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Abstract: Gallic acid (GA), a phenolic compound naturally found in many plants, exhibits potential
preventive and therapeutic roles. However, the underlying molecular mechanisms of its diverse
biological activities remain unclear. Here, we investigated possible mechanisms of GA function
through a transcriptome-based analysis using LINCS L1000, a publicly available data resource. We
compared the changes in the gene expression profiles induced by GA with those induced by FDA-
approved drugs in three cancer cell lines (A549, PC3, and MCF7). The top 10 drugs exhibiting high
similarity with GA in their expression patterns were identified by calculating the connectivity score
in the three cell lines. We specified the known target proteins of these drugs, which could be potential
targets of GA, and identified 19 potential targets. Next, we retrieved evidence in the literature that
GA likely binds directly to DNA polymerase β and ribonucleoside-diphosphate reductase. Although
our results align with previous studies suggesting a direct and/or indirect connection between GA
and the target proteins, further experimental investigations are required to fully understand the exact
molecular mechanisms of GA. Our study provides insights into the therapeutic mechanisms of GA,
introducing a new approach to characterizing therapeutic natural compounds using transcriptome-
based analyses.

Keywords: gallic acid; transcriptome; transcriptome profile changes

1. Introduction

Gallic acid (GA) is a polyphenol compound naturally present in various plant species,
such as gallnut, sumac, tea leaves, and oak bark [1]. This phytochemical demonstrates dif-
ferent biological features, including antioxidant, anti-inflammatory [2], antidepressant [3],
and antidiabetic properties [4]. Furthermore, GA may play therapeutic roles in various
diseases caused by oxidative stress, such as cancer [5], cardiovascular diseases [6], and
neurodegenerative disorders [7]. Additionally, GA modulates cell signaling pathways
in different cancers, including leukemia and liver, lung, colon, prostate, and breast can-
cers. In particular, GA regulates cell proliferation and survival, induces apoptosis, inhibits
angiogenesis, and triggers oxidative stress [8–12]. However, the underlying molecular
mechanism of GA remains unclear, since GA may exert its effects via multiple mechanisms.

Previous studies have used omics data to explain the action mechanisms of chemical
compounds. For instance, transcriptome analyses have been widely used to facilitate the
identification of differentially expressed genes (DEGs) based on their expression and regu-
latory mechanisms [13,14]. Recently, publicly available transcriptional profiling databases
such as Connectivity Map (CMap) have emerged, dramatically improving the interpreta-
tion of transcriptional analysis [15]. CMap provides information on the gene expression
profiles (GEPs) obtained from human cancer cells subjected to drug treatment, facilitating
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the identification of drug–disease associations using pattern-matching algorithms. Since
2006, CMap has compiled a library containing the GEPs of 564 genes for 143 different small-
molecule perturbagens. The Library of Integrated Network-based Cellular Signatures
(LINCS) L1000 database, an improved version of CMap, features considerably more infor-
mation because it covers 1127 distinct cell lines subjected to drug treatment, encompassing
approximately 42,000 small molecules (https://lincsportal.ccs.miami.edu/dcic-portal/,
accessed on 12 January 2023) [16]. This database serves as a valuable resource for compar-
ing GEP changes triggered by drug treatment in different disease models [17], predicting
drug-target interactions [18,19], network integration [20], and transcriptomic analysis to
clarify the mechanism of actions of bioactive molecules [21,22].

In this study, we analyzed the potential mechanism of action of GA in cells through
transcriptome analysis (Figure 1). For this, GA-induced differential GEPs were first obtained
from each cell line (A549, PC3, and MCF7). To investigate the potential biological functions
of the DEGs, Gene Ontology (GO) [23] and the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway [24] enrichment analyses were performed. To further specify the direct
targets and mechanisms, GA-induced GEP changes were compared with those induced
by FDA-approved drugs in the LINCS L1000 database, and the drugs that exhibited high
similarities in expression patterns in the three cell lines were identified. Connectivity
scores were used to quantify the similarity in GEP changes, and the list was compiled in
descending order based on the connectivity scores. The top 10 FDA-approved drugs on
the list were identified. Then, their respective targets for inhibition and antagonism were
elucidated, yielding a total of 19 potential targets. Based on the high similarity in GEPs,
we hypothesized that GA could inhibit the same target proteins as these drugs. Using
this comparative transcriptome analysis, we aimed to identify the multiple mechanisms
used by GA and how changes in transcriptional activity induced by GA may reflect or
contribute to diseases. As a small molecule, GA exhibits diverse mechanisms in different
tissues; hence, more comprehensive research at the genome level is warranted.
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Figure 1. Overall study scheme (a) gallic acid (GA) or dimethyl sulfoxide (DMSO) was used to treat 
three cell lines for sample preparation. (b) Transcriptome profiles of each cell line were obtained 
through microarray analysis, and the fold change was calculated to identify differentially expressed 
genes (DEGs). (c) DEGs were listed for each cell line, and commonly expressed genes in the three 
cell lines were identified. (d) For DEGs, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analyses were conducted. (e) The gene expression profile 
(GEP) changes were compared with those of FDA-approved drugs in LINCS L1000 by calculating 
the average connectivity scores (Zhang score) using computational software. The higher the score, 
the greater the similarity in GEPs. The known target proteins of the top 10 drugs were identified for 
further analysis. 

Figure 1. Overall study scheme (a) gallic acid (GA) or dimethyl sulfoxide (DMSO) was used to treat
three cell lines for sample preparation. (b) Transcriptome profiles of each cell line were obtained
through microarray analysis, and the fold change was calculated to identify differentially expressed
genes (DEGs). (c) DEGs were listed for each cell line, and commonly expressed genes in the three
cell lines were identified. (d) For DEGs, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analyses were conducted. (e) The gene expression profile
(GEP) changes were compared with those of FDA-approved drugs in LINCS L1000 by calculating
the average connectivity scores (Zhang score) using computational software. The higher the score,
the greater the similarity in GEPs. The known target proteins of the top 10 drugs were identified for
further analysis.
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2. Results
2.1. Data Analysis of GA-Induced GEPs

To obtain the GEPs, we treated three cell lines (A549 (lung carcinoma epithelial cell
line), PC3 (human prostate adenocarcinoma cell line), and MCF7 (human breast carcinoma
cell line)) with 10 µM GA for 6 h; DMSO served as the control. We calculated the mean
value for triplicate samples individually and obtained the fold change (FC) by dividing
the gene expression value of the GA treatment group by that of the control group, where
FC represented the GEP changes in each cell line. An absolute value of FC < 1 indicated
that gene expression was downregulated after GA treatment, which was expressed using a
negative (−) sign.

For differentially expressed gene (DEG) analysis, p-values of < 0.05 indicated signifi-
cant changes in the gene expressions, and the FC cutoff value was set at FC ≥ 1.5. In A549
cells, there were 76 upregulated genes and 60 downregulated genes. In PC3 cells, 54 and
62 genes were upregulated and downregulated, respectively, whereas in MCF7 cells, 55 and
50 genes were upregulated and downregulated, respectively. Among these genes, pogo
transposable element derived with ZNF domain (POGZ) and T cell receptor-associated
transmembrane adaptor 1 (TRAT1) were downregulated in both A549 and MCF7 cell lines,
whereas Formin 1 (FMN1) was downregulated in both PC3 and MCF7 cell lines. Notably,
no common regulated genes were identified in all three cell lines (Figure 2 and Table S1).
TRAT1 regulates T cell-mediated immune responses [25], while POGZ is involved in neu-
rodevelopment and mitotic cell cycle progression [26], and FMN1 regulates the organization
of the actin cytoskeleton [27], which is key to many cellular processes, including the cell
cycle, motility, division, and adhesion. All three genes (i.e., TRAT1, POGZ, and FMN1) have
been identified as potential therapeutic targets for the treatment of some cancers [25,28,29].
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Figure 2. Venn diagrams for the (a) upregulated and (b) downregulated differentially expressed
genes (DEGs) in the three cell lines (A549, PC3, and MCF7). Overlapping regions represent DEGs
shared in all three groups. The cutoff for statistically significant DEGs was fold change ≥ 1.5 and
p-value < 0.05. The Venn diagrams were created using the UGent website (https://bioinformatics.
psb.ugent.be/webtools/Venn/, accessed on 20 March 2023).

2.2. DEG Analysis through GO Mapping and KEGG Pathway Enrichment

We performed GO and KEGG pathway enrichment analyses using the Database for
Annotation, Visualization, and Integrated Discovery (DAVID) [30,31] (Tables S2 and S3).
Among the three GO sub-ontologies (biological process [BP], cellular component, and
molecular function), we focused on BP to assess the underlying biological features. First,
we extracted the GO Biological Process (GOBP) terms that were significantly enriched
(p < 0.05) in each cell line. To further examine the regulatory mechanisms, the gene lists
from the GOBP terms of each cell line were merged, resulting in 21 upregulated and
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30 downregulated gene sets. Thereafter, each gene set was subjected to GO enrichment
analysis (Figure 3). For the merged gene set comprising upregulated genes, the top-ranked
GOBP terms were “regulation of transcription from RNA polymerase II promoter” and
“positive regulation of transcription from RNA polymerase II promoter,” whereas the top
GOBP terms for the merged gene set comprising downregulated genes included “signal
transduction,” “positive regulation of transcription from RNA polymerase II promoter,”
and “intracellular signal transduction” (Table S4).
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In KEGG pathway enrichment analysis, we did not identify any significantly enriched
pathways for the upregulated gene set of three cell lines; however, 12 genes were identified
from significantly enriched metabolic pathways for the downregulated gene set of three cell
lines (p < 0.05) (Figure 4). The top-ranked pathways for these downregulated genes included
pathways of neurodegeneration—multiple diseases, pathways in cancer, dopaminergic
synapse, axon guidance, lipid and atherosclerosis, Parkinson’s disease, and Huntington’s
disease (Table S5).
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2.3. LINCS L1000 Data-Based Expression Pattern Analysis

To better understand the molecular pathways affected by GA, we used a computational
drug screening platform to discover the potential target proteins that directly interact with
GA. In our previous studies, we used a computational program to search for FDA-approved
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drugs with the highest similarity in GEP patterns [32]. Using this method, we compared the
GEP changes induced by GA with those induced by the drugs in the LINCS L1000 library.
Intergroup similarity was measured using the connectivity score method introduced by
Zhang et al. [33]. Table 1 summarizes the top 10 drugs with the highest similarity based
on the average Zhang score of the three cell lines, and their 2D structures are shown in
Figure 5. We mapped the LINCS perturbagen IDs to the corresponding approved drug
names using DrugBank IDs [34]. Because GA shares target proteins with these drugs due
to their highly similar expression patterns, we also compiled the known target proteins of
each drug (Table 1).
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We focused on inhibitor drugs as they are comparatively widely available and easier
to develop than activator drugs. We identified 19 antagonists and/or inhibitor proteins
from DrugBank as the targets of the top 10 drugs (Table 1).
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To elucidate the functions of the 19 target proteins, GO and KEGG pathway enrichment
analyses were performed. The top-ranked GOBP terms (p < 0.05) were regulation of
synaptic vesicle exocytosis, DNA replication, DNA topological change, response to drugs,
and response to xenobiotic stimuli (Figure 6a and Table S6). KEGG pathway enrichment
analysis (p < 0.05) indicated significant enrichment in the cAMP signaling, calcium signaling,
neuroactive ligand-receptor interaction, and cGMP-PKG signaling pathways (Figure 6b
and Table S7).
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Table 1. Top 10 drug lists from the LINCS L1000 dataset with the most similar GEP patterns.

Perturbagen ID Drug Name Mean of the
Zhang Score

Targets
Gene

Symbol
UniProt

ID Name of the Target Proteins

1 BRD-K33106058_DB00987 Cytarabine 0.402339 POLB P06746 DNA polymerase beta
2 BRD-K89626439_DB00877 Sirolimus

(rapamycin) 0.396491 MTOR P42345 Serine/threonine-protein kinase
mTOR

3 BRD-K72238567_DB01073 Fludarabine 0.20117 POLA1,
RRM1

P09884,
P23921

DNA polymerase alpha catalytic
subunit

Ribonucleoside-diphosphate
reductase large subunit

4 BRD-A38030642_DB00091 Cyclosporine 0.192982 PPP3R2,
PPIA

Q96LZ3,
P62937

Calcineurin subunit B type 2
Peptidyl-prolyl cis-trans isomerase A

5 BRD-A16311756_DB00392 Profenamine 0.166082
CHRM1,
CHRM2,
GRIN3A

P11229,
P08172,

Q8TCU5

Muscarinic acetylcholine receptor M1
Muscarinic acetylcholine receptor M2

Glutamate receptor ionotropic,
NMDA 3A

6 BRD-K89732114_DB00831 Trifluoperazine 0.153216

DRD2,
CALY,

ADRA1A,
CALM,
S100A4

P14416,
Q9NYX4,
P35348,
P0DP23,
P26447

Dopamine D2 receptor
Neuron-specific vesicular protein

calcyon
Alpha-1A adrenergic receptor

Calmodulin
Protein S100-A4

7 BRD-K43389675_DB00694 Daunorubicin 0.145029 TOP2A,
TOP2B

P11388,
Q02880

DNA topoisomerase 2-alpha
DNA topoisomerase 2-beta

8 BRD-K23478508_DB00390 Digoxin 0.138012 ATP1A1 P05023 Sodium/potassium-transporting
ATPase subunit alpha-1

9 BRD-A59985574_DB01030 Topotecan 0.127485 TOP1,
TOP1MT

P11387,
Q969P6

DNA topoisomerase 1
DNA topoisomerase I, mitochondrial

10 BRD-K04548931_DB00997 Doxorubicin 0.100585
TOP1,

TOP2A,
TOP2B

P11387,
P11388,
Q02880

DNA topoisomerase 1
DNA topoisomerase 2-alpha
DNA topoisomerase 2-beta

The Zhang score (connectivity score) was used as a measure of similarity. A higher score indicates greater
similarity. Target proteins were restricted to antagonists or inhibitors with pharmacological activity.

3. Discussion

In this study, we investigated the molecular mechanisms that GA may affect by
conducting transcriptomic analysis based on the GEPs before and after GA treatment.
We examined the GEP changes in three cancer cell lines before and after GA treatment
using microarray analysis. Pathway enrichment analysis using DEGs revealed that GA
downregulated the expression of genes related to neurodegenerative pathways, such as
Parkinson’s and Huntington’s disease, as well as those associated with the nervous system,
such as dopaminergic synapse and axon guidance.

However, this transcriptome-based pathway enrichment analysis mainly highlights
the regulatory mechanisms at the pathway level, with limited information on precise
mechanisms or the direct identification of inhibitory targets. To overcome these limitations,
we adopted an alternative approach to compare the microarray experimental data of GA
with that of the drugs in the LINCS L1000 database. This database offers information on
the GEPs of various cell lines, which were induced by thousands of different perturbagens,
including FDA-approved drugs with known action mechanisms. By comparing the GEP
changes induced by GA with those induced by the drugs in the database, we identified the
drugs showing similar GEP changes. A higher similarity indicated a higher likelihood that
GA directly or indirectly targeted the known target proteins of the identified drugs.

In this study, we employed a computational program used in earlier studies to identify
the drugs exhibiting similar GEP patterns. The highly accurate Zhang score, a connectivity
score, was used to measure the similarity between the two GEP datasets [33]. The program
allowed us to sort drugs in descending order of the Zhang score, enabling us to easily
specify the top 10 drugs that induce the most similar changes in GEP as those triggered
by GA. Interestingly, we observed that even with significant differences in molecular size,
GA was able to induce changes in gene expression patterns similar to those induced by
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drugs. This may be due to the multitarget effects. However, there are many challenges in
achieving a full understanding of the underlying mechanisms due to biological complexity.

Using the top 10 drug lists, we extracted drug-target protein interaction information
from DrugBank [34] and identified the proteins that act as inhibitors. Overall, this approach
proved to be a convenient bioinformatics tool for comparative analyses of multiple experi-
mental groups to identify differences between them. By identifying the approved drugs
with high similarity in GEP changes using LINCS L1000, we could specify the potentially
shared targets of GA. Because this dataset covers most of the genes expressed in cells
(widely expressed landmark genes that are directly measured as well as other genes that
could be inferred), it effectively served as a useful analytical method for our study.

Using the gene list of the specified target proteins, GO and KEGG pathway enrichment
analyses were performed. The results revealed the GOBP terms associated with the nervous
system, such as regulation of synaptic vesicle exocytosis. In KEGG pathway analysis, cAMP
signaling, calcium signaling, and neuroactive ligand–receptor interaction were among the
selected pathways.

We considered these proteins as potential targets of GA and found that GA may
directly or indirectly affect the related regulatory pathways of 10 drugs and their target
proteins. For instance, cytarabine and fludarabine bind directly to DNA polymerase β and
ribonucleoside-diphosphate reductase, respectively. GA is reported to directly bind to these
proteins, thus exerting anti-diabetic effects [35]. Additionally, there is evidence suggesting
that GA downregulates USP47, which is known to stabilize DNA polymerase β, potentially
disabling base excision repair (BER) [36]. Also, GA has been reported to induce p53
activation in non-small-cell lung cancer (NSCLC) cells, leading to the suppression of cancer
cell survival and exhibiting a tumor-suppressive effect [37]. In terms of the pathway-based
approach, these findings suggest the possibility that GA may be involved in pathways
associated with the potential target proteins. Sirolimus targets the serine/threonine-protein
kinase: mammalian target of rapamycin (mTOR), and GA has been associated with the
Akt/mTOR signaling pathway, demonstrating antileukemic efficacy in acute myeloid
leukemia (AML) [38]. Cyclosporine directly binds calcineurin, inhibiting T cell activation
by preventing nuclear factor of activated T cells (NF-AT) activation. It has been reported
that GA may suppress cardiac hypertrophic remodeling and heart failure through inhibition
of calcineurin and NF-AT in cardiac cells [39]. In a Parkinson’s disease model, GA exhibits
neuroprotective effects through oxidative stress induction [40], with potential associations
with muscarinic receptors implicated in oxidative stress regulation [41]. This finding
suggests a possible connection between GA and muscarinic acetylcholine receptors, one of
the target proteins of profenamine. Another known target protein of profenamine, NMDA
glutamate receptors, may also be associated with GA in the context of glutamate-induced
neurotoxicity and neuroprotective effects [42]. Trifluoperazine directly blocks dopamine
D1, D2 receptors, and alpha-1A adrenergic receptors. In a mouse model, the antidepressant-
like effect of GA is inhibited when treated with antagonists of dopamine D2 and alpha-
1A adrenergic receptors, suggesting a potential connection with the dopaminergic and
adrenergic pathways [43]. Trifluoperazine also targets calmodulin, and it has been reported
that GA attenuates calcium-calmodulin-dependent kinase II-induced apoptosis in cardiac
cells [44]. The known targets of daunorubicin, doxorubicin, and topotecan are DNA
topoisomerases for their anti-tumor effects. GA has been reported to indirectly stabilize
DNA topoisomerase I- and II-DNA complexes through hydrogen peroxide generation,
inducing apoptosis [45]. Finally, digoxin is known to inhibit Na+, K+-ATPase, and a
phytochemical study shows that Cuphea glutinosa, containing a high fraction of GA, inhibits
Na+, K+-ATPase activity [46], suggesting a potential association between GA and Na+,
K+-ATPase. To identify whether there are any interconnections between the target proteins,
we performed the protein-protein interaction (PPI) analysis (Figure S1). While there seem
to be certain connections between the target proteins, these connections appear to arise
from the similarity within targets for a single drug, and there appears to be no distinct
specialization in their interactions.
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This suggests that our results using LINCS L1000 align with previous studies on GA,
and support the idea of considering these proteins as potential direct targets. These findings
highlight the potential of this transcriptome analysis method not only for GA but also for
investigating the molecular mechanisms of various natural molecules. Nonetheless, since
the results of this study are predicted using a computational program, further experimental
validation is warranted.

While numerous studies have been conducted to explore phytochemicals as crucial
sources in drug discovery, there have been relatively few investigations focusing on tran-
scriptomic profile changes induced by phytochemicals. This study aims to propose a
methodology for investigating natural compounds with multifaceted and comprehensive
therapeutic effects, such as GA. GA, a polyphenol compound found in various plants,
is renowned for its potent antioxidant and anti-inflammatory properties, contributing
to therapeutic activities in cardiovascular diseases, cancer, neurodegenerative disorders,
and aging [1]. Consequently, GA and its derivatives are often used as promising lead
compounds for new drug development, contributing to drug modeling and medicinal
chemistry research [47,48]. However, research on the mechanisms of GA has been limited
due to its complexity. Recently, useful data sources, such as the LINCS database, became
available for interpreting mechanisms of action, allowing us to conduct this study. The
strategy proposed in this study is expected to be applicable to the investigation of the
molecular mechanisms of these natural small compounds. Our study examines changes in
transcriptome expression patterns, proposing potential targets for the action of GA. Based
on these findings, future studies may clarify the regulatory mechanisms of GA or explore
various phytochemicals, such as GA, using the methodological strategies employed in this
study. Our findings may provide valuable clues not only for understanding the action
mechanisms of phytochemicals but also for identifying potential side effects.

4. Materials and Methods
4.1. Materials

GA (CAS Registry No. 149-91-7; 3,4,5-trihydroxybenzoic acid) was purchased from
Shaanxi Sciphar Natural Products Co., Ltd. (Shangluo, Shaanxi, China). The three cancer
cell lines, namely lung carcinoma cells (A549), human prostate adenocarcinoma cells (PC3),
and human breast carcinoma cells (MCF7), were purchased from the American Type Culture
Collection (ATCC, Rockville, MD, USA).

4.2. Cell Culture

A549 and PC3 cells were cultured in RPMI-1640 supplemented with 10% fetal bovine
serum (FBS) and 1% penicillin-streptomycin-glutamine. To culture PC3 cells, 1 mM sodium
pyruvate and 10 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid were additionally
added to the media. MCF7 cells were cultured in Dulbecco’s modified Eagle’s medium
supplemented with 10% FBS and 1% penicillin-streptomycin-glutamine. All cells were
cultured at 37 ◦C in a 5% CO2 humidified atmosphere and incubated for 2 weeks after
initial seeding for stabilization.

4.3. RNA Sample Preparation

GA was dissolved in 10 mM DMSO and stored at −80 ◦C. Each cell line was plated
in six 60-mm dishes (three each for DMSO and GA treatments). The cell density was
1.3 × 106 cells for A549, 1.496 × 106 cells for PC3, and 8.45 × 105 cells for MCF7. After
24 h, the cells were treated with 1000-fold diluted DMSO and GA, resulting in final con-
centrations of 0.1% for DMSO and 10 µM for GA. After 6 h of DMSO and GA treatment,
RNA was extracted using the RNeasy Mini Kit (Qiagen, Hilden, Germany) according to
the manufacturer’s instructions. The extracted RNAs were stored at −80 ◦C.
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4.4. Microarray Data Analysis

Total RNA samples were sent to Macrogen (Seoul, Korea) for assessment using the
Clariom™ S Assay, Human. The ND-2000 spectrophotometer (NanoDrop, Wilmington,
NC, USA) was used to detect RNA purity, and the Agilent 2100 bioanalyzer (Agilent
Technologies, Palo Alto, CA, USA) was used to detect RNA integrity.

For the Affymetrix whole-transcript (WT) expression array process, the GeneChip
WT PLUS Reagent Kit (Affymetrix, Santa Clara, CA, USA) was used according to the
manufacturer’s instructions. cDNA was synthesized using the GeneChip WT Amplification
Kit (Affymetrix) according to the manufacturer’s instructions.

Thereafter, sense cDNA was fragmented and labeled with biotin using terminal de-
oxynucleotidyl transferase using the GeneChip WT Terminal Labeling Kit (Affymetrix).
Approximately 5.5 µg of labeled DNA target was incubated at 45 ◦C for hybridization with
the Affymetrix GeneChip Human Clariom S Array for 16 h. After washing and staining on
the GeneChip Fluidics Station 450, the hybridized arrays were scanned on the GCS3000
Scanner (Affymetrix). The Affymetrix® GeneChip™ Command Console software was used
to calculate the signal values.

Gene enrichment, pathway, and functional annotation analyses were performed to
obtain a probe list using the DAVID functional annotation tool [30,31].

4.5. Identification of the Potential Target Proteins Using the LINCS L1000 Database

The LINCS L1000 database was used to screen the approved drugs that generate GEP
changes similar to GA, among thousands of small molecules, including FDA-approved
drugs in various cell lines at different time points and doses. The LINCS L1000 level 5
datasets that were used in this study are available in Gene Expression Omnibus (Accession
number GSE92742, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE92742, ac-
cessed on 18 January 2023). This dataset contains information on the GEPs of 978 landmark
genes, collected from the L1000 assay [16]. The raw data obtained from LINCS L1000 were
filtered based on cell type and gene expression. Note that the conditions selected for this
step were similar to those for cell treatment at a dose of 10 µM GA for 6 h. FC was measured
by dividing the mean expression under GA by that under DMSO for each cell line. The
obtained FC was normalized using log2 and used to compare with that of the 978 landmark
GEPs in the LINCS database.

A computational program that was used in one of our previous studies was used
to calculate the similarity in GEP patterns between GA and the approved drugs using
connectivity scores and identify the approved drugs that yielded changes most similar to
those induced by GA [32]. Briefly, DrugBank was used to obtain the approved drug list from
the LINCS database, and connectivity scores (the Zhang score) were used to identify the
approved drugs that induce GEP changes similar to those induced by GA. As a comparative
method, Lamb et al. developed CMap16 by creating a database using the GEP patterns
of known chemicals and generating ranks for the test DEGs based on their expression
level [15]. Subsequently, Zhang et al., introduced an improved approach to compute the
connectivity scores, offering a more simplified and precise method for comparing GEP
changes between groups [33]. In this method, a query signature (GA treatment) is compared
to each of the drug-gene expression profiles ranked in the LINCS L1000 database based
on their respective scores. The score ranges from −1 (representing the highest negative
correlation) to 1 (representing the highest positive correlation), implying that a higher score
indicates greater similarity. Target proteins were restricted to antagonists or inhibitors
with pharmacological activity. All program scripts used in this computational software
can be found in the online repository (https://bitbucket.org/krictai/predms/src/master/,
accessed on 19 February 2023).

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE92742
https://bitbucket.org/krictai/predms/src/master/
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5. Conclusions

In this study, we investigated the underlying mechanisms by which GA affects cells
using transcriptome-based comparative analysis. Through transcriptome analysis, potential
target proteins for GA were identified. We used the LINCS L1000 database to compare
the changes in GEPs induced by GA with those induced by approved drugs and identify
the drugs with similar GEPs. This was crucial between the GEPs of approved drugs, and
GA may indicate a similar mechanism of action. Nineteen potential target proteins were
obtained, consistent with the findings of previous studies, providing further support and
validation. In particular, our study indicates the direct binding of GA to DNA polymerase
β and ribonucleoside-diphosphate reductase, both of which were among the top target
proteins. Consequently, it is probable that GA may play a role in base excision DNA repair
pathways and cell survival within p53-dependent cell survival pathways, as discussed
earlier. Our findings highlight the potential of transcriptome-based comparative analysis in
elucidating the molecular mechanisms of small natural compounds. To address the complex
biological challenges of small compounds such as GA, a genome-wide approach using
transcriptome profiles can be a powerful method to gain a comprehensive view of their
multifaceted actions. The availability of valuable data sources, such as the LINCS database,
has recently enabled such a study, proposing a new strategy that may be applicable to the
investigation of the molecular mechanisms of these natural small compounds. Nevertheless,
additional studies are warranted to comprehensively elucidate the specific targets and
mechanisms of GA. This can help assess the action mechanisms of other natural compounds
with therapeutic potential.
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