathway, including the upstream epidermal growth factor receptor (EGFR) family
members and the RAF/MEK/ERK pathway regulators Src homology-containing pro-
tein tyrosine phosphatase 2 (SHP2) and Son of sevenless homolog 1 (SOS1), have been
explored extensively for therapeutic intervention in PDAC [2–5] (Figure 1).

3. Targeting Strategies
3.1. EGFR Family Inhibition

Initial efforts were directed against the upstream frequently dysregulated EGFR/human
epidermal growth factor receptor 2 (HER2 or ERBB2) signaling. Erlotinib, an EGFR inhibitor,
combined with gemcitabine, a first-line chemotherapy, in patients with advanced PDAC,
showed modest survival benefits [6]. When erlotinib was combined with gemcitabine
together with nab-paclitaxel, a tubulin-polymerization stabilizer, it exhibited some clinical
activity despite the observed toxicities [7]. However, combining cetuximab, a monoclonal
antibody against EGFR, with gemcitabine did not show improved outcome [8]. Similarly,
the combination of lapatinib, a dual tyrosine kinase inhibitor against both HER2 and EGFR,
with gemcitabine or capecitabine did not demonstrate any efficacy [9,10]. To improve these
results, a second-generation ERBB family inhibitor, afatinib, was used in combination with
gemcitabine. Afatinib binds covalently to cysteine 797 of the EGFR and the corresponding
cysteines 805 and 803 in HER2 and human epidermal growth factor receptor 4 (ErB4/HER4),
respectively, inhibiting downstream signaling from all homo- and heterodimers formed by
ERBB family members. However, again, this combination did not show any efficacy [11].
Subsequent clinical studies, based on preclinical synergistic evidence, assessed the EGFR
inhibition in combination with components of the RAF/MEK/ERK pathway such as BRAF
and MEK. These studies combined erlotinib with either sorafenib [12], a multikinase RAF
inhibitor, or selumetinib [13], a MEK inhibitor, but showed modest activity. More recently,
the addition of panitumumab, an EGFR monoclonal antibody, to erlotinib and gemcitabine
demonstrated a small but significantly prolonged overall survival, despite the observed
toxicities [14]. Overall, these studies did not show sufficient evidence of effectiveness.
This agrees with the conclusions from a retrospective analysis showing that EGFR and
KRAS alterations were not predictive for patient benefit from anti-EGFR therapy [15].
However, in a preclinical study, the highly selective irreversible EGFR/HER2 inhibitor
neratinib suppressed KRAS mutant levels in PDAC cells [16]. The efficacy of neratinib in
combination with valproate, a histone deacetylase (HDAC) inhibitor, is being evaluated in
a clinical trial in patients with advanced RAS-mutated solid tumors (Table 1).
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Table 1. RAF/MEK/ERK pathway inhibitors currently in clinical evaluation for pancreatic cancer.
EGFR, epidermal growth factor receptor; ERBB2/HER2, receptor tyrosine-protein kinase erbB 2; RAF,
rapidly accelerated fibrosarcoma; SHP2, Src homology 2 domain-containing phosphatase 2; SOS1,
Son of sevenless homolog 1; KRAS, Kirsten rat sarcoma viral oncogene homolog; RAS, rat sarcoma
viral oncogene homolog; RAF, rapidly accelerated fibrosarcoma; MEK, mitogen-activated protein
kinase kinase; ERK, extracellular signal-regulated kinase; CDK4/6, cyclin-dependent kinase 4/6;
HDAC, histone deacetylase; PARP, poly-adenosine diphosphate (ADP) ribose polymerase; eIF4A,
eukaryotic translation initiation factor 4A; ULK1/2, unc-51-like autophagy-activating kinases 1 and 2;
NLRP3, Nod-like receptor protein 3; PD-1, programmed cell death protein 1; PD-L1, programmed
death ligand 1; VEGF-A, vascular endothelial growth factor A; PI3Kα, phosphoinositide 3-kinase α;
FAK, focal adhesion kinase; JAK1/2, Janus kinase 1/2.

Drug(s) Target(s) Second
Drug(s)

Second
Target(s) Phase Clinical Study

Code

Neratinib EGFR,
ERBB2/HER2

Divalproex sodium
(Valproate) HDAC I/II NCT03919292

Vemurafenib BRAFV600E/K Sorafenib RAF II NCT05068752

Lilirafenib BRAF Mirdametinib MEK I NCT03905148

Tovorafenib RAF Pimasertib MEK I/II NCT04985604

Avutometinib MEK, RAF Defactinib FAK I/II NCT05669482

ABM-168 MEK I NCT05831995

Binimetinib MEK Hydroxychloroquine Autophagy I NCT04132505

Binimetinib MEK Encorafenib RAFV600E/K II NCT04390243

Binimetinib MEK Palbociclib CDK4/6 II NCT05554367

Trametinib MEK Hydroxychloroquine Autophagy I NCT03825289

Trametinib MEK Ruxolitinib JAK1/JAK2 I NCT04303403

Cobimetinib MEK
Calaspargase
pegol-mnkl
(Asparlas)

Asparagine I NCT05034627

IMM-1-104 MEK I/II NCT05585320

Temuterkib ERK RMC-4630 SHP2 I NCT04916236

Temuterkib ERK Hydroxychloroquine
sulfate Autophagy II NCT04386057

Ulixertinib ERK Palbociclib CDK4/6 I NCT03454035

ERAS-007 ERK
Encorafenib
Palbociclib

Cetuximab *

BRAFV600E/K
CDK4/6

EGFR
I/II NCT05039177

BI-1701963 SOS1 Adagrasib KRASG12C I NCT04975256

BI-1701963 SOS1 Trametinib MEK I NCT04111458

HBI-2376 SHP2 I NCT05163028

JAB-3068 SHP2 I/II NCT03565003

JAB-3312 SHP2 I NCT04045496

JAB-3312 SHP2

Binimetinib
Pembrolizumab *

Sotorasib
Osimertinib

MEK
PD-1

KRASG12C
EGFR

I/II NCT04720976

BBP-398 SHP2 Sotorasib KRASG12C I NCT05480865

RMC-6291 KRASG12C I NCT05462717
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Table 1. Cont.

Drug(s) Target(s) Second
Drug(s)

Second
Target(s) Phase Clinical Study

Code

RMC-6291 KRASG12C RMC-6236
RAS

(pan-mutant and
wild-type)

I NCT06128551

HBI-2438 KRASG12C I NCT05485974

LY3537982 KRASG12C I NCT04956640

JAB-21822 KRASG12C II NCT06008288

JAB-21822 KRASG12C Cetuximab * EGFR I/II NCT05002270

JAB-21822 KRASG12C JAB-3312 SHP2 I/II NCT05288205

Adagrasib KRASG12C I NCT05634525

Adagrasib KRASG12C TNO155 SHP2 I/II NCT04330664

Adagrasib KRASG12C
Afatinib

Cetuximab *
Pembrolizumab *

EGFR/HER2
EGFR
PD-1

I NCT03785249

Adagrasib KRASG12C Olaparib PARP I NCT06130254

Adagrasib KRASG12C BMS-986466 †

−/+ cetuximab *
NLRP3
EGFR I/II NCT06024174

Adagrasib KRASG12C MRTX0902 SOS1 I/II NCT05578092

BPI-421286 KRASG12C I NCT05315180

BI-1823911 KRASG12C BI-1701963 SOS1 I NCT04973163

Divarasib KRASG12C

Atezolizumab *
Cetuximab *

Bevacizumab *
Erlotinib

GDC-1971
Inavolisib

PD-L1
EGFR

VEGFA
EGFR
SHP2
PI3Kα

I NCT04449874

Garsorasib KRASG12C I NCT04585035

JNJ-74699157 KRASG12C I NCT04006301

JDQ443 KRASG12C TNO155
Tislelizumab *

SHP2
PD-1 I/II NCT04699188

MK-1084 KRASG12C Pembrolizumab * PD-1 I NCT05067283

Sotorasib KRASG12C I/II NCT03600883

Sotorasib § KRASG12C II NCT04185883

Sotorasib KRASG12C I NCT04380753

Sotorasib KRASG12C Panitumumab * EGFR II NCT05638295

Sotorasib KRASG12C Panitumumab* EGFR II NCT05993455

Sotorasib KRASG12C DCC-3116 † ULK1/2 I/II NCT04892017

Sotorasib KRASG12C Zotatifin † eIF4A I/II NCT04092673

MRTX1133 KRASG12D I/II NCT05737706

RMC-9805 KRASG12D I NCT06040541

HRS-4642 KRASG12D I NCT05533463
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Table 1. Cont.

Drug(s) Target(s) Second
Drug(s)

Second
Target(s) Phase Clinical Study

Code

RMC-6236
RAS

(pan-mutant and
wild-type)

I NCT05379985

RSC-1255
RAS

(pan-mutant and
wild-type)

I NCT04678648

* Monoclonal antibody; § as monotherapy or in combination with various anti-cancer agents; † main test drug of
the trial.

3.2. RAF/MEK/ERK Pathway Component Inhibition
3.2.1. RAF Inhibition

Early attempts to target BRAF in unselected patients with advanced PDAC, using the
BRAF inhibitor sorafenib in combination with gemcitabine did not show any benefit [17].
This is possibly explained by the fact that sorafenib is a multikinase inhibitor and its clinical
activity is generally attributed to off-target inhibition. The use of the current clinically
available BRAF inhibitors (vemurafenib, dabrafenib and encorafenib) is FDA approved for
BRAFV600E-mutant metastatic melanoma but not for RAS-mutant tumors. BRAFV600E
oncoprotein signals as a monomer and current BRAF inhibitors target and inhibit BRAF
monomers. However, this selectivity limits their effectiveness in RAS-driven tumors, where
RAFs (BRAF and CRAF) signal as dimers [18]. Additionally, in RAS-mutant tumors these
RAF inhibitors promote paradoxical activation of the mitogen-activated protein kinase
(MAPK) signaling by inducing wild-type RAF dimerization [19]. Next-generation RAF
inhibitors that inhibit both dimers and monomers are currently in clinical development.
These RAF inhibitors induce minimal paradoxical activation and show preclinical activity
in RAS-mutant tumors [18,20–22]. A clinical trial testing the efficacy of the next-generation
RAF inhibitor lilirafenib, including KRAS-mutant PDAC patients, reported stable disease as
best response [23]. Additionally, a second current clinical trial is assessing the combination
of lilirafenib with the MEK inhibitor mirdametinib in patients with advanced or refractory
solid tumors (Table 1). Another clinical trial is evaluating combined vemurafenib and
sorafenib treatment in individuals with KRAS-mutant PDAC who have progressed on
standard chemotherapy (Table 1).

Activating BRAF alterations make up approximately 30% of KRAS wild-type PDAC
and 2% of all PDAC cases [24]. These most commonly include substitutions in position
V600, most commonly BRAFV600E. BRAF mutations are mutually exclusive with KRAS
mutations and are typically associated with poor prognosis [25]. Multiple preclinical
BRAF-mutated models suggest that these alterations can be targeted with combination of
BRAF and MEK inhibitors [20,26,27]. Furthermore, BRAFV600E expression in a genetically
engineered mouse model of PDAC was sufficient to induce the formation of pancreatic
intraepithelial neoplasia lesions, revealing the central role of the RAF/MEK/ERK pathway
in PDAC tumorigenesis [3]. Additionally, in a patient-derived orthotopic mouse model
of PDAC, treatment with the MEK inhibitors trametinib or cobimetinib resulted in tumor
suppression [28]. Molecular targeting of BRAFV600E in KRAS wild-type PDAC, using
BRAF and MEK inhibitor, has been reported in several case reports in which patients
progressed after first lines of chemotherapy. A case report with a patient with BRAF-
mutant advanced PDAC reported objective tumor response to combined vemurafenib
plus trametinib treatment [29]. Li et al. reported a case of a patient with metastatic
BRAFV600E-mutant PDAC who achieved almost a complete response to dabrafenib plus
trametinib treatment. Notably, the patient was rechallenged successfully with the regimen
after relapse [30]. Two BRAF-mutant PDAC patients showed a significant reduction in
carbohydrate antigen 19-9 levels, a PDAC-associated tumor antigen, following co-treatment
with dabrafenib plus trametinib [31]. Wang et al. reported a partial response in the case
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of advanced metastatic PDAC, after vemurafenib plus trametinib administration [32]. In
a recent case report, two patients with BRAFV600E-mutant PDAC exhibited a favorable
response to dabrafenib and trametinib co-treatment [33]. Ardalan et al. reported that the
addition of the MEK inhibitor cobimetinib to gemcitabine and nab-paclitaxel in BRAF-
mutant patients was followed by a complete response to therapy for 16 months [34].
Furthermore, a clinical trial is underway evaluating the combination of encorafenib with
the MEK inhibitor binimetinib in BRAFV600E-mutant PDAC patients (Table 1).

3.2.2. MEK Inhibition

Despite the promising preclinical evidence suggesting potent MAPK pathway inhi-
bition, using MEK inhibitors in PDAC, early clinical trials showed limited efficacy. MEK
inhibitors, trametinib or pimasertib, in combination with gemcitabine did not show any
benefit when compared with gemcitabine alone [35,36]. Of note, the combination of the
MEK inhibitor refametinib with gemcitabine was well tolerated and resulted in an objec-
tive response rate of 23%, with improved outcomes for KRAS wild-type patients [37]. In
contrast, the assessment of selumetinib versus chemotherapy with capecitabine or the dual
MEK and protein kinase B (AKT) kinase inhibition with selumetinib and the AKT inhibitor
MK-2206 versus oxaliplatin-5-flourouracil-based chemotherapy in patients with advanced
PDAC did not show any efficacy [38,39]. Another study on the combination of trametinib
with the mammalian target of rapamycin (mTOR) inhibitor everolimus showed modest
clinical efficacy, although it was unable to define optimal doses for the two compounds [40].
Moreover, when trametinib was combined with the CDK4/6 inhibitor ribociclib there was
no benefit, and the study was terminated [41]. Likewise, in a combination of binimetinib
with either the poly-adenosine diphosphate (ADP) ribose polymerase (PARP) inhibitor
talazoparib or the programmed death 1 (PD-1) ligand 1 (PD-L1) inhibitor avelumab in
patients with metastatic PDAC, no objective responses were observed [42]. Interestingly,
preclinical evidence suggests that pancreatic tumors with KRASG12R, the third most com-
mon KRAS mutation in PDAC (16%), are more sensitive to MEK or ERK inhibition [43].
This is supported by the documented clinical benefit for patients with KRASG12R-mutant
PDAC treated with MEK inhibitors [44,45]. More recently, a phase I clinical trial evaluated
ABM-168, a novel small-molecule, allosteric, highly selective MEK inhibitor in adults with
advanced solid tumors, including pancreatic carcinoma, who had confirmed RAS, RAF
or neurofibromatosis type 1 (NF-1) mutations (Table 1). Another ongoing clinical study is
testing the MEK inhibitor cobimetinib in combination with the enzyme calaspargase pegol-
mnkl (asparlas) that blocks the biosynthesis of the non-essential amino acid asparagine,
leading to starvation of cancer cells (Table 1) [46].

3.2.3. ERK Inhibition

The clinical development of ERK inhibitors raised the hope that direct ERK inhibition
could block the MAPK pathway oncogenic transcriptional output. However, early clinical
trials using ERK inhibitors against RAS-mutant tumors, including PDAC, were unsuccess-
ful [47,48]. In a recent study, ERK inhibition induced autophagy in KRAS-mutant PDAC
and the dual ERK and autophagy inhibition, using SCH772984 and hydrochloroquine,
respectively, resulted in enhanced anti-tumor activity in PDAC preclinical models [43,49].
Several clinical studies are testing the synergistic effect of combining hydroxychloroquine
with binimetinb, trametinib or the ERK inhibitor temuterkib (Table 1). Cyclin-dependent
kinase 4/6 (CDK4/6) is a downstream target of activated/phosphorylated ERK and there is
evidence for anti-tumor activity of the dual ERK and CDK4/6 inhibition, using ulixertinib
and palbociclib, respectively (Table 1) [50,51] (Figure 1).

3.3. RAF/MEK/ERK Pathway Regulator Inhibition
3.3.1. SHP2 Inhibition

The discovery of SHP2 inhibitors revealed the dependency of KRAS-mutant tumors
in SHP2 [52]. In addition, several studies demonstrated that SHP2 inhibition prevents the
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receptor tyrosine kinase (RTK)-mediated development of adaptive resistance caused by
MEK or BRAF inhibitors [53,54]. Accordingly, co-targeting SHP2 and MEK or ERK using
small-molecule inhibitors has been investigated preclinically, showing promising results
in various KRAS-mutant tumors, including PDAC [52–56]. In another strategy, SHP2
inhibitors are combined with the recently developed allele-specific KRASG12C inhibitors
to overcome the development of adaptive resistance mediated by wild-type RAS [57].
This approach has been evaluated by two clinical trials testing the combination of a SHP2
inhibitor with a KRASG12C inhibitor, TNO155 with MRTX849 and JAB-3312 with JAB-
21822, respectively, in KRASG12C-mutant patients with advanced solid tumors (Table 1).
Another aspect of SHP2 inhibition is its reported immunomodulatory function [58]. Based
on this evidence, the combination of SHP2 and KRASG12C inhibitors can promote anti-
tumor immunity by disrupting MAPK-activating signals from the tumor microenvironment
to cancer cells [59].

3.3.2. SOS1 Inhibition

In preclinical PDAC models, it has been shown that SOS1 is essential for the survival of
RAS-mutated cancer cells [60]. Small-molecule SOS1 inhibitors that disrupt the SOS1–RAS
interaction have been under development for the treatment of KRAS-mutated cancers.
Recently, a selective SOS1 inhibitor, BI-3406, has been reported to reduce GTP-bound RAS
levels and tumor growth across KRAS-driven cancer models [61,62]. Moreover, the com-
bined treatment of BI-3406 with trametinib resulted in sustained RAF/MEK/ERK pathway
inhibition and suppression of tumors in KRAS-mutated xenograft models, overcoming
pathway feedback reactivation [62]. The corresponding clinical compound BI-1701963 was
tested in a clinical trial for KRAS-mutated solid tumors, including PDAC, with preliminary
data demonstrating good tolerability and modest activity [63]. The current second phase of
the study is evaluating the effectiveness of the combination of BI-1701963 with trametinib
(Table 1).

3.4. KRAS Inhibition

Sotorasib is a first-in-class small-molecule inhibitor developed to selectively target
KRASG12C, providing evidence for in vivo activity [64]. Adagrasib, another KRASG12C
inhibitor, has shown clinical activity in KRASG12C-mutated tumors, including PDAC [65].
Both inhibitors, FDA-approved for KRASG12C-mutant non-small cell lung cancer (NSCLC),
trap KRASG12C in its inactive GDP-bound state and are now listed in the national compre-
hensive cancer network (NCCN) clinical practice guidelines as for additional KRASG12C-
mutant histologies, including pancreatic and colorectal cancers [66]. Another more potent
GDP-bound KRASG12C inhibitor, divarasib, in combination with various anti-cancer ther-
apies (Table 1), has shown promising clinical benefit in a small cohort of patients with
pancreatic adenocarcinoma harboring the KRASG12C mutation [67]. However, the low
prevalence of KRASG12C mutation in PDAC (1–2%) limits the applicability of this ap-
proach. Luckily, MRTX1133, a “game-changer” compound, has been developed selectively
targeting KRASG12D [68]. MRTX1133 is currently under clinical evaluation, while other
novel compounds targeting KRASG12D as well (HRS-4642, RMC-9805) are being assessed
in phase I clinical trials (Table 1). A novel non-covalent pan-KRAS inhibitor prevents the ac-
tivation of wild-type KRAS and a range of KRAS mutants, excluding G12R and Q61L/K/R
while sparing NRAS and HRAS isoforms (Kim). This pan-KRAS inhibitor showed preclin-
ical anti-tumor activity in various models, indicating broad therapeutic implications in
patients with KRAS-driven cancers, including pancreatic cancer [69]. ADT-007, another
pan-KRAS inhibitor, that inhibits GTP binding to both mutated and wild-type KRAS, blocks
oncogenic KRAS signaling and modulates T cell activation in preclinical PDAC in vitro
and in vivo models [70]. Recently, tricomplex inhibitors that target the active GTP-bound
state RAS(ON) for both mutant and wild-type RAS have shown promising results for
KRASG12V-mutant cancers [71]. The first in class of these inhibitors, RMC-6232, forms a
tricomplex with RAS(ON) and an abundant intracellular chaperon protein cyclophilin A,



Int. J. Mol. Sci. 2024, 25, 1631 9 of 15

sterically inhibiting RAS binding to its effectors [72,73]. RMC-6232 is being assessed in a
phase I clinical trial for KRASG12-mutant tumors (Table 1) and appears effective against
KRAS position 12 (G12X) mutants, including G12D, G12V and G12R, inducing durable sup-
pression of the RAS pathway activation in preclinical cellular in vitro and in vivo xenograft
PDAC models [66,73].

3.5. Toxicity Challenges

As researchers explore the dynamic space of targeted therapy combinations in pan-
creatic cancer, the optimism of the recent advancements is tempered by the potential
for overlapping toxicities in regimens incorporating two inhibitors targeting within the
RAF/MEK/ERK pathway or combined with other targets, like in the case of dual inhibition
with afatinib and trametinib [74]. Targeting the upstream regulators of the RAF/MEK/ERK
pathway, SHP2 and SOS1, holds promise but at the same time raises concerns about unan-
ticipated on-target toxicities, as evidenced by clear dose-associated cytopenias [75,76]. The
clinical trial combining the KRASG12C inhibitor, sotorasib, with the anti-PD1 and anti-
PD-L1 monoclonal antibodies pembrolizumab and atezolizumab, respectively, revealed
increased liver toxicities [77]. The mechanisms driving these toxicities remain elusive,
prompting hypotheses ranging from enhanced immune-mediated effects triggered by
targeted therapies to potential off-target covalent protein–drug conjugates causing liver
damage, exacerbated by systemic immune activation. Interestingly, Genentech’s GDC-6036,
a KRASG12C inhibitor administered at lower doses, has shown reduced liver toxicities in
phase I testing, suggesting that dosage adjustments may play a crucial role in mitigating
adverse effects [78]. Preclinical studies of the RMC-6236 tricomplex have shown success in
inhibiting active RAS(ON), including cases of acquired resistance by KRASG12C inhibitors,
but the ubiquitous nature of cyclophilin A introduces uncertainties about the therapeutic
window and potential off-target activity [76,79]. Amidst the hope for breakthroughs in
treating pancreatic cancer, the toxicity challenges underscore the critical need for metic-
ulous exploration of treatment schedules, adjustments and a deep understanding of the
intricate interplay within the complex signaling pathways [76].

4. Discussion—Future Perspectives

The presence of KRAS mutations in pancreatic cancer has significant prognostic im-
plications, influencing both overall survival (OS) and treatment response. Patients with
KRAS-mutated PDAC generally exhibit a poorer prognosis [80]. Furthermore, recent find-
ings indicate distinct survival outcomes related to specific KRAS mutations. For instance,
patients with KRASG12D-mutated PDAC demonstrated a significantly shorter median
overall survival compared to those with KRASG12R mutations, indicating a prognostic
value for KRASG12D mutation [81,82]. Notably, the type of KRAS mutation may also
impact the response to first-line chemotherapy. Thus, FOLFIRINOX showed improved
survival in patients with KRASG12D and KRASG12V mutations, while the patients with
KRASG12C-mutated tumors exhibited longer overall survival when treated with gemc-
itabine plus nab-paclitaxel [83]. Additionally, the variant allele frequency (VAF) and allelic
imbalance of KRAS further contribute to prognosis. Higher KRAS VAF is associated with
shorter survival, and allelic imbalance, leading to increased mutant KRAS dosage, corre-
lates with a more aggressive clinical behavior [84,85]. Beyond KRAS, BRAF mutational
status seems to have prognostic value. In a case report, two PDAC patients who had not
responded to initial systemic chemotherapy, after identification of BRAFV600E mutation
through next generation sequencing, were treated with combined dabrafenib and trame-
tinib and sustained a favorable response [33]. These findings underscore the importance of
molecular profiling, specifically KRAS mutation characterization, in guiding prognosis and
tailoring therapeutic strategies for pancreatic cancer patients.

The omnipresent KRAS mutation in PDAC and the progress in drug development of
small-molecule inhibitors led the early therapeutic efforts targeting the main components
downstream of the RAF/MEK/ERK pathway. Although preclinical studies demonstrated
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promising findings, the clinical attempts were unsuccessful due to low efficacy and dose-
limiting toxicities [86]. However, when a precision medicine approach was followed the
paradigm was shifted. Case reports indicate benefits when the BRAF mutational sta-
tus was confirmed, in a wild-type KRAS context, before therapeutic intervention [29–34].
Pharmacological targeting of the canonical components of RAF/MEK/ERK signaling in
RAS-dependent tumors is often limited by the development of adaptive resistance, which
is usually mediated by feedback activation of RTK signaling, resulting in reactivation
of the RAF/MEK/ERK pathway activity [53]. Thus, the strategy of targeting additional
effectors downstream of RTKs and upstream of RAS, such as SHP2 and SOS1, is attractive.
Therapies that directly target the mutated components of the pathway such as KRAS or
BRAF could be combined with inhibitors against upstream regulators such as SHP2 and
SOS1 and downstream pathway components such as MEK or ERK for a sustained inhi-
bition (Table 1). The concept of dual pathway inhibition has been successfully tested in
the case of BRAFV600E-mutated melanoma, where vertical double BRAF/MEK inhibition
has gained FDA approval. Furthermore, in the context of BRAFV600E-mutant tumors
there is evidence for effectiveness of a triple inhibitory strategy within the RAF/MEK/ERK
pathway [87]. A recent clinical trial, based on promising preclinical data, tested the com-
bination of avutometinib, a first-in-class RAF/MEK clamp and a compound designed
to inhibit MEK and block RAF-mediated phosphorylation of MEK in combination with
the focal adhesion kinase (FAK) inhibitor defactinib (Table 1, Figure 1). The recent ap-
proval of the KRASG12C inhibitor sotorasib for KRASG12C-mutated non-small cell lung
cancer (NSCLC) allowed the enrolment of low-frequency KRASG12C-PDAC cases in clin-
ical trials for evaluation (Table 1). Currently, direct inhibition of mutant RAS through
allele-specific inhibitors provides a therapeutic opportunity. Interestingly, inhibition of
KRASG12D, using MRTX1133, in immunocompetent PDAC models resulted in tumor
suppression by increasing tumor-associated macrophages (TAMs) and tumor-infiltrating
cytotoxic T cells [88]. This argues that KRASG12D inhibition has a potential immunomodu-
latory function, which may be beneficial especially for patients with pancreatic cancer, an
immunologically “cold” malignancy.

5. Conclusions

Despite the progress in drug discovery, there is an additional need to develop
novel, more potent and broader RAF/MEK/ERK pathway inhibitors, including KRAS-
mutant inhibitors, for improved tailored targeted therapy [89]. Developing effective
and mechanism-based combination therapy regimens is essential to maximizing the ef-
ficacy of RAF/MEK/ERK pathway inhibition, which holds great promise for pancreatic
cancer control.
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