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Abstract: Diets can influence the body’s acid–base status because specific food components yield
acids, bases, or neither when metabolized. Animal-sourced foods yield acids and plant-sourced
food, particularly fruits and vegetables, generally yield bases when metabolized. Modern diets
proportionately contain more animal-sourced than plant-sourced foods, are, thereby, generally net
acid-producing, and so constitute an ongoing acid challenge. Acid accumulation severe enough to
reduce serum bicarbonate concentration, i.e., manifesting as chronic metabolic acidosis, the most
extreme end of the continuum of “acid stress”, harms bones and muscles and appears to enhance the
progression of chronic kidney disease (CKD). Progressive acid accumulation that does not achieve
the threshold amount necessary to cause chronic metabolic acidosis also appears to have deleterious
effects. Specifically, identifiable acid retention without reduced serum bicarbonate concentration,
which, in this review, we will call “covert acidosis”, appears to cause kidney injury and exacerbate
CKD progression. Furthermore, the chronic engagement of mechanisms to mitigate the ongoing
acid challenge of modern diets also appears to threaten health, including kidney health. This review
describes the full continuum of “acid stress” to which modern diets contribute and the mechanisms
by which acid stress challenges health. Ongoing research will develop clinically useful tools to
identify stages of acid stress earlier than metabolic acidosis and determine if dietary acid reduction
lowers or eliminates the threats to health that these diets appear to cause.
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1. Introduction

Diet contributes to chronic disease and its outcomes [1], including cardiovascular
disease (CVD) [2] and chronic kidney disease (CKD) [3]. A dietary factor associated
with cardiovascular and kidney outcomes is its acid- or base-producing capacity. When
metabolized, animal-sourced foods yield acids, and most plant-sourced foods, including
fruits and vegetables (F & Vs), yield bases [4]. Typical modern diets are proportionately
higher in animal-sourced foods than plant-sourced foods like F & Vs, making them net
acid-producing [4]. Acid-producing diets eaten by individuals with CKD and severe
reductions (<25% of normal) in their estimated glomerular filtration rate (eGFR) [5] can
cause acid accumulation sufficient to reduce serum bicarbonate concentration ([HCO3

−])
below the normal range of clinical laboratories, i.e., cause metabolic acidosis [6]. Metabolic
acidosis in patients with CKD further increases the already increased CVD risk suffered
by patients with CKD [7–9] and enhances CKD progression [10–13]. Acid-producing diets
also contribute to identifiable acid accumulation that is not sufficient to reduce serum
[HCO3

−], i.e., not cause metabolic acidosis [14], a state variously called eubicarbonatemic
acidosis [15,16], preclinical acidosis [17], or subclinical acidosis [18]. This state, which we
will refer to as “covert acidosis”, is associated with decreased bone [19] and muscle [20]
health, faster CKD progression [21,22], and increased CVD risk [23]. Acid-producing diets
are associated with an increased CVD risk [24] and with increased incidence [25,26] and
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progression [27,28] of CKD in the general population, suggesting that these diets pose
general threats to health. These data support the fact that acid-producing diets contribute
to the full continuum of “acid stress” [14]. We will refer to these phases as late-, mid-,
and early-phase acid stress in this review. We will also discuss emerging studies that
are elucidating mechanisms related to how acid-producing diets cause acid stress and its
associated adverse outcomes.

2. Dietary Contribution to Acid–Base Status

Both metabolic (called “fixed”) and respiratory (called “volatile”) acids challenge the
acid–base status [29]. The accumulation of carbon dioxide (CO2) gas in bodily fluids causes
respiratory acidosis and is typically due to decreased ventilation by the lungs [29]. On the
other hand, metabolic acid accumulation, the topic of this discussion, causes the adverse
consequences discussed above. Diets contribute metabolic acid through the metabolism
of dietary proteins, phospholipids, and nucleic acids and incomplete carbohydrate oxi-
dation [4]. This amounts to ~0.7–1.0 mmol/kg bw/day in healthy adults eating typical
modern diets [30]. Proportionately more acid-producing animal-sourced foods than base-
producing plant-sourced foods make these diets net acid-producing [4,30]. Animal-sourced
foods have more protein/g and more sulfur-containing amino acids (e.g., methionine,
cysteine) that metabolize to yield acids than plant-sourced foods [4,30]. Plant-sourced
foods have more potassium and magnesium salts of organic anions like malate and citrate
that metabolize to yield HCO3

− [4]. Figure 1 shows examples of acid-producing, base-
producing, and neutral foods. Sodium chloride (NaCl) is common in processed foods that
make up an increasing proportion of modern diets [31], and NaCl consumption is inversely
related to serum [HCO3

−] [32]. Unlike most processed foods, most fresh plant-sourced
foods are very low in NaCl.
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Figure 1. Graphic presentation of selected common foods that are generally acid-producing, neutral,
or base-producing (horizontal orientation) and their comparable acid- or base-producing capacity
(vertical orientation). The listed neutral foods are comparable with respect to their contribution to
net endogenous acid production (NEAP), so their vertical orientation does not indicate ranking with
respect to NEAP.

Estimating a diet’s acid- or base-producing capacity can be achieved by calculating
its dietary potential renal acid load (PRAL) [4]. This includes tabulating the type and
quantity of foods in the diet and assigning their amount of acids (positive value) or bases
(negative value) produced when metabolized [4]. This calculation does not include the
estimated organic anion excretion (representing a potential base loss because retained
organic anions can be metabolized to yield bases), which averages to about 40 mmol in
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adults and which, combined with PRAL, estimates urine net acid excretion (NAE) [4].
This comprehensive tabulation is labor-intensive, is largely carried out in research settings,
and is not practically and routinely performed in clinical settings. The range of the net
acid-producing capacity of common US diets is wide (Figure 2) but trends even higher in
under-resourced communities [14]. The diets of residents in under-resourced communities
trend toward higher PRALs because of a generally lower intake of plant-sourced foods,
leading to a greater net metabolic acid production [14]. A lower intake of plant-sourced
base-producing foods might mediate the greater risk of individuals from under-resourced
disproportionately minoritized communities [33] to develop metabolic acidosis [34].
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Figure 2. Graphic presentation of the potential renal acid load (PRAL), or net acid-producing capacity,
of the indicated diets, calculated from their standard food components. The net acid-producing
capacity of components of the United States Department of Agriculture (USDA)-recommended diet
in this figure is considered the standard to which the remaining indicated diets are compared. F & Vs
= fruits and vegetables; DASH = Dietary Approaches to Stop Hypertension. The data for diets of
low-income study participants are from references [12,35–37]. The PRAL values for the remaining
diets were calculated from typical food components of these diets and reported in reference [14].

3. Overview of Acid–Base Balance

Cells and tissues seek to maintain “free” body fluid [H+] within a narrow, slightly
alkaline range compared to pure H2O, which has [H+] = 100 nM or 100 × 10−9 M = 10−7 M
= 10−7 moles/L. A solution’s pH is the negative log of its [H+] in moles/L, so pure H2O
has a pH = 7.00. “Free” H+, as opposed to H+ bound to other moieties, appears to be
the H+ component mediating its physiologic and pathophysiologic action, making its
measurement clinically important. Nevertheless, most of the body’s H+ is indeed bound to
other moieties (i.e., is “buffered”) not “free” in a solution. Buffered H+ appears to have less
direct physiologic and/or pathophysiologic actions than free H+, but its degree of binding
might signal downstream actions such as the level of kidney acidification [38]. Signal
transduction pathways leading to increased H+ excretion induced by H+ accumulation can
overlap pathways activating vascular endothelial cell inflammation [39], possibly mediating
the increased CVD risk associated with increased dietary net H+ production. Consequently,
accumulated H+ that is not “free” and so not measurable with conventional clinical tools
might nevertheless be associated with and/or cause adverse clinical consequences. That
being said, serum pH is routinely measured in clinical settings to help assess a patient’s
acid–base status.

Multiple body systems help maintain serum [H+] at about 40 nM (pH = 7.40) despite
dietary acid and/or base challenges and the intrinsic cellular metabolism. Individuals
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eating modern diets, typically net H+-producing [4], as previously discussed, who have
severely decreased eGFRs due to CKD also have a decreased H+ excretory capacity. Others
can have kidney tubule dysfunction that limits their H+ excretory capacity. As such, both
groups can accumulate sufficient H+ to decrease serum [HCO3

−], the metabolic component
of the acid–base equilibrium, and develop metabolic acidosis. Others with less decreased
GFRs, with intact tubule function, and eating acid-producing diets accumulate identifiable
amounts of H+ that are not sufficient to reduce serum [HCO3

−] [35,36,40,41] and yet appear
to be sufficient to cause harm [19–23]. This setting is characterized by steady-state H+

retention without a decrease in serum [HCO3
−] [42], a state to which we refer as covert

acidosis. In addition, individuals without decreased GFRs might be able to avoid steady-
state H+ retention in response to acid-producing diets [41], yet the chronic engagement of
mechanisms to excrete H+ might lead to chronic kidney injury, as will be discussed later in
this paper.

4. What Is a “Normal” Serum [HCO3
−]?

A “normal” serum [HCO3
−] varies widely among clinical laboratories, with low values

as low as ≥18 mmol/L and high values as high as ≤36 mmol/L [43], lending uncertainty as
to which serum [HCO3

−] threshold indicates metabolic acidosis. Current clinical guidelines
define metabolic acidosis as serum [HCO3

−] < 22 mmol/L in the absence of respiratory
alkalosis and recommend treatment for patients with CKD fitting this criterion [44]. By
this measure, metabolic acidosis is prevalent in <1% of patients with CKD stage 1 [45],
1.3 to 7% of patients with CKD stage 2 (eGFR 60–89 mL/min/1.73 m2) [45,46], 13% with
stage 3 (eGFR 30–59 mL/min/1.73 m2) [47], and 37% of patients with stage 4 (eGFR
15–29 mL/min/1.73 m2) [48]. Together, these data support that the most extreme form of
acid stress, metabolic acidosis, is fortunately uncommon. As we will see later in this article,
however, an identifiable acid accumulation that is not sufficient to reduce serum [HCO3

−],
that is, manifesting as metabolic acidosis, is also associated with adverse outcomes.

Despite the fact that sufficient acid accumulation to reduce serum [HCO3
−], i.e., mani-

festing as metabolic acidosis, occurs in only a small minority of patients with CKD, epidemi-
ologic and prospective interventional studies support that those with reduced eGFRs who
eat acid-producing diets indeed present acid accumulation despite serum [HCO3

−] levels
within the normal ranges of clinical laboratories. Diets producing higher amounts of acids
are directly associated with a higher anion gap in individuals with CKD; furthermore, the
anion gap has been shown to be higher in those with eGFRs 30–59 mL/min/1.73 m2 than
in those with eGFRs > 60 mL/min/1.73 m2, including individuals with serum [HCO3

−]
within the normal ranges [49]. In the same research, acid accumulation in those with
reduced eGFRs and covert acidosis increased as the eGFRs further declined over time [49].
Furthermore, in another study, an increased amount of accumulated acid was directly
associated with an increased plasma anion gap, despite the maintenance of serum [HCO3

−]
with the normal range [22]. Acid accumulation remained unchanged in participants receiv-
ing an oral alkali but increased in those not receiving it, showing the long-term benefit of
chronic oral alkali therapy (five years) in reducing acid accumulation in covert acidosis
cases [22] in addition to its shorter-term (30 days) benefits [40]. In addition, such a treatment
in patients fitting these criteria reduced the urine indices of kidney injury in [21,36] and
slowed the eGFR decline rate, supporting the notion that covert acidosis causes kidney
injury and exacerbates eGFR decline. These data support the progressive course of acid
stress, according to which individuals with reduced eGFRs who eat acid-producing diets
can suffer harmful, kidney-toxic acid accumulation before it progresses towards reducing
serum [HCO3

−] below the normal range for clinical laboratories, the point at which current
guidelines recommend treatment [44].

As will be discussed in more detail later, kidneys excrete H+ almost entirely bound to
urine buffers and not “free” H+ [29]. The larger proportion of excreted H+ is bound to am-
monium (NH4

+), with the remainder being “titratable acidity”, mostly bound to phosphate.
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5. Pathophysiology of Late-Phase H+ Stress (Metabolic Acidosis)

The extreme acid accumulation necessary to decrease serum [HCO3
−] and thereby

manifest as metabolic acidosis can be due to defective kidney tubule function limiting
the kidney’s ability to excrete H+ despite a relatively well-preserved GFR. This can be
due to dysfunction in the proximal or distal tubules. More commonly, the extreme acid
accumulation of metabolic acidosis is mediated by a severe decrease (typically <25% of
the baseline) in the GFR. This extreme level of body H+ accumulation is associated with
injury to bones [50], muscles [51], the exacerbated progression of chronic kidney disease
(CKD) [10–13], and an increased mortality [8], including an increased cardiovascular
mortality [9].

5.1. Proximal Renal Tubule Acidosis

Individuals with proximal renal tubular acidosis (PRTA) have defective proximal
tubule HCO3

− reabsorption with excess terminal nephron HCO3
− delivery that exceeds

the capacity of the distal nephron to completely reabsorb the much higher load of deliv-
ered HCO3

−. Because urine net acid excretion (NAE) = urine NH4
+ + urine titratable

acidity—urine HCO3
−, excess urine HCO3

− excretion reduces urine NAE. These patients
typically achieve a steady state of chronically low serum [HCO3

−], at which the suboptimal
proximal tubule more completely reabsorbs the lower load of filtered HCO3

− into the
nephron (because of a lower serum [HCO3

−]). This lower amount of HCO3
− delivery to

the terminal nephron allows the functionally intact distal nephron to effectively excrete
NH4

+ and titratable acidity without excess urine HCO3
− excretion. This steady-state sce-

nario allows the kidney to maintain a net acid balance, that is, match the dietary H+ intake
with the H+ excretion. The steady-state price paid is that these patients have a steady-state
H+ retention sufficient to reduce the serum [HCO3

−], i.e., have chronic metabolic acidosis.
Like nearly all patients with metabolic acidosis, they have a physiological response to the
reduced serum [HCO3

−], i.e., a decreased serum partial pressure of carbon dioxide gas
(PCO2) [29].

The major clinical consequence of chronic metabolic acidosis in PRTA cases is inhib-
ited bone growth in children [52]. Chronic metabolic acidosis is also associated with a
low bone mineral content, as rickets in children, osteomalacia in adults, and nephrolithi-
asis in both [53]. The treatment of metabolic acidosis in PRTA requires large amounts of
oral sodium bicarbonate (NaHCO3), typically 10–15 mEq/kg body wt daily [52,53], to
maintain the serum [HCO3

−] at a high enough level to avoid or ameliorate these adverse
consequences. This treatment leads to large urine HCO3

− losses, forcing potassium and
phosphate losses which themselves require replacement [52]. Although dietary acid re-
duction by limiting acid-producing foods and encouraging base-producing foods can be
helpful, the large alkali requirements of patients with PRTA cannot be met with these
dietary strategies alone.

5.2. Distal Renal Tubule Acidosis

Individuals with distal renal tubular acidosis (DRTA) have intact proximal tubular
function and, therefore, do not deliver large HCO3

− loads to the terminal nephron like
those individuals with PRTA. In contrast to PRTA, patients with DRTA have defective
distal nephron acidification such that they have a lower excretion of NH4

+ and/or titratable
acidity [54,55]. Consequently, patients with DRTA are typically unable to completely excrete
the high dietary H+ load typical of modern diets, so they present enough steady-state net H+

retention to reduce their serum [HCO3
−] without treatment [55]. The retained H+ lowers

the serum [HCO3
−] (with a physiological PCO2 decrease), so these patients have chronic

metabolic acidosis. The net acid retention causes bone diseases [53] and nephrolithiasis [56].
Because patients with DRTA have intact proximal tubular function, they do not

have the large urine HCO3
− losses of PRTA, so they do not have the large alkali re-

quirements of patients with PRTA. Instead, patients with DRTA require sufficient alkali
to treat the described net H+ retention, which is much less than the amount required
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by patients with PRTA. Because the acid production capacity of modern society diets
is typically ~1.0 mEq/kg body daily, most recommendations suggest that patients with
DRTA be prescribed 1.0–1.5 mEq/kg body weight/day alkali equivalent daily, typically
as NaHCO3 [55,57]. Oral alkali correction of metabolic acidosis due to DRTA in children
has been shown to improve bone growth, mineral density, and histopathology [57,58].
Although there are no published studies describing DRTA treatment exclusively by limiting
H+-producing or adding base-producing food constituents, the comparatively lower alkali
requirements of patients with DRTA suggest that dietary strategies might be used at least
as an adjunctive treatment to sodium (Na+)- or potassium (K+)-based alkali.

5.3. Chronic Metabolic Acidosis in Chronic Kidney Disease

Unlike the primary tubule dysfunction that mediates the reduced H+ excretion in
RTAs, the reduced H+ excretion in so-called uremic acidosis, the most common cause
of metabolic acidosis in CKD, is mediated by a severe reduction in filtration capacity,
evidenced by severe reductions in the GFR [29]. In addition, these patients have reduced
excretion of NH4

+, the main urine buffer which binds H+, as discussed above. These two
mechanisms combine to limit urine H+ to levels below those produced from a diet and
the intrinsic metabolism, leading to an ongoing and increasing net H+ retention. When
the level of H+ retention reduces the serum [HCO3

−] below the normal range for clinical
laboratories, these patients transition to metabolic acidosis.

The 2013 KDIGO guidelines [44] are the most structured recommendations for the
treatment of chronic metabolic acidosis, but it is not clear whether these recommendations
should be applied unmodified to other etiologies of chronic metabolic acidosis. These
recommendations read as follows: “We suggest that in people with CKD and serum
[HCO3

−] < 22 mmol/L treatment with oral bicarbonate supplementation be given to
maintain serum bicarbonate within the normal range, unless contraindicated”. The authors
comment that the indicated serum [HCO3

−] below which to treat patients has not been
rigorously determined with large-scale studies but reflects the opinions and experience of
the authors. The recommended doses range from 0.5 to 1.0 mEq HCO3

− or its equivalent
per kilogram of lean body weight per day. This is similar in amount to that recommended
for DRTA, because the concern with chronic metabolic acidosis in CKD is the failure to
completely excrete the metabolically produced H+, mostly derived from dietary intake,
with variable amounts contributed by the intrinsic metabolism. The treatment goal, as
stated in KDIGO, is to maintain the serum [HCO3

−] in the normal range. The guidelines
recommend Na+-based alkali therapy such as Na+ citrate or NaHCO3, as tolerated by the
patient. With evolving patient studies supporting the benefits of the alkali treatment of
covert acidosis [21,35,36], updated guidelines recommend maintaining serum [HCO3

−]
levels at 24–26 mmol/L for patients with CKD and metabolic acidosis [59].

6. Pathophysiology of Mid-Phase H+ Stress (Covert Acidosis)

Despite a steady-state H+ accumulation not sufficient to increase the serum [H+]
(= decreased pH) and/or decrease the serum [HCO3

−], the body’s intrinsic mechanisms
to mitigate the accumulated H+ can cause injury. Even if the ongoing ingestion of H+-
producing diets is not associated with an identifiable H+ accumulation, the chronic en-
gagement of H+ excretory mechanisms promoted by H+-producing diets can also cause
injury. Figure 3 represents a construct of the continuum of H+ stress that is supported by
the experimental data to be discussed in this section.
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Figure 3. Conceptual representation of four phases of the continuum of acid stress. From left:
individuals with a normal estimated glomerular filtration rate (eGFR, ≥90 mL/min/1.73 m2) and
eating a no-acid (H+) diet, those with a normal eGFR and eating a typical H+-producing modern
diet, those with a moderately reduced eGFR (30–89 mL/min/1.73 m2) and covert acidosis, and
those with a severely reduced eGFR (<30 mL/min/1.73 m2) and metabolic acidosis. The light gray
at the bottom of each figure represents the serum bicarbonate concentration ([HCO3

−]), and its
height indicates its level. The slightly darker gray above it represents acid (H+) retention acid, and
the vertical height indicates its amount. The 60 mEq dietary H+ intake is the average intake of
the study participants from under-resourced communities in references [12,35,36,41]. The amount
of acid excretion for the right-most figure with metabolic acidosis is estimated using data from
https://www.cabidigitallibrary.org/doi/full/10.5555/19731405301 (accessed on 13 February 2024).
GFR = glomerular filtration rate.

7. Steady-State H+ Accumulation without Decreased Serum [HCO3
−], i.e., Covert Acidosis

7.1. How Might Steady-State H+ Accumulation Occur?

Animal studies suggest mechanisms by which steady-state H+ accumulation might
occur with minimal increases in the serum [H+] (decreased pH) or minimal decreases in the
serum [HCO3

−]. In a study, animals with CKD caused by the surgical removal of two-thirds
of their nephron mass (2/3 Nx) had H+ retention detected via microdialysis and yet had
serum acid–base parameters not different from the shams, despite eating the same H+-
producing diet [60,61]. Both the 2/3 Nx group and the sham group achieved net H+ balance
(i.e., dietary H+ intake = urine H+ excretion) when switched from a base-producing to an
H+-producing diet, but the 2/3 Nx group took longer to do so [61] (Figure 4). Progressive
H+ retention occurred during the longer time taken by the 2/3 Nx group to achieve net
H+ balance, and this H+ retention was sustained while the animals ate the H+-producing
diet; a baseline lower H+ retention recurred only when the animals returned to the base-
producing diet [61], and the 2/3 Nx group took longer to return to their baseline urine
net acid excretion (Figure 4). Similarly, the individuals without a known kidney disease
given an increment in their dietary H+ intake cumulatively excreted less H+ than they
ingested [62], which is consistent with sustained H+ accumulation in response to dietary
H+ intake in humans.

https://www.cabidigitallibrary.org/doi/full/10.5555/19731405301
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7.2. Sequestration of Retained H+ into Non-Serum Fluid Compartments

Most (60–75%) H+ administered into the serum is sequestered intracellularly [63] and
buffered [64]. Sequestering H+ from the serum into cells yields the benefit of reduced H+

exposure to tissues that interface with the serum. A detriment of this sequestering is that
increased intracellular acidity releases iron bound to intracellular proteins, thereby forming
hydroxyl radicals which cause tissue-damaging oxidative stress [65].

7.3. Buffering of Retained H+ by HCO3
−

Adding H+ to body fluids containing HCO3
− leads to the following:

H+ + HCO3
− → H2CO3 → H2O + CO2 ↑ (lungs excrete CO2 gas from the body)

This leads to H+ removal from serum as CO2 gas that would yield H+ were it to
accumulate (reversal of the above equation), thereby minimizing the increase in body fluid
[H+]. Reduced serum [HCO3

−] limits the body’s capacity to buffer further H+ accumulation.
The restoration of the body’s HCO3

−-mediated buffering capacity requires the kidneys to
regenerate new HCO3

− through net H+ excretion, with the benefits and detriments which
will be discussed under the subsequent section describing the effects of the ingestion of
H+-producing diets.

7.4. Buffering of H+ by Non-HCO3 Buffers

A sustained dietary H+ increment in animals has been shown to cause an increment in
their steady-state H+ accumulation, increasing the H+ titration of extracellular non-HCO3
buffers [38]. Bone calcium carbonate and dibasic phosphate chronically buffer dietary H+

that progressively reduces bone mineral content in patients [50]; released dibasic phosphate
can contribute to titratable acidity for urine H+ excretion. Indeed, signs of metabolic
acidosis-related disturbances of the mineral metabolism in CKD appear with declining
eGFRs even before metabolic acidosis manifests itself via serum acid–base parameters [66],
consistent with the adverse effects of early-phase H+ stress. Bone H+ buffering serves the
short-term benefit of mitigating injury from accumulating H+ but incurs the longer-term
detriment of reduced bone mineral content, with the related decreased bone integrity and
increased risk for fracture [50].
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7.5. H+ Neutralization by Endogenous Organic Acids

Citrate is the most abundant organic base-equivalent in urine, and its level of proximal
tubule reabsorption determines its urine excretion rate [67]. Secreted H+ into the proximal
tubule lumen partially titrates filtered citrate3− to Hcitrate2−, the latter being the preferred
substrate for the apical Na+ dicarboxylate cotransporter NaDC-1 [68]. Cytoplasmic ATP
citrate lyase metabolizes reabsorbed citrate to oxaloacetate and acetyl-CoA or transports
it into the mitochondria, where it enters the tricarboxylic acid cycle [69]. The metabolism
of retained citrate yields HCO3

−, constituting base gain, but its excretion constitutes base
loss [70]. Individuals with reduced eGFRs eating highly H+-producing diets and presenting
covert acidosis had lower urine citrate excretion rates [35,36,41], as did those eating highly
H+-producing diets but without covert acidosis [16,71]. Reduced citrate stores, due to their
consumption by accumulating H+, increase the risk for kidney stones [72].

7.6. Potential Mechanisms for Organ Injury Associated with Covert Acidosis

Adverse effects on bone health. Animals with covert acidosis have greater urine
excretion of deoxy-pyridinoline, a biomarker of bone matrix injury [61]. Chronic acid
buffering by bones likely contributes to the increased bone turnover associated with this
phase of acid stress [26]. Covert acidosis that occurs because of the combination of progres-
sive GFR decrease and acid-producing modern diets has been proposed to contribute to
the decreased bone mass observed in aging [73].

Adverse effects on skeletal muscle health. Most NAE occurs through ammoniagene-
sis. In this process, kidneys metabolize the amino acid glutamine, derived, in part, from the
breakdown of skeletal muscle protein, to form ammonia (NH3) and α-ketoglutarate [29].
Ammonia binds H+ to yield ammonium (NH4

+) (NH3 + H+ → NH4
+), which facilitates

acid removal from the body through urine NH4
+ excretion. The α-ketoglutarate can be

metabolized to HCO3
− to replace the HCO3

− that was lost through titration by the accu-
mulated acid. In this way, ammoniagenesis yields the benefit of acid removal from the body
with the replacement of the HCO3

− that was lost through acid titration, thereby completing
NAE [29]. When sustained, as in animals, with covert acidosis, chronic ammoniagenesis
likely contributes to the loss of muscle mass associated with covert acidosis in patients [20].
In addition, the treatment of patients with CKD and serum [HCO3

−] 20–24 mmol/L
(mean = 23 mmol/L, suggesting that most patients have serum [HCO3

−] > 22 mmol/L)
with oral NaHCO3 has been associated with increased skeletal muscle mass [74]. These
data suggest that the chronic activation of kidney NAE mechanisms in patients with covert
acidosis threatens skeletal muscle mass.

Adverse effects on kidney health. Animal models of CKD with covert acidosis have
high kidney levels of angiotensin II, aldosterone, and endothelin-1 (ET-1), each of which
stimulates kidney distal nephron acidification to increase NAE [75,76]. This short-term
benefit of increased NAE is accompanied by the longer-term detriment of kidney injury
with a progressive GFR decline when the kidney levels of these agents remain chronically
high [75,76]. Chronic oral NaHCO3 in study participants with CKD and covert acidosis has
been shown to reduce accumulated acid, urine excretion of aldosterone and ET-1, and urine
indices of kidney injury, consistent with kidney injury caused by covert acidosis [21,36].
As mentioned, ammonium (NH4

+) constitutes most urine NAE [29]. Animal studies show
and patient studies support the idea that acid-producing diets stimulate kidney NH4

+

production that enhances a complement [37,77]. In turn, this complement mediates kidney
interstitial inflammation with progressive kidney function decline [37].

8. Potential Strategies for Detecting Covert Acidosis

As noted, steady-state covert acidosis more likely occurs in individuals eating acid-
producing diets with CKD and reduced eGFRs. These patients appear to be suitable
candidates for an investigation trying to determine whether they have covert acidosis. Low
urine NH4

+ excretion in patients with CKD and reduced eGFRs, possibly reflecting sub-
optimal urine NAE, has been associated with adverse kidney outcomes [77,78] and might
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identify individuals at risk for covert acidosis. In other studies, low urine citrate excretion
indicated underlying covert acidosis in patients with CKD [22,35,41], their response to
treatment with either mineral alkali [22] or base-producing food components [35], and
changes in acid accumulation when followed over time [22]. Further studies will determine
clinically useful indicators to identify individuals with covert acidosis.

9. Increased Dietary H+ with Little-to-No Steady-State H+ Retention (Early-Phase
Acid Stress)
9.1. Effects of an Increment in Dietary H+ on Overall Body H+: Normal vs. Reduced GFR

Animals with a normal compared to a reduced GFR, both eating an H+-producing diet,
were shown to attain net H+ balance faster with less H+ retention, even with similar baseline
serum acid–base parameters [61]. After one week of a higher dietary H+ intake, both groups
had increases in their urine indicators of bone and kidney injury, which returned to the
baseline with the restoration of the base-producing diet [61]. These data support the idea
that animals with normal compared to reduced GFRs more rapidly achieve net H+ balance
in response to an increment in dietary H+, with less steady-state H+ retention. Nevertheless,
even animals with normal baseline GFRs appear to suffer reversible bone and kidney injury
in response to H+-producing diets [61]. Whether these insights apply to individuals with
normal compared to reduced GFRs awaits further study.

9.2. Kidney Mechanisms Mediating the Excretion of Dietary H+ That Might Have Adverse
Consequences

As indicated earlier, kidneys must accomplish the net excretion of accumulated
metabolic H+ to restore the HCO3

−-mediated buffering capacity that had been reduced by
the accumulated metabolic H+. Kidneys accomplish net H+ excretion in ways that serve
the short-term benefit of H+ removal but risk the long-term risk of injury to bones, muscles,
and kidneys if the increment in dietary H+ is sustained. The kidney accomplishes net H+

excretion by means of two major mechanisms:
Upregulation of kidney tubule H+ transporters. Kidney tubule transporters secrete H+

into the tubule lumen that binds to urine buffers, mostly ammonium (NH3 + H+ → NH4
+) and

titratable acidity (PO4
=− + H+ → HPO4

= and HPO4
= + H+ → H2PO4

−). These H+ trans-
porters can be upregulated in response to dietary H+ with mineral H+ [79] or H+-producing
dietary protein [80] by increased kidney levels of angiotensin II [76], aldosterone [81],
and endothelin-1 (ET-1) [79,80] in experimental animals. The upregulation of angiotensin
II [82] and aldosterone [83] is associated with reduced bone mass in experimental animals
and patients, respectively. The upregulation of angiotensin II [84] and aldosterone [85] is
associated with increased skeletal muscle atrophy and increased skeletal muscle apoptosis,
respectively, in experimental animals. Higher kidney levels in each of these three sub-
stances have been shown to contribute to the short-term physiologic benefit of enhanced
kidney acidification in experimental animals in response to this H+ challenge [80,81], but
the long-term pathophysiologic detriment of increased kidney interstitial fibrosis [86,87], a
component of progressive nephropathy [88], has also been observed. These data support the
notion that dietary H+-induced decreases in the body’s HCO3

− leads to the upregulation
of agents that decrease kidney function when engaged chronically.

Patients with modest eGFR reductions (CKD stage 2, eGFR 60–89 mL/min/1.73 m2)
who eat highly H+-producing diets and have identifiable H+ retention can have increased
urine excretion of ET-1 and aldosterone [40], consistent with increased kidney levels which
help increase urine net H+ excretion but can contribute to a progressive GFR decline in
animals, as discussed above. Treating such patients with oral NaHCO3 [40] or supplemental
base-producing fruits and vegetables (F & V) [35] for 30 days has been shown to reduce H+

retention. Oral NaHCO3 for 30 days has been associated with decreased urine excretion of
ET-1 and aldosterone [40] and, after five years, with a slower eGFR decline and reduced
urine ET-1 excretion [21].



Int. J. Mol. Sci. 2024, 25, 2336 11 of 16

Increased excretion of urine buffers. Secreted H+ into the kidney tubule lumen
quickly establishes an unfavorable concentration gradient for further luminal H+ secretion
without luminal buffers to accept the secreted H+ and thereby limit “free” luminal H+.
Among urine buffers, ammonium (NH4

+) increases most in response to dietary H+ [89] and
forms after the metabolism of the amino acid glutamine, which also yields α-ketoglutarate.
Urine H+ excretion as NH4

+, along with the metabolism of α-ketoglutarate to yield HCO3
−,

constitutes net H+ excretion with HCO3
− regeneration to replace that titrated by the

accumulated H+.
Skeletal muscle protein is the major source of glutamine for NH4

+ excretion in response
to H+ challenges [90]. Oral mineral H+ in healthy volunteers was associated with stimulated
protein degradation in skeletal muscle [91], highly H+-producing diets were associated
with decreased skeletal muscle mass [92], and the treatment of chronic metabolic acidosis
with mineral alkali was associated with increased skeletal muscle mass [74]. These data
suggest that the kidneys’ net H+ excretion mechanisms in response to chronic H+ challenges
threaten patient skeletal muscle mass.

Titratable acidity, mostly as dibasic phosphate, is the other major urine buffer accepting
secreted H+. Its excretion increases less than that of NH4

+ in response to a dietary H+

challenge [90]. Although bone is a source of dibasic phosphate which contributes to
increased titratable acidity in response to dietary H+ [50], whether chronic highly H+-
producing diets reduce bone mass remains unsettled [93].

10. How Clinicians Might Be Alerted to Patients at Risk for Early-Phase H+ Stress

Tests used in research settings to identify covert acidosis in patients with early-stage
CKD [42] have yet to find utility in clinical settings. Because such patients have low
urine citrate excretion [22,35,41], ongoing studies will determine whether this parameter
has clinical utility in identifying this early-phase of H+ stress in patients with CKD and
modestly reduced eGFRs but without metabolic acidosis according to their serum acid–base
parameters. Although tabulating the types and amounts of foods eaten and calculating
their acid- or base-producing potential [4] can reveal a high dietary H+, such efforts are
not conducive to clinical settings. Because a high dietary H+ is associated with increased
urine NH4

+ excretion [41], studies are ongoing to determine whether this parameter has
utility in identifying this even earlier phase of H+ stress. In the meantime, patients with
CKD of stages 2 (eGFR 60–89 mL/min/1.73 m2) and 3 (eGFR 30–59 mL/min/1.73 m2) who
are eating diets high in H+ appear to be at risk [41].

11. Potential Treatment for Early-Phase H+ Stress: Dietary H+ Reduction

Because most modern diets are H+-producing, dietary H+ reduction can be achieved
by (1) limiting the intake of H+-producing diet components like animal-sourced foods;
(2) adding base-producing plant-sourced foods like fruits and vegetables (F & V); and/or
(3) adding Na+-based alkali (avoiding K+-based alkalis for patients with very low GFRs
because of their reduced K+-excreting capacity) like NaHCO3 or sodium citrate.

Recent drug technologies have led to the development of oral, non-absorbable poly-
mers that selectively bind gastric hydrochloric acid (HC1) and thereby remove body acid
with feces [94].

11.1. Removing/Limiting H+-Producing Food Components

In a study, participants from under-resourced communities with CKD but no metabolic
acidosis were given base-producing fruits and vegetables (F & Vs) free of charge and
substituted these foods for the most expensive foods they had previously been eating, i.e.,
mostly processed meats. This strategy led to a decreased dietary H+ intake, reduced urine
net acid excretion, and decreased urine indices of kidney injury [36]. This study supports
the notion that dietary H+ reduction ameliorates kidney injury.
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11.2. Adding Base-Producing Food Components

Adding base-producing foods like F & Vs can achieve dietary H+ reduction even
without reducing the intake of H+-producing foods. The H+ content of many foods has been
published [4] and can guide the recommendation of base-producing foods for patients with
CKD. Adding 2–4 cups/day of F & Vs to diets of study participants with CKD, reduced
eGFRs, and metabolic acidosis slowed CKD progression in [12]. The participants had
eGFR > 30 mL/min/1.73 m2 and were identified as being at very low risk for hyperkalemia
in response to the potassium load that accompanies F & Vs. Accordingly, clinicians must
use caution when prescribing F & Vs to patients with CKD, particularly those with very
low eGFRs, as a measure of kidney protection.

Diabetes and hypertension cause almost two-thirds of CKD in the US [5], and healthy
diets including high proportions of F & Vs are recommended as the first-line therapy for
each of these diseases [95,96]. Although an increased F & Vs intake helps to control both
diabetes and hypertension, it is under-used in the management of both [95,96].

11.3. Na+-Based Alkali Therapies

Sodium bicarbonate (NaHCO3) is the typical oral mineral alkali used to reduce dietary
H+ because it is effective, relatively well-tolerated, widely available, and inexpensive [97].
Clinicians use potassium bicarbonate less commonly, except in individuals requiring large
amounts of a HCO3

− replacement (like in proximal renal tubular acidosis), which is as-
sociated with large potassium losses in response to treatment. Clinicians should avoid
prescribing potassium bicarbonate in individuals with very low eGFRs (<25% of normal)
because of the risk for potassium retention with hyperkalemia. Because citrate is metabo-
lized to yield HCO3

−, sodium citrate is often used in patients unable to tolerate NaHCO3.
The use of sodium citrate is limited by its unpleasant taste and comparatively high expense
and because it promotes gastric aluminum absorption [98]. Consequently, NaHCO3 is the
more commonly used Na+-based alkali salt.

11.4. Remove Accumulated Acid: Acid-Binding Polymers

The non-absorbable polymer veverimer, still an investigational drug which is not
available for clinical use, has been shown to increase serum [HCO3

−] within 24 h of
its administration [94] and to sustain a higher-than-placebo serum [HCO3

−] for up to
52 weeks [99,100]. Although this sustained increase in serum [HCO3

−] has been associated
with both subjective and objective measures of improved physical function [99,100], it has
not been associated with slowed CKD progression [101].

12. Conclusions

The continuum of disorders of H+ accumulation includes states in which accumulation
is less than what is necessary to cause metabolic acidosis according to the serum acid–base
parameters but is sufficient to cause organ injury, including to bones, muscles, and kidneys.
These states of early-phase H+ stress appear most likely in individuals with early-stage
CKD eating the highly H+-producing diets typical of modern society. Ongoing studies will
determine clinically useful ways by which to identify early-phase H+ stress and, therefore,
identify patients who are candidates for dietary H+ reduction, importantly including high
proportions of F & Vs.
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