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Abstract: Bladder cancer (BC) is one of the most common types of cancer worldwide, with significant
differences in survival depending on the degree of muscle and surrounding tissue invasion. For this
reason, the timely detection and monitoring of the disease are important. Surveillance cystoscopy
is an invasive, costly, and uncomfortable procedure to monitor BC, raising the need for new, less
invasive alternatives. In this scenario, microRNAs (miRNAs) represent attractive prognostic tools
given their role as gene regulators in different biological processes, tissue expression, and their ease
of evaluation in liquid samples. In cancer, miRNA expression is dynamically modified depending
on the tumor type and cancer staging, making them potential biomarkers. This review describes
the most recent studies in the last five years exploring the utility of miRNA-based strategies to
monitor progression, stratify, and predict relevant clinical outcomes of bladder cancer. Several studies
have shown that multimarker miRNA models can better predict overall survival, recurrence, and
progression in BC patients than traditional strategies, especially when combining miRNA expression
with clinicopathological variables. Future studies should focus on validating their use in different
cohorts and liquid samples.

Keywords: miRNAs; bladder cancer; biomarkers; prognosis

1. Bladder Cancer Overview

Bladder cancer (BC) represents the tenth most common cancer in the world and the
fourth most common cancer in men in the US [1,2]. Several risk factors associated with the
development of this disease have been described, the most well established being tobacco
smoking, which is correlated with almost 50% of newly diagnosed BC cases. Other risk
factors include the occupational exposure to aluminum, rubber, painting, dyes, arsenic,
environmental radiation, or parasitic schistosomal infections [2]. Recent studies have found
that the urobiome, the presence of biofilm-associated bacteria (Porphyromonas) responsible
for chronic inflammation, can promote carcinogenesis [3].

BC’s most common clinical presentation is gross or microscopic hematuria and irri-
tative voiding symptoms, such as dysuria, urgency, and frequency. On other occasions,
the tumor is accidentally discovered on imaging [4]. The American Urologic Association
recommends cystoscopy for bladder evaluation and endoscopic resection for patients with
a gross hematuria in the appropriate clinical context. For those with microscopic hematuria,
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the decision is mainly based on the presence of high-risk factors [5]. In addition, a CT
urogram usually follows diagnosis to assess the axial extension of the disease.

BC generally originates from the bladder urothelium and is referred to as urothelial
carcinoma; almost 90% of these are transitional cell carcinomas. Based on the degree
of invasion, BC is divided into non-muscle-invasive bladder cancer (NMIBC) and non-
papillary muscle-invasive bladder cancer (MIBC) [6].

Patients with BC are classified by their tumor grade and by their tumor stage using
the eighth edition of the Staging Manual by the American Joint Committee on Cancer
(AJCC) [7] [Supplementary Table S1]. NMIBC generally encompasses Tis tumors to the T1
stage and low-grade tumors, while T2–T4 and high-grade tumors are included within the
MIBC group. NMIBC represents 75–85% of all new BC cases diagnosed.

It is important to note that, aside from the morphological distinction between NMIBC
and MIBC, these types of BC have different prognoses, treatments, and clinical outcomes.
NMIBC is generally managed with the transrectal resection of the tumor (TURPBT) and
has a 5-year probability of recurrence and a progression of 78% and 45%, respectively [8].
After diagnosis and initial treatment, a 3–4-month surveillance cystoscopy is recommended.
Then, based on the clinicopathologic data such as the tumor grade, stage, and response to
initial treatment, patients with NMIBC are risk-stratified, which determines the cystoscopy
frequency following the first post-treatment negative cystoscopy [5].

MIBC accounts for the rest of cases. These are often managed with radical cystectomy
with chemotherapy. However, despite treatment, the 5-year cancer-specific survival for
MBIC is 60%, and about 50% develop metastatic disease [9].

Despite its efficiency in the early detection of tumor progression or recurrence, surveil-
lance cystoscopy is an invasive, costly, and uncomfortable procedure. Furthermore, the
frequency of surveillance cystoscopies makes NMIBC the most expensive cancer to moni-
tor [10]. In low-risk patients, data show that the overuse of these strategies greatly increases
healthcare costs [10,11]. For these reasons, developing new, less invasive, and convenient
methods for surveillance is needed.

In this sense, the concept of a liquid biopsy involves the use of biological fluids
to assess the cancer-derived components. Liquid biopsy has inarguable potential as an
attractive alternative to evaluate tumor profiling. Liquid biopsies are less invasive, more
accessible, highly sensitive, and can provide real-time information on cancer progression
and treatment response. Using liquid biopsies allows for the evaluation of whole tumors
without being limited by their heterogeneity, which increases the amount of biopsies needed
to assess the totality of the tumor. Multiple components can be measured in liquid biopsies,
including the circulating tumor cells, DNA or RNA-based molecules, and extracellular
vesicles, which have been one of the main focuses of cancer research [12,13].

The only recommended biomarker in the guidelines to monitor BC is urine cytology,
which can be used along with cystoscopy. However, it has a low sensitivity (average,
48%) that can be even lower in low-grade tumors [14]. More precise biomarkers could
improve the detection of progression and recurrence, reduce the need for cystoscopy, and
improve risk classification systems’ performance. Other FDA-approved alternatives to
urinary cytology for the initial detection and surveillance of BC include the nuclear matrix
protein 22 (NMP22) kit, NMP22, and UroVysion, which are also mentioned in the European
Urological Guidelines, the BladderChek Test, BTA-TRAK and BTA stat kits, and Cell Search.
However, despite having similar or superior performance compared to cytology, these have
varying degrees of sensitivity and specificity, are limited to specific patient scenarios, and
are limited in their applications in clinical practice [15].

A biomarker requires certain qualities before it may be used to indicate disease. Firstly,
it should be easily obtained and cost-effective, avoiding complicated processing methods
that could hinder generalizability. Secondly, the biomarker must exhibit a sensitivity
and specificity for the targeted condition. Lastly, it should be non-invasive to minimally
invasive to prioritize patient comfort and reduce potential complications [16]. In this
context, microRNAs (miRNA) become potential biomarkers in cancer.
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MicroRNAs (miRNA) are 19–25 nucleotide non-coding RNAs generated from DNA
templates through RNA polymerase III. Shortly after transcription, they are modified by
the enzyme Drosha to be exported to the cytoplasm to be cleaved by the enzymes Dicer
or Ago2 to form the effector complex RNA-inducing silencing complex (RISC). Through
this complex, they bind to the 3 ‘untranslated regions’ of their target mRNA through
base pairing, where they can exert their consequent functions based on the nature of
complementarity, where a near-perfect pairing results in degradation and a moderate
pairing results in translation inhibition without cleavage. Overall, this results in translation
inhibition, silencing, and gene expression inhibition [17,18].

Recently, it has been shown that some miRNAs can enhance the gene expression of
their respective targets [18]. It is worth noting that one miRNA typically targets multiple
mRNAs, whereas multiple miRNAs can regulate a single mRNA, making them indirect
indicators of the expression of many genes and proteins that are usually involved in similar
biological processes [19].

The processes controlled by miRNAs in normal cells include proliferation, cell devel-
opment, and apoptosis. They also regulate hematopoiesis, bone formation, gastrulation,
muscle, and neural development. In cancer and other diseases, miRNA biogenesis is
altered, impacting their expression, and making them surrogate biomarkers for carcino-
genesis. On the other hand, they have a direct role in the development of cancer and its
progression, affecting the expression of both oncogenes and tumor suppressor genes in a
tumor-specific fashion. For example, miR-125b is upregulated in ovarian, thyroid, breast,
and oral squamous-cell carcinomas, where it has a tumor suppressor role in inhibiting cell
proliferation and cell-cycle progression [20–22]. At the same time, miR-125b in prostate,
thyroid, glioblastoma, and neuroblastoma cancers acts as a protooncogene by inhibiting
apoptosis-promoting cell proliferation and invasion in a p53-dependent manner [23,24].

MiRNAs are, per se, very stable compared to other RNA-based molecules, given their
small size and binding properties [25]. miRNAs can be secreted in the tumor microen-
vironment, and bound with circulating proteins or exosomes, which makes them easily
accessible in bodily fluids. For these reasons, miRNAs are promising candidates for cancer
detection and monitoring.

In the oncology field, microRNAs have been extensively studied in different malig-
nancies, where they have proven to be reliable markers for early diagnosis, stratification,
and even treatment options. For example, in pancreatic cancer, a cancer that is often
late diagnosed, several studies have proven that miRNA panels have superior diagnostic
performances compared to CA-19-9, one of the two only FDA-approved biomarkers for
this malignancy [26,27]. Similar findings have been discovered in diseases like leukemia,
colon cancer, and breast cancer [26]. In the case of colorectal cancer, miR-517a is a tumor-
associated miRNA that has a role in cell migration and invasion; it also can be used as
a prognostic marker for predicting survival [28]. In ovarian cancer, miR-532-5p works
as a tumor suppressor and a high expression is associated with a better prognosis [29].
In bladder cancer, different studies support the potential use of miRNAs as diagnosis,
prognostic, and response to treatment indicators [30–34]. For these reasons, this review
describes the most recent studies exploring the utility of miRNA-based strategies to detect
progression, stratify, and predict relevant clinical outcomes in bladder cancer.

2. miRNAs as Prognostic Tools in BC

An initial search in the PubMed database using the strings ′′miRNAs” OR “microR-
NAs” AND “bladder cancer” AND “prognostic” as well as “miRNAs” AND “bladder
cancer” AND “treatment response” yielded 371 articles. The included studies were those
utilizing human samples, evaluating prognostic outcomes such as progression, survival, or
recurrence, and published within the last five years, as this is a rapidly advancing field that
requires up-to-date results. Other reviews and metanalysis were excluded as well as those
using cellular or animal data only. Studies focusing on diagnosis or screening were also
excluded. After applying these criteria, 37 original studies were included in this literature
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review. The study selection using the PRISMA flowchart is shown in Figure 1. Of note, all
these studies are retrospective and used real clinical data for their analysis [35–71].
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Figure 1. PRISMA flow diagram of the included studies in this review.

We further subdivided these studies according to their use of miRNAs as markers
of relevant clinical outcomes such as recurrence or survival [Table 1], progression from
NMIBC to MIBC or a low to high tumor stage [Table 2], as well as their ability to stratify
patients among groups according to specific miRNA-based models [Table 3].
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Table 1. Studies identifying miRNAs as markers for clinical outcomes of BC.

miRNAs Analyzed Performance Group Comparison Type of miRNA Source Technique for
Analysis Sample Size Validation Authors and Year

miR-26b-5p

↑ miR-26-5p = ↑ RFS
miR-26-5p + BF = ↑
AUC of BF alone for

recurrence

Low expression vs.
High expression Free and exosomal Tissue, blood and

urine Microarrays 231 Yes Andrew 2019 [35]

miR-21, -199, -31,
let-7a

↑ miR-21, -199 and ↓
miR-31, let-7 in BGC

non responders
↑ miR-21, -199 and ↓
miR-31, let-7 = ↓ RFS

NMIBC BCG
responders vs.

non-responders
Free Tissue RT-QPCR 157 No Awadalla 2022 [36]

miR-138-5p and
miR-100-5p

↑ miR-138-5p in LGT
↓ miR-138-5p in
recurrent tumors
↑ miR-138-5p = ↑

RFS
↓ miR-100-5p = ↑

RFS and ↑ CSS

Low expression vs.
High expression Free Tissue RT-QPCR 50 No Blanca 2019 [38]

miR-205-5p, -20a-5p,
-21-5p, -145-5p and

-182-5p

↑ miR-205-5p,
-145-5p, and -21-5p =

↑ risk of death
↑ miR-20a-5p and
-182-5p = ↑ risk of

recurrence

Stage Free Tissue RT-QPCR 85 No Borkowska 2019 [40]

miR-143, -139, -141,
-205 and -23a

↑ miR-141 and ↓
miR-143 = ↑ OS

Low grade vs. High
grade Free Tissue

Microarrays,
RT-QPCR and TCGA

analysis
450 Yes Braicu 2019 [39]

miR-30c-5p ↓ miR-30c-5p = Poor
prognosis

Low expression vs.
High expression Free Tissue RT-QPCR and TCGA

analysis 445 Yes Hao 2023 [42]

miR-34a-3p

↓ miR-34a-3p = ↑ OS
miR-34a-3p +

EORTC nomogram =
↑ SE and SP for

progression

Low expression vs.
High expression Free Tissue Microarrays and

RT-QPCR 137 Yes Juracek 2019 [44]
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Table 1. Cont.

miRNAs Analyzed Performance Group Comparison Type of miRNA Source Technique for
Analysis Sample Size Validation Authors and Year

miR-106b-5p ↑ miR-106b-5p = ↑
OS

Low expression vs.
High expression Free Tissue TCGA and Choi

analysis 1071 Yes Lee 2018 [46]

miR-302-b ↓ miR-302-b = ↓ RFS Low expression vs.
High expression Free Tissue RT-QPCR 39 No Li 2018 [47]

miR-187-5p ↑ miR-187-5p = ↑
Recurrence risk

Low expression vs.
High expression Free Tissue RT-QPCR 44 No Li 2018 [48]

miR-325 ↑ miR-325 = ↓ OS Low expression vs.
High expression Free Tissue RT-QPCR 164 No Lin 2018 [50]

miR-141-5p, -141-3p
and -200c-3p

↑ miR-141-5p,
-141-3p and -200c-3p

= ↑ OS

Low expression vs.
High expression Free Tissue TCGA analysis 403 No Liu 2018 [51]

AGO1, AGO2 and
Drosha ↑ Drosha = ↑ OS Low expression vs.

High expression Free Tissue Microarrays 112 No Rabien 2018 [56]

Let-7f-5p ↑ Let-7f-5p = ↑ RFS Low expression vs.
High expression Free and exosomal Tissue, blood and

urine
NanoString’s
amplification 207 Yes Shee 2020 [58]

miR-211-5p ↓ miR-211-5p = ↓ OS
and ↑ TNM stage

Low expression vs.
High expression Free Tissue Microarrays and

RT-QPCR 58 No Wang 2020 [61]

3 Clusters
(miR-200c/miR-141)
(miR-216a/miR-217)
(miR-15b/miR-16-2)

↑
(miR-200c/miR-141)

= ↑ OS
↑

(miR-216a/miR-217)
= ↓ OS

Degree of expression
among BC patients Free Tissue

Cluster miRNA
analysis

TCGA analysis
412 No Ware 2022 [62]

miR-429 ↓ miR-429 = ↓ 5-year
OS and RFS

Low expression vs.
High expression Free Tissue In situ hybridization 76 No Wu 2018 [64]

miR-432 ↑ miR-432 = ↑ OS
and ↑ DFS

Low expression vs.
High expression Free Tissue RT-QPCR 156 No Zhang 2021 [70]

miR-195 ↑ miR-195 = ↓ OS Low expression vs.
High expression Free Tissue TCGA analysis 418 No Zhu 2018 [71]

Note: Only statistically significant results are shown. Highlighted studies reflect those using multimarker models. BC = Bladder Cancer, RFS = Recurrence-Free Survival, BF = Base
Factors (sex, age, multiplicity, tumor size, stage, grade). BCG = Bacillus Calmette Guérin, EORTC = European Organization for Research and Treatment of Cancer. OS = Overall Survival,
CSS = Cancer-Specific Overall Survival, DFS = Disease-Free Survival. NMIBC = Non-Muscle Invasive Bladder Cancer. AUC = Area Under the Curve, SE = Sensitivity, SP = Specificity,
↑ = Increased, ↓ = Decreased.
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Table 2. Studies using miRNA-based models for BC stratification.

miRNAs Analyzed Performance Group Comparison Type of miRNA Source Technique for
Analysis Sample Size Validation Authors and Year

let-7a-5p, -449a-5p,
-124-3p, -138-5p and

-23a-5p

↓ let-7a-5p,
miR-449a-5p,

-124-3p, and -138-5p
= ↓ 1 and 5 yr. CSS

and MIBC
↑ miR-23a-5p in

MIBC vs. NMIBC

NMIBC vs. MIBC Free Tissue RT-QPCR 100 No Awadalla 2022 [37]

miR-21, -34a, -141, 193a,
-200a and -200c

miR-34a, -193a and
-200a classified high
vs. low risk SE 0.88,

SP 0.8, and ACC 0.82
↑ All 6-miR

expression = ↓ RFS

Low/intermediate
risk vs. High risk
(For recurrence)

Free Urine and plasma RT-QPCR 100 No Cavallari 2020 [41]

9 miRNA signature Aggressive BCa
=↓OS

Aggressive vs. non
aggressive BC Free Tissue Microarray

TCGA analysis 87 Yes Inamoto 2018 [43]

14 miRNA signature Hypoxic =↓PFS
and↓OS

Hypoxic MIBC vs.
non-hypoxic MIBC Free Tissue TCGA analysis 657 Yes Khan 2021 [45]

7 miRNA-based score
(-185-5p, -66a, -30c-5p,
-3648, -1270, -200c-3p,

and -29c-5p)

↑Score =↓OS High score BC vs.
Low score BC Free Serum Microarrays 492 No Lin 2019 [49]

Gene, lncmRNAs and
miR-3913-1 and -981a

score

↑Score =↓OS
Score had↑AUC vs.
TNM for survival

High score BC vs.
Low score BC Free Tissue TCGA analysis 239 No Liu 2018 [52]

Genes, lncmRNAs and
miR-497-5p ↑Score =↓OS

Low risk vs. low
risk

(By score)
Free Tissue TCGA analysis 400 Yes Liu 2020 [53]

7 miRNA-based score
(-1247, -1304, -1911, -204,
-33b, -3934, and -526b)

↑Score =↓OS
AUC for 3–5-year

survival 0.762

Low risk vs. High
risk

(By score)
Free Tissue TCGA analysis 428 No Liu 2020 [54]
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Table 2. Cont.

miRNAs Analyzed Performance Group Comparison Type of miRNA Source Technique for
Analysis Sample Size Validation Authors and Year

miR-17-5p, 19a-3p and
19b-3p

↑Score =↓OS
AUC 0.645 for
progression

Low risk vs. High
risk

(By score)
Free Tissue TCGA analysis 405 No Pan 2020 [55]

Score lymph node +
(miR-23a-3p, -3679-3p,

and -3195)

Score AUC .88, SE
0.87, SP 0.30 for

recurrence↓Score
=↑OS

High vs. Low index Free Tissue RQ-QPCR 81 Yes Urabe 2022 [60]

Clinical-mRNA-miRNA
signature (miR-200c,

-598 and -143)

CPV + signature
=↑AUC and HR
for↓5-year OS of

both alone

Low risk vs. High
risk

(By score)
Free Tissue TCGA analysis 402 No Xiong 2018 [65]

7 miRNA signature
(-151-a-5p, -216a-5p,

-337-3p, -let-7c, -125-b,
-590-3p, 652-3p)

↑Score =↓OS
and↑AUC of CPV

Low risk vs. High
risk

(By score)
Free Tissue RT-QPCR

TCGA Analysis 432 No Xv 2022 [66]

21 miRNA signature ↑Score =↓OS
Low risk vs. High

risk
(By score)

Free Tissue TCGA analysis 427 No Yin 2019 [68]

Note: Only statistically significant results are shown. Highlighted studies reflect those using multimarker models. BC = Bladder Cancer, RFS = Recurrence-Free Survival
CPV = Clinicopathological variables (age, sex, grade, stage and TNM status). OS = Overall Survival, PFS = Progression-Free Survival, CSS = Cancer Specific Overall Survival.
NMIBC = Non-Muscle Invasive Bladder Cancer, MIBC = Muscle Invasive Bladder Cancer. AUC = Area Under the Curve, SE = Sensitivity, SP = Specificity, ACC = Accuracy.
↑ = Increased, ↓ = Decreased.

Table 3. Studies identifying miRNAs as biomarkers for tumor progression in BC.

miRNAs
Analyzed Performance Group

Comparison Type of miRNA Source Technique for
Analysis Sample size Validation Authors and Year

miR-9

↑ miR-9 in MIBC vs.
NMIBC

↑ miR-9 in HG
NMIBC vs. LG

NMIBC

MIBC vs.
NMIBC//LG

NMIBC vs. HG
NMIBC

Free Tissue RT-QPCR 90 No Setti 2019 [57]
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Table 3. Cont.

miRNAs
Analyzed Performance Group

Comparison Type of miRNA Source Technique for
Analysis Sample size Validation Authors and Year

miR-222

↑ miR-222 in MIBC vs.
NMIBC

↑ miR-222 in HG
NMIBC vs. LG

NMIBC
↑ miR-222 = ↓ RFS, ↓

DFS, ↓ PFS

Low expression vs.
High expression Free Tissue RT-QPCR 387 No Tsikrika 2018 [59]

miR-133a, -143,
and -200b

↓ miR-200b associated
with MIBC

Low expression vs.
High expression Free Tissue

Photonic crystal
(PhC) barcodes

with hybridization
chain reaction

(HCR)

10 No Wei 2020 [63]

miR-10a-5p

↑ miR-10a-5p in MIBC
vs. NMIBC

AUC 0.78, SE 0.75, SP
0.64 for MIBC vs.

NMIBC, ↓ OS and RFS

Low expression vs.
High expression Free Tissue and plasma RQ-QPCR 244 Yes Yang 2021 [67]

miR-10a ↑ miR-10a = ↑ Grade
and ↑ Stage

Low expression vs.
High expression Free Tissue and urine RT-QPCR 20 No Zaidi 2023 [69]

Note: Only statistically significant results are shown. BC = Bladder Cancer, RFS = Recurrence-Free Survival. OS = Overall Survival, DSF = Disease-Free Survival. NMIBC = Non-Muscle
Invasive Bladder Cancer, MIBC = Muscle Invasive Bladder Cancer. HG = High Grade, LG = Low Grade, AUC = Area Under the Curve, SE = Sensitivity, SP = Specificity. ↑ = Increased,
↓ = Decreased.
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Different outcomes were evaluated among the studies, the most common being the
survival and recurrence; however, some studies analyzed other specific prognostic end-
points. The way this was assessed was, as mentioned, based on the level of differential
expression among groups. For example, Setti et al. demonstrated that increased miR-9
tissue expression was higher in patients with MIBC compared to NMIBC patients. Further-
more, its expression was higher in high-grade NMIBC than low-grade NMIBC patients,
demonstrating being a potential biomarker to distinguish between them [57]. Similarly,
Awadala et al. found that decreased levels of tissue let-7a-5p, miR-449a-5p, -124-3P, and
-138-5p, and increased miR-23a-5p were correlated with muscle invasion, respectively [36].

Another relevant prognostic outcome is treatment response, which directly influences
patient prognosis. As such, Khan et al. used a 14-miRNA tissue-based signature that
classified patients with MBIC in a hypoxic and non-hypoxic phenotype, an independent
prognostic for treatment selection, that was demonstrated to be a responder modifier
to hypoxia-modifying therapy in several cohorts. Greater accuracy was achieved when
combining this score with an mRNA score developed by the same group [45]. In another
study, it was shown that in a sample of NMIBC patients with no response to Bacillus
Calmette-Guérin (BCG) therapy, there was an increased expression of miR-199a and miR-21
as well as a decreased expression of let-7a and miR-31 [37].

As previously mentioned, an ideal biomarker should come from a non-invasive source,
like blood, urine, or serum. Of the analyzed studies, only six used liquid biopsy measure-
ments to compare between patient groups [35,41,49,58,67,69]. In one study, Andrew et al.
demonstrated that in patients with NMIBC, high miR-26b-5p tissue expression was as-
sociated with a longer time to recurrence and that combining this molecule with classic
clinical variables such as the tumor size, stage, and grade increased the area under the
curve (AUC) to predict the tumor recurrence [35]. It should be noted that this study did not
demonstrate a correlation of tissue miRNA expression with urine and blood. In contrast,
Cavallari et al. considered urine an ideal liquid biopsy to assess BC for all aspects; however,
since hematuria is one of the most common presenting symptoms, miRNAs measured from
these samples may derive from RBCs and not from cancer cells. As such, they isolated
non-RBC-derived miRNAs. With this, they developed a decision tree composed of miR-34a,
miR-200a, and miR-193a that was able to accurately classify high- and low-risk patients for
progression, identified by their European Urologic Association risk score, with a sensitivity
of 84% and specificity of 82% [41].

Additionally, while the expression of these miRNAs differed between groups in urine,
it did not in blood, suggesting that miRNAs released by cancer cells can be measured in
urine but not in blood. Lin et al. developed a serum 7 miRNA prognostic signature (miRNA-
185-5p, -66a, -30c-5p, -3648, -1270, -200c-3p, and -29c-5p) that classified BC patients as high
vs. low risk, with the high-risk group having worse overall survival [49]. Furthermore,
Yang et al. and Zaidi et al. demonstrated that an increased expression of miR-10 in urine
and serum was correlated with tissue expression and accurately differentiated between
NMIBC and MIBC. miR-10 was associated with an increased tumor grade and stage [67,69].
Similarly, in the study by Shee et al., let-7f-5p expression in tissue, plasma, and urine was
correlated, and increased levels were associated with longer recurrence-free survival [58].

It is also noteworthy that most studies classified BC patients based on the expres-
sion level of the analyzed miRNAs, which is useful when addressing their implications.
The most reported miRNAs in the different studies were miR-141 and -200, which were
both members of the miR200 family in seven studies [39,41,51,62,63,65,68]; and according
to the results, a high expression of these molecules was correlated with higher overall
survival [39,51,62,65,68] and lower MIBC incidence [63]. Interestingly, these studies were
performed on tumor tissue samples, while the only study using liquid biopsies showed
that increased urine miR-200a levels were correlated with high-risk BC [41]; this could
be explained by methodological variability amongst the studies. Some other frequent
miRNAs reported include the Let-7 family in four studies [36,58,66,68], miR-100-5p in
two studies [38,43], miR-138-5p in two studies [36,38], and miR-205 in two studies [39,40],



Int. J. Mol. Sci. 2024, 25, 2178 11 of 18

respectively. This is relevant because consistency between studies in selecting the most
appropriate signatures should be considered to incorporate biomarkers in clinical practice.

It is a well-known fact that multimarker-based models outperform single-molecule
measurements because, as previously noted, the results may conflict with other studies,
which limits their applicability and tends to remain below classic clinicopathological
variables for prognostic purposes. On the contrary, Liu et al. developed a tissue gene, long
non-coding mRNA, and miRNA score that had higher AUC for survival compared to the
TNM stage [52]. Likewise, the tissue 7 miRNA score of Xv et al. better predicted overall
survival in patients with BC compared to clinicopathological variables [66].

Some other studies demonstrated the value of adding miRNAs to clinical models to
increase their performance. As such, the Andrew et al. study showed that to estimate
recurrence, including the results of tissue miR-26-5p levels together with clinical factors
(such as sex, age, stage of TNM, and tumor grade), increased the AUC for recurrence
compared to either alone [35]. Similarly, Juracek et al. studied and validated in different
cohorts that adding miR-34a-3p tissue levels to the EORTC nomogram (a tool to predict
recurrence or progression of NMIBC) increased the SE and SP to predict tumor recurrence
in NMIBC patients [44]. In another study, Urabe et al. constructed and validated a model
combining lymph node invasion and tissue miR-23a-3p, -3679-3p, and -3195 expression that
had an AUC of 88%, SE of 87%, and SP of 30% for tumor recurrence and was associated with
overall survival [61]. Furthermore, Xiong et al. also constructed a clinical-mRNA–miRNA
tissue signature with a higher AUC for overall survival than alone [65].

3. Biological Plausibility of Described miRNAs in BC

To further support the incorporation of miRNAs in bladder cancer, there must be a
concordant mechanism that explains the changes in their expression during different tumor
stages. We focused on the most consistently reported miRNAs across the analyzed studies
[Figure 2].
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the analyzed studies. (a) The Let-7 family is involved in the negative regulation of the process of cell
migration and invasion, as well as in epithelial mesenchymal transition, fundamental processes in
cancer. (b) The miR-200 family regulates GATA3, acting as a tumor suppressor by directly inhibiting
epithelial-to-mesenchymal transition (EMT). It also negatively regulates vasculogenesis, and both
these processes are fundamental for metastasis. Dotted lines represent inhibition. Solid lines represent
an induction of expression.

As described in two of the analyzed studies, miR-100 has been described as an antitu-
moral miRNA in most cancer-related studies, and it demonstrated a similar role in BC. [72].
As such, Blanca et al. showed that increased miR-100 expression was correlated with a
decreased expression of the protooncogene FGFR3. Interestingly, the study also associated
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decreased levels of tissue miR-100 with better clinical outcomes [38]. Similarly, the miRNA
score used by Inamoto et al. showed a decreased expression of tissue miR-100 in NMIBC
compared to MIBC patients [43]. At the same time, Blanca et al. also found a marginally
significant relation between miR-100 downregulation and NMIBC. However, previous
studies have found an inverse clinical correlation with miR-100 downregulation predicting
poorer clinical outcomes, which is more in line with its putative antitumoral role [72].

Another frequently reported miRNA was miR-138-5p, also described as a tumor
suppressor miRNA in BC. In line with this, the study of Awadala et al. found decreased
levels of this miRNA in pT2-pT4 compared to pT1, which correlated with decreased cancer-
specific survival [36]. They also found a negative correlation between tissue miRNA-138-5p
expression and the levels of HIF-1a, a protooncogene involved in cancer progression at
promoting vasculogenesis [36]. On the other hand, Blanca et al. observed that a higher
tissue expression of miRNA-138-5p in NMIBC patients correlated with better recurrence-
free survival, and it was associated with increased levels of cyclin D3 protein expression,
which is contrary to the tumor suppressor role of this miRNA [38].

Studies by Borkowska et al. and Braicu et al. found that the overexpression of miR-205
in BC was correlated with worse clinical outcomes, particularly in pT2 relative to T1aTa
tumors [39,40]. Braicu et al., using Ingenuity Pathway Analysis from data obtained on
next-generation sequencing from tumor tissue samples, showed that miR-205 indirectly
influenced AKT, an important protooncogene. In addition, miR-205 inhibited important
tumor suppressor genes, including Rb, P53, and E-cadherin, but also some protooncogenes
like VEGF, MMPs, and Ras, which displays a heterogeneous nature of miRNA-target
interaction [39].

The Let-7 miRNA family (a, b, c, d, e, f, g, i, and miR-98 and miR-202) was mentioned
and validated across several studies [36,58,66,68]. In the study by Shee et al., high levels of
Let -7f-5p in tumor tissue and blood in multiple cohorts were associated with less tumor
recurrence. BC cells expressing high levels of let-7-5p showed decreased viability and
migration and a reduced expression of the target HMGA2 gene, which is implicated in cell
migration [58]. Likewise, Awadalla et al. observed that let-7a-5p expression levels were
decreased in higher tumor-stage tissues and were inversely correlated with the expression
of FZD4, WNT7A, and b-Catenin genes involved in the Wnt b-Catenin pathway, which is
relevant for cancer progression. Furthermore, low levels of let-7a-5p miRNA and high
levels of FZD4, WNT7A, and b-Catenin genes were correlated with worse cancer-specific
survival [36].

Lastly, the members of the miR200 family (miR-200a, -200b, -200c, -141, and -429) were
the most analyzed in the reviewed studies [39,41,51,62,63,65,68]. These miRNAs have been
described as tumor suppressors in some cancers. In line with this, Braicu et al. described
an inverse relation between the levels of tissue miR-200c and miR-141 and the expression
of ZEB1. This important protooncogene downregulates E-Cadherin expression, a crucial
component of the epithelial mesenchymal transition [39]. Moreover, Liu et al., through
an mRNA–miRNA–lncRNA interaction bioinformatics approach, showed that GATA3, a
tumor suppressor gene, was positively regulated by miR-141 [51]. Ware et al., through a
gene expression analysis, showed that miR-200c and 141 targeted genes are involved in
cancer progression; for example, KDR is involved in vasculogenesis, and ZEB1 promotes
the epithelial–mesenchymal transition. There has been shown to be a gradual decrease in
miR-200c and 141 expressions from the T1 to T4 tumor stages [62]. All these findings were
supported in the remaining studies [63,65,68], establishing the clear role of the miR-200
family as tumor suppressors in BC.

The most common risk factor for BC is smoking, and some studies have implied
that tobacco smoking can alter miRNA expression. Ware et al.’s study showed significant
differences in the levels of miR-200c and miR-141 expression in different degrees of smoking
in patients with BC [62]. This is relevant as the correlation of these molecules with cancer
risk factors is essential to creating a rationale for their use as markers of disease.
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4. Limitations of miRNA-Based Strategies for BC

Despite the encouraging results, some limitations may hinder the application of
miRNA-based prognostic strategies for BC. The first limitation was the type of biopsy
used, tissue rather than liquid, in several studies, causing a wedge between the studies and
the clinical practice, consequently decreasing the cost-benefit justification, and limiting its
applicability. Moreover, it has been demonstrated that BC is a disease with considerable
tissue and genetic heterogeneity, which can affect miRNA profiles; it could account for
some of the contradictions noted in tissue-based studies [12].

It is also important to mention that miRNAs can be identified from different matrices
due to their stability and resistance to storage handling. For example, miRNAs can be
preserved in serum for 10 years [73], which justifies the evaluation of these molecules
in serum and other biological fluids, including urine. However, the origin of miRNAs
depends on the biological source; in the case of miRNAs evaluated in serum, they can
be derived from circulating blood cells and cancer cells. This should be considered when
selecting the best miRNA signature with clinical applications that differentiate diseases
from healthy states. In addition, evaluating exosomes containing miRNAs is an interesting
way to analyze these molecules, as tumor-secreted exosomes modulate other cells from a
distance, representing a rationale underlying their evaluation in fluids as surrogates from
the tumor microenvironment [74].

It is worth noticing that most studies had a limited sample, which decreased their
power to detect significant results. Regarding the methodological aspects, techniques used
to evaluate miRNA analysis should be considered to compare the results from different
studies. The most commonly used are microarrays, quantitative real-time PCRs, and next-
generation sequencing [21]. Various techniques were used for the analysis of BC, as some
studies used microarrays, others PCRs, and others bioinformatics-based approaches. Inter-
estingly, Wei et al. proposed the use of PhC barcodes with a hybridization chain reaction
(HCR), a reliable method that, in contrast with microarrays, can change the positions in
the detection solution randomly without affecting the coding effect and provides a larger
surface for probe ligation, allowing for multiple-biomarker detection. Moreover, HRC
is enzyme-free and uses isothermal amplification, eliminating the temperature variation
required for PCR [64]. Standardizing protocols for sample collecting and processing are
also needed to avoid limitations in comparing different studies to select miRNA profiles
with clinical applications.

In addition, the data normalization method and reference molecules varied amongst
studies, which could partly explain the variability in the expression and discovery of
certain miRNAs, as some studies report upregulation and downregulation of the same
molecule, and most of the studies reported miRNAs unrelated to one another. Moreover,
some miRNA expression profiles did not correlate with gene expression, which is relevant
to support their clinical usage. Selecting adequate reference genes to normalize the miRNA
levels is important to obtain comparable results between studies [75].

Finally, studies must have consistent results, which can be evaluated by their clinical
validity, which is an important characteristic in cancer biomarker research that refers to
the ability of a biomarker to classify a sample into two groups, which is further reinforced
when the biomarker is applied to independent patient cohorts [12]. In this review, few
of the analyzed studies validated their findings [35,39,42–46,53,58,60,67], and only one of
them used liquid biopsy as a source to evaluate miRNAs [67].

5. Future Perspectives

From the analyzed studies, the most promising miRNAs were the members of the miR-
200 and Let-7 families, not only for being frequently mentioned and included in prognostic
models with good performance [39,41,65,66] but also for their biological plausibility, as their
increased expression correlated with better clinical outcomes, which was consistent with
their influence in cancer-related pathways. Between these miRNAs, let-7f-5p expression
in tissue and liquid biopsy was correlated with appropriate clinical outcomes and had a
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plausible mechanism supporting the observed deregulation, making this molecule one of
the best-analyzed miRNAs for being truly non-invasive [58]. Therefore, studying these
miRNAs could yield more value to miRNA-related research in BC.

It is worth noticing that although all the validated multimarker scores were developed
using tissue miRNA expression [43,53,60], future studies could strengthen the use of these
scores in liquid biopsy samples and different cohorts [Figure 3].
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Figure 3. Future perspectives for miRNAs as prognostic markers in bladder cancer. (a) Construction
of future models based on validated and biologically plausible miRNAs combined with clinico-
pathological variables. (b) Further testing already validated models in larger cohorts to increase the
prognostic potential and clinical applications.

Different techniques, including microarrays, quantitative real-time PCRs, and next-
generation sequencing, are used to evaluate miRNAs. However, a standardized protocol
would help to avoid limitations during the comparisons between different studies. Thus,
improving the selection of miRNA profiles can allow for diagnosing or predicting responses
to treatment or survival. A greater number of studies of these molecules in urine samples
may help to find a specific signature for bladder cancer patients.

6. Conclusions

miRNAs are important molecules in regulating gene expression. In cancer, an alter-
ation in their expression is observed, and they can act as tumor suppressors or promoting
molecules, depending on the tumor type. Due to their stability and changes in expres-
sion during a disease, they are promising biomarkers. This study evaluated the use of
miRNAs as prognostic tools in bladder cancer. Despite the limitations needed to project
these to clinical use, some studies have shown their potential to surpass clinicopathological
variables in predicting the overall survival, recurrence, and progression from NMIBC to
MIBC when used as multimarker models, and to increase the efficiency of these data when
added together.



Int. J. Mol. Sci. 2024, 25, 2178 15 of 18

Therefore, important steps are needed to validate their use further: first, increasing
sample sizes and validating results in multiple cohorts; second, using multimarker models,
with the specific aim of clinical-miRNA models that could be easier to translate in clinical
practice; and finally, a consensus should be reached regarding the technique for analysis
and source extraction as, although easily obtained, tissue-derived miRNA studies do not
address the issue of invasiveness. Future studies should focus on consistent, reproducible,
and non-invasive miRNAs to develop and test the already-established models to improve
their performance for prognostic purposes.
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