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Abstract: Alterations in the gut microbiome are associated with the pathogenesis of Alzheimer’s
disease (AD) and can be used as a diagnostic measure. However, longitudinal data of the gut
microbiome and knowledge about its prognostic significance for the development and progression
of AD are limited. The aim of the present study was to develop a reliable predictive model based
on gut microbiome data for AD development. In this longitudinal study, we investigated the
intestinal microbiome in 49 mild cognitive impairment (MCI) patients over a mean (SD) follow-up
of 3.7 (0.6) years, using shotgun metagenomics. At the end of the 4-year follow-up (4yFU), 27 MCI
patients converted to AD dementia and 22 MCI patients remained stable. The best taxonomic model
for the discrimination of AD dementia converters from stable MCI patients included 24 genera,
yielding an area under the receiver operating characteristic curve (AUROC) of 0.87 at BL, 0.92 at
1yFU and 0.95 at 4yFU. The best models with functional data were obtained via analyzing 25 GO
(Gene Ontology) features with an AUROC of 0.87 at BL, 0.85 at 1yFU and 0.81 at 4yFU and 33 KO
[Kyoto Encyclopedia of Genes and Genomes (KEGG) ortholog] features with an AUROC of 0.79 at BL,
0.88 at 1yFU and 0.82 at 4yFU. Using ensemble learning for these three models, including a clinical
model with the four parameters of age, gender, body mass index (BMI) and Apolipoprotein E
(ApoE) genotype, yielded an AUROC of 0.96 at BL, 0.96 at 1yFU and 0.97 at 4yFU. In conclusion, we
identified novel and timely stable gut microbiome algorithms that accurately predict progression to
AD dementia in individuals with MCI over a 4yFU period.

Keywords: Alzheimer’s disease; intestinal microbiome; taxonomic data; functional data; ensemble
learning

1. Introduction

Mild cognitive impairment (MCI) is a common syndrome in elderly people, represent-
ing an intermediate clinical stage between the expected cognitive decline of normal aging
and early features of dementia [1]. Longitudinal studies provide evidence for different
patterns of progression of MCI patients, ranging from the development of Alzheimer’s
disease (AD) dementia to the stabilization or even reversion of cognitive impairment [2]. In
clinical practice, a combination of clinical, neuropsychological, biochemical and multimodal
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neuroimaging findings offers, at the MCI stage, substantial information on underlying
pathologies, allowing for an early recognition of prodromal AD individuals. Early detection
of MCI individuals at high risk for conversion to AD dementia is crucial for administering
targeted early intervention and preventing cognitive decline. AD is the most common
cause of dementia in the elderly. The neuropathology of AD is characterized by the accumu-
lation of β amyloid (Aβ) plaques and tau-containing neurofibrillary tangles (NFTs), cortical
atrophy and neuroinflammation including altered microglia function in the brain [3]. In
particular, the mechanisms triggering these inflammatory changes in the brain are elusive.

A growing body of evidence suggests that the gut microbiome is linked to the patho-
genesis of AD. Studies examining several animal models of AD have found altered gut
microbiome composition—even before the presence of amyloid plaques in the brain and
thus already at a very early stage of AD pathogenesis [4]. Gut bacteria seem to influence the
development of AD pathology in the brain. Germ-free animal models of AD develop less
amyloid and tau pathology in the brain compared to animal models of AD with an existing
or replaced intestinal microbiome [5–8]. In addition, the transfer of healthy intestinal
microbiota reduces plaque and the tangle load, ameliorates reactive glia and improves
cognition [9]. These findings indicate that restoring gut microbial homeostasis may have
beneficial effects on AD treatment. Human studies have also demonstrated altered gut
microbiome composition in AD patients [10–14], in MCI patients [11,12] and even in indi-
viduals with preclinical AD [15]. Some of these studies indicate that the gut microbiome
could be used as a diagnostic biomarker for the detection of AD patients [11–15]. However,
longitudinal data of the gut microbiome and knowledge about its prognostic significance
for the development and progression of AD are limited.

The aim of the present longitudinal study was to examine the predictive power of
taxonomic and functional intestinal microbiome data and their combination with clinical
data for conversion from MCI to AD dementia within 4yFU.

2. Results
2.1. Discriminatory Ability of the Gut Microbiome between Stable MCI Patients and AD
Dementia Converters

The clinical and demographic characteristics of the study sample are presented in
Table 1, showing no significant differences in the clinical and demographic characteristics
at baseline between stable MCI patients and AD dementia converters. As expected, AD
dementia converters showed significantly lower MMSE values at 1yFU (p = 0.0108) and
4yFU (p < 0.0001) compared with stable MCI patients.

Table 1. Clinical and demographic characteristics of individuals with stable mild cognitive impair-
ment (MCI) and converters from MCI to mild dementia due to Alzheimer’s disease (AD).

Stable MCI AD Dementia
Converters p-Value

Number (n) 22 27

Age, years, mean (SD) 70.4 (6.9) 72.9 (7.7) 0.2492

Gender (m/f) 10/12 8/19 0.3723

MMSE at baseline, mean (SD) 26.9 (1.4) 26.9 (1.8) 0.9569

MMSE at 1-year follow-up (1yFU),
mean (SD) 26.4 (1.8) 24.4 (3.2) 0.0108

MMSE at 4-year follow-up (4yFU),
mean (SD) 25.9 (1.4) 20.2 (4.3) <0.0001

GDS, mean (SD) 2.0 (1.6) 2.4 (1.8) 0.4493

Body mass index (BMI), mean (SD) 25.1 (3.8) 26.2 (4.7) 0.3715
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Table 1. Cont.

Stable MCI AD Dementia
Converters p-Value

ApoE (e4/e4 carriers/single e4
carriers/non-e4-carriers; n) 1/6/6 0/5/10 0.3757

Arterial hypertension (yes/no) 6/16 14/13 0.1433

Diabetes mellitus (yes/no) 0/22 3/24 0.2423

Rheumatoid arthritis (yes/no) 1/21 0/27 0.4490

NSAIDs (yes/no) 6/16 8/19 0.8559

Anticoagulants (yes/no) 0/22 0/27 n.a.

Antihypertensives (yes/no) 6/16 13/14 0.1551

Antidiabetics (yes/no) 0/22 1/26 0.9853

Statins (yes/no) 4/18 7/20 0.7325

Antidepressants (yes/no) 2/20 7/20 0.1595

AChE inhibitors (yes/no) 1/21 4/23 0.3622

Mediterranean diet score [16] 32.0 (5.1) 30.1 (5.2) 0.1141
Note: Values are expressed as mean (standard deviation). N: number; MCI: mild cognitive impairment;
AD: Alzheimer’s disease patients; m/f: male/female; MMSE: mini-mental state examination; GDS: Geriatric
Depression Scale; NSAIDs: nonsteroidal antiphlogistics; AChE: acetylcholinesterase.

In order to evaluate whether the clinical or gut microbiome parameters were valid to
predict conversion from MCI to AD dementia, we determined different logistic regression
models and investigated their discriminatory potential using ROC analysis. The clinical model
including age, gender, BMI and ApoE genotype yielded an area under the receiver operating
characteristic curve (AUROC) of 0.69 at BL, 0.71 at 1yFU and 0.68 at 4yFU (Figure 1A).
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Figure 1. (A–D): ROC curves for discrimination between AD dementia converters (n = 27) and stable
MCI patients (n = 22) within a follow-up of 4 years at baseline, at 1yFU (Follow Up 1) and 4yFU
(Follow Up 2) based on (A) a clinical model with 4 features (age, gender, BMI, ApoE); (B) a genera
model with 24 features; (C) a GO model with 25 features; and (D) a KO model with 33 features.
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The best taxonomic model for the discrimination of AD dementia converters from
stable MCI patients included 24 genera, yielding an AUROC of 0.87 at BL, 0.92 at 1yFU and
0.95 at 4yFU (Figure 1B). The 24 genera included in the genera model are listed in Table 2.

Table 2. Genus and phylum of the 24 features included in the genera model for discrimination
between AD dementia converters and stable MCI patients. * <0.05; ** <0.01; *** <0.001 https://www.
ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=2 (accessed on 9 November 2023).

Genus Phylum
Genera Levels in AD Dementia

Converters vs. Stable MCI Patients
(↑ Increased, ↓ Decreased)

Clostridium Bacillota ↓
Erysipelatoclostridium Bacillota ↑ ***

Mediterranea Bacteroidota ↓
Lawsonibacter Bacillota ↓

Sebaldella Fusobacteriota ↑ **

Haloglycomyces Actinomycetota ↑
Actinoalloteichus Actinomycetota ↑

Arsenicicoccus Actinomycetota ↑
Serinicoccus Actinomycetota ↑

Knoellia Actinomycetota ↓
Proteiniclasticum Bacillota ↑

Alkaliflexus Bacteroidota ↓ *

Geofilum Bacteroidota ↓ *

Filimonas Bacteroidota ↑ **

Terrimonas Bacteroidota ↓
Pricia Bacteroidota ↓

Lautropia Pseudomonadota ↓
Acidiphilium Pseudomonadota ↓

Komagataeibacter Pseudomonadota ↑
Teredinibacter Pseudomonadota ↑ **

Methyloglobulus Pseudomonadota ↑
Oceanococcus Pseudomonadota ↑
Persephonella Aquificota ↑ *

Kutzneria Actinomycetota ↓

The best models with functional data were obtained via analyzing 25 GO (Gene
Ontology) features with an AUROC of 0.87 at BL, 0.85 at 1yFU and 0.81 at 4yFU (Figure 1C)
and 33 KO (Kyoto Encyclopedia of Genes and Genomes [KEGG] ortholog) features with an
AUROC of 0.79 at BL, 0.88 at 1yFU and 0.82 at 4yFU (Figure 1D).

The 33 KO features included in the KO model are listed in Table 3, and the 25 features
included in the GO model are listed in Table 4.

https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=2
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=2
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Table 3. KO (Kyoto Encyclopedia of Genes and Genomes [KEGG] ortholog) labels, names and
pathways of 33 features included in the KO model for discrimination between AD dementia converters
and stable MCI patients. * <0.05; ** <0.01; https://www.genome.jp/kegg/pathway.html (accessed on
9 November 2023).

KO Label Name Pathways/Reaction Mechanisms
Relative Abundance of KO Values in
AD Dementia Converters vs. Stable

MCI Patients (↑ Increased,
↓ Decreased)

K02474 UDP-N-acetyl-D-galactosamine
dehydrogenase

Metabolism of amino sugar and nucleotide
sugar

Biosynthesis of O-Antigen nucleotide sugar
Biosynthesis of nucleotide sugars

↑ *

K17235 Arabinosaccharide transport system
permease protein ATP-binding cassette (ABC) transporters ↓

K02405 RNA polymerase sigma factor for flagellar
operon FliA

Two-component system
Biofilm formation of pseudomonas

aeruginosa, escherichia coli and vibrio
cholerae

Flagellar assembly

↓

K07742 Uncharacterized protein Unclassified ↓ **

K02041 Phosphonate transport system
ATP-binding protein ABC transporters ↓

K03826 Putative acetyltransferase Protein modification ↓ *

K03706 Transcriptional pleiotropic repressor Senses the intracellular pool of
branched-chain amino acids ↓

K01951 Guanosine monophosphate
(GMP) synthase

ATP + xanthosine 5’-phosphate + L-glutamine
+ H2O ⇌ AMP + diphosphate + GMP +

L-glutamate
Metabolism of purine, drugs and nucleotides

↑

K02065 Phospholipid/cholesterol/gamma-HCH
transport system ATP-binding protein ABC transporters ↑

K00765 ATP phosphoribosyltransferase

Histidine metabolism
Metabolic pathways

Biosynthesis of secondary metabolites and
amino acids

↑

K09789 Pimeloyl-[acyl-carrier protein] methyl
ester esterase

Biotin metabolism
Biosynthesis of cofactors ↑ *

K02654 Leader peptidase (prepilin
peptidase)/N-methyltransferase Formation of pseudopili ↓

K09766 Uncharacterized protein Unclassified ↓

K03408 Purine-binding chemotaxis protein CheW Two-component system
Bacterial chemotaxis ↓

K03270
3-deoxy-D-manno-octulosonate

8-phosphate phosphatase (KDO 8-P
phosphatase)

Biosynthesis of lipopolysaccharides and
nucleotide sugars

Metabolic pathways
↑

K02396 Flagellar hook-associated protein 1 Flagellar assembly ↓

K01923 Phosphoribosylaminoimidazole-
succinocarboxamide synthase

Purine metabolism
Biosynthesis of secondary metabolites ↑

K01736 Chorismate synthase

Biosynthesis of phenylalanine, tyrosine,
tryptophan, secondary metabolites and amino

acids
Metabolic pathways

↑

K18928 L-lactate dehydrogenase complex protein
LldE Conversion of pyruvate to lactate and back ↑

K02387 Flagellar basal-body rod protein FlgB Flagellar assembly ↓

K00575 Chemotaxis protein methyltransferase
CheR

Two-component system
Bacterial chemotaxis ↓

K07718 Two-component system, sensor histidine
kinase YesM Two-component system ↓

K06378 Stage II sporulation protein AA (anti-sigma
F factor antagonist)

Regulation of DNA-templated transcription
Cellular spore formation ↓ *

K06023 HPr kinase/phosphorylase

Catabolite repression in Gram-positive
bacteria

Phosphorylates HPr, a phosphocarrier protein
of a sugar transport and phosphorylation

system at a serine residue

↓

K05350 Beta-glucosidase

Metabolism of cyanoamino acid, starch and
sucrose

Degradation of flavonoids
Biosynthesis of various plant secondary

metabolites

↓

https://www.genome.jp/kegg/pathway.html
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Table 3. Cont.

KO Label Name Pathways/Reaction Mechanisms
Relative Abundance of KO Values in
AD Dementia Converters vs. Stable

MCI Patients (↑ Increased,
↓ Decreased)

K00338 NADH-quinone oxidoreductase subunit I Oxidative phosphorylation
Metabolic pathways ↑ *

K00281 Glycine dehydrogenase

Metabolism of glycine, serine, threonine,
glyoxylate, dicarboxylate,

lipoic acid and carbon
Biosynthesis of secondary metabolites

↑ **

K06143 Inner membrane protein Unclassified ↑ *

K01308 Gamma-D-glutamyl-meso-
diaminopimelate peptidase Endopeptidase ↓

K13652 AraC family transcriptional regulator
Binds to the target DNA and regulates

bacterial virulence by sensing small
molecule inducers

↑ *

K02398 Negative regulator of flagellin
synthesis FlgM

Two-component system
Biofilm formation of pseudomonas

aeruginosa and escherichia coli
Flagellar assembly

↓

K07814 Putative two-component system
response regulator

Putative two-component system
response regulation ↓ *

K01277 Dipeptidyl-peptidase III Intracellular peptide catabolism ↑

Table 4. GO (Gene Ontology) labels, names and pathways of 25 features included in the GO
model for discrimination between AD dementia converters and stable MCI patients. * <0.05;
** <0.01; https://www.informatics.jax.org/vocab/gene_ontology/ https://amigo.geneontology.org/
(accessed on 9 November 2023).

GO Label NAME/TERM Definition/Reaction Mechanisms
Relative Abundance of GO Values in
AD Dementia Converters vs. Stable

MCI Patients (↑ Increased,
↓ Decreased)

GO.0050549 Cyclohexyl-isocyanide hydratase activity N-cyclohexylformamide + H+ = cyclohexyl
isocyanide + H2O ↑ **

GO.0015716 Organic phosphonate transport Alkylphosphonate transport ↑ *

GO.0047536 2-aminoadipate transaminase activity 2-oxoglutarate + L-2-aminoadipate =
2-oxoadipate + L-glutamate ↑ **

GO.0006084 Acetyl-CoA metabolic process Key intermediate in lipid and terpenoid
biosynthesis ↓ **

GO.0006694 Steroid biosynthetic process Formation of steroids ↑

GO.0009986 Cell surface binding Component of the cell wall and/or plasma
membrane ↓ *

GO.0016999 Antibiotic metabolic process Antibiotic metabolism ↓ **

GO.0003935 GTP cyclohydrolase II activity
GTP + 3 H2O = 2,5-diamino-6-hydroxy-4-(5-

phosphoribosylamino)-pyrimidine +
diphosphate + formate + 3 H+

↓ *

GO.0004634 Phosphopyruvate hydratase activity 2-phospho-D-glycerate =
phosphoenolpyruvate + H2O ↓

GO.0006399 tRNA metabolic process tRNA metabolism ↑

GO.0016854 Racemase and epimerase activity Configuration change in one or more chiral
centers in a molecule ↑

GO.0046405 Glycerol dehydratase activity Glycerol = 3-hydroxypropanal + H2O ↑

GO.0052907
23S rRNA

(adenine(1618)-N(6))-methyltransferase
activity

S-adenosyl-L-methionine + adenine (1618) in
23S rRNA = S-adenosyl-L-homocysteine +

rRNA containing N(6)-methyladenine (1618)
in 23S rRNA

↑ *

GO.0006974 DNA damage response Cellular response to DNA damage ↑ *

GO.2000143 Negative regulation of DNA-templated
transcription initiation

Limitation of DNA-templated transcription
initiation ↑ *

GO.0002143 tRNA wobble position uridine thiolation
Post-transcriptional thiolation at the C2

position of an uridine residue at position 34 in
the anticodon of a tRNA

↑ **

https://www.informatics.jax.org/vocab/gene_ontology/
https://amigo.geneontology.org/
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Table 4. Cont.

GO Label NAME/TERM Definition/Reaction Mechanisms
Relative Abundance of GO Values in
AD Dementia Converters vs. Stable

MCI Patients (↑ Increased,
↓ Decreased)

GO.0019323 Pentose catabolic process
Breakdown of a pentose, any monosaccharide

with a chain of five carbon atoms in the
molecule

↑ *

GO.0046104 Thymidine metabolic process Thymidine metabolism ↑ *

GO.0016041 Glutamate synthase (ferredoxin) activity
2 L-glutamate + 2 oxidized ferredoxin =

L-glutamine + 2-oxoglutarate + 2 reduced
ferredoxin + 2 H+

↓

GO.0016776 Phosphotransferase activity, phosphate
group as acceptor

Transfer of a phosphorus-containing group
from one compound (donor) to a phosphate

group (acceptor)
↑ *

GO.0033764
Steroid dehydrogenase activity, acting on

the CH-OH group of donors, NAD or
NADP as acceptor

Oxidation-reduction (redox) reaction in which
a CH-OH group acts as a hydrogen or electron
donor and reduces NAD+ or NADP, and in

which one substrate is a sterol derivative

↑ *

GO.0010133 Proline catabolic process to glutamate Proline degradation to glutamate ↑

GO.0003842 1-pyrroline-5-carboxylate
dehydrogenase activity

H2O + L-glutamate 5-semialdehyde + NAD+
= 2 H+ + L-glutamate + NADH ↑

GO.0004657 Proline dehydrogenase activity

L-proline + acceptor =
(S)-1-pyrroline-5-carboxylate + reduced

acceptor (first of two enzymatic reactions in
proline degradation to glutamate)

↑ *

GO.0004775 Succinate-CoA ligase
(ADP-forming) activity

ATP + succinate + CoA = ADP + succinyl-CoA
+ phosphate ↑ **

Using ensemble learning for these three models, including a clinical model with the
four parameters of age, gender, body mass index (BMI) and Apolipoprotein E (ApoE)
genotype, yielded an AUROC of 0.96 at BL, 0.96 at 1yFU and 0.97 at 4yFU (Figure 2).
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Figure 2. ROC curves for discrimination between AD dementia converters (n = 27) and stable MCI
patients (n = 22) within a follow-up of 4 years at baseline, at 1yFU (Follow Up 1) and 4yFU (Follow
Up 2) based on ensemble learning including genera model, GO model, KO model and a clinical
model with 4 features (age, gender, BMI, ApoE).

2.2. Longitudinal Development of Gut Microbiome

The longitudinal development (baseline, 1yFU, 4yFU) of the three most abundant
features included in the models is depicted in Figure 3A–C. Within the genera model,
including 24 features, the three most abundant genera in all participants at baseline are
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Clostridium (59.6%), Mediterranea (17.2%) and Erysipelatoclostridium (14.7%), accounting for
91.5% of all genera at baseline (Figure 3A).
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Within the GO model, including 25 features, the three most abundant features in
all participants at baseline are Phosphopyruvate hydratase activity (GO.0004634; 21.6%),
cell surface binding (GO.0009986; 21.1%) and Acetyl-CoA metabolic process (GO.0006084;
19.4%), accounting for 62.1% of all features at baseline (Figure 3B).

Within the KO model, including 33 features, the three most abundant features in all
participants at baseline are Guanosine monophosphate (GMP) synthase (K01951; 23.4%),
Chorismate synthase (K01736; 13.5%) and ATP phosphoribosyltransferase (K00765; 12.0%),
accounting for 48.9% of all features at baseline (Figure 3C).

3. Discussion

In the present study, we investigated the predictive power of taxonomic and functional
intestinal microbiome data and their combination with clinical data for conversion from
MCI to AD dementia within 4yFU. Within the taxonomic data, we identified a genera
model with 24 features and within the functional data, we identified a GO model with
25 features and a KO model with 33 features showing the best results for the discrimina-
tion of AD dementia converters from stable MCI patients. These findings indicate that
alterations in the bacterial taxa on a community level rather than single bacterial taxa and
changes in functional networks rather than single functional parameters may be associated
with AD dementia development in MCI patients.

The key idea of the present longitudinal study was to focus on the stability of model
features over time, as the number of possible predictive models that could be developed
for gut microbiome features is limitless and would have highly variable feature sets. This
approach provided a limited set of trait biomarker candidates, which are stable over time
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in the examined cohort, as indicated by a stable predictive power of the models at all three
time points. As a potential advantage of timely stable gut microbiome models, they could
be used at a larger frame of disease development. A recent study has also identified a stable
gut microbiome pattern in patients with Parkinson’s disease (PD) and in healthy controls
over a period of 14 months [17].

In a next step, we compared the discriminatory ability of the different models used
in the present study. We found that the taxonomic data worked comparably well like the
functional data at baseline and slightly better at 1yFU and 4yFU. Any of the three examined
microbiome models performed better than the clinical model with the 4 parameters: age,
gender, BMI and ApoE. Finally, we were interested to examine if a combination of the
genera model with the two functional models and the clinical model using an ensemble-
learning approach provides superior discriminability compared to the included singular
models. The ensemble model performed better than any of its included models separately
at all three time points. Compared to the prognostic accuracy of the clinical model alone,
the additional analysis of the microbiome data increased the prognostic accuracy by about
0.3 points at all three time points, underlining that the gut microbiome represents an
innovative and meaningful prognostic supplement in AD.

When looking more specifically at the identified features of the taxonomic and func-
tional models, it is convincing that these features may enhance the prognostic accuracy
for conversion from MCI to AD dementia as previous studies have already linked some of
them to the pathogenesis of AD [12,14,18,19]. In our genera model, 22 of the 24 taxa (91.7%)
belong to the same 4 phyla: Pseudomonadota (formerly synonym Proteobacteria), Bacteroidota
(formerly synonym Bacteroidetes), Actinomycetota (formerly synonym Actinobacteria) and
Bacillota (formerly synonym Firmicutes). Six of the twenty-four taxa (25.0%) in our genera
model belong to the phylum Pseudomonadota with significantly increased levels of Teredini-
bacter in AD dementia converters. The potential meaning of Pseudomonadota in AD has also
already been shown in our previous study, where 62.5% of taxa with higher levels in AD
patients compared to the healthy controls belonged to the phylum Pseudomonadota [14]. In
addition, a second study found increased Pseudomonadota levels in AD patients, correlating
with the severity of cognitive impairment [12]. Six of the twenty-four taxa (25.0%) in
our genera model belong to the phylum Bacteroidota with significantly increased levels
of Filimonas and decreased levels of Alkaliflexus and Geofilum in AD dementia converters.
Bacteroidota and Pseudomonadota are Gram-negative bacteria, and lipopolysaccharides (LPS)
on their surface can induce the activation of macrophages toward a pro-inflammatory
phenotype [20,21]. In line with this, Bacteroidota and Pseudomonadota have been associated
with several inflammatory intestinal and extra-intestinal diseases [20,22]. Inflammatory
processes including altered microglia function in the brain play an important role in the
pathogenesis of AD [23,24]. Therefore, gut microbial dysbiosis with up-regulation of
pro-inflammatory bacteria such as Bacteroidota and Pseudomonadota could trigger these
inflammatory changes and thus enhance conversion from MCI to AD dementia. In ad-
dition, Bacteroidota are a major producer of propionate, a short-chain fatty acid (SCFA)
in the gut [25], which has been demonstrated to induce amyloid and tau pathology in
animal models of AD [8,26]. Six of the twenty-four taxa (25.0%) in our genera model belong
to the phylum Actinomycetota. Actinomycetota are Gram-positive bacteria and decreased
levels have been described in AD patients [10]. Furthermore, Actinomycetota was the most
abundant bacterial phylum in postmortem AD brain samples [18]. Four of the twenty-four
taxa (16.7%) in our genera model belong to the phylum Bacillota with significantly increased
levels of Erysipelatoclostridium in AD dementia converters. Erysipelatoclostridium belongs
to the phylum Bacillota and is involved in the absorption of polyphenolic compounds in
the gut [27]. A recent study showed a lower abundance of Erysipelatoclostridium in AD
patients compared to normal controls [19]. In addition, a higher abundance of Erysipela-
toclostridium in the gut has been described to be associated with better cognitive function
in APP/PS1 mice [28] and with lower serum levels of phosphorylated tau (pTau)181 and
glial fibrillary acidic protein (GFAP) in human AD patients [29]. Our findings of increased
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levels of Erysipelato clostridium in AD dementia converters could indicate a compensatory
upregulation of this potential beneficial genus in the early development of AD.

Among the 33 features included in the KO model for discrimination between AD
dementia converters and stable MCI patients, there were 7 mediators (K02474, K00765,
K03270, K01923, K01736, K05350, K00281) producing different metabolites such as nu-
cleotide sugars, amino acids and lipopolysaccharides. AD dementia converters showed
significantly increased levels of K02474 and K00281, associated with amino sugar and
nucleotide sugar metabolism and amino acid metabolism. The KO model included six
mediators (K02405, K03408, K00575, K07718, K02398, K07814) of the two-component signal
transduction system, connecting the input stimuli to the biofilm formation of bacteria [30].
AD dementia converters showed decreased levels of K07814. Biofilms are defined as mi-
crobes that are encapsulated in an extracellular, self-produced, biofilm matrix consisting,
e.g., of functional amyloid or amyloid-like fibers, such as the amyloid curli [31]. Studies
have shown that the immune system recognizes both bacterial amyloid curli and human
amyloids through the same receptors, inducing inflammatory processes [32]. Recent work
indicates that curli can participate in the self-assembly process of pathological human
amyloids, which might also trigger amyloid pathology in AD [33]. Also, the four mediators
(K02405, K02396, K02387, K02398) of flagellar assembly have been shown to be associated
with directed bacterial mobility (chemotaxis). In addition, the KO model included three
ATP-binding cassette (ABC) transporters (K17235, K02041, K02065), mediating the transport
of arabino-oligosaccharide (AOS), phosphonate and phospholipid/cholesterol/gamma-
HCH across the cellular lipid membranes in the brain parenchyma and especially at the
blood–brain barrier (BBB). In line with this finding, ABC transporters have been described
as key players in AD [34].

Among the 25 features included in the GO model for discrimination between AD de-
mentia converters and stable MCI patients, there were 5 mediators (GO.0047536, GO.0016041,
GO.0010133, GO.0003842, GO.0004657) associated with glutamate metabolism. Two of
these five mediators (GO.0047536 and GO.0004657) showed significantly increased levels
in AD dementia converters. Glutamate is the most abundant excitatory neurotransmitter in
the mammalian central nervous system (CNS) and glutamate-mediated neurotoxicity has
been implicated in the pathogenesis of AD [35].

This study has potential limitations. Firstly, this is a pilot study with a limited number
of samples. The promising results should be replicated in a larger longitudinal follow-up
study. Secondly, the follow-up measurements were performed after one and four years,
but not after two and three years. Thirdly, no cerebrospinal fluid (CSF) was available in
the study participants; therefore, we could not analyze the association between the gut
microbiome and AD biomarkers in the CSF.

In conclusion, we identified novel gut microbiome algorithms able to accurately predict
progression to AD dementia in individuals with MCI over a 4-year follow-up. The baseline
models retained their predictive power at all three time points within 4 years, indicating
that the identified gut microbiome signatures for AD development are stable over time.
Combining the taxonomic, functional and clinical models yielded the best discriminatory
ability between the two groups. The gut microbiome represents an innovative prognostic
supplement and a promising area for the identification of new targets and for developing
novel interventions against AD.

4. Materials and Methods
4.1. Participants

In the present study, we investigated the intestinal microbiome in 49 MCI patients
participating at the AlzBiom study over a mean (SD) follow-up of 3.7 (0.6) years (Table 1).
AlzBiom is an observational longitudinal study examining the intestinal microbiome at
different stages of AD and in healthy controls and is performed in the Section for Dementia
Research at the Department of Psychiatry and Psychotherapy in Tübingen [14]. All partic-
ipants were examined at BL, at 1yFU (1.2 ± 0.2 years) and at 4yFU (3.7 ± 0.6 years). All
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participants underwent mini-mental state examination (MMSE) scoring [36] and clinical
assessment of cognitive status by means of the Clinical Dementia Rating (CDR) scale [37,38].
Nutrition was assessed by using a Mediterranean diet score [16]. At the end of the 4yFU,
27 MCI patients converted to AD dementia and 22 MCI patients remained stable.

Patients with MCI were recruited from the Memory Clinic of the Department of Psy-
chiatry and Psychotherapy at the University Hospital of Tübingen. All subjects underwent
diagnostic work-up for dementia including physical, neurological and psychiatric examina-
tions as well as brain imaging. According to current criteria, patients with MCI revealed
cognitive deficits (corroborated by an informant) that did not interfere with activities of
daily living and the absence of dementia [39,40]. MCI patients had a global CDR score
of 0.5 and reported preserved function of daily living. AD patients fulfilled the NIA-AA
core clinical criteria for probable AD dementia [41], had a global CDR score of ≥1.0 and
impaired function of daily living. HCs had a global CDR score of 0 and reported preserved
function of daily living.

The regional ethical committee approved the study and written informed consent was
obtained from each individual.

4.2. Determination of Apolipoprotein E (ApoE) Genotype

The procedure for determining the Apolipoprotein E (ApoE) genotype was performed
as previously described [42]. The ApoE ε4 positive genotype was assigned if at least one ε4
allele was present.

4.3. Stool Collection, DNA Extraction and Shotgun Metagenomic Sequencing

Stool samples were collected in a sterile plastic device (Commode Specimen Collection
System, Thermo Fisher Scientific, Pittsburgh, PA, USA) using the DNA/RNA Shield Fecal
Collection Tube R1101 (Zymo Research, Irvine, CA, USA) and immediately sent to our
laboratory via post. Samples were stored at −20 ◦C and DNA was extracted on the same
day using ZymoBiomics DNA Miniprep Kit D4300 (Zymo Research, Irvine, CA, USA).
Shotgun metagenomic sequencing was carried out at Eurofins Genomics Germany GmbH
(Konstanz, Germany) using the NEBNext Ultra DNA Library kit (New England Biolabs,
Ipswich, MA, USA) for DNA library preparation and an Illumina HiSeq platform for
sequencing. A paired-end sequencing approach with a targeted read length of 150 bp
and an insert size of 550 bp was conducted. We aimed for a median sequencing depth of
40–50 million reads per sample.

4.4. Metagenomic Assembly

Trimmomatic (version 0.35) was used to acquire high-quality reads through adapter
removing and through a sliding window trimming [43]. Reads were trimmed to a min-
imum length of 100 bp. Quality control of trimmed reads was performed with FastQC
version 0.11.5 (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/; accessed on
6 March 2023). We used SPAdes (version 3.9.0) to assemble metagenomic scaffolds with a
minimum length of 1000 bp to ensure high-quality profiling [33].

4.5. Taxonomic Profiling

The host removal was performed using Kraken [44]. Taxonomic profiling was per-
formed using MetaPhlAn (Metagenomic Phylogenetic Analysis) [45]. Read counts of input
samples observed at taxa levels were collected and normalized by using the rarefy function
implemented in the vegan bioconductor package (version 2.6-4) [46] to compare species
richness from all samples in the analysis run. For our three metagenomic datasets, we
achieved a median depth of 19,407,200 reads per sample (baseline), 30,486,200 reads per
sample (follow-up 1) and 28,669,500 reads per sample (follow-up 2).

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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4.6. Functional Profiling

Functional profiling was performed using HUMAnN (the HMP Unified Metabolic
Analysis Network) [47]. According to OUT and Phylogenetic Investigation of Communities
by Reconstruction of Unobserved States (PICRUSt) [48], we identified the functional categories
based on a comparison of the Kyoto Encyclopedia of Genes and Genomes (KEGG) ortholog
(KO) (https://www.genome.jp/kegg/pathway.html; accessed on 6 March 2023) and of the
Gene Ontology (GO) Resource (http://geneontology.org/; accessed on 6 March 2023).

4.7. Statistical Analysis

The statistical software package SPSS (version 23) was used for the analysis of de-
mographic and clinical data. For all tests, we used the threshold of p < 0.05 for statistical
significance. Levene’s test was used to proof the homogeneity of variances. T-tests for
independent samples were used in case of continuous variables (i.e., age and BMI). The
nonparametric Mann–Whitney U-test was conducted for the analysis of the MMSE and geri-
atric depression scale (GDS). The Pearson chi-square test was used for gender distribution,
ApoE status and medication.

As features, we investigated taxonomic data (genera), functional data (KO and GO)
and clinical meta data (age, gender, BMI, ApoE). Age, gender, BMI loss and ApoE are well-
established risk factors for late-onset AD [49,50] and are also influencing gut microbiome
composition [51–53]. Therefore, we decided to use an additional clinical model including
these 4 parameters. Our aim was to find a predictive model for the outcomes based
on feature abundances. As taxonomic and functional profiling of data from shotgun
sequencing potentially results in many features, the first aim after a normalization step
was to reduce the number of features. For that, we applied an ANOVA type statistic
(ATS) [54]. The calculation was performed in R using the nparLD package (version 2.2) [55].
Here, the data from all three time instances were entered in the analysis. Taking the
p-values from this test for sieving purposes, we were able to reduce the feature count to an
appropriate number of about 30 features per model. With the outcomes and after suitable
renormalization, we calculated the balances of the feature compositions at baseline and
trained a logistic regression model. Best baseline models (Genera, KO, GO and clinical
meta data) were then applied to the data from 1yFU and 4YFU using a logistic regression
approach. Receiver operating characteristic (ROC) analysis was performed to examine the
discriminatory ability of the intestinal microbiome among both groups. The longitudinal
development (baseline, FU1, FU2) of the three most abundant features included in all
models are shown using spaghetti plots. Finally, we joined the best performing models in
an ensemble-learning model, as recently described [14]. This ensemble model was trained
with baseline data and subsequently applied to data from 1yFU and 4YFU.

Data analysis was performed using customized R scripts and HeidiSQL (1.3) in con-
nection with RMariaDB (1.1.1). The model training and its feature selection was coded
in R scripts relying on mlr (2.18.0) package [56]. ROC curves were calculated employing
OptimalCutpoints (1.1-4) and plotted with ggplot2 (3.3.5).
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