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Abstract: The human body emits a multitude of volatile organic compounds (VOCs) via tissues and
various bodily fluids or exhaled breath. These compounds collectively create a distinctive chemical
profile, which can potentially be employed to identify changes in human metabolism associated with
colorectal cancer (CRC) and, consequently, facilitate the diagnosis of this disease. The main goal
of this study was to investigate and characterize the VOCs’ chemical patterns associated with the
breath of CRC patients and controls and identify potential expiratory markers of this disease. For this
purpose, gas chromatography–mass spectrometry was applied. Collectively, 1656 distinct compounds
were identified in the breath samples provided by 152 subjects. Twenty-two statistically significant
VOCs (p-xylene; hexanal; 2-methyl-1,3-dioxolane; 2,2,4-trimethyl-1,3-pentanediol diisobutyrate;
hexadecane; nonane; ethylbenzene; cyclohexanone; diethyl phthalate; 6-methyl-5-hepten-2-one;
tetrahydro-2H-pyran-2-one; 2-butanone; benzaldehyde; dodecanal; benzothiazole; tetradecane; 1-
dodecanol; 1-benzene; 3-methylcyclopentyl acetate; 1-nonene; toluene) were observed at higher
concentrations in the exhaled breath of the CRC group. The elevated levels of these VOCs in CRC
patients’ breath suggest the potential for these compounds to serve as biomarkers for CRC.

Keywords: colorectal cancer; GC-MS; volatile organic compounds; VOCs; CRC; breath test; CRC
marker; screening

1. Introduction

In the year 2020, colorectal cancer (CRC) stood as the third most diagnosed cancer glob-
ally and the second principal cause of cancer-related mortality [1]. In that year, estimations
indicated over 1.9 million new cases of CRC and approximately 935,000 related fatalities [1].
The 5-year survival rate for CRC can soar to 90% when the condition is detected in its early
stages, significantly elevating the chances of a favorable outcome. Early detection is crucial
in improving patient outcomes and reducing mortality rates, making it a priority in any
national health system initiative to develop a dependable and efficient screening tool.
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CRC screening modalities do exist and are recommended for routine clinical appli-
cations in most developed countries, but there is still definite room for improvement.
Presently, two non-invasive screening methods are used: a stool-based test that detects
occult blood, namely the guaiac-based fecal occult blood test (gFOBT), and the fecal im-
munochemical test (FIT). FIT is more sensitive than gFOBT in detecting precancerous le-
sions and cancer, leading to a strong recommendation for prioritizing FIT over gFOBT [2–5].
Although FIT is currently the non-invasive test of choice, variability in cutoff levels for
positive results leads to inconsistencies in diagnosis and complicates the establishment of a
clinical standard [6,7]. Additionally, FIT is not perfectly sensitive, especially in detecting
adenomas [8]. Despite the availability of CRC screening methods, participation in public
screening programs is low due to psychological or physical discomfort associated with the
tests and the need for improved accuracy. Colonoscopy is considered the gold standard,
serving dual purposes as both a primary screening tool and a follow-up procedure for
individuals who have tested positive through other screening methods [9,10]. While highly
sensitive, it is time- and resource-demanding and may cause complications such as bowel
perforation, bleeding, dehydration due to bowel preparation, and cardiovascular events
due to sedation [11,12].

Newer screening techniques include multitarget stool DNA testing (FIT-DNA), which
combines FIT with the analysis of altered DNA biomarkers in stool cells. This approach
has a significantly higher cancer detection rate compared to FIT alone but falls short in
terms of specificity, potentially leading to an increased number of unnecessary colono-
scopies [13]. Serology tests designed to identify circulating methylated SEPT9 DNA present
comparatively lower sensitivity, with a standardized sensitivity of 48.2% [14].

These limitations underscore the need for an alternative non-invasive, cost-effective,
low-risk, and highly sensitive screening test to prevent overdiagnosis. One promising
method involves the use of volatile organic compounds (VOCs) in exhaled breath, which
has shown encouraging results [15–19]. The concept is based on the premise that VOCs
in human breath are indicators of metabolic processes and diseases. These compounds,
identifiable in various biological substances including tissues, urine, blood, and, notably,
exhaled breath, suggest that cancer cells release VOCs into the bloodstream. Subsequently,
these compounds are excreted through the lungs and can be detected in exhaled air [20–22].

Investigating cancer-specific VOCs in biological fluids is a promising research di-
rection. Previous studies have identified cancer-related VOCs in patients with various
types of cancer, including stomach, breast, lung, and CRC [23–27]. Techniques such as gas
chromatography–mass spectrometry (GC-MS), ion mobility spectrometry (IMS), proton
transfer reaction mass spectrometry (PTR-MS), and electronic nose (e-nose) have been
employed for analysis [28]. Numerous studies exploring the viability of VOC analysis as a
CRC screening tool have yielded promising outcomes [15,29].

The main goal of this study was to investigate and characterize the VOC chemical
patterns associated with the breath of CRC patients and to identify potential expiratory
markers of this disease.

2. Results

In total, the study encompassed a total of 78 patients diagnosed with CRC and
74 individuals serving as controls; the median age of the study subjects being 63. Notably,
within this cohort, analysis revealed no statistically significant disparity in the prevalence
of CRC between genders, as indicated by a p-value of 0.836.

The CRC cohort exhibited diverse clinical stages and varying degrees of cancer differ-
entiation in colorectal adenocarcinoma. A comprehensive account of the clinical features of
the participants is outlined in Table 1 for a more detailed insight into the distinct character-
istics observed within the study group.
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Table 1. Gender and cancer stage and grade distribution in the study cohort.

Cancer Group, n (%) Control Group, n (%) Total, n (%) p-Value

Gender
Females 31 (44.0%) 40 (56.0%) 71 (100.0%)

0.836Males 47 (58.0%) 34 (42.0%) 81 (100.0%)

Total included 78 (51.0%) 74 (49.0%) 152 (100.0%) -

Cancer stage

I 16 (21.0%) - -

-II 37 (47.0%) - -
III 19 (24.0%) - -
IV 6 (8.0%) - -

Cancer differentiation grade
1 23 (29.0%) - -

-2 43 (55.0%) - -
3 12 (15.0%) - -

n—number of study participants.

Altogether, the analysis of breath samples from 152 subjects revealed the presence of
1656 distinct compounds. Among these, 1210 were identified in samples obtained from
CRC patients, and 1267 were found in samples provided by control subjects.

The VOCs, systematically categorized based on their chemical classes and exhibiting
an incidence rate exceeding 50% are outlined in Table 2, offering a detailed representation of
the prevalent constituents in the analyzed breath samples. Within both groups, aldehydes,
esters, and ketones emerged as the predominant classes of VOCs. These were succeeded
by hydrocarbons, alcohols, aromatics, and heterocycles. The variability in the number of
identified compounds per sample was evident, with subjects exhibiting a range from 50
to 93. This observation underscores the diverse composition of VOCs among individuals,
emphasizing the intricate nature of the analyzed samples.

Table 2. Volatile organic compounds categorized by chemical classes, with occurrence above 50%.

Chemical Class Compound Name (CAS, Occurrence of Cancer/Non-Cancer (%))

Aldehydes hexanal (66-25-1; 87/93), dodecanal (112-54-9; 73/82)

Esters diethyl phthalate (84-66-2; 87/93)

Ketones 6-methyl-5-hepten-2-one, (110-93-0; 83/92), cyclohexanone (108-94-1; 74/76)

Hydrocarbons hexadecane (544-76-3; 86/92), tetradecane (629-59-4; 81/84), nonane (111-84-2; 78/82), 1-nonene
(124-11-8; 63/59)

Alcohols 1-butanol (71-36-3; 87/92), benzyl alcohol (100-51-6; 81/82), 1-dodecanol (112-53-8; 50/58)

Aromatics ethylbenzene (100-41-4; 79/90), toluene (108-88-3; 85/88), p-xylene (106-42-3; 73/80), benzene
(71-43-2; 73/80)

Heterocyclic 2-methyl-1,3-dioxolane (497-26-7; 58/54)

CAS—Chemical Abstracts Service.

The distribution of VOCs based on their chemical classes was similar in the two
groups under study. Table 3 lists the compounds with an occurrence exceeding 30%. In
both patients and controls, the distribution of VOCs was comparable, with aromatics being
the dominant class, comprising 12 compounds. Out of the 1656 compounds detected, we
selected 21 statistically significant VOCs that were observed at higher concentrations in the
exhaled breath of the CRC group compared to the controls. These compounds are listed in
Table 3. The VOCs are ordered according to increasing p-values from the Wilcoxon rank-
sum test, and only those compounds where the difference between groups was statistically
significant are included. As indicated by the data, the levels of all these compounds were
higher in the cancer group. Additional identified VOCs can be found in the Supplementary
Information, Table S1.
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Table 3. The list of breath compounds exhibiting differences between CRC patients and controls.

Compound Name CAS p-Value

Median (Q25,Q75) Breath Gradient

Level in CRC
Group Compared
to Control Group

Controls CRC Patients

p-xylene 106-42-3 0.0005 ↑ 1,504,742
(936,665–2,127,623)

2,289,566
(1,418,724–3,064,362)

hexanal 66-25-1 0.0012 ↑ 1,091,070
(823,273–1,314,062)

1,369,804
(1,076,601–1,605,449)

2-methyl-1,3-dioxolane 497-26-7 0.0024 ↑ 331,109
(198,932–454,532)

484,592
(335,398–768,482)

2,2,4-trimethyl-1,3-
pentanediol diisobutyrate 6846-50-0 0.0025 ↑ 1,030,684

(742,621–1,417,747)
1,341,632

(1,038,423–1,807,558)

hexadecane 544-76-3 0.0026 ↑ 838,697
(631,009–1,890,079)

1,598,483
(905,689–1,989,248)

nonane 111-84-2 0.0028 ↑ 354,633
(244,656–529,638)

484,690
(330,122–799,694)

ethylbenzene 100-41-4 0.0028 ↑ 357,817
(161,941–570,524)

596,334
(278,377–840,950)

cyclohexanone 108-94-1 0.0045 ↑ 164,463
(95,647–245,373)

210,847
(154,565–373,447)

diethyl phthalate 84-66-2 0.0060 ↑ 2,372,295
(1,244,073–4,668,721)

3,810,126
(2,186,709–6,749,612)

6-methyl-5-hepten-2-one 110-93-0 0.0076 ↑ 655,879
(349,775–1,046,236)

852,666
(581,498–1,227,127)

tetrahydro-2h-pyran-2-one 542-28-9 0.0093 ↑ 183,202
(159,649–232,003)

274,253
(198,146–419,828)

2-butanone 78-93-3 0.0109 ↑ 485,529
(338,060–609,519)

690,855
(445,338–901,846)

benzaldehyde 100-52-7 0.0126 ↑ 4721459
(3,876,629–5,921,829)

5,998,416
(4,588,636–7,960,831)

dodecanal 112-54-9 0.0127 ↑ 561,576
(413,502–769,154)

735,169
(519,829–876,106)

benzothiazole 95-16-9 0.0148 ↑ 158,701
(133,720–195,510)

199,243
(155,950–273,625)

tetradecane 629-59-4 0.0178 ↑ 1,098,813
(760,748–1,927,047)

1,521,759
(1,143,601–2,151,569)

1-dodecanol 112-53-8 0.0202 ↑ 544,799
(426,605–684,038)

712,005
(489,257–908,544)

benzene 71-43-2 0.0280 ↑ 1,148,309
(769,348–2,120,718)

1,830,674
(1,112,987–2,508,011)

3-methylcyclopentyl acetate 24070-70-0 0.0322 ↑ 319,377
(270,008–397,761)

406,271
(298,582–480,658)

1-nonene 124-11-8 0.0342 ↑ 247,535
(177,798–337,746)

318,057
(226,743–477,655)

toluene 108-88-3 0.0457 ↑ 1,192,237
(793,122–2,220,208)

1,553,576
(1,114,674–2,548,652)

CRC—colorectal cancer, CAS—Chemical Abstracts Service, Q25, Q27—interquartile range.

The violin plot (Figure 1) illustrates the distribution of chemical spike areas across
two distinct group—a control group and cancer group.
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3. Discussion

The current study elucidates significant differences in the breath VOC patterns be-
tween CRC patients and healthy controls, identifying 21 statistically significant VOCs
(p-xylene; hexanal; 2-methyl-1,3-Dioxolane; 2,2,4-trimethyl-1,3-pentanediol diisobutyrate;
hexadecane; nonane; ethylbenzene; cyclohexanone; diethyl phthalate; 6-methyl-5-hepten-
2-one; tetrahydro-2H-pyran-2-one; 2-butanone; benzaldehyde; dodecanal; benzothiazole;
tetradecane; 1-dodecanol; 1-benzene; 3-methylcyclopentyl acetate; 1-nonene; toluene).
These compounds, that include a range of aldehydes, hydrocarbons, and aromatic com-
pounds, not only differentiate CRC patients from healthy individuals but also offer insights
into the underlying metabolic and biochemical changes induced by CRC.

Each compound may uniquely contribute to the overall breath fingerprint, reflecting
specific metabolic and biochemical changes in CRC, such as changes in lipid metabolism
and increased oxidative stress. For example, higher levels of aldehydes, such as hexanal,
might result from cell membrane fatty acid peroxidation due to reactive oxygen species
(ROS) [30,31]. Ketones, such as cyclohexanone and 2-butanone, are formed because of
increased fatty acid oxidation [32]. Aromatic compounds, such as toluene and benzene, are
commonly associated with the breakdown of cellular components and could reflect the
increased cell turnover in cancer [33].

However, it is important to note that there is no consensus yet on the most prevalent
VOCs in CRC patients’ breath, and research is expanding to other biological materials like
urine, blood, feces, and cancer tissues [20,33–35]. Studies in these areas, such as Wen Qing
et al.’s research on urinary VOCs in cancer, have identified different predominant VOCs,
suggesting that the VOC profile might vary with the biological material examined [33]. In
contrast, our previous study, which focused on comparing VOCs released in cancerous
versus non-cancerous tissues, revealed a predominance of hydrocarbons and alcohols, with
aldehydes, ketones, and aromatic compounds following in prevalence [20].
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Altomare et al.’s research, focusing on breath VOCs with high discriminant power
for CRC, identified key VOCs (tetradecane, ethylbenzene, and benzaldehyde) that overlap
with those found in our study, lending further credibility to these compounds as potential
biomarkers [17]. Additionally, Śmiełowska et al.’s study on both breath and fecal samples
from CRC patients demonstrates not only the diversity in VOCs but also the differences in
their concentrations across different sample types, indicating that the VOC profile might be
more pronounced in breath samples [36].

Wang Changsong et al. [37] identified cyclohexanone as a notable VOC in CRC patients’
breath, which is consistent with our findings. In our study, along with cyclohexanone, we
also detected tetradecane, dodecanal, and 2-butanone. These biomarkers were previously
identified in our research on VOC emissions from cancerous versus normal colon tissues,
though in that study these four compounds were found at reduced concentrations in cancer-
ous tissue compared to healthy tissue [20]. This discrepancy calls for further investigation,
taking into account factors such as the mixing of room air VOCs with exhaled air, the
solubility of VOCs in blood, and other variables [38].

The detection of VOCs like hexanal, linked to lung cancer, and 2-butanone, associated
with lung and breast cancer, highlights the broader implications of VOCs in cancer detec-
tion [39]. This underscores the importance of understanding the complex nature of VOC
profiles, which vary significantly in health and disease [40,41].

Our research adds to the existing knowledge base by introducing new VOCs and
corroborating the findings of similar VOCs in CRC from other studies. However, the
challenge remains in distinguishing cancer-specific VOCs or groups due to their diverse
chemical nature and varying presence. Factors like gut microbiota, diet, and other health
conditions can influence VOC profiles, complicating their interpretation [42].

Several limitations of this study should be mentioned. Firstly, the relatively small
sample size of 152 individuals, coupled with the recruitment of control participants from
one clinic and CRC patients from a single hospital in the same city, while sufficient for initial
analysis, raises concerns about the geographical and genetic diversity of breath profiles
and the broader applicability of our findings. Secondly, another significant limitation is the
lack of consideration for the stage of CRC in the analysis of VOCs. The absence of detailed
data on the proportion of patients with late-stage versus early-stage adenocarcinoma limits
our ability to draw comprehensive conclusions about the disease stages. Lastly, the way
samples were stored and processed could have affected the chemical patterns that were
observed. Despite these challenges, the exploration of CRC patients’ breath fingerprint
through GC-MS analysis is an innovative approach with significant potential in cancer
diagnostics. While there are limitations, the promising results and the non-invasive nature
of this method make it an exciting area for future research and development in oncology.

4. Materials and Methods
4.1. Chemical Standards and Quality Benchmarks

All reference mixtures were generated using high-purity liquid chemicals with stated
purities ranging from 95% to 99.9%, sourced from Merck (Wien, Austria). The preparation
of standards involved a two-step process. Initially, a few microliters of a liquid compound
were introduced into evacuated and heated 1 L glass bulbs (Supelco, Toronto, Canada) to
produce primary standards. Once the compounds had evaporated, the bulb pressure was
equalized using nitrogen. Subsequently, the primary standards were diluted by transferring
precise volumes from the bulb mixtures into 3–25 L Tedlar bags (SKC Inc., Eighty Four,
PA, USA). These bags had been prefilled with purified and humidified air (with a relative
humidity of 100% at 34 ◦C). The standards were sampled within a 30 min time window
after production.

We acquired stainless steel industry-standard thermal desorption tubes (1/4 inch
outer diameter, 3½ inches long) from Markes International (Bridgend, UK). These tubes
were prefilled with Tenax TA (Bridgend, UK) and coated with SilcoNert™ (Bellefonte, PA,
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USA). Before each sampling event, the sorbent tubes underwent reconditioning procedures
following the manufacturer’s guidelines.

4.2. Study Group Description and Recruitment Process

The study enrolled individuals diagnosed with CRC based on confirmed morphologi-
cal assessments, including patients with confirmed adenocarcinoma, who donated a breath
sample before undergoing surgical treatment. The control cohort consisted of individuals
without high-risk precancerous lesions or colorectal adenocarcinoma, all of whom had
undergone a colonoscopy. The definitive categorization for the study was determined
following the examination of the morphological report.

Participants were sourced from two medical facilities: the Riga East Clinical University
Hospital within the Oncology Center of Latvia and the Digestive Diseases Centre GASTRO
in Riga, Latvia.

The enrollment criteria included individuals aged 18 and above who provided signed
consent forms. Exclusion criteria were established to minimize potential confounding
factors from other medical conditions. Individuals with concurrent active malignancies,
a history of complete bowel cleansing, inflammatory bowel diseases, previous bowel
resection, ongoing neoadjuvant chemotherapy and/or radiation therapy, acute conditions
requiring emergency surgery, chronic renal failure stage 4, type I diabetes, and active
bronchial asthma were excluded.

4.3. Breath Sample Collection

Breath samples were taken in a designated room that was free from any chemicals,
cleaning agents, medications, solvents, or kitchen waste. Samples were taken at room
temperature.

To reduce the impact of possible variables that could interfere with the accuracy of
exhaled breath analysis, participants were provided with clear guidelines. They were
instructed to adhere to certain practices, including fasting overnight, refraining from
smoking and alcohol consumption, avoiding gum chewing, and abstaining from physical
activity for at least two hours before providing breath samples. Furthermore, participants
were advised not to use perfume until after the collection of their breath samples. These
measures were implemented to ensure the reliability and integrity of the collected breath
samples for analysis.

Breath samples were collected using a custom-designed breath sampler illustrated
in Figure 2. This sampler comprised a single-use mouthpiece (Intersurgical) attached to
a disposable elbow (Intersurgical) and the CO2 sensor cell (Masimo, Irvine, CA, USA;
IRMA, Seattle, WA, USA) connected to the opposite end of the elbow. The elbow featured
a 1/4” port, facilitating the attachment of industry-standard ¼” sorbent tubes. Directly
before sampling, the sampling end of a sorbent tube was inserted into the elbow so that
it protruded 5–6 mm into its interior and secured with a ¼” PTFE nut. The other end of
the sampling tube was connected to a 250 mL glass syringe (Socorex, Switzerland) using a
1/8” Teflon (Wilmington, DE, USA) tube. Participants could freely inhale/exhale through a
mouthpiece without encountering pneumatic resistance.

Samples were taken manually via drawing a volume of 10–15 mL during the end-
tidal phase of an exhalation, as determined by CO2 measurements. Ultimately, a total of
500 mL of breath was collected from a single subject over 20–30 subsequent exhalations.
Immediately after sampling, both ends of the sorbent tube were sealed with brass ¼” nuts,
and the tubes were frozen at −80 ◦C. Samples were stored at −80 ◦C and transported on
dry ice, with efforts made to minimize storage time to 4 weeks.

Relative standard deviations (RSDs) were calculated using 5 consecutively analyzed
breath samples obtained from healthy volunteers. RSDs varied from 4 to 22%, which are
considered adequate for the purposes of this study.
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Figure 2. Scheme of sampling system used in the study and consisting of mouthpiece, CO2 control
sensor, sorbent tube, and a syringe for drawing air.

4.4. Gas Chromatography–Mass Spectrometry Examination of Breath Samples

A two-stage thermal desorption was performed using a thermal desorber and au-
tosampler (TD100, Markes International Limited, Cardiff, UK). First, Tenax tubes were
heated to 280 ◦C for 6 min under the constant flow of helium 6.0 (99.9999%) at 20 mL/min
to desorb volatiles, that were next refocused in a cold trap packed with graphitized carbon
black and maintained at 5 ◦C. The final injection of VOCs into the capillary column was
achieved via the rapid heating of the cold trap to 320 ◦C for 1.5 min in a spitless mode.

The VOC separation and analysis were performed using an Agilent 7890A/5975C GC-
MS system (Agilent, Santa Clara, CA, USA). Volatiles were separated using an Rxi-624Sil
MS column (30 m × 0.32 mm, layer thickness 1.8 µm, Restek, Centre County, PA, USA)
operated in constant helium flow of 1.5 mL min−1. The GC oven temperature program
was as follows: 40 ◦C for 10 min, followed by 5 ◦C min−1 up to 150 ◦C, hold for 5 min, then
10 ◦C min−1 up to 280 ◦C, and isotherm at 280 ◦C for 5 min. The untargeted VOC analysis
was performed using the mass spectrometer working in a SCAN mode with the associated
m/z ranging from 20 up to 250. The peak integration was based on extracted m/z ratio
chromatograms and such an approach allowed for the separation of the majority of peaks
of interest from their neighbors. The quadrupole, ion source, and transfer line were kept at
150 ◦C, 230 ◦C, and 280 ◦C, respectively.

4.5. Statistical Data Analysis

Due to the deviation of VOC level values from a normal distribution, a non-parametric
Wilcoxon rank-sum test was employed to assess and compare the measured VOC levels.

For this purpose, the breath gradient of the VOCs was used, i.e., the difference between
the VOC level in breath and room air. A comparison was drawn between individuals with
CRC and those without cancer, with significance set at a threshold of p < 0.05. Moreover,
only VOCs with occurrences higher than 20% were taken into consideration. In this
study, an untargeted analysis was performed to pinpoint volatile markers of CRC. Thus,
the statistical analysis relied on the relative quantification and peak areas of detected
metabolites were used as the parameter in the analysis. For the purposes of this study,
limit of detection (LOD) was defined as three times the noise amplitude and only peaks
with signal-to-noise ratio larger than 9 (3 × limit of quantification (LOD)) were taken
into account.

5. Conclusions

VOCs are increasingly recognized as a valuable method for the early detection of
a range of cancers, notably colorectal cancer (CRC). The aim of this study was to inves-
tigate and characterize the VOC chemical patterns associated with the breath of CRC
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patients and identify potential expiratory markers of this disease. The species emitted in
higher amounts in CRC were p-xylene; hexanal; 2-methyl-1,3-dioxolane; 2,2,4-trimethyl-
1,3-pentanediol disobutyrate; hexadecane; nonane; ethylbenzene; cyclohexanone; diethyl
phthalate; 6-methyl-5-hepten-2-one; tetrahydro-2h-pyran-2-one; 2-butanone; benzalde-
hyde; dodecanal; benzothiazole; tetradecane; 1-dodecanol; 1-benzene; 3-methylcyclopentyl
acetate; 1-nonene; toluene.

The results of this study provide compelling evidence that VOCs can be released in
exhaled breath and serve as potential biomarkers for the presence of CRC. The identification
of specific VOCs in the breath of CRC patients through GC-MS analysis offers valuable
insights into the potential development of a breath-based diagnostic tool. Accurate identifi-
cation of the VOCs linked to CRC is crucial for steering and refining the development of
advanced sensor technologies. The distinct breath fingerprint associated with CRC holds
promise for early detection and monitoring, presenting a non-invasive and patient-friendly
approach to improving clinical outcomes. The findings underscore the significance of
continued research in this field, as it is essential for translating these discoveries into robust
and reliable diagnostic tools for CRC.
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