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Abstract: Over the last few decades, we have witnessed growing interest from both academic and
industrial laboratories in peptides as possible therapeutics. Bioactive peptides have a high potential
to treat various diseases with specificity and biological safety. Compared to small molecules, peptides
represent better candidates as inhibitors (or general modulators) of key protein–protein interactions.
In fact, undruggable proteins containing large and smooth surfaces can be more easily targeted
with the conformational plasticity of peptides. The discovery of bioactive peptides, working against
disease-relevant protein targets, generally requires the high-throughput screening of large libraries,
and in silico approaches are highly exploited for their low-cost incidence and efficiency. The present
review reports on the potential challenges linked to the employment of peptides as therapeutics and
describes computational approaches, mainly structure-based virtual screening (SBVS), to support the
identification of novel peptides for therapeutic implementations. Cutting-edge SBVS strategies are
reviewed along with examples of applications focused on diverse classes of bioactive peptides (i.e.,
anticancer, antimicrobial/antiviral peptides, peptides blocking amyloid fiber formation).

Keywords: bioactive peptides; PPIs; drug discovery; virtual screening; anticancer peptides; antivi-
ral peptides

1. Introduction

Protein functions are primarily dictated by interactions with other proteins or biomolecules [1].
Interestingly, an ensemble of hundreds of thousands of protein–protein interactions (PPIs) com-
poses the human interactome, and the aberrant modulation, in particular inhibition, of key PPIs
within this ensemble can be associated with different diseases, ranging from cancer to neurode-
generative pathologies [2,3]. Since large regions mediate PPIs, and they are usually not provided
with well-defined pockets, grooves or clefts, their targeting by small molecules represents a very
challenging drug development route [2,3]. Both natural and synthetic peptides represent valuable
alternatives to small molecules in the development of therapeutic agents able to inhibit PPIs [2].
In fact, due to the different chemical–physical properties with respect to small molecules, peptides
can better adapt to the large interaction surfaces of proteins [2–4]. In addition, the possibility of
improved peptide ADME (i.e., absorption, distribution, metabolism, excretion) profiles represents
a further justification for the interest of drug development research in peptides targeting PPIs [2,3].
Peptides with a small molecular weight, high flexibility, and minimal toxicity can potentially
constitute a new class of biopharmaceuticals [3]. On the other hand, peptide-based drug de-
velopment, which requires analysis by high-throughput (HT) approaches of peptide–protein
interactions, represents an expensive and time-consuming process that can benefit from in silico
methods [1]. Therefore, this review is focused on the cutting-edge in silico approaches that could
be implemented to discover peptide modulators of PPIs with potential therapeutic effects. The
applications of computational methods centered around diverse classes of peptides (including
anticancer, antiviral, self-assembling peptides) are also discussed.
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1.1. Targeting PPIs with Peptides

The availability of 3D protein structures, principally protein–protein complexes, is
crucial to developing peptides targeting PPIs [1,2]. In this framework, Nuclear Magnetic
Resonance (NMR), X-ray crystallography, and cryo-Electron Microscopy (cryo-EM) are the
most frequently applied techniques to obtain the structures of single interactors or their
complexes [1,2]. More precisely, X-ray crystallography is rather suitable for retrieving data
for large globular domains (alone or associated with each other) whereas, NMR can also be
exploited to study proteins involved in the formation of transient and weak complexes and
obtain dynamic information [1,2]. Moreover, structures with near-atomic resolutions can
be determined by combining low-resolution structural techniques [e.g., cryo-Electron Mi-
croscopy (cryo-EM) and Small-Angle X-ray Scattering (SAXS)] with X-ray crystallography,
NMR, Förster Resonance Energy Transfer (FRET), or Mass Spectroscopy (MS) techniques,
along with in silico approaches [2]. The reference database for 3D structures obtained
by all these techniques is the Protein Data Bank (PDB) [3]. With a 3D structure in hand,
a detailed analysis of the structural features characterizing the protein interfaces can be
carried out, and the gained structural insights can be employed for the design of peptides
able to interfere with the PPI under analysis. In the peptide drug design field, in silico
approaches to predicting protein–peptide complexes offer some advantages if compared
to experimental methods, although they still present diverse challenges to overcome [1].
A significant issue, which should be taken into account when trying to computationally
model protein–peptide interactions, relies on the variety of conformations that can be
explored by both proteins and peptides following mutual binding (the so-called induced
fit) and the difficulties in properly ranking the in silico predicted solutions for a specific
protein–peptide complex [1]. In general, it is not easy to guess in silico which protein
fragment will bind a protein partner and establish which conformation the selected peptide
region will exactly assume upon complex formation [1].

However, the combination of in silico and experimental methodologies is the most
common strategy in drug discovery as it can exploit an initial generation of hypotheses by
computational tools, thus greatly speeding up the overall peptide identification process and
reducing monetary costs. In silico strategies work better when at least the 3D structures of
isolated target proteins are available and have been experimentally determined, although,
recently, the AlphaFold2 approach has tremendously revolutionized the world of molecular
modeling by improving prediction of 3D structures [5–7]. Nevertheless, recent advances
have been made for the de novo design of new proteins through deep learning approaches,
including denoising diffusion probabilistic models (DDPMs) [8]. For example, the recently
described “RoseTTAFold diffusion” (RFdiffusion) relies on a generative model of protein
backbones. It can be very powerful for the design of protein monomers, protein interac-
tors, oligomers with precise symmetries, and for scaffolding enzyme active pockets and
symmetric motifs when trying to build therapeutic proteins or those able to bind metals [8].

When the identification of bioactive peptides targeting certain PPIs is negatively
affected by the unavailability of 3D structures, phenotype- and target-oriented approaches
often constitute valuable solutions [2]. The phenotype-oriented approach [9] may include
screening natural peptides or synthetic libraries, the members of which are synthesized on
a solid support. This approach offers the chance to simultaneously evaluate a considerable
number of peptide variants. The phage display technology, that relies on screening peptides
located on the surface of filamentous bacteriophages expressing them, represents another
alternative to identify bioactive peptides [2,4,10]. Regarding target-oriented approaches,
PEPscan is a valuable method to identify peptide ligands by scanning consecutive and
overlapped peptide fragments that derive from one of the two proteins participating in the
PPI of interest [2]. PEPscan relies on peptide arrays that can be obtained through the SPOT
technique and offers access to a wide variety of peptide sizes (generally, lengths range from
5 to 30 amino acids) and formats [2,11].

The pepATTRACT webserver can be a valuable in silico tool that resembles the
experimental PEPscan approach. However, pepATTRACT requires knowledge of the 3D
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structure of the target protein to be used, along with peptide sequences, as input to perform
blind docking runs [12].

Another crucial point when searching for novel peptide modulators of PPIs is the
biophysical characterization of peptide–protein and protein–protein interactions, including
the determination of binding affinities and stoichiometries. To this aim, many biophysical
techniques can be implemented, but, among the most widely used, there are Isothermal
Titration Calorimetry (ITC) [13], Surface Plasmon resonance (SPR) [14], BioLayer Inter-
ferometry (BLI) [15], and MicroScale Thermophoresis (MST) [16]. For weak binding and
under precise conditions, NMR techniques can be supportive to analyze protein–ligand
complexes better and can even be used to estimate the dissociation constants [17–21].

ITC is very useful for determining binding stoichiometry, equilibrium constants, and
the variation in enthalpy (∆H) and entropy (∆S) associated with molecular recognition,
whereas the rates of association (kon) and dissociation (koff) characterizing PPIs can be
determined by SPR [2].

Once a peptide modulator of a certain PPI is identified, it is important to chemically
optimize it. The first crucial step consists of the improvement of the interaction affinity.
The peptide segments extracted from the whole protein structure organization tend to be
disordered in solution but might assume a more ordered bioactive conformation when in
complex with the interaction partner [22]. Thus, forming a protein–peptide complex can
often be associated with a high entropic cost due to the absence of a stable conformation
in the peptide-unbound state and the rise of a more constrained structure in the peptide-
bound form. Therefore, strategies for optimizing peptides targeting PPIs should include
those modifications that can induce lower entropy costs and/or higher enthalpic energies
of binding. To reach such a goal, it can be useful to constrain the peptide architecture and
eventually favor the rise in the unbound form of certain secondary structure elements,
for example, through cyclization, which could be achieved by the formation of amide
bonds, disulfide bridges, or the generation of stapled peptides [2,23–26]. Nevertheless, as
introduced before, one of the difficulties of targeting PPIs is the extension of the interacting
surfaces, and macrocyclization is described as a promising solution to make peptides better
suited to adapt to large surfaces and consequently work efficiently as PPI inhibitors [24].
Nevertheless, chemical modifications can also be employed to improve the pharmacological
properties of model peptides [2]. In fact, during peptide optimization, particular attention
must be given to peptide cell permeability and resistance to protease degradation, and many
medicinal chemistry approaches have already been proposed to improve such properties
(see below) [27–33].

The following section will describe the different features characterizing peptides as
therapeutics and strategies to improve peptide drug-like characteristics.

1.2. Brief Overview of Peptide Therapeutic Potential: Major Drawbacks and Optimization Routes

The use of peptides to develop original therapeutics is supported by their potentially
desirable features, including high binding affinities and large selectivity, that can be con-
nected to the relatively big sizes with respect to small compounds and, consequently, the
capacity to establish an increased number of intermolecular interactions with the target
proteins [34,35].

The hormone insulin is a peptide made up of 51 amino acids. The extraction of insulin
from the pancreas of animals and its first employment in the treatment of diabetes back
in 1920 represents a milestone in the field of peptide-based therapeutics [34–36]. Another
example of a therapeutic peptide isolated from natural sources is the adrenocorticotrophic
hormone (ACTH) that is effective in treating different pathologies of the endocrine sys-
tem [34]. Interestingly, bioactive peptides have also been identified in exotic reservoirs,
such as venoms from arthropods and cephalopods [34].

Over the years, tremendous improvements have been achieved concerning peptide
synthesis methodologies and automation, favoring research in the field of peptide thera-
peutics. Peptides started to attract attention in 1963 after Merrifield introduced solid-phase
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peptide synthesis (SPPS) [33,35,36]. SPPS laid the foundation for the development of
an automatic peptide synthesizer by joining both amino acid coupling and deprotection
in a single reactor, thus enormously simplifying the production of diverse peptide se-
quences [33]. Later in the 1980s, the generation of larger pure peptides became possible
thanks to the emergence of recombinant technology [36]. Another leap forward in the
field of therapeutic peptides was reached with the development of strategies to increase
molecular weight by the conjugation of peptides to lipids, bigger proteins, and polyethylene
glycol. Such conjugated systems paved the way to enhanced renal clearance and plasma
circulation times with respect to unmodified peptides that are instead quickly (i.e., within
minutes) cleared from plasma [36].

Later, the progress of combinatorial synthetic libraries and the introduction of in vitro
display technologies (e.g., phage display, yeast display, mRNA display, ribosome display,
and DNA display) drove the identification of original peptides for a larger set of targets [35].
Intriguingly, display techniques create a sort of bridge between the phenotype (i.e., peptide)
and genotype (RNA/DNA coding sequence), thus allowing peptide selection based on
affinity while genetic material can be recovered and amplified through PCR (Polymerase
Chain Reaction) or upon infection of host cells by phage virions [36].

As regards peptides from the natural reservoir (also named “native” peptides), a major
issue that can be encountered in employing them as therapeutic agents is the disadvanta-
geous absorption, distribution, metabolism, and excretion (ADME) profile [34,35]. Indeed,
peptides generally do not respect the so-called rule of 5 established for small molecules
by Lipinski (i.e., molecular weight < 500 Da, number of H-bond donors ≤ 5, number of
H-bond acceptors ≤ 10, and a partition coefficient logP ≤ 5) and thus are not likely to
passively cross membranes and show good oral bioavailability [35]. Diverse studies have
demonstrated how the characteristic peptide flexibility could contribute to low passive
permeability, thus suggesting the introduction of structural constraints to improve this un-
favorable peptide property [35]. Among the solutions proposed to decrease flexibility, the
introduction of modified residues (e.g., α-methyl, α,β-dehydro, and β-substituted amino
acids) and the substitution of amide bonds with isosteres (e.g., CH2O, CH2CH2, CH2NH,
CSNH, CH2S) represent only a few examples [37]. Cyclization is another strategy proposed
to favor a lowering of the peptide flexibility and is therefore indicated as a promising tool
to enhance peptide permeability [10,35,37,38].

A further tactic that could increase peptide permeability consists of the N-methylation
of backbone nitrogen atoms, which favors an increase in the cis peptide bond population
by decreasing the energy difference between the cis and trans configurations. Furthermore,
this modification also reduces the number of NH backbone groups available to form H-
bonds and, consequently, the energy loss related to the desolvation needed for membrane
crossover. The capacity of peptides to pass through biological membranes can be improved
by conjugation to the so-called cell-penetrating peptides (CPPs), which are generally made
up of 5–30 residues and characterized by the presence of basic residues (i.e., arginines and
lysines) [35].

Another issue related to peptide therapeutics is the poor resistance to protease diges-
tion. In this context, one of the proposed strategies to increase peptide stability consists
of the substitution of L-amino acids, which characterize “native” peptides and can be
recognized by proteases with non-natural D-amino acids [10,33,35]. The N-methylation,
as well as other N-alkylation modifications, by favoring the cis configuration of peptide
bonds, can not only improve permeability, as mentioned above, but also stability. The
β-amino acids (i.e., β2 and β3) and γ-amino acids possess additional carbon atoms in the
backbone and are proposed as a possible route to make peptides more resistant to protease
attack [33,35]. The replacement of peptide bonds with isosteres (e.g., azapeptides and pep-
toids) represents a promising route to mimic the transition state of peptide bond cleavage,
and thus, can be considered a way to inhibit proteases [2,35]. Additional modifications are
recognized as stability enhancers and include the capping of the N-terminus, deamination,
the extension of the N- and C-extremities, and the insertion of moieties able to simulate
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disulfide bonds [36]. The peptide’s resistance to protease and its half-life can be improved
as well by linkage to elements providing a sort of shielding effect for enzymatic cleavage,
such as polyethylene glycol and proteins like the Fc (Fragment crystallizable) domains [35].

Similarly, conjugation to the proopiomelamocortin-derived peptide sequence (i.e.,
NSSSSGSSGAGQ) and lipids (e.g., C14/16/18 fatty acids) has been proven to be effective
in improving the plasma stability [33–35,39].

As briefly mentioned before, cyclization is a common strategy to improve peptide
stabilities by inducing the formation of secondary structure elements [33,35,38,40]. The
stapling of peptides is a widely employed approach that can not only be implemented to
enhance peptide resistance to proteases but also cell permeability and target affinity through
the introduction of covalent crosslinks that can favor the rise of helical structures [33,36].
Covalent crosslinks can be achieved through a variety of approaches, for example, by the
formation of lactam bridges between the side chains of acidic residues (i.e., aspartic acid or
glutamic acid) and lysines or by replacing certain residues with cysteines or homocysteines,
that can be exploited to obtain disulfide bonds, whereas, several biselectrophilic linkers are
available and can be used to introduce a clip by reacting with cysteine residues on a model
peptide [33]. In addition, hydrocarbon-stapled peptides can be achieved by an olefinic
linkage, obtained through click chemistry, between the side chains of α,α-disubstituted
non-natural amino acids, that carry olefinic moieties and are introduced in the i,i+4 or i,i+7
positions of the chosen peptide sequence [41].

The inclusion in a peptide fragment of residues with D-configuration (mainly D-
Proline) might favor turn formation and consequently stabilize β-sheet structural orga-
nization; the “D-Proline-L-Proline” dipeptide motif can be exploited as well to stabilize
β-hairpins [33]. In addition, the formation of β-sheets and β-strands can be induced by
macrocyclization or even the introduction of amyloid-like fragments, which are known to
self-associate by forming extensive β-sheet layers [33].

Although macrocyclic peptides can be considered valid therapeutic candidates for their
improved affinity for a target and stability, they do not possess a proper balance of rigidity
and flexibility and also lack the appropriate solubility required to move between aqueous
and lipophilic environments [40]. To ameliorate this undesirable feature of macrocyclic
peptides, it can be convenient to introduce, inside smaller cyclic peptides, residues provided
with N-methylation and D-configuration. Such small cyclic peptides can be more suitable
for oral dosing as they can be characterized by better metabolic stabilities with respect to
macrocyclic peptides [40].

The bioavailability of peptide drugs, which is highly reduced by enzymatic cleavage
occurring in the intestinal tract, can be enhanced by coformulations with inhibitors of
protease activity. However, this approach may present side effects leading to digestion- and
pancreas-related problems. It might be convenient to employ carriers that enhance peptide
absorption; these conveyors include a variety of chemical molecules that can operate
through several mechanisms, such as the opening of tight junctions and modulation of
membrane fluidity and mucus viscosity [33,35]. Among the carriers, we can find chelating
agents like ethylenediaminetetraacetic acid (EDTA) and citric acid, short fatty acids (i.e.,
molecules with an amphipathic nature) like sodium caprylate, sodium lauryl sulphate, or
sodium taurocholate (representing an example of bile acid) [35].

A further route to improve peptide oral bioavailability and pharmacodynamic features
consists of employing mucoadhesive polymeric systems (e.g., sodium carboxymethyl cellu-
lose, polyacrylic acid, polyethylene oxide, methyl cellulose, etc.. . .) that become attached to
the intestinal epithelium, thus improving absorption at the mucosal membrane [35,39].

Nowadays, the targeting of intracellular space with peptide therapeutics remains a
great challenge [38,42,43]. From a historical perspective, peptide drug discovery was ini-
tially (through the 1970s) centered around receptor targets; later (1980s–1990s), remarkable
accomplishments were achieved regarding the discovery of peptides showing good cellular
permeability and capacity to regulate intracellular protein targets like the macrocyclic natu-
ral peptide product cyclosporin, and diverse groups of cell-penetrating peptides (CPPs)
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including the synthetic ones obtained by conjugation with the transactivating transcrip-
tional activator (TAT). To describe in depth the methods to improve peptide permeability
and delivery inside cells is beyond the goal of this work, as many reviews have been
centered on the topic [42–45]. However, it is worth noting that several experimental and
computational screening instruments to investigate peptide permeability and support the
development of intracellularly targeted peptide therapeutics are presently available. For
instance, there exist methods that implement cellular monolayers to analyze transcellular
permeability; computational/biophysics tools comprise those focused on exposed polar
surface features, the comparative analysis of intramolecular and solvent H-bonding by
NMR and mass spectrometry (MS) analyses, the evaluation of octanol/water phase par-
titioning to establish energy-independent translocation, and the analysis of the radius of
gyration, which represents a sort of substitute characteristic for the molecular weight in
classes of molecules that do not conform to Lipinski’s rule of 5 [38,46].

To generate more drug-like agents, bifunctional systems, exploiting advantageous
features of both peptides and small molecules, can be designed and evaluated with the
support of in silico tools [47,48]. Indeed, once selected, a peptide with an established high
affinity for a specific protein target and for which the 3D structure of the protein–peptide
complex is available can be split into two fragments provided with a reduced (or not even
appreciable) interaction affinity for the protein target. Next, reactive groups can be inserted
at one terminal side of each fragment to allow for the exploitation of “click chemistry”
to combine the two peptide segments with small molecules. In the end, screening can
be conducted with a plethora of small molecules to find out which moieties are able to
substitute one of the two peptide segments and restore the high affinity of the starting
peptide [47].

The following sections will be focused on the diverse computational approaches for the
development of peptides able to hamper crucial PPIs involved in pathological conditions.
Several examples of in silico identified peptides or peptide-based molecules that can be
considered promising starting points to develop therapeutic agents will be highlighted.

2. Identifying In Silico Novel Bioactive Peptides: Methodological Aspects

A variety of virtual screening approaches can be applied for the identification of novel
potential bioactive peptides. Much attention needs to be given to peptide libraries to be
implemented in such computational screenings, as they need to be designed by considering
key peptide features that might influence bioactivity and drug-likeness [including, but not
limited to, cell permeability, aggregation tendency, and stability (See Section 1.2)].

2.1. Design of Virtual Peptide Libraries

The construction of virtual peptide libraries for specific drug discovery applications
can be supported by in silico tools to predict peptide bioactivity and drug-like characteris-
tics. However, a mixed computational and experimental approach, which was undertaken
to analyze bioactivity in a group of peptides derived from goat casein hydrolysate, high-
lighted that in silico bioinformatics tools to predict bioactivity have some limitations in
terms of the range of activities that can be associated with peptide sequences and should
only be used in combination with in vitro and/or in vivo tests. The disagreement in the
results from diverse in silico predictors is also another potential drawback [49].

Moreover, numerical descriptive vectors (NDVs) for peptide sequences might be
considered when planning which peptides are to be included in a library. Indeed, amino
acids’ physicochemical features can be exploited to obtain, through principal component
analysis (PCA), NDVs for peptide sequences [50]. NDVs possess a length equal to peptide
sequences, and each entry in an NDV corresponds to an amino acid. NDVs can be employed
for quantitative structure–activity relationship (QSAR) analyses of peptide groups and for
the prediction of peptide residues representing hot spots [50].
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A variety of virtual peptide libraries can be generated through diverse approaches
depending on specific peptide properties that need to be satisfied to address the scientific
problem under investigation, and a few examples will be provided below.

First of all, to support virtual screening approaches and speed up the computational
identification of bioactive peptides, Prasastry and Istyastono provided the structures of
168,400 peptides (di-, tri-, and tetra-peptides) that were generated from all possible combi-
nations of the 20 natural amino acids. The structures were reported in both a simplified
molecular-input line-entry system (SMILES) and three-dimensional (3D) formats suitable
for diverse molecular docking pipelines [51].

In addition, a powerful instrument for the fast computational analysis of peptide li-
braries is PDAUG (Peptide Design and Analysis Under Galaxy). Indeed, PDAUG includes
several tools for the development of peptide libraries, data visualization, the calculation
of peptide characteristics, modeling, and links to databases from which to retrieve pep-
tide sequences. For instance, PDAUG includes the routine “amino acid Property Based
Peptide Generation” that creates peptide sequences relying on amino acid properties. The
“Sequence Based Peptide Generation” routine instead allows for the creation of peptide
sequences through three diverse routes: “Random Peptides” (a method that seeks all
the probable combinations of 20 natural amino acid residues within the chosen sequence
length), “Mutated Peptides” (a method that, at specific positions, substitutes the existing
residues with the residual 19 amino acids) and “Sliding Window Peptides” (this tool uses a
protein sequence as input and randomly produces peptide segments based on a sliding
gap and fragment dimension) [52].

Ad hoc-generated peptide libraries can be implemented for the design of PPIs by
preserving specificity that generally characterizes naturally occurring interactions. In this
context, a clever strategy made use of a library composed of 1536 peptides where 32-mer
sequences were generated by including characteristic features of the parallel dimeric coiled-
coil pattern along with the semi-random introduction of residues in positions crucial for
stability and specificity. Computational screening was achieved to identify, based on the
predicted Tm (melting temperature) values, eight peptides that could interact together by
creating four heterospecific PPIs [53]. A combination of experimental techniques was, in the
end, used to validate the capacity of this protocol to predict the formation of heterospecific
PPIs. This computational approach provides information that can be applied in different
fields of protein science, including the discovery of therapeutic peptides able to specifically
inhibit PPIs relevant to certain pathological conditions [53].

Degradation by proteases is one of the challenges that is faced when attempting to
develop therapeutic peptides (See Section 1.2). A valid solution relies on the screening of
peptide libraries containing D-amino acids; however, experimental strategies based on such
an approach are generally time consuming and expensive due to the costs associated with
the synthesis of peptides containing the unnatural D-amino acids. In silico screening cam-
paigns with virtual libraries of D-peptides can be planned to ameliorate issues associated
with the experimental methods. An interesting approach in this field is exploited by the
web server finDr (https://findr.biologie.uni-freiburg.de/) that supports the identification
of the D-peptide interactors of target proteins. finDr works similarly to a mirror-image
phage display where the peptides are assayed in the L-configuration while the target is
produced in the D-configuration. If an L-peptide interacts with the D-form of a protein, its
mirror images (D-peptide) will be able to interact in a similar manner to the same natural
protein in the L-configuration [54]. Starting from this concept, the virtual library employed
by finDr consists of helical peptide fragments (12 amino acid long) extracted from Protein
Data Bank (PDB) entries. Such a library is screened against the chosen protein target in the
D-configuration through Mirror-Image Virtual Screening (MIVS). This leads to a prediction
by molecular-docking of L-peptide ligands, the configuration of which can be inverted to
obtain D-peptides interacting with the naturally occurring L-protein [54].

The bioactivity of short peptides can be modulated by their ability to self-assemble
into supramolecular structures. Another interesting study reported on the employment of

https://findr.biologie.uni-freiburg.de/
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a library of 400 dipeptides, representing all possible combinations of natural amino acids,
which were subjected to a coarse-grained molecular dynamics approach to predict their
capacity to self-associate [55].

Bioactive peptides hold great interest in drug discovery; however, different to small
molecules, for which a vast chemical space can be explored, peptide optimization can
only rely on the reduced set of natural and commercially available non-natural amino
acids [56]. To overcome this limitation, recently, a large virtual library of non-natural and
readily synthesizable amino acids was developed to enhance virtual screening approaches
and assist the peptide optimization phase. The library was generated starting from the
eMolecules database, that includes more than 26 million compounds. This database was
first analyzed to select the included α-amino acids. Moreover, the eMolecules database
already contains non-natural amino acids, but to expand this group, chemical reactions
were simulated based on a few synthetic canonical routes. To overcome selectivity issues,
the compounds in the eMolecules database provided with more than a single reactive group
were excluded from the approach to avoid several side products. The compounds leading
to reaction products containing more than a single α-amino acid group were automatically
excluded as their inclusion in peptide sequences could be challenging. The compounds
were included in the final library only if certain rules were respected, concerning, for
example, the molecular weight, number of chiral centers, number of heavy atoms, formal
charges, etc.. . .. Once a target protein–peptide complex has been chosen, the library
can be implemented to set up the in silico optimization approach. Modeling studies
can be conducted to insert the non-natural amino acid members of the library in the
crucial positions of the natural peptide ligand, and docking studies can predict improved
interaction affinity and specificity [56]. This strategy can support the selection of the most
promising peptide ligands to be synthesized and experimentally validated.

Virtual screening represents a powerful approach when a peptide ligand of the target
protein has already been identified and validated, but it needs to be optimized. For such
computational screenings, the use of libraries of peptides provided with good predicted
affinities and specificities for the target protein should be preferred with respect to ran-
domly generated mutant peptide libraries. A library optimization method that relies on
experimental binding information or in silico produced structural data to guide the best
amino acid substitutions at each peptide position has been proposed [57]. Once a protein–
peptide target system has been chosen, the method can exploit diverse data, including
experimental binding information derived, for example, by SPOT arrays and alanine scan-
ning, if available, or in silico-generated scores for peptide mutants if a 3D structure of a
protein–peptide complex has been solved [57]. This information is implemented to classify
amino acid substitutions into two sets: “required” and “preferred”. “Required” mutations
will constantly be incorporated when developing a new library and comprise the amino
acids of the starting wild-type peptide sequence along with additional residues, the influ-
ence of which on the affinity and specificity is proved by experimental or computational
data. The “preferred” group will include substitutions that an optimization algorithm
identifies as possible instead [57]. After initial library generation, further analyses and
iterative optimization steps can be completed [57].

Another active area of research focuses on the design of cyclic peptide libraries for
in silico strategies. As explained in Section 1.2, cyclization is another route to enhance
the peptide drug-likeness by reducing susceptibility to enzymatic degradation. Golosov
and collaborators [58] described the design of peptide libraries containing a macrocyclic
arrangement to allow for both permeability and oral exposure [58]. Such a library was
built by speculating that a properly chosen N-methylation pattern that could favor passive
permeability should stabilize a macrocyclic structural organization provided with a low
desolvation penalty for the passage from water to a membrane-like milieu [58]. Different
libraries of macrocyclic peptides were designed (i.e., 6-mer, 7-mer, or 8-mer members), and
macrocyclization was achieved through a thioether bond, as it could be experimentally
easily generated upon a reaction between the side chain of a C-terminal cysteine and an



Int. J. Mol. Sci. 2024, 25, 1798 9 of 44

N-terminal electrophilic group [58]. Moreover, other rules were considered to generate
peptides: the presence of a UV chromophore (i.e., D- and L-phenylalanine with or without
N-methylation), presence or absence of a proline residue, presence of mimics of the leucine
residue (i.e., norleucine and backbone methylated norleucine), as leucine is contained in
certain oral natural products and peptides, and a maximum of three or four N-methylated
residues [58]. After the initial design, the in silico generation of peptide models was
achieved along with conformational sampling in an environment characterized by a low
dielectric constant to simulate the nonpolar membrane region. Next, transfer-free energies
for the passage from an aqueous to a membrane-like background (∆Gtransfer) were esti-
mated for each peptide conformation. This phase was followed by the evaluation of those
conformations characterized by both low energy and low ∆Gtransfer values for each virtual
peptide. These combined energetic considerations were employed to guess potentially
permeable macrocycles (i.e., those provided with low ∆Gtransfer values and conformations
with the reduced number of solvent-exposed backbone amide protons). Indeed, the best-
selected macrocyclic peptides were synthesized and in vitro tests proved the effectiveness
of this screening protocol. This approach can be nicely applied for the identification of sets
of permeable cyclic peptides characterized by large side-chain diversity [58].

Peptidomimetic macrocycles are very attractive in drug discovery not only for their
drug-like character but also for their potential ability to target the most undruggable protein
targets. One limitation of drug discovery based on peptidomimetic macrocycles is often
related to difficult synthetic routes. Saha and collaborators recently created a computa-
tional platform to generate libraries of synthesizable peptide macrocycles deriving from a
multistep reaction series [59]. The platform relies on previously established experimental
protocols to merge small linear peptides with synthetic scaffolding reagents. The merged
bifunctional compounds are next converted into amphipathic macrocycles provided with
specific conformations and enhanced pharmacological features. This computational tool
is made up of two principal components: the “composite peptide macrocycle generator”
(CPMG) and “ConfBuster++”. CPMG can be first employed to create, starting from user-
selected building blocks, a library of two-dimensional (2D) macrocycle structures; the
conformations of each macrocycle are next produced by ConfBuster++ [59]. In detail, the
library can be created starting from an ensemble of building blocks made up of amino
acid derivatives having diverse drug-like and conformationally constraining patterns. Lin-
ear oligopeptides are produced by CPMG through methodical permutations of building
blocks and are then inserted into specific templates. Template-linked oligopeptides are
subsequently transformed into macrocyclic arrangements following rules gained from ex-
perimental studies and considering estimates for site reactivity. To favor maximal diversity
in macrocycles, a filtering strategy can be applied based on the analysis of physical and
three-dimensional characteristics. This in silico approach represents an attractive tool to
be considered before starting very large virtual screening campaigns with macrocyclic
peptides/peptidomimetics to favor the selection of peptides that could be more easily
synthesized by established routes [59].

When planning the design of a peptide library for virtual screening, it is also important
to evaluate the possibility of introducing, within peptide sequences, cell-penetrating motifs.
Cell-penetrating peptides attract attention for intracellular delivery as they can work as
carriers for different classes of molecules (e.g., small compounds, peptides, and oligonu-
cleotides), thus overcoming their low bioavailability issue. In this context, computational
tools to design CPPs can be very supportive [60,61]. The free web tool “CellPPD” (i.e.,
http://crdd.osdd.net/raghava/cellppd/) can be, for example, implemented to predict
CPPs with elevated accuracy [60]. The approach behind “CellPPD” relies on the exploita-
tion of different peptide features (e.g., the type of residues in each position, two-residue
motives, and physicochemical properties) to develop support vector machine (SVM)-based
models through which it is possible to discriminate between CPPs and non-CPPS [60].
The likelihood of false positives is a problem that can be encountered in CPP prediction,
and the ”AiCPP” approach seems to provide a possible solution [61]. In detail, this is a

http://crdd.osdd.net/raghava/cellppd/
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deep learning-based method employing a negative control group made up of a vast set of
peptide sequences from human reference proteins [61].

In silico tools to generate peptide libraries able to hamper the binding of antigens to
antibodies have also attracted attention. Synthetic peptides constitute a good alternative to
antibodies that, although holding great therapeutic potential, might be characterized by un-
favorable drug-like features. In this field, the “epitope-paratope interaction (EPI)-peptide”
designer tool can be considered a promising computational instrument. Its workflow
consists of the initial identification of interacting residues within the contact interface of an
antibody–antigen complex through the selection protocol “Interface Interacting Residue
(I2R)” [62]. Based on the calculated ensemble of all the intermolecular contacts, the 3D
structure of the antibody–antigen complex is translated into interface diagrams. In the end,
antibody residues, predicted to bind to the target epitope, are exploited by the EPI-Peptide
Designer tool to develop libraries of peptides that should work as ligands of the antigen
under investigation and thus possibly function as therapeutic agents [62].

Similarly, a virtual screening method to iteratively develop virtual libraries of peptide
ligands able to target the Fc portion of the IgG (Immunoglobulin G) antibody will be
described in the next paragraph [63].

Instead of employing very large virtual peptide libraries for virtual screening, it can
also be convenient to explore the “in silico panning” approach to identify a peptide ligand
of a target protein starting from a small library by merging docking studies with genetic
algorithms (GAs) through which peptide ligands are iteratively developed [64]. For “in
silico panning”, docking analyses of a small peptide virtual library are conducted first so
that peptides are ranked according to their docking scores and predicted affinity [64]. Then,
the best peptide ligands are evolved through GAs. GAs somehow simulate the genetic
evolution of biological systems and include three steps (selection, crossover, and mutation)
that are carried out on an ensemble of sequences to produce a novel peptide generation.
The process is repeated several times, and during evolution, the docking energies decrease,
leading to the identification of optimized peptide ligands. Yagi and collaborators reported
on the application of “in silico panning” to identify a non-competitive inhibitor of the
water-soluble quinoprotein glucose dehydrogenase starting from a virtual peptide library
composed of just 10 tetrapeptides including seven diverse amino acids and performing
four rounds of selection [64].

Interestingly, GAs are also key elements of another protocol developed to avoid the
molecular mass repetitiveness that can characterize the combinatorial construction of
peptide libraries. In detail, multi-objective GAs have been used to generate large libraries
by ensuring the maximum possible number of permutations between positions of peptide
sequences and a low probability of having library members with identical masses and/or
shared sequences [65].

2.2. Virtual Screening Approaches in Brief

Peptides attract attention for their involvement in the regulation of a considerable
number of biological processes, as peptide epitopes mediate an array of PPIs [66]. The size
and flexibility of peptides allow them to interact with high specificity to diverse receptors,
even to those considered undruggable from the perspective of small molecules. In addition,
the potential capacity of peptides to interact with large and flat protein surfaces makes
them ideal candidates as therapeutics able to inhibit PPIs that are crucial in modulating
pathological conditions [66].

Furthermore, certain peptides can self assemble, forming hydrogels, fibers, and a
variety of structures that can find several applications in biomedicine, even as supports for
tissue regeneration.

Computational routes are surely helpful and convenient for the prediction of bioactive
peptides possessing a particular self-assembly ability or capacity to bind with high affinity
and specificity to a protein target and block crucial PPIs [66]. In drug discovery, virtual
screening can quickly support the identification of the most promising peptide hits that
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should be first synthesized and submitted to experimental validation to speed up the
overall process and also reduce connected costs.

Virtual screening approaches can be subdivided mainly into two categories: structure-
based virtual screening (SBVS), that relies on the complementarity between the ligand
and the target’s binding pocket (i.e., receptor–ligand docking), and ligand-based virtual
screening (LBVS), which instead employs active ligands as prototypes to target protein
receptors. LBVS methods are focused on the selection of candidate molecules, considering
that a peptide interactor similar to a bioactive peptide ligand has a higher chance of
possessing biological activity. A computational route combining both ligand and receptor-
based approaches is often a good choice to identify original molecules and reduce the
chance of finding false positives [67].

Challenges usually associated with interactions involving peptides include a low
amount of available 3D structures and a lack of information on the binding affinities
linked often to the transient nature of peptide-based interactions. In addition, the intrinsic
flexibility of peptides highly affects the success rate of computational tools for structure
and affinity predictions [66].

Molecular docking predicts the structural arrangement of the ligand, as well as its
orientation and position at the binding site [68]. Two diverse groups of docking algorithms
to predict protein–peptide interactions exist: template-based and template-free [69]. The
template-based approach employs the 3D structure of similar complexes as a model to
guess the binding mode of a peptide to a protein, and GalaxyPepDock [70] is an example
of such a docking tool. The application of template-based docking has certain limitations
related to the restricted availability of templates. No template is required for template-free
docking, which includes two diverse approaches (i.e., global and local docking) that can
be applied to different case studies depending on whether the knowledge of the binding
pocket is available or not. Global docking samples the total protein surface to obtain the
peptide interaction mode and identify the binding pocket. Instruments to achieve global
docking include the webservers pepATTRACT [12] and HPEPDOCK [71].

Local docking relies instead on a user-defined binding pocket around which to look
for peptide binding poses. Popular programs for local docking are AutoDock Vina [72,73],
GOLD (Genetic Optimisation for Ligand Docking) [74,75], and HADDOCK (High Ambiguity
Driven protein-protein DOCKing) [76,77]. A larger list of docking software for protein–peptide
complexes can be found in a 2020 work by Weng and colleagues [69].

Three main subgroups of docking approaches exist: rigid, flexible, and semi-flexible [68].
In rigid docking, ligands and proteins represent rigid objects, and sampling is achieved by
keeping in account only six degrees of freedom (i.e., three translational and three rotational
ones). This approach can be mostly implemented for protein–protein docking, as in this case,
the total number of conformational degrees of freedom are too many to be sampled. Instead, in
semi-flexible docking, the conformation of the receptor or peptide ligand can undergo some
fluctuations during docking runs. Usually, flexibility is contemplated for ligands as they have
a lower number of conformational degrees of freedom that can be sampled during docking
runs. Such an approach considers the rigid structure of the receptor as the conformation able
to interact with the peptide ligand. Flexible docking assumes instead flexibility in both the
protein and ligand and is generally based either on an induced fit interaction model or on
conformational selection [68].

The DINC (Docking INCrementally) 2.0 and iMolsDock web tools represent valid
examples of computational instruments to face the flexibility issue which, as mentioned
before, can characterize not only peptide ligands but also protein receptors [78,79].

Hence, protein–peptide complexes can be studied using different pipelines depending
on the presence of flexibility in the protein alone, in the peptide alone, or in both [79].
When dealing with flexible ligands rather than small molecules, it needs to be kept in
mind that virtual screening by molecular docking might possess limited accuracy for
ligands characterized by more than 10 flexible bonds [78]. Interestingly, the protein–peptide
docking webserver named DINC 2.0 moves this limit to 25 flexible bonds thanks to a
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parallelized meta-docking approach through which large ligands can be docked against
target proteins in an incremental manner [78]. Rather than performing a docking of the
entire ligand, the complexity is reduced by incrementally docking larger and overlapping
sections of the ligand. Indeed, in the first step, the docking of a small portion of the ligand
with only six degrees of freedom (DoFs) is achieved, and the best binding modes are
selected [78]. Starting from the selected docking poses, the related fragment is amplified
through the addition of ligand atoms; afterwards, a new docking round is carried out.
Successive docking runs are conducted, and every time, three new DoFs are included
and combined with the previously considered fragment for which just three flexible DoFs
are maintained [78]. Therefore, at each docking round, independently from the fragment
dimension, only six internal DoFs of the ligand are considered. This stage is repeated until
the entire structure of the peptide ligand is covered and docked [78].

An induced-fit docking instrument called iMolsDock employs the mutually orthogonal
Latin squares (MOLS) sampling method and is able to consider protein flexibility [79]. A
recently updated software version allows for enhanced receptor flexibility, better scoring
function, and fast calculations. Initially, the MOLS approach was used to perform peptide
modeling by relying on the concept that (S)k conformations exist for a peptide provided
with k torsion angles that can assume s diverse values. The conformational space that can
be sampled by the peptide derives from the contribution of all possible combinations of
torsion angles. The MOLS approach is able to guess the optimal peptide structure with
the lowest energy by inspecting the peptide conformational energy landscape. MOLS
was then expanded to perform docking. The ligand docking pose can be obtained by
the tool iMOLSDOCK through ligand conformational sampling, including rotation and
translation. Nevertheless, to keep protein flexibility into account, the search space of the
docking routine was extended to include the conformational space accessible to flexible
residues in the receptor [79]. The induced-fit docking protocol of iMOLSDOCK assumes
that if the conformations of the ligand and flexible residues in the protein rely on k and l
torsion angles, respectively, and the interaction pose of the ligand is established through
six extra parameters (three related to the position of the ligand and extra three related to
its orientation in the protein binding site) then, the space that is sampled will have k+l+6
dimensions with a volume equal to (s)k+l+6 and every dimension will be sampled s times.
In the end, to find the optimal binding pose for the ligand in the protein interaction pocket,
a gradient minimization is performed as well [79].

Among the protein–peptide molecular docking instruments, it is worth mentioning
CABS-dock. CABS-dock exists as a webserver and a separate program; it represents
another approach for docking that can keep into account a substantial contribution from
conformational flexibility for both the protein and peptide [80]. CABS-dock does not
involve a predefined binding pocket and considers the peptide as fully flexible. Concerning
the protein, its backbone can be subjected to small fluctuations and optionally larger
movements [80].

For flexible ligand receptors, another appealing docking web tool is HTP SurflexDock.
This is a docking instrument aiming to enhance SBVS’s success rate by combining two
routes. In the first stage, the ensemble docking protocol is implemented to simulate the
inherent receptor flexibility. In the second step, the best docking hits can be rescored
either through a search of a larger conformational space or by evaluating the interaction-
free energy by means of the molecular mechanics (MM)/Poisson–Boltzmann surface area
(PBSA) method [81].

PepVis was instead developed with the goal of making available to the scientific com-
munity an effective instrument to automate peptide virtual screening by combining several
open-source tools to carry out ensemble and flexible docking approaches [82]. Virtual
screening through the Graphical User Interface (GUI)-based pipeline PepVis is achieved by
exploiting a combination of several docking tools (i.e., AutoDock Vina [72], ZDOCK [83],
and AutoDock CrankPep [84]) [82]. In addition, this pipeline relies on two bioinformat-
ics tools for the modeling of peptides (i.e., Modpep [85] and GROMACS (GROningen
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MOlecular Simulation) [86,87]), one for the re-ranking of peptides (i.e., ZRANK2 [88]) and
one for the refinement of the receptor–peptide complex (i.e., FlexPepDock [89]) [82]. The
advantage of this pipeline is its modular nature, which allows for the insertion of additional
bioinformatics tools, thus increasing the information that can be acquired through it [82].

As mentioned earlier, a virtual screening protocol specific for the identification of
peptide ligands able to target the Fc portion of the IgG antibody has been developed; such
an approach is also very useful for virtual library development [63]. In the first step, a
combinatorial library of tetrapeptides was designed by combining the 20 natural amino
acids, and the conformations for each peptide were generated so that the 3D structures were
available for each library member. The peptide library was screened against the crystal
structure of IgG1 Fc by the docking software CmDock (CurieMarieDock) (v. 0.2.0) [63]. In
addition, the best predicted ligands (i.e., 100 tetrapeptides) were subdivided into clusters
and further analyzed to estimate the residues important for interaction with the antibody
and determine the highest occurrence of specific amino acids in each peptide sequence
position [63]. Interestingly, the CmDock program identified preferred amino acid positions
inside the top-scoring peptides, which were consistent with the current knowledge of
peptides binding to the Fc region of IgG. The method can be further implemented to
develop a more focused library for the identification of peptide ligands of antibodies with
extended sequences [63]. Indeed, the protocol could proceed iteratively and even be used
for developing focused libraries against different targets rather than antibodies.

Instead, a kind of inverse virtual screening approach was set up based on the “select
and purge” (SP) algorithm by combining sampling by statistical approaches and selection
through rigid molecular docking. This virtual route allows for the identification of short
peptides able to function as receptors for small compounds when no knowledge about the
peptide/small molecule association is available [90]. Briefly, this approach requires the
assembly of a library of small molecules by considering different criteria for compound
selection [90]. Concerning the small peptides to be investigated, tripeptides deriving
from all possible combinations of the 20 natural amino acids can be implemented. Then,
docking analyses are conducted to predict the binding affinities for the peptides/small
molecule complexes [90]. The resulting data are exploited by the select and purge (SP)
algorithm to further assess how amino acid positions and types can influence the ability of
tripeptides to form complexes with specific ligands [90]. False positives are eliminated, and
the best candidates are chosen based on the unfavorable and favorable (i.e., those stabilizing
the complex) pairs of amino acid positions within the analyzed peptide sequences. The
algorithm works iteratively, and after the stop point is reached, a set of possible peptide
receptors is detected among the investigated dataset [90].

Specific in silico pipelines, somehow different to the common docking-based virtual
screening protocols described before, were applied to cyclic peptides [91,92]. As mentioned
before, constrained bioactive peptides assume particular relevance in drug discovery due
to a likely increased specificity for the target and higher resistance against proteases [91,92].
The cyclic PEPtide matching (cPEPmatch) method consists of a fast in silico route to identify
cyclic peptides that could interact with specific segments located at the interface of protein–
protein complexes [92]. This approach is based on the comparison between the backbone
of short peptide fragments, derived from the protein–protein binding surface, and the
backbone structures of an ensemble of cyclic peptides. When a positive match is found,
the corresponding cyclic peptide is taken as a model interactor and used as a template
by adjusting its amino acid side chains based on those of the protein–protein complex.
For 154 protein–protein interactions that were analyzed against a small library of cyclic
peptides for which structures were available, at least one peptide template could be found
for a specific region of a protein–protein interface. Interestingly, for most of the predicted
cyclic peptide ligands, MD (molecular dynamics) analyses and binding energy evaluations
revealed stable protein–cyclic peptide complexes and good binding energy scores, thus
indicating the promising effectiveness of the method [92].
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It is not easy to establish which protein–protein interface is suitable to be targeted by
cyclic peptides. A high-throughput approach and a rapid method for the virtual screening
of peptide libraries were set up by Duffy and colleagues [91]. First, combinatorial 3D
peptide libraries, including small peptides containing disulfide bridges, were developed in
silico. Next, diverse members of these libraries were compared and matched with phar-
macophore models based on the structures of crucial protein–peptide and protein–protein
complexes. These pharmacophores were constructed by analyzing the 3D structures avail-
able in the PDB and consisted of short peptides known to bind proteins, linear motifs, and
turns characteristic of protein–protein interaction surfaces. In the end, pharmacophoric
models were compared with more than 100,000 cyclic peptides in multiple conforma-
tions [91]. This pharmacophore screening is a protocol useful to predict not only the PPIs
suitable to be targeted but also the cyclic peptide modulators of these optimal PPIs that can
be thus prioritized for synthesis and experimental validation [91].

Limitations of Virtual Screening Approaches

SBVS of compound libraries is a widely employed approach at the initial stages of the
drug discovery process to support hit-finding campaigns [93]. Indeed, high-throughput
virtual screening and molecular docking platforms have become very popular within the
scientific community due to their great capacity to analyze large databases of molecular
entities with low costs and rapidity [94]. The employment of protein–ligand docking
algorithms to identify potential modulators of disease-related proteins has also been sup-
ported by the increasing number of high-resolution protein structures being solved by
X-ray crystallography and other experimental techniques, the advancements in molecular
modeling platforms, and the development of very powerful computer resources [95].

Molecular docking represents the key point in SBVS [96]. Briefly, it includes two prin-
cipal phases relying on two diverse algorithms. The diverse conformations (i.e., poses) that
a ligand can assume in the receptor binding site are predicted by the sampling algorithm.
In addition, the binding energies associated with the receptor–ligand poses are predicted
by a scoring function. Scoring functions are generally used to achieve the filtering and
ranking of the obtained poses in virtual screening, indicating which screened compounds
should represent a possible lead [96]. A robust virtual hit selection is particularly important
when working with new targets and can rely on a variety of protocols, including scor-
ing, ensemble docking, consensus pose, and ligand efficiency, to enhance the accuracy of
docking results [97]. Due to improvements in computer resources and in the dimension of
compound libraries, it is possible to screen billions of molecules with computer clusters
provided with a modest size [93]. However, the fast exploration of such a large chemical
space though VS requires approximations, leading to the under-sampling of potential
configurations and incorrect estimates of absolute interaction energies [93]. Consequently,
the usage of docking-based VS alone comes with faults. Nevertheless, different laboratories
plan VS workflows based on software and techniques they are more familiar with, but also,
when software appears simple to use, every practice presents several weaknesses that need
to be considered to avoid incorrect results/artifacts [98]. Moreover, the simplification of
molecular docking lowers the efficiency of the docking score, leading to a higher chance of
obtaining false positives [99].

As briefly mentioned in Section 2.2, one major issue of VS is often related to the static
nature of the receptor during rigid docking, where the dynamic features of biological
structures are not properly taken into account [96]. For practical reasons, most docking
platforms employ a rigid receptor approximation, in which the ligand is considered a
flexible entity, while the conformation of the protein is constrained. A few approaches, like
ensemble docking, can be instead a better choice as, in this case, an ensemble of receptor
conformations allows for the investigation of protein flexibility [99]. Nevertheless, the
docking of large peptidomimetics is challenging with ordinary docking protocols (see also
Section 2.2) as docking algorithms can be rather inaccurate in predicting the right poses
for molecular entities provided with many rotatable bonds. In fact, the addition of each
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rotatable bond induces an enlargement of the conformational space to be sampled and a
decreased chance to obtain the correct binding pose [96].

The generation of both false positives and false negatives by docking-based VS can be
due to limitations in sampling algorithms and flaws in scoring functions; in addition, the
need for training groups in diverse algorithms frequently induces a highly target-dependent
accuracy [96]. Another drawback is linked to docking poses and scores severely subjected
to the ligand input conformation. In fact, subtle variations in the ligand input structure can
induce significant divergences in the resultant docked poses [99]. Much care needs to be
taken in the initial preparation of the ligands and structures to be submitted to VS [98].

A significant limitation of the docking software is often linked to the inability of
scoring functions to correctly predict ligand binding affinities [99]. Consequently, the
best docking hits should not be selected just based on energy scores. Docking scores
should be used to discard molecules that do not fit the binding/active pockets but not
to establish thresholds for biological activities. Another aspect that needs to be crucially
considered is that the comparison of docking scores from diverse docking platforms is not
reliable, as these scores are strictly linked to the force fields and protocols implemented
by each software [99]. Another important aspect of molecular docking is related to the
specific treatment of water molecules that are present inside the binding pocket throughout
the docking progression, that could induce the erroneous evaluation of the potential
interactions between the receptors and ligands [99]. Finally, the capacity of docking software
to distinguish between inactive and active molecules is generally largely connected to the
employed protein structure and the degree of similarity between the screened compound
and a co-crystallized ligand [99].

As mentioned before, a key issue is the failure of scoring functions to properly rank
compounds based on their activities towards the chosen target protein [95]. There are
several factors that might negatively impact the performance of scoring functions in suc-
cessfully guessing interactions energies. Empirical functions deliberately have a simple
form in order to allow for computational speed, and can often only slightly compensate for
the rigid protein approximation. In addition, several penalty terms, including electrostatic
and steric clashes and internal ligand constraints, cannot be easily and correctly param-
eterized. Due to several approximations, scoring functions can be too “soft”, leading to
many incorrect hits (i.e., false positives) [95]. Moreover, in the context of scoring functions,
it needs to be recognized that entropy and desolvation are problematic to be handled even
inside a strict molecular mechanics formalism [95]. The limitations and difficulties of using
molecular docking in nutraceutical research have been covered in a recent work by Agu
and coworkers, which also discusses the reliability of scoring functions and the requirement
for experimental validation [100]. Limitations in docking-based VS to identify compounds
targeting SARS-CoV-2 (Severe Acute Respiratory Syndrome-Coronavirus-2) proteins have
also been reported in a few works [97,99].

It emerges from the literature analysis that precautions need to be taken before starting
HTVS studies to identify biologically active compounds. For example, regardless of the
employed docking platform, it is important that VS is conducted through several trials and
that docking solutions are visually inspected to observe similarities in binding poses and
recognize artifacts [94]. The reproducibility of the docking experiments should be assessed
through the analysis and validation of interaction poses referring to a minimum number
of trials, and this protocol also ensures the identification of the correct protein–ligand
structural topology of binding [94].

If structural data can be retrieved from the Protein Data Bank (PDB), the docking
results should be, of course, further validated through comparison to high-resolution
experimental structures of protein–ligand complexes [94].

It is also recommended to validate results generated through HTVS further by molecu-
lar dynamics simulations, where the dynamics of both the ligand and receptor are allowed,
and the stability of the interaction poses can be better estimated [94].
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Within the context of VS, re-scoring is something to keep in mind, as this can yield an
improved correlation between the docking results and experimental evidence [96]. For the
re-scoring of docking solutions, standard molecular dynamics can be coupled to the pre-
diction of binding free energy through MM-GBSA (molecular mechanics with generalized
Born and surface area solvation) and MM-PBSA (molecular mechanics/Poisson–Boltzmann
Surface Area) [99]. MM-GBSA or MM-PBSA are usually associated with modest computa-
tional efforts; they produce more solid results than those provided by most docking scoring
functions and have been largely exploited by the scientific community. These computa-
tional techniques do not represent tools for screening large libraries of molecular entities
but are useful for analyzing the selected docking poses [99]. Coupling molecular docking
with MM-GBSA or MM-PBSA re-scoring can be considered a very promising approach
to selecting the correct binding poses and ordering a group of ligands according to the
binding affinities. Again, the success of these approaches is target structure dependent [99].

The availability of a lot of published data on the protein target increases the chance
of achieving a successful VS campaign [96]. The accessibility of the high-resolution X-ray
or NMR structures of the receptor is also vital before starting the in silico screening, as a
reduced performance of VS could be achieved by using homology models [96]. Neverthe-
less, if possible, the employment of docking-based VS of holo-structures, rather than apo-
ones, could further enhance the success of in silico approaches leading to the enrichment of
promising hits. Exhaustive knowledge of the active and/or allosteric interaction pockets,
including a complete picture of the flexible side-chains and their positioning within the
binding site, the occurrence of water molecules inside binding pockets, and the exact
protonation forms of ionizable residues, will also contribute to the positive outcome of a
VS campaign [96].

As VS protocols include several computational techniques, in the end, virtual screening
hits, including those validated through MD and binding free energy calculations, represent
just predictions that require further in silico and experimental testing to validate their
activities. In silico testing can be achieved by running additional parallel virtual screenings
of groups of known active and decoy molecules, if available [98]. Experimental in vitro
and/or in vivo validation of the most promising computational hits must be performed
after the proper compound selection has been achieved. The selection of biologically active
ligands (such as possible therapeutic agents) by VS might also take ADME and solubility
predictions into account [98]. The experimental validation of the predicted active VS hits
should not be considered the end point of the drug discovery process as the newly identified
compounds might represent just the base for further optimization cycles [98].

Practical guidelines that can be followed for large-scale docking have been reported
in an interesting work by Bender et al. [93]. The authors describe the best practices to
follow before starting a massive docking-related VS approach and suggest the software-
independent controls that are needed to choose the best docking parameters for a specific
target receptor and all the required controls to possibly obtain hits with desired activities,
once experimentally validated [93].

3. Identifying Novel Bioactive Peptides through In Silico Approaches: Applications

The critical role played by in silico tools for the discovery of novel bioactive peptides
has been proved in different biomedical fields, such as the development of therapeutics
against cancer or viral infections, immune system regulators, antidepressants, anxiolyt-
ics, analgesics, as well as peptides for the treatment of nicotine addiction, hypertension,
Parkinson’s disease, and neuropathic pains [101–119].

3.1. General Overview

The first step common to all diverse computational strategies consists of choosing a
target protein or PPI for the specific class of bioactive peptides to be identified.

In searching for antihypertensive drugs, the angiotensin I-converting enzyme (ACE)
can be employed as a target and the computational screening of peptides deriving from
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the hydrolysis of proteins extracted from animal sources is a potential approach [101]. A
mixed in vitro–in silico strategy based on ACE has been reported; the experimental proto-
col included the in vitro hydrolysis of α-lactalbumin, the isolation of fractions with ACE
inhibitory action, and the identification within these fractions of diverse peptide sequences
that were employed to generate a peptide library. The library was next implemented for
computational screening and docking poses for the ACE/peptide complexes, which were
analyzed to predict peptides potentially able to hamper ACE activity efficiently. Dock-
ing studies were also valuable for distinguishing the competitive peptide inhibitors (i.e.,
those able to interact with the residues of the active site) from the non-competitive and
mixed ones [101]. A diverse strategy to identify the peptide inhibitors of ACE started
from the in silico hydrolysis of the protein nebulin from Larimichthys crocea to generate
tripeptides that were subsequently employed in virtual screening from which the “HGR”
(Histidine-Glycine-Arginine) sequence emerged as a promising bioactive agent [102]. Sim-
ilarly, the “WCW” (Tryptophan-Cysteine-Tryptophan) peptide has been predicted as a
possible ACE inhibitor using a fully computational approach based on the virtual screening
of a tripeptide library containing 8000 peptides that was assembled considering that di-
and tri-peptides, resulting from the enzymatic digestion of food proteins, might work
to block ACE activity [103]. Due to the presence of antihypertensive peptides in diverse
natural sources and the possibility to exploit them as therapeutics provided with reduced
side-effects with respect to synthetic drugs targeting ACE, a web tool was even established
through which antihypertensive peptides could be designed, selected by screening, or
localized within a protein sequence [104].

Similar approaches were applied to Dipeptidyl-peptidase IV (DPP-IV), which can be
considered another appealing therapeutic target as DPP-IV inhibitors can be effective in
treating type 2 diabetes. For instance, a combination of peptidomics and computational
studies allowed for the establishment of characteristic peptide features important in ham-
pering DPP-IV activity. In this case, the peptide set screened in silico against DPP-IV was
derived from a protein extract resulting from the in vitro digestion of Pinto bean [120].
The design of a virtual tripeptide library and virtual screening also led to the prediction
of potential peptides inhibiting α-Glucosidase activity for therapeutic applications, as
α-Glucosidase is linked to diverse pathological conditions, including diabetes mellitus 2
and obesity [115].

From the above-reported case studies, it is evident that the employment of peptide
libraries derived from the in silico/in vitro hydrolysis of specific proteins or protein active
fractions from natural extracts is a common strategy that can be employed to set up
computational screenings. The in silico protein hydrolysis and virtual screening of the
resulting peptides against a human receptor (i.e., the heterodimer made up of taste receptor
type 1 member 1 (T1R1)/taste receptor type 1 member 3 (T1R3)) were even conducted to
identify umami peptides derived from O. mykiss (i.e., rainbow trout) [121].

As mentioned before, selecting a proper target is critical [105,106]. For instance,
in silico protocols with the purpose of providing novel potential antidepressants, anx-
iolytics, and analgesics can be set up based on the kappa opioid receptor (KOR), the
γ-Aminobutyric acid (GABA)-A receptors, and the α2δ auxiliary subunit of V-gated Ca2+

channels (VGCCs) [105,106]. A computational study was planned to identify compounds
targeting KOR by including drug design, lead optimization, and molecular dynamics (MD)
steps [105]. Starting from the initial virtual screening of a library of 6 million structures,
two tripeptides were selected as best hits. The tripeptides were synthesized and assayed
in vivo, demonstrating a promising antinociceptive action [105].

One very active research field relies on the application of in silico techniques to identify
peptides with anticancer potential (See below) [107–110]. For instance, Caseinolytic protease
P (ClpP), Ets-like protein 1 (Elk-1), the programmed cell death protein 1/programmed
cell death ligand 1 (PD-1/PD-L1) pathway, the polo-box domain of polo-like kinase 1
(PLK1-PBD) and interleukin-6 (IL6) modulate different processes (e.g., the degradation of
misfolded proteins, gene regulation in response to extracellular signals, immune escape,
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proliferation, inflammation) linked to cancer onset and progression or acute myeloid
leukemia (AML) and represent only a few possible targets [107–111]. The application of in
silico methodologies alone or coupled to experimental validation with different direct and
competition-type binding assays through an array of biophysical techniques has highlighted
characteristic peptide features (e.g., the size and presence of non-natural amino acids) that
are needed to appropriately target these specific proteins or related PPIs [107–111]. Another
topic related to the anticancer drug discovery field, which is being widely explored in our
laboratory through mixed approaches based on the computational screening of diverse in
silico-generated peptide libraries and the experimental validation of selected peptide hits,
consists of the identification of anticancer peptides/peptidomimetics targeting Sam (Sterile
alpha motif)–Sam interactions mediated by the erythropoietin-producing hepatocellular
receptor A2 (EphA2) [122–124].

Molecular docking techniques have also supported the identification of immunomod-
ulatory peptides binding the Toll-Like receptor 2 (TLR-2) [112]. Major histocompatibility
complex (MHC) proteins assume a crucial role in the field of adaptive immunity. Con-
sequently, their interactions with peptides hold great interest and could be exploited to
design vaccines, identify epitopes, and discover novel molecule regulators of the immune
system. Doytchinova and collaborators set up an interesting in silico tool to analyze the
protein–peptide binding affinity based on an additive quantitative structure–affinity rela-
tionship (QSAR) model that could be employed for the identification and optimization of
peptides able to bind MHC proteins, and thus highly relevant for studies in the field of
immunology [116,117].

A peculiar drug repurposing approach based on virtual screening was implemented
for targeting the Calcitonin gene-related peptide receptor (CGRPR), which consists of
a heterodimer involved in migraine insurgence and formed by calcitonin receptor-like
receptor (CLR) and receptor activity modifying protein type 1 (RAMP1). The study aimed
at identifying molecules able to hamper heterodimer formation and the results pointed
out that pentagastrin, a synthetic polypeptide analogue of natural gastrin, could be further
analyzed by experimental studies [114].

Among the challenges that can be encountered during virtual screening approaches,
especially when dealing with peptides, the not always guaranteed availability of an exper-
imentally derived structure for the target protein or complex and the presence of highly
flexible regions, particularly within the peptides to be screened, represent two big issues.
In this context, it is particularly difficult to target with in silico approaches the nicotinic
acetylcholine receptor (nAChR), which is a protein involved in different diseases (e.g.,
nicotine addiction, Parkinson’s disease, and neuropathic pain). Thus, Leffer et al. proposed
the docking algorithm ToxDock, that consists of an in silico tool based on the synergy
between ensemble docking and extensive conformational sampling and performs well in
the virtual screening of peptide ligands against an α4β2 nAChR homology model [125].

Another research area where in silico strategies are commonly implemented is the
search for novel routes to cure Alzheimer’s disease (AD). To treat AD, one possible tactic
could rely on the modulation of human serum albumin (HSA) carrier properties to remove
as much as possible of the amyloid-β peptide (Aβ) from the central nervous system of
patients affected by this pathology. Intriguingly, virtual screening strategies have been
exploited as well to define HSA variants with the highest affinity for the Aβ peptide and
gain information useful for the future development of therapeutics against AD [119].

This paragraph was intended to provide just a brief overview of the variety of set-
tings in which in silico strategies were applied to search for bioactive peptides. Due to
the large number of scenarios in which virtual screening and other in silico approaches
can be applied, the next paragraphs will be centered more deeply on a few of the most
appealing classes of bioactive peptides: anticancer, antimicrobial/antiviral peptides, and
peptide inhibitors of fibrillogenesis. This choice is due to the relevance of these peptide
groups in drug discovery focused on the most relevant pathologies [i.e., cancer, COVID-19
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(Coronavirus disease 2019), AD, and Parkinson’s disease] for which the research is still
struggling to reach an endpoint.

3.2. Anticancer Peptides

Cancer is characterized by the genetic damage of the cells causing uncontrolled growth
and is accounted as one of the principal causes of mortality and morbidity worldwide [126].
According to the International Agency for Research on Cancer of the World Health Organi-
zation, breast, prostate, lung, and colorectum cancers are the most frequently diagnosed
tumours affecting people of all ages (data from https://www.iarc.who.int/, accessed on 25
November 2023 [127]). Over the past few years, many drug discovery campaigns have been
aimed at detecting efficacious anticancer agents. However, traditional cancer therapies,
such as chemotherapy and radiotherapy, often are not selective to cancer cells or are un-
successful due to cancer resistance [128]. On the other hand, more cutting-edge molecular
targeting therapies, such as genome therapy and immunotherapy, based on an anti-tumoral
molecule that is specifically directed towards unhealthy cells, have demonstrated limited
effectiveness [129]. Therefore, alternative therapeutic approaches are needed, and in this
context, anticancer peptides (ACPs) have great potential due to their high selectivity, their
ability to penetrate cells, and the ease of chemical modification [129].

3.2.1. Introduction

ACPs are small peptides often possessing a cationic property which confers them the
ability to be selectively toxic to cancer cells characterized by negatively charged membranes.
Most ACPs have similar characteristics to antimicrobial peptides (AMPs) because the sur-
faces of bacterial cells are also negatively charged; indeed, many AMPs are cytotoxic against
both bacteria and cancer cells [128]. The structure of ACPs can be characterized by either
an α-helical or a β-sheet conformation, but a few peptides with linear structures (lacking
specific secondary structure elements) have also been reported. ACPs are categorized into
two groups: the peptides belonging to the first group are active against both microbial and
cancer cells but are ineffective towards healthy cells; the second group of ACPs includes
peptides that are cytotoxic in a non-specific way (active on microbial cells, and healthy and
tumoral mammalian cells) [128]. ACPs, like AMPs, can destroy the cells by membrane lysis
or pore formation or can implement different routes, such as the disruption or penetration
of the mitochondrial and/or nuclear membranes, finally inducing apoptosis. It has been
speculated that ACPs can be more selective toward cancer cells not only for the anionic
characteristics of cell membranes but also for their different lipid and cholesterol content
with respect to normal cells that favor peptide penetration [128].

The fight against cancer also includes the regulation of biological pathways occurring
at the cellular level and governing processes such as cell migration or angiogenesis, and
in this respect, peptides can also function as interactors and regulators of protein targets
with pro-oncogenic functions [130]. Moreover, peptides can be conjugated to anticancer
molecules, which cannot penetrate the cells, and be employed as carriers for drug de-
livery [129]. Although peptides display several convenient characteristics for anticancer
therapy, they are susceptible to proteolytic degradation (See Section 1.2). Nevertheless,
this aspect can be improved with different modifications such as changes in the backbone
chemistry, the incorporation of non-natural amino acids, and cyclization, as described in
previous sections [126]. The growing interest in the development of ACPs has led to the
creation of specific databases [131] or chemoinformatic and bioinformatic tools devoted to
this research field [126,131,132]. In the next section, a few case studies related to the use of
molecular modeling-based virtual screening strategies to find ACPs will be reported.

3.2.2. Case Studies Related to Cancer Research

Peptides from plants have several bioactive potentials, as they can show antioxidant,
antihypertensive, antimicrobial, and antitumor activities. A computational study explored
the possible anticancer properties of a set of antioxidant peptides from plant seeds [133].

https://www.iarc.who.int/
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The perturbation of ROS (Reactive Oxygen Species) homeostasis is associated with cancer,
and antioxidant peptides may intervene in its regulation. The regulation of ROS homeosta-
sis is governed by enzymes with oxidative and antioxidative activities, such as the heme
peroxidase MPO (Myeloperoxidase), XO (Xanthine oxidase), and NADPH (Nicotinamide
Adenine Dinucleotide Phosphate) oxidase, and by the modulation of antioxidant gene
expression. NADPH oxidase is highly expressed in different types of cancer, and its activity
is supported by the interaction between p47phox (phox:phagocyte oxidase) and p22phox
proteins. Thus, the inhibition of the p47phox/p22phox complex may be explored in anti-
cancer drug discovery. Nrf2 (Nuclear factor erythroid 2-related factor 2) is a transcription
factor implied in the activation of genes involved in protection against oxidative stress in
cancer cells and its degradation is triggered by interaction with Keap1 (Kelch-like ECH-
associated protein 1). Molecules able to hamper the formation of the Nrf2/Keap1 complex
could work as anticancer agents by preventing Nrf2 degradation. Due to their importance
in ROS homeostasis, MPO, XO, Keap1, and p47phox were chosen as protein targets for the
identification of new ACPs. A virtual library of 667 peptides from legumes, cereals, and
the seeds of plants, such as oil palm and coconut, with different antioxidant activities was
assembled following a detailed peptide search through the literature and the PlantPepDB
database [134]. Among the library components, 592 peptides, with a length between 4
and 50 residues and lacking non-natural amino acids, were analyzed with the AntiCP 2.0
tool [135] for anticancer potential, non-toxicity, non-allergenicity, non-hemolyticity. At the
end of this screening, five candidates were selected for molecular docking experiments
to check their ability to interact with target proteins. The structures of MPO in complex
with the compound “7GD” (7-benzyl-1H-[1,2,3]triazolo[4,5-b]pyridin-5-amine) (PDB ID:
6WYD [136]) (Figure 1a), XO in complex with quercetin (PDB ID: 3NVY [137]) (Figure 1b),
Keap1 in complex with an Nrf2 peptide (PDB ID: 2FLU [138]) and p47phox in complex
with a p22phox peptide (PDB ID: 1WLP [139]) were retrieved from the PDB and the regions
of interaction with their ligands were used as binding pockets during docking calculations
(Figure 1a,b and Table 1). Peptide 3D structures were built with PEP-FOLD3 [140], and
docking runs were performed with Autodock Vina [72] through Webina 1.0.3 [141] and
HPEPDOCK [71]. Among the well-predicted peptide hits, “LYSPH” (Table 1), a peptide
from cherry seeds, was found to be the most promising one in binding MPO, XO, and Keap1.
Instead, p47phox was best targeted in silico by the “PSYLNTPLL” peptide (Table 1) from
tomato seeds. The peptides used in the molecular docking were also tested with different
computational tools to predict their potential to function as anticancer therapeutics: ML-
CCP (machine-learning-based prediction of cell-penetrating peptides) [142], B3Pred (blood–
brain barrier penetrating peptides) [143], PlifePred (predicting peptide half-life) [144] and
BIOPEP-UWM (Bioactive peptides database—University of Warmia and Mazury) [145].
Among the five tested peptides, “LYSPH” and “PSYLNTPLL” were predicted to be able
to penetrate cells and the blood–brain barrier but to be susceptible to GI digestion and
to have a plasma half-life lower than other anticancer peptides. Computational alanine
scanning mutagenesis performed with BUDE (Bristol University Docking Engine) Alanine
Scan [146] suggested that in the complexes made up of MPO, XO, Keap1, and p47phox
and selected peptides, Tyr residues play important roles. For example, mutations of Tyr
in Ala in “LYSPH” and “PSYLNTPLL” strongly increased the free energies of binding
(∆∆G) associated with the peptides in complex with MPO/XO/Keap1, and with p47phox,
respectively. Finally, molecular dynamic simulations were run with GROMACS 2020 [87]
to analyze the dynamic stability of each selected peptide against MPO, XO, Keap1, and
p47phox proteins. In conclusion, the computational work speculated that “LYSPH” could
represent a peptide able to block the activity of MPO, and XO enzymes and/or interfere
with Keap1–Nrf2 complex formation, whereas the “PSYLNTPLL” peptide was suggested
to function as a potential p47phox ligand which could inhibit the interaction of this protein
with p22phox and the consequent activation of NADPH oxidase [133]. The real ability
of these peptides to interact with target proteins and modulate their cancer-promoting
mechanism remains to be unveiled by means of experimental approaches.
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Table 1. ACPs mentioned within this paragraph with the respective protein targets and the com-
putational tools implemented for their identification. “Y” or “N” in the column “Exp.” indicates if
experimental validation has been or has not been achieved, respectively. References associated with
peptide identification are also reported in the last column.

ACP Protein Target Computational Tools Exp. Ref.

LYSPH
PSYLNTPLL

MPO (PDB ID: 6WYD [136]);
XO (PDB ID: 3NVY [137]);

Keap1 (PDB ID: 2FLU [138]);
p47phox (PDB ID: 1WLP [139])

PlantPepDB [134];
AntiCP 2.0 [135];

PEP-FOLD3 [140];
Autodock Vina [72]/Webina 1.0.3 [141];

HPEPDOCK [71];
MLCPP [142];
B3Pred [143];

PlifePred [144];
BIOPEP-UWM [145];
BUDE Alanine [146];
GROMACS 2020 [87]

N [133]

LARLLT
(D4)

Extracellular domain of EGFR
(PDB ID: 1NQL [147])

PSCAN 2.2.2
Autodock 3 [148] Y [149]

Ebselen-WE Kinase domain of EGFR
(PDB ID: 3W2S [150])

CASTp [151];
Chemsketch [152];

Autodock Vina [72]
N [153]

Cyclo-
(EIDTVLTPTGWVAKRYS)

CTLA-4
(PDB ID: 1I85 [154])

KFC [155]; Phyre2 [156]; FlexPepDock
[157]; PyRosetta [158]; NAMD 2.13 [159];

MM-GBSA calculations [160]; BFEE in
VMD [161]

Y [162]

The Epidermal growth factor receptor (EGFR) is a tyrosine kinase receptor expressed
on the membranes of epithelial cells. EGFR is activated by different endogenous ligands,
such as Epidermal Growth Factor (EGF), and regulates physiological cellular functions.
This receptor is overexpressed in several human cancers, including lung, breast, bladder,
and ovarian cancers, where it is associated with the growth and progression of tumors,
regulating the angiogenesis, invasion, and metastasis of cancer cells. EGFR was the target
of a study in which a peptide ligand (D4: LARLLT) was identified starting from a computa-
tional approach (Table 1) [149]. First, the X-ray structure of the extracellular region of EGFR
was retrieved from PDB (PDB ID: 1NQL [147]), and then, an analysis was conducted with
the PSCAN program to find a binding pocket to be targeted by peptide ligands. To this aim,
a group of six amino acids surrounding the identified EGFR binding pocket (Q164, C163,
S162, E110, E73, and R74) (Figure 1) was implemented to design a library of peptides using
the theory of sense and antisense peptide interaction, based on the concept that peptide se-
quences originating by complementary nucleic acid portions are more prone to specifically
make interactions. This method allowed for the design of 132 6-mer peptides that were all
docked against the EGFR binding pocket (Figure 1c) with AutoDock3 [148]. Considering
the docking energy values, 20 peptides were selected, and 10 of them were synthesized.
Finally, the D4 peptide was considered the best choice for further in vitro and in vivo
experiments. The peptide was first conjugated with PEG (polyethylene glycol) to insert it
into a liposome membrane. The liposomes conjugated with D4 peptide were labelled with
the fluorescent probe rhodamine and tested on H1299 cancer cells over-expressing EGFR.
These experiments demonstrated that the D4-conjugated liposomes bind and penetrate the
H1299 cells by endocytosis. In in vivo fluorescence experiments in mice bearing an H1299
tumor, the peptide accumulated at cancer sites within the mice body, with a circulating
half-life of approximately 6 h. In vitro and in vivo experiments were also performed using
liposomes conjugated with a scrambled D4 peptide as a negative control that did not show
the same D4 specificity to penetrate cancer cells and accumulate in tumor mice regions.
In the end, the computational approach led to the identification of the D4 peptide that
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could be further employed to develop improved EGFR ligands to be conjugated to delivery
systems for cancer treatment [149].

Figure 1. Examples of protein targets used in virtual screening approaches to find ACPs. (a,b) Identi-
fication of ACPs from plant seeds. (a) MPO (turquoise) in complex with the 7GD compound (red)
and the heme group (green) (crystal structure with PDB ID: 6WYD [136], chains A and B); (b) XO
(violet) in complex with quercetin (red) (crystal structure with PDB ID: 3NVY [137], chain C). (c) The
structure of EGFR extracellular domain (blue) in complex with EGF (green) (crystal structure with
PDB ID: 1NQL [147], chains A and B). The backbone of protein residues selected for the design of a
virtual peptide library are colored in red, labelled with the one-letter amino acid codes and sequence
numbers, and further indicated with arrows.

EGFR was the target of another preliminary computational study in which a few
dipeptides conjugated with the compound Ebselen were designed [153] (Table 1). Ebselen
is a selenium-containing compound with anti-inflammatory, antioxidant, and cytoprotec-
tive activities that has been reported to possess anticancer potential in different tumor
types. Ebselen derivatives also present anti-tumoral functions as they have cytostatic and
cytotoxic capabilities. The PDB file of the EGFR kinase domain in complex with a small
molecule (PDB ID: 3W2S [150]) was used as a target to perform docking studies with three
Ebselen dipeptide derivatives (Eb-WD, Eb-WE, Eb-WK). Possible protein binding pockets
were searched with the CASTp (Computed Atlas of Surface Topography of proteins) soft-
ware (v. 3.0) [151], and the 3D structures of the Ebselen-conjugated peptides were obtained
with the Chemsketch software from ACD labs [152]. The docking studies to analyze the
interaction between EGFR and different Eb derivatives were carried out with AutoDockV-
ina [72], and the resulting docking energies were compared with those obtained for the
EGFR–doxorubicin complex. Among the screened molecules, Eb-WE (Table 1) showed
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an interaction energy to EGFR close to that obtained for the EGFR–doxorubicin complex.
Thus, this Ebselen derivative may have anticancer potential, but of course, experimental
validation is needed to confirm these computational data [153].

Computational techniques have been used to design peptide inhibitors of the T-cell
CTLA4 (Cytotoxic T-Lymphocyte–Associated antigen 4) receptor [162]. CTL4 is one of
the receptors expressed on immune cells and is involved in the immune self-tolerance
pathways that are targeted in cancer immunotherapy. Indeed, immune cells can intervene
in the tumor microenvironment by recognizing and destroying antigens specific to cancer
cells. However, cancer cells can evade these self-tolerance mechanisms by involving
inhibitory receptors expressed on immune cells, such as CTL4, that, together with their
ligands, are targeted by immunotherapy. Peptides might work better as inhibitors of these
receptors with respect to antibodies that are more expensive and difficult to store. The
X-ray structure of the CTLA4 receptor, extracted from the complex with the B7-2 protein
(PDB ID: 1I85 [154]) (Table 1), was used as a template to generate peptide sequences by
means of in silico techniques (including flexible docking and MD simulations). First, the
residues mainly involved in the CTLA4/B7-2 complex formation were predicted using
the KFC (Knowledge-based FADE and Contacts) web server [155] and, consequently, a
B7-2 region to use as a peptide template was identified. The structure of the template
peptide was predicted with the Phyre (Protein Homology/analogY Recognition Engine)
2 web server [156] and used in flexible docking runs against CTLA4 through Rosetta
FlexPepDock [157]. A few of the protein–peptide models generated during this step were
selected and structurally optimized with PyRosetta [158]. Peptide sequences were then
head-to-tail cyclized to improve their resistance to protease degradation, and their stabilities
in the CTLA4-bound forms were predicted using MD simulations by the NAMD 2.13
program [163] and MM-GBSA binding-free energy calculations [160]. The best-performing
protein–peptide complexes were further submitted to an MD free energy calculation in
explicit solvent by using the BFEE (Binding Free Energy Estimator) module of VMD (Visual
Molecular Dynamics) [161], and the resulting best models were further implemented in
flexible docking to achieve an additional optimization cycle.

The peptides were also experimentally tested by means of bio-layer interferometry
to confirm their ability to bind CTLA4 and by in vitro and in vivo experiments in Lewis
lung carcinoma (LLC) cells and in orthotropic Lewis lung carcinoma allograft models
to verify their capacity to block tumor cell growth. One of the peptides, the cyclic EI-
DTVLTPTGWVAKRYS, was identified as the most promising immunomodulator in cancer
therapy [162].

Another protein involved in the inhibition of the immune response against cancer cells,
HVEM (herpesvirus entry mediator), was the target of a study in which linear and cyclic
peptides were designed as antagonists of its interaction with BTLA (B- and T-lymphocyte
attenuator). Experimental studies and computational techniques were nicely combined
within this study. For peptide design, the N-terminal fragment of the gD (glycoprotein
D) protein, that binds HVEM and allows for the starting of infections by herpes simplex
virus-1 and -2 through a variety of entry mechanisms, was employed. Structure-based
drug design and MM-GBSA analysis were implemented as computational tools to select
lead compounds to be experimentally validated through diverse experimental analyses
[including ELISA (Enzyme-Linked Immunosorbent Assay) and cellular-based reporter
assays]. For the best peptide candidates, docking simulations were also performed to
predict the protein–peptide binding topology. One of the peptides, provided with a cyclic
arrangement and a disulfide bridge (i.e., gD(1–36)(K10C-T29C)), was considered the best
candidate to block BTLA inhibitory function and increase the immune response towards
cancer cells [164].

In our laboratories, we have long been studying the tyrosine kinase receptor EphA2
and employing computational approaches to identify peptide inhibitors of its interac-
tion with the lipid phosphatase Ship2 (SH2 domain-containing inositol phosphate 5-
phosphatase 2) [124]. The EphA2 receptor is overexpressed in several cancer cell types,
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with recognized roles in cancer onset and progression. The EphA2 cytosolic Sam domain
binds to the Sam domain of the lipid phosphatase Ship2, and this interaction is responsible
for the inhibition of EphA2 receptor endocytosis and degradation and is mainly linked
to pro-oncogenic outcomes. Different computational-based drug design approaches were
implemented to develop virtual peptide libraries focused on Sam domains that were subse-
quently employed in docking-based virtual screenings to identify peptide inhibitors of the
EphA2-Sam/Ship2-Sam complex with possible anticancer activity [122–124].

ACPs can also be identified from virtual peptide libraries with computational tech-
niques not including molecular docking. For instance, a peptide from the milk protein
alpha-lactalbumin with cytotoxic activity on A549 lung cancer cells was identified using ma-
chine learning methods as a virtual screening approach to identify peptides with relevant
physicochemical and anticancer properties [165].

3.3. Antimicrobial/Antiviral Peptides

Antimicrobial resistance (AMR) is a serious warning to worldwide health. The ex-
cessive use of antibiotics in farms as an addition to animal feed and in humans to treat
bacterial infections are among the key factors contributing to the diffusion of AMR, which
mainly affects clinical fields related to surgery, transplantation, and the treatment of inflam-
mations [166]. Viral agents also can develop AMR to vaccines and antiviral therapeutics,
and this concern is particularly worrying if associated with the pandemic risk arising from
some viral pathogens [167]. The most recent COVID-19 pandemic is a case in which AMR
has been among the highest priorities for public health.

These issues point out the necessity for drug discovery campaigns to find new thera-
peutics able to overcome AMR. Antimicrobial peptides (AMPs), with the ability to perturb
pathogen membranes or to regulate pathogen or host protein biological pathways, could
be a good source of new antibacterial and antiviral therapeutics.

3.3.1. Introduction

AMPs can be found in all living organisms as they are part of the host defense machin-
ery against pathogens. AMPs can directly or indirectly kill pathogen cells, by modulating
immunity pathways in response to pathogen entry into host cells [168]. The biological
activities of AMPs depend on their physiochemical properties, such as the net charge, the
conformation, and hydrophobicity. These peptides are usually positively charged, with a
length between 10 and 50 amino acids, and characterized by a variety of conformations
(α-helical, β-sheet, or linear without specific secondary structure elements) [169]. Different
models to explain the mechanisms that AMPs employ to disrupt cell membranes have been
proposed, such as the barrel-stave, the carpet-like, the toroidal pore, and the detergent-like
models [168]. AMPs are generally considered in the context of anti-bacterial treatments,
but the Antimicrobial Peptide Database (APD) [170] contains 3569 antimicrobial peptides
from six life kingdoms (https://aps.unmc.edu/, accessed on 15 November 2023) and 207
of them are classified as antiviral peptides. Viral AMPs can act as well by different mech-
anisms, such as the inhibition of viral infection by preventing interaction with host cells
or by inhibiting the transcription and translation processes of the viral genes [168]. As for
ACPs, databases [170,171] and specific computational tools, including machine learning
methods [171–174], have been developed to help the scientific community in the drug
discovery field and to understand the mechanisms of action of AMPs.

The next paragraphs will focus on several studies related to the search using virtual
screening and additional in silico tools of antiviral peptide agents against SARS-CoV-2.

3.3.2. Case Studies: Targeting SARS-CoV-2

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been re-
sponsible for 6.985.964 deaths worldwide since the onset of the coronavirus disease 2019
(COVID-19) pandemic till the beginning of December 2023, thus justifying the many ef-
forts made for the continuous development of novel treatments against this disease [175].

https://aps.unmc.edu/
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SARS-CoV-2, its mechanism of action, and many computational tools available for the
development of small molecule ligands against viral proteins have already been described
in several previous reviews [176–182]. Briefly, SARS-CoV-2 belongs to the enveloped
viruses, including a positive-sense single-stranded RNA, and its genome encodes different
viral proteins supporting its infective action [176]. For instance, the SARS-CoV-2 spike
protein binds to the human receptor angiotensin-converting enzyme 2 (ACE2) through a
receptor-binding domain (RBD), thus allowing viral entry into host cells [176,183–190]. In
addition, the 3C-like protease (3CLpro), also known as main protease (Mpro), is a viral
protein with a key role in the processing of the polyprotein precursors pp1a and pp1b into
the functional proteins necessary for viral propagation [176,191–194].

The search for the peptide inhibitors of SARS-CoV-2 proteins through in silico ap-
proaches can be achieved following diverse canonical key stages and combining docking
studies and molecular dynamics simulations [183].

Several in silico studies concerning the inhibition of viral entry into host cells by block-
ing the interaction of the RBD domain of the SARS-CoV-2 spike protein (spike RBD) with
the human ACE2 receptor have been reported in the literature (Figure 2a) [183–185,187,195].
In one such study, the authors retrieved from the PDB several structures of the RBD from the
SARS-CoV-2 spike glycoprotein/ACE2 complex (i.e., PDB ID: 6M0J [196], 7C8D [197], and
7A95 [198]) and deeply analyzed them also through the MM-GBSA approach. MM-GBSA
was used to evaluate the per-residue contribution to the binding free energy and predict
the crucial amino acids at the binding interface, also accounting for the reproducibility of
results in all the considered structures [195]. This investigation revealed that the interacting
residues were mainly positioned within two ACE2 regions (i.e., the α1 helix and the β4-β5
sheets, Figure 2a). Next, the gained information was employed to design a 49-mer peptide
(SARS-CoV-2 PEP 49) encompassing the amino acids of both the α1 and β4-β5 regions of
ACE2, the 3D structure of which was predicted with PEP-FOLD3 [140] and implemented
in docking studies against the SARS-CoV-2 spike protein. The docking results pointed out
that the designed peptide could target the RBD domain of the spike protein with a better
interaction energy than ACE2 itself. In the end, the in silico data showed that PEP49 could
potentially work as a good inhibitor of viral entry and consequently be implemented to
design original antiviral therapeutics [195].

Nevertheless, a strategy called EvoDesign was employed to generate in silico several
peptides targeting the spike RBD to block viral entry into host cells [199]. Starting from
the analyses of a crystal structure of the SARS-CoV-2 spike RBD/ACE2 complex (PDB ID:
6M0J [196]), a peptide scaffold was first built by combining, through a glycine linker, two
segments extracted from the ACE2 receptor interface. This initial scaffold was used as
a starting point in bioinformatic tools for de novo protein design (i.e., EvoEF2 [200] and
EvoDesign [201]) to generate novel peptide sequences optimized for interaction affinity
towards the SARS-CoV-2 spike RBD. Twelve of the best peptides, according to the in silico
binding studies, were also subjected to another computational screening. In this secondary
screening, MD simulations of the spike RBD/peptide complexes were carried out to analyze
the binding affinities and stability, looking at diverse features like the hydrogen bonding
aptitude and RMSD (Root Mean Square Deviation) values. The results, combined with
the predictions of the peptide secondary structures and stabilities in aqueous solution, led
in the end to the choice of the best peptide candidates (e.g., Peptide 6 and Peptide 7 in
Figure 2a) that could be conjugated to a graphene sheet or a carbon nanotube to generate a
bio-sensor for SARS-CoV-2 detection [184].

In a similar computational approach, the binding of the SARS-CoV-2 spike RBD to
ACE2 (PDB ID: 6LZG [202]) was investigated through MD and MM-PBSA free energy
calculations to establish the key residues at the binding interface of the two proteins
(Figure 2b). Based on the hot spot residues identified on ACE2 (i.e., D30, E37, D38, and
Y41), a library of 6-mer peptides (consensus sequence: “DX1X2EDY” where X1 and X2
represent any among the 20 natural amino acids) was designed. Through docking-based
virtual screening against the spike RBD, six peptides were selected and further validated
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by MD. Finally, three peptides (DDFEDY, DEYEDY, and DFVEDY in Figure 2b) resulted
as the best candidate inhibitors of viral entry and were further analyzed by bioinformatic
tools to estimate the allergenicity, toxicity, and solubility [185].

An additional in silico approach to attack viral infectivity by blocking the entry stage
started from a diverse virtual library of peptides, but again exploited the concept that a
peptide somehow similar to the ACE2 sequence responsible for interaction with the spike
protein might work as an inhibitor of the spike RBD/ACE2 complex and thus block viral
infection. In this context, a peptide library was assembled by mutating ACE2 residues not
involved in binding to spike RBD according to the analyses of experimental structures. In
detail, starting from a peptide fragment encompassing the α1 helix in ACE2, mutations
were inserted at 12 non-interacting amino acid sites; the introduction of point and multiple
mutations led to the generation of 136 peptides. Docking-based virtual screening against
the SARS-CoV-2 spike RBD (Figure 2a) was conducted, and seven peptides with potential
high binding affinities could be predicted. The MD simulations further pointed out one
potential peptide inhibitor (peptide 13 in Figure 2a) of viral entry with a~ 3-fold increased
interaction affinity for spike RBD with respect to a reference ACE2 peptide encompassing
the α1 helix [187].

Although these studies [185,187,195] provide useful insights for the design of potential
peptide inhibitors of viral infectivity modulating the viral entry stage, the lack of experi-
mental validation remains a major drawback. On the contrary, an elegant study by Hu and
collaborators reported on the successful in silico identification and experimental validation
of a peptide able to reduce SARS-CoV-2 entry into host cells by targeting simultaneously
the RBD of the SARS-CoV-2 spike protein and human neuropilin-1 (NRP1) [186]. The
NRP1 receptor represents another important player in SARS-CoV-2 entry as it has been
proposed as a co-receptor that might adjuvate ACE2 to favor virus attachment to olfactory
and respiratory epithelial cells, thus enhancing infectivity [186,203]. The NRP1 extracellular
b1 domain is generally used as the target to find NRP1 inhibitors; furin is a host protease
that cleaves the SARS-CoV-2 precursor spike S protein into the S1 and S2 fragments and
consequently generates a basic stretch at the C-terminal end of S1 (i.e., the C-end rule
(CendR) motif) responsible for interacting with the NRP1 receptor [204]. To identify pep-
tides able to bind the spike RBD and NRP1 b1 domain simultaneously, virtual screening
was conducted by employing both pharmacophore-based docking and structure-based
docking. The software Molecular Operating Environment (MOE [205], Chemical Comput-
ing Group Inc, Montreal, Quebec, Canada) was used for the pharmacophore modeling. A
library composed of 24,000 peptides was built by the QuaSAR-CombiGen module of MOE
through the random creation of connections between fragments of different lengths (i.e.,
4-mer, 7-mer, 9-mer, 12-mer) [186]. The resulting 2D peptide models were converted into
3D structures; meanwhile, the crystal structure of ACE2 in complex with the SARS-CoV-2
spike RBD (PDB ID: 6M0J [196]) and the crystal structure of the human NRP1 b1 domain
in complex with the SARS-CoV-2 S1 CendR peptide (PDB ID: 7JJC [204]) (Figure 2a,c)
were downloaded from PDB, hydrogens were added, and the protonation state optimized.
Next, the MOE program was employed to deeply analyze the interactions between the
SARS-CoV-2 spike RBD and ACE2 from the crystal structure [186]. The resulting data were
exploited by the Pharmacophore Editor module of MOE to provide the pharmacophore
profile for spike RBD (i.e., an ensemble of characteristics that peptides should have to match
the features of spike RBD binding pocket). A pharmacophore-based docking simulation
was conducted to identify potential peptide ligands of spike RBD through the docking
module of MOE. In detail, to screen the peptide database through pharmacophore-based
docking, the pharmacophore model was used as a 3D query, while the binding site in-
cluded hot spot residues on the interaction surface of spike RDB. The binding free energies
for the spike RBD/peptide complexes were evaluated based on the docking scores. The
peptides provided with docking scores lower than a chosen cut-off (i.e., −13.5 kcal/mol)
were further assayed through structure-based docking into the NRP1 b1 active site, and
the top five peptides were selected for in vitro biological testing. This clever approach was
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conducted for the identification of one peptide (i.e., RN-4, Figure 2c) able to simultaneously
bind both the spike RBD and NRP1 b1. In in vitro tests, RN-4 showed nanomolar affinities
against both proteins, and in the pseudovirus infection assay, the capacity to significantly
lower the SARS-CoV-2 entry into cells without provoking substantial adverse effects was
also demonstrated [186].

To discover peptide ligands of the spike RBD that could reduce SARS-CoV-2 infectivity
by blocking viral entry, a work by Ramirez-Acosta and collaborators reported on a virtual
screening strategy employing antimicrobial peptides [190]. A library of 104 peptides was
assembled starting from the Antimicrobial Peptide Database (APD) of the University of
Nebraska Medical Center [170,206] by focusing on those peptides with known antiviral
activities [190]. Since lysozyme is an innate immune system component with antimicrobial
activity, three lysozyme fragments were inserted into the library [190]. In addition, for com-
parison purposes, an ACE2-derived peptide (i.e., “IEEQAKTFLDKFNHEAEDLFYQSS”)
was included in the screening dataset. The structures of the preselected peptides that
could not be retrieved from the PDB were predicted by different sequence-based in silico
tools (I-TASSER (Iterative Threading ASSEmbly Refinement) [207,208] and PEP-FOLD
3.5 [140]) and then used as input for a docking-based virtual screening against the spike
RBD [190]. The docking analysis predicted for the twelve antimicrobial peptides and the
three lysozyme-derived peptides better binding affinities for the spike RBD than that pre-
dicted for the ACE2 reference peptide. Thus, after analysis of the most recurrent amino acid
types interacting with the RBD and based on H-bond pattern, extra optimized peptides
were designed and employed in docking studies against the spike RBD. The ability of the
peptides to escape the immune system was also investigated computationally through
the TepiTool, and for a few of them, a low immunogenic response was predicted [209].
In the end, a few optimized peptides with enhanced predicted binding affinity towards
diverse RBD variants (including the Delta one and a theoretic form derived by combining
the Alpha, Beta, and Gamma variants) were identified [190]. This represents a promising
protocol for discovering antiviral agents.

Thakkar and colleagues reported instead on the development, through the com-
bination of protein design programs and molecular dynamic simulations, of a 17-mer
stapled peptide (pep39) targeting the spike RBD and blocking its interaction with human
ACE2 [210]. The initial design started from a template peptide encompassing residues
26–42 of the ACE2 α1-helix and from the structure of the human ACE2/spike RBD complex
(PDB ID: 6LZG [202]) (Figure 2b). The structure-based FlexPepDock protocol [157] was
implemented to build a peptide that is able to interact with the spike RBD. Following this
strategy, a wide search of the conformational space accessible to the peptide backbone
was achieved using FlexPepDock. Next, docking poses provided with both low energies
and a certain degree of structural similarity with the template peptide were selected. To
enhance the affinity of the chosen poses for the spike RBD, the protocol proceeded by
substitutions with the common 20 amino acids and the optimization of the sidechains and
rotamers. Several optimization cycles led to many diverse possible sequences, but certain
amino acid residues appeared to be preferred in specific peptide positions: proline and
glycine at positions 8 and 10, respectively, and hydrophobic amino acids at positions 2,
12, 13, and 14. The first 41 optimized peptide structures in complex with the spike RBD
were subjected to molecular dynamics simulations. The MM-GBSA binding free energy
calculations allowed for the further filtering of 9/41 optimized peptides. Moreover, to
favor structure resemblance with the ACE2 α1 helix, a propene staple and an amide bond
between the side chains of a negatively charged residue and a positively charged one were
introduced into ad hoc chosen positions to enhance the peptide helical structures. The
MD simulations coupled to the MM-GBSA binding free energy calculations demonstrated
the largest stabilities of the stapled peptide conformations, as well as their higher ability
to remain in the bound state. The analysis of the MD trajectories demonstrated that the
so-called “pep39” peptide outperformed and was able to interact well with the spike RBD
in the ACE2 binding site. This most promising “pep39” peptide was experimentally vali-
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dated. The interaction studies through bio-layer interferometry demonstrated the binding
of pep39 to the spike RBD (dissociation constant KD = 570 ± 50 nM) and its delta variant
(KD = 4.1 ± 1.4 µM). In addition, the cell-based assays suggested that this stapled peptide
was able to block SARS-CoV-2 replication and could function as a potential anti-COVID-19
therapeutic agent [210].

Figure 2. In silico approaches to discover antiviral peptides targeting the receptor-binding domain of
SARS-CoV-2 spike protein (spike RBD) (a,b) and neuropilin 1 (NRP1) receptor (c). (a) The crystal
structure of spike RBD in complex with ACE2 receptor peptidase domain (PD) (PDB ID: 6M0J [196]) is
shown in a ribbon representation where the spike RBD is colored in red and ACE2 in grey with regions
important for the interaction (i.e., α1 helix and β4–β5 sheets) highlighted in black. Peptides 6, 7, and
13, the sequences of which are reported in the one-letter amino acid code, were identified through
in silico binding studies of the spike RBD structure extracted from the shown PDB entry [184,187].
(b) X-ray structure of spike RBD (red)/ACE2 (grey) complex (PDB ID: 6LZG [202]). Hot spot residues
on ACE and spike RBD are colored in black and yellow, respectively. The sequences of a few RBD
spike-targeting peptides discovered by docking-based virtual screening are shown [185]. (c) Crystal
structure of NRP1 b1 domain (green) (PDB ID: 7JJC, chain A extracted from the complex with
the CendR peptide [204]). Residues of the NRP1 peptide binding pocket are labeled and colored
in magenta. The RNF4 peptide is an in silico-identified dual ligand of spike RDB and NRP1 b1
domain [186].
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A diverse computational strategy relying on the combination of docking analysis and
MD simulations provided four dual peptide inhibitors targeting both the spike RBD and
the Mpro protease (Figure 3a). The screening of a peptide library was achieved through
the docking module in the MOE [205] software. The crystal structures of both the viral
protease Mpro complexed with a cyclic peptide (PDB ID: 7RNW [211]) and spike RBD
in complex with ACE2 (PDB ID: 6M0J [196]) were implemented in this study. A virtual
peptide library was combinatorially built using the QuaSAR-CombiGen module of MOE
starting from diverse peptide fragments (i.e., 15-mer cyclic peptides, heptapeptides, and
16- and 18-mer linear peptides) and included 27,000 cyclic peptides made up of an α-
helix and a cyclic segment [188]. The α-helix was inserted considering that this structure
element in ACE is important for the interaction with the spike RBD (Figure 2). All the
peptides were first screened against Mpro, and the best hits (i.e., docking scores lower
than −13.7 kcal/mol) were docked towards the spike RBD. The best four dual ligands
were further validated using MD simulations to analyze the stabilities of the protein–
peptide complexes. Finally, the four in silico hits were experimentally validated. First,
the MST (Microscale thermophoresis) interaction assays provided evidence of peptide
binding to both the Mpro and spike RBD with dissociation constants in the nanomolar
range and an increase in the binding affinity compared to two other peptides used as
positive controls [188]. In addition, a pseudovirus infection assay showed that more than
half of the SARS-CoV-2 pseudovirus was inhibited by these peptides without considerable
cytotoxicity to the host cells [188].

As mentioned before, the protease Mpro represents another appealing target in antivi-
ral drug discovery to counteract SARS-CoV-2 infection. To target Mpro, a virtual peptide
library was designed considering that D-amino acids provide some advantages when
incorporated into a peptide sequence (i.e., a higher resistance to proteases, improved in-
testinal absorption upon oral administration, and low or absent immunogenicity), and
that small peptides (i.e., 3-mer and 4-mer) perform better in docking algorithms since they
possess less freely-rotatable bonds [189]. A virtual screening was conducted against the
crystallographic structure of free Mpro (PDB ID: 6Y2E [212]) (Figure 3a) [189]. A library
of D-tri- and tetra-peptides was built through specific commands of Amber20 [213]; the
peptides were assembled by considering combinations of the common 21 residues (i.e.,
the 20 natural amino acids, and considering both neutral tautomers of histidine), and
including the N-terminal acetyl and C-terminal N-methyl amide capping groups. Starting
from the natural amino acids, the L-configuration was inverted to the D-configuration
for each residue, but for Ile and Thr, modeling was performed to obtain D-allo-isoleucine
and D-allo-threonine diastereomers. The 3D structures of each peptide were generated,
and were energy minimized [189]. Then, structure-based virtual screening was first con-
ducted by docking the D-peptide database in the Mpro active site; the resulting predicted
Mpro/peptide complexes were subjected to rescoring through the MM-GBSA approach
and the evaluation of binding free energies, followed by MD simulations and the analysis
of different parameters [i.e., RMSD, RMSF (root mean square fluctuation), and the number
of H-bonds] [189]. The proposed protocol provided four D-tetrapeptides (i.e., 4P1, 4P2, 4P3,
and 4P4 in Figure 3a) that were evaluated in in vitro enzymatic assays and demonstrated
the capacity to block from 50 to 85% of the Mpro activity, thus proving that the implemented
computational strategy could successfully be conducted to identify novel anti SARS-CoV-2
agents functioning as inhibitors of the Mpro protease [189].
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Figure 3. (a) The ribbon representation of free Mpro (crystal structure with PDB ID: 6Y2E [212]) is
reported in blue, the catalytic domain is highlighted with a yellow box, and the side chains of the
residues (Cys145 and His41), forming the catalytic dyad, are shown. The amino acid sequences of
several in silico identified potential peptide inhibitors of Mpro are indicated [189,191,192,214]. The
“4P” peptide series contains only amino acids in D-configuration; Ace stands for the N-terminal
Acetyl group, Nme stands for N-methyl amidation at C-termini, and HIE represents the E tautomer of
histidine [189]. (b) Electron microscopy (EM) structure of full-length ACE2 receptor (green) (extracted
from the RBD/ACE2-B0AT1 complex PDB ID: 6M17 [215], chain D) and diverse SARS-CoV-2 proteins:
RNA-dependent RNA polymerase (cyan) (extracted from the EM structure of SARS-CoV-2 RNA-
dependent RNA polymerase in complex with cofactors with PDB ID: 6M71 [216], chain A); Nsp15
(grey) (crystal structure—dimeric form—PDB ID: 6VWW [217], chains A and B); Nsp9 (magenta)
(crystal structure -dimeric form- PDB ID: 6W4B [218], chains A and B). Antiviral peptides AVP1155
and AVP1235 [219] were identified through a multi-target in silico screening against all proteins in
panel (b) as well as Mpro (a).

In order to find Mpro inhibitors, another study aimed to generate a peptide library
by the in silico digestion of the four more abundant proteins in rice bran (i.e., albumin,
glutelin, globulin, and prolamin) by the proteases pepsin, trypsin, and chymotrypsin [191].
Then, the results were analyzed by diverse bioinformatic tools to predict potential antivi-
ral/antimicrobial peptides (several programs were implemented: AVPpred [220], Meta-
iAVP [221], AMPfun [222], and ENNAVIA (Employing Neural Networks for Antiviral
Activity) [223]). The peptide amino acid composition and cytotoxicity were also estimated
by the COPid (COmposition based Protein Identification) [224] and ToxinPred [225] tools.
Through all these analyses, 10 antiviral peptides were chosen, and their 3D structures were
predicted by PEP-FOLD 3 [140] and used as the input for docking analyses conducted
through the GalaxyPepDock [70] program against the crystal structure of Mpro (PDB ID:
7C2Q [226]) [191]. This stage indicated that all peptides target a region of Mpro near its
active site, and the best ligand, according to the docking scores, was the AVP4 peptide
(Figure 3a). The Mpro/AVP4 peptide complex was further analyzed by MD simulations
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that pointed out a prolonged and robust interaction, thus confirming the validity of this
virtual screening approach [191].

As mentioned in Section 2.1, genetic algorithms can be employed to generate peptide
libraries and lower the high computing power usually requested to handle libraries made
up of tens of thousands of components [192]. In a computational strategy to find Mpro
inhibitors, the Mpro structure (PDB ID: 6LZE [227]) was employed to discover high-affinity
peptide ligands by means of a genetic algorithm. A group of peptide sequences representing
the populations was evolved through the genetic algorithm by using docking scores so that
several iterations were carried out, and each time, a new population was generated from
the previous one by sequence pairing, thus leading to better-predicted peptide binding
affinities according to the docking scores. In other words, the implemented algorithm
applied a sort of “Darwinian selection” in which the accomplishment of lower docking
scores against SARS-CoV-2 Mpro was used as a criterion for evolutive steps [192]. The
approach started from an initial population including 19 5-mer peptides made up by the
repetition of a single residue (consensus sequence “XXXXX”, where X is the same single
amino acid, chosen from the 20 natural ones, excluding proline) [192]. To achieve greater
levels of sequence diversity by ensuring random pairing, the same score was attributed
to each member of the starting population [192]. Starting from the second iteration, the
resulting couples were subjected to a crossing-over process, during which the 50 sequence
pairs with the best docking scores were saved and selected for a roulette wheel pairing step
in which the new population of sequence couples is built for the next evolutive step [192].
In addition, each cycle included the removal of the worst ten sequences [192]. The protocol
led to two peptides (i.e., HHYWH and HYWWT, Figure 3a) that could interact with SARS-
CoV-2 Mpro with an affinity greater than those against human proteases, thus indicating
the proposed strategy as a valid tool for the development of a starting lead peptide for the
design of optimized potential antiviral agents [192].

As previously mentioned, an intriguing source of potential inhibitors of SARS-CoV-2
viral proteins can be supplied by the database AVPdb, which includes peptides the antivi-
ral roles of which have been experimentally proven [194]. In addition, for the peptides
included within this database, useful features are provided (like sequence, source, target
virus, virus family, efficacy from the qualitative and/or quantitative point of view, assays
used to establish the efficacy, the physicochemical characteristics, and PubMed references)
along with a predicted structure [194]. A list of 88 antiviral peptides was extracted from
AVPdb based on anti-SARS-CoV-2 activities [214], and their 3D structures were modeled
by PEP-FOLD 3 [140]. These peptides were virtually screened against the X-ray structure
of Mpro (PDB ID: 6LU7 [228]). The CASTp webserver [151] was employed to clearly
identify the binding pocket on the surface of Mpro. Next, docking was carried out first
with PatchDock [229], and then further docking runs were performed with FireDock (Fast
interaction refinement in molecular docking) [230] starting from the best 10 conformations
of each Mpro/peptide complex; to additionally validate the results, the docking was also
conducted with ClusPro [231]. Four peptides (i.e., P14, P39, P41, and P74 in Figure 3a)
scored as the best ligands, according to several docking tools, and their complexes with
the Mpro active site were subjected to MD simulations to study the conformational stabil-
ity [214]. Different MD-related parameters (i.e., the RMSD, solvent accessible surface area,
radius of gyration, RMSF, and number of H-bonds) indicated the higher stability of the
protein–peptide complexes even with respect to Mpro in the apo form [214].

In a second work [219], a set of 434 AVPs were extracted from AVPdb [194] following
three main criteria: 1—the exclusion of peptides with proven activity against viruses of the
coronaviridae class, as the goal was to discover original anti-SARS-CoV-2 agents, 2—a lack
of cytotoxicity, and 3—a length of at least 27 residues to allow for the efficient modeling of
3D structures by the Robetta webserver [232]. The selected antiviral peptides were virtually
screened by docking against both the SARS-CoV-2 Mpro (PDB ID: 6M03 [233]) and the
non-structural protein 9 (Nsp9) (PDB ID: 6W4B [218]) with the ClusPro webserver [231]
(Figure 3a,b). From this first screening, eleven peptides with the most promising docking
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scores (based also on a comparison with reference peptides) towards both targets were
selected. The eleven peptides were next employed in a second docking-based virtual
screening approach against other SARS-CoV-2-related targets (Figure 3b) [i.e., the ACE2
receptor-binding domain (PDB ID: 6M17 [215]); SARS-CoV-2 RNA-dependent RNA poly-
merase (PDB ID: 6M71 [216]), and Nsp15 endoribonuclease (PDB ID: 6VWW [217])] [219].
From the second screening, two peptides (1155 and 1235 in Figure 3b) were selected with
good scores against all the proteins. In the end, the complexes of all five of the target
proteins and the two best peptides were further analyzed by MD simulations to confirm
the structural stability of the protein–peptide complexes [219].

In summary, during the COVID-19 pandemic, and especially during the initial out-
break, in silico approaches to fight SARS-CoV-2 flourished due to the urgent need to find
therapeutic agents. Many putative peptide inhibitors of SARS-CoV-2 proteins have been
identified in silico but not experimentally validated. The confirmation of the antiviral
activities of these peptides could open the road to the establishment of novel therapeutics,
avoiding undesired side effects.

3.4. Inhibiting Fibril Formation: Aβ42 and hIAPP as Targets

Virtual screening strategies have also been designed to identify peptides able to inhibit
protein self-aggregation, which is often the cause of pathological events [234–236]. AD
(Alzheimer’s disease) represents a neurodegenerative disorder due to accumulation in the
extracellular space of plaques. Neuritic plaques found in the brains of AD patients are
mostly composed of Aβ peptides resulting from the proteolytic cleavage of amyloid pre-
cursor proteins that form neurotoxic fibrillary β-sheet structures [237]. Aβ-(1–42) (=Aβ42)
represents the major form found in plaques. It has been reported that monomeric Aβ42
might initially assume an α-helical or disordered state before switching into a β-sheet con-
formation. This conformational change represents the crucial stage in the Aβ fibrillogenesis
process (Figure 4a,b) [238].

Starting from a previously identified inhibitor of Aβ aggregation and toxicity (i.e.,
the “RIIGL” peptide), a virtual peptide library was designed. In detail, this library was
built by substituting diverse amino acid positions of the starting peptide with residues
provided with similar side chains. For example, the first “R” in the “RIIGL” peptide was
mutated in a few polar and basic amino acids (K, H) while the “I” was substituted with
some non-polar aliphatic residues. The final library included 912 5-mer peptides that were
virtually screened, through docking techniques, against Aβ42 in the monomeric form (PDB
ID: 1IYT [237]) [234]. The best 10 peptide ligands, according to the docking scores, were
next assessed through molecular mechanics Poisson–Boltzmann surface area (MM-PBSA)
to evaluate the free energy of the interaction with Aβ42. Based on this analysis, the three
best peptides (“RLAPV”, “RVVPI”, and “RIAPA”) (Figure 4a) were further investigated
by MD simulations to study the conformational variations of Aβ42 in the presence and
the absence of each peptide. Interestingly, the MD revealed that in the presence of the
“RVVPI” and “RIAPA” peptides, there was a higher stabilization of Aβ42 helical states
(Figure 4a) with respect to the β-sheet conformations characterizing instead the fibrillar
species (Figure 4b). Thus, this clever computational strategy let us speculate that “RVVPI”
and “RIAPA” could prevent the conformational switch of the Aβ42 monomer towards
aggregation-prone structures [234].

The same in silico protocol to find inhibitors of Aβ42 self-association was tested starting
from the β-breaker peptide “LPFFD” and the structure of Aβ42 in the aggregated fibrillar
state (Figure 4b) [235]. “LPFFD” is a known inhibitor of Aβ aggregation that can dissociate
fibrils in vitro but also decrease fibrillogenesis and Aβ deposition in models of rat brains.
A virtual library of 867 pentapeptides was assembled by incorporating mutations in the
starting β-breaker peptide. Virtual screening by docking was first performed using as
a target the structure of Aβ42 in the fibrillar form (PDB ID: 2BEG [239] Figure 4b), and,
afterwards, MM-PBSA analyses and MD simulations were carried out. This approach
selected the “PPFFE” peptide as the most promising β-breaker peptide able to interact with
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the core region of the Aβ42 protofibrils, favoring energy minima characterized by a lower
β-sheet content and a decrease in the H-bonds [235].

Figure 4. (a) NMR structure of Aβ42 monomer (red) calculated in HFIP (Hexafluoroiso-
propanol/water) 80/20 v/v, (PDB ID: 1IYT [237], first conformer). RVVPI and RIAPA peptides [234]
that were identified by vs. against the monomeric form of Aβ42 could stabilize the Aβ42 helical
conformation. (b) NMR structure of Aβ42 fibrils (green) in aqueous buffer (PDB ID: 2BEG [239], first
conformer). The PPFFE peptide should work as a β-breaker and was selected by initial vs. against
Aβ42 fibrils [235].

A similar computational strategy was also employed to discover peptide inhibitors
of hIAPP (Human islet amyloid polypeptide) self-aggregation that leads to cytotoxic
fibers connected to the pathogenicity of type 2 diabetes (Figure 5a,b). Small peptide
fragments encompassing the amyloidogenic region of hIAPP work as blockers of self-
assembly. In particular, the fragment HSSNN18–22 was identified as an amyloidogenic
sequence demonstrating elevated antiproliferative properties towards RIN-5F cells. Thus,
the “HSSNN” peptide was used as a model to generate a virtual library of mutated peptides.
This library was virtually screened against the structure of hIAPP in the monomeric state
(PDB entry: 2L86 [240]) (Figure 5a). The subsequent MM-PBSA investigation of the best
docking hits pointed out two peptides (HSSQN and HSSNQ) that were able to target
monomeric hIAPP with a high affinity. Further MD simulations highlighted that when
in a complex with each peptide, monomeric hIAPP underwent the enhanced sampling of
helical conformation with a consequent decrease in the aggregation tendency [236].

In conclusion, the in silico approach combining several computational tools (i.e.,
docking-based VS, MM-PBSA, and MD) represents a suitable instrument to select the most
promising peptides, potentially able to block the self-aggregation mechanisms related to
AD and type 2 diabetes to be experimentally validated.

Figure 5. (a) NMR structure of hIAPP monomer (blue) calculated in SDS (Sodium Dodecyl Sulphate)
micelles, (PDB ID: 2L86 [240], first conformer). The in silico identified HSSQN and HSSNQ peptides
could favor the helical state in monomeric hIAPP [236]. (b) Cryo-EM structure of hIAPP fibrils
(magenta) (PDB ID: 7M61 [241]).
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4. Conclusions

This review can be considered a sort of toolkit for researchers who intend to start
a drug discovery study using docking-based virtual screening approaches and peptide
libraries to target proteins involved in different diseases.

Most functions within cells are mediated by networks of PPIs, the dysregulation
of which is usually related to pathological conditions; thus, there is growing interest in
the discovery of compounds able to modulate such interactions positively or negatively.
PPIs usually occur through vast surfaces characterized by smoothness and are often un-
able to be attacked by small molecules. In this framework, peptides, that can also be
easily produced by well-established synthetic routes, represent a valid alternative [2,3].
Nevertheless, in comparison to small molecules, peptides can be provided with a higher
efficacy and specificity for their protein targets due to their chemical variety as well as
conformational properties (i.e., the ability to assume a multiplicity of secondary structure
elements along with the capacity to undergo conformational variations when binding to
a protein surface) [2,3,242]. During the last few years, tremendous improvements have
been made in the medicinal chemistry field related to the production of peptides with
better drug-like features, and a variety of synthetic routes to prepare peptides provided
with specific secondary structure elements have been set up [35,41]. However, the costs
connected to the production of synthetic peptide libraries are relevant, especially if certain
non-natural amino acids or cyclic organizations need to be included to increase stability and
affinity for the target [242]. It also has to be considered that, when looking for a potential
therapeutic peptide acting on a specific protein or PPI, the screening of very large peptide
libraries, provided with the proper chemical diversity grade, needs to be carried out to
improve the chance of finding a good hit. To perform the initial experimental screenings
for evaluating peptide–protein interactions, additional costs, related to the chemicals and
materials needed to run the binding assays, must be faced, as well as the costs connected
to recombinant protein production (for example, when choosing to perform screening by
NMR, 15N and/or 13C-labeled proteins are often required, but their production is more
expensive). Such experimental screenings are also time-consuming.

However, when the target protein or protein–protein interaction has been well char-
acterized from a structural point of view and high-resolution atomic coordinates can be
downloaded from PDB, in silico approaches can be very useful in preselecting putative
peptide ligands to be submitted to experimental validation, thus reducing the time and
costs connected to a drug discovery campaign. Indeed, as described in the previous
paragraphs, large libraries of virtual peptides can be generated through a variety of in
silico tools, and diverse strategies can be adopted to design the library that best suits the
system under study. These libraries can next be implemented in structure-based virtual
screening [81,110,112,186,243]. To predict binding poses, peptides can be docked inside
the protein binding pockets extracted directly from the complex structure, if available,
or alternatively, diverse bioinformatic tools can be implemented to evidence pockets and
grooves and establish a putative binding site on the protein surface [151]; even blind
docking can be performed, but, in this case, less accurate results might be obtained and
longer computational times, connected to the exploration of the whole protein surface, are
required [244]. Another aspect to be considered is that, when performing docking-based vir-
tual screening, flexibility is important, and most docking tools allow for a certain treatment
of flexibility not only concerning the ligand but also the protein receptor [76,80,82,245].
In the end, docking scores can be employed to preselect a certain number of compounds,
but, as selection criteria may not be straightforward enough to be established [246], before
starting experimental validations, it can be helpful to further perform MD simulations to
obtain some insights into the stability of the predicted docking poses [92,184,214].

All these topics and the major drawbacks have been treated within this review simply
to allow the less experienced researchers to gain inspiration for their studies.
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Through this review, we describe as well diverse examples of virtual screening ap-
proaches to identify peptides targeting a variety of proteins and PPIs involved in cancer,
Alzheimer’s disease, diabetes, and COVID-19 [153,187,192,234].

By reviewing the literature, we noticed that many putative peptide ligands have been
identified in silico, but often the proper experimental validation of computational results is
lacking, and in the end, it is important to consider that a large slice of virtually identified
hits might not be able to reach the desired biological effects [81,247]. As much research
effort is being spent in the field, and rapid improvements are being achieved, an even larger
increase in the success rate of SBVS must be expected in the near future. Meanwhile, it
could be interesting to create databases of in silico discovered bioactive compounds and
validate those without experimentally proved functions. These data could open additional
avenues for generating therapeutic agents and/or setting up novel therapeutic routes.
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