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Abstract: Adipose tissue (AT) is a large and important energy storage organ as well as an endocrine
organ with a critical role in many processes. Additionally, AT is an enormous and easily accessible
source of multipotent cell types used in our day for all types of tissue regeneration. The ability of
adipose-derived stem cells (ADSCs) to differentiate into other types of cells, such as endothelial cells
(ECs), vascular smooth muscle cells, or cardiomyocytes, is used in tissue engineering in order to
promote/stimulate the process of angiogenesis. Being a key for future successful clinical applications,
functional vascular networks in engineered tissue are targeted by numerous in vivo and ex vivo
studies. The article reviews the angiogenic potential of ADSCs and explores their capacity in the field
of tissue engineering (TE).

Keywords: adipose tissue; adipose-derived stem cells; angiogenesis; tissue engineering

1. Introduction

In the past three decades, TE and regenerative medicine have had a remarkable impact
on in vivo and ex vivo research and innovation, driven by the quest for effective solutions to
address various challenges in diagnosing and replacing diseased and injured tissues [1–6].
As the integration of cells into engineered tissues is crucial for achieving proper structure
and function, cell-based therapies play an essential role in tissue formation and have
notably evolved as innovative and routine clinical solutions worldwide. The self-renewal
and differentiation potential of cells play a pivotal role in the repair and regeneration
of new tissue under diverse conditions and aspects. These processes largely depend on
factors such as cell types and sources, cell-seeding techniques, cell signaling, growth factors,
scaffold-based approaches, bioreactors, vascularization strategies, etc. [5,7–10]. Finding
the proper source of stem cells for TE is one of the most attractive prospects for biologists
and bioengineers. The most common sources of stem cells include embryonic stem cells,
which possess the ability to differentiate into cells of all three germ layers. Adult stem
cells, such as hematopoietic stem cells, mesenchymal stem cells, and neural stem cells,
demonstrate the capacity to differentiate into a limited range of cell types specific to the
tissue of origin. Induced pluripotent stem cells offer the advantages of pluripotency and
find extensive use in disease modeling, drug development, and potential therapeutic
applications. Perinatal stem cells, including amniotic fluid stem cells, exhibit multipotent
differentiation capabilities. Additionally, umbilical cord blood stem cells are employed
in hematopoietic stem cell transplantation, while cord tissue stem cells (mesenchymal
stem cells), dental pulp stem cells (multipotent stem cells), and ADSCs are also notable
sources [11–19]. Several concerns have been raised regarding the procurement of human
embryonic stem cells. It is debated how morally acceptable it is to use therapies based

Int. J. Mol. Sci. 2024, 25, 2356. https://doi.org/10.3390/ijms25042356 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms25042356
https://doi.org/10.3390/ijms25042356
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0009-0009-6337-0205
https://orcid.org/0000-0002-6138-5579
https://doi.org/10.3390/ijms25042356
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms25042356?type=check_update&version=2


Int. J. Mol. Sci. 2024, 25, 2356 2 of 22

on early human embryo destruction. Besides ethical concerns, safety issues regarding
the clinical use of human embryonic stem cells are discussed. The plasticity of these cells
makes them difficult to control after in vivo transplantation. [20]. Compared to embryonic
stem cells, autologous adult stem cells do not present any main immunologic or ethical
problems [21]. Adult stem cells can be sourced from various tissues, such as blood, liver,
muscles, the brain, bone marrow, and skin. The procurement processes for cells from these
organs are both painful and expensive, and they are often associated with the risk of causing
morbidity in the donor site tissue. For example, bone marrow aspiration may result in a
low yield during processing, requiring an additional ex vivo expansion step to achieve an
adequate number of cells for clinical application [22]. Even bone marrow has been deemed
a basic source of stem cells; nevertheless, ADSCs may represent a cheaper, less invasive, and
larger source of stem cells [23]. ADSCs have emerged as a promising candidate, captivating
the attention of researchers and clinicians alike [9,24–26]. The unique properties of AT
extend beyond their traditional role as energy storage depots. Notably, ADSCs exhibit
angiogenic potential, contributing to the development of new blood vessels—a crucial
process in tissue repair and regeneration [27–29]. This paper explores the multiple aspects
of ADSCs, shedding light on their angiogenetic potential and elucidating their utility from
the dynamic perspective of TE.

2. Adipose Tissue and Its Components

AT is a primary organ in the body, playing crucial roles in regulation and metabolism
while also displaying significant regenerative potential [30]. This tissue serves as an energy
reservoir for multiple organs and additionally participates in immune responses, thermo-
genesis, as well as the synthesis and release of various hormones and small molecules
(Table 1) [31]. AT is classified into two main types—white adipose tissue (WAT) and brown
adipose tissue (BAT)—and further categorized based on physiological location, including
subcutaneous, visceral, epicardial, intramuscular, and intramedullary fat [32]. Both BAT
and WAT possess functions related to the breakdown (lipolytic) and synthesis (lipogenic)
of lipids. They play roles in the accumulation and dissipation of energy, respectively [33].
Adipocytes, the most common type of cell in AT, are dedicated to storing fat [34]. The
adipocyte cell lineage originates from mesenchymal stem cells (MSCs), which differen-
tiate into adipoblasts, and subsequently preadipocytes, signifying commitment to the
lineage [35]. When a preadipocyte exits the cell cycle and starts accumulating fat deposits,
it transforms into a fully matured adipocyte [31]. Interestingly, completely differentiated
adipocytes exhibit characteristics of stem cells and have the potential for dedifferentiation.
Approximately one-third of AT consists of fully differentiated adipocytes, while the re-
maining two-thirds comprise a large number of preadipocytes. This composition allows
AT to maintain flexibility and respond to external stimuli in diverse ways [34]. The stromal
vascular fraction (SVF) within AT consists of various cell types, including preadipocytes,
fibroblasts, immune cells, and ECs [31]. ADSCs are present in SVF along with other cell
types, including hematopoietic, endothelial and other cells [36]. In recent years, extensive
research has been directed towards isolating and characterizing ADSCs from diverse AT
sources in both animal and human models [37].

Table 1. Functional diversity of AT.

Function Description/References

Energy storage and metabolic regulation

AT is a central metabolic organ that plays a central role in
systemic energy homeostasis. WAT is specialized for the storage

of energy (in the form of triacylglycerols) and energy
mobilization (as fatty acids), and BAT is a thermogenic tissue.

Dysregulation of the regulatory circuits (storage and oxidation in
WAT and thermogenesis in BAT) is closely associated with
metabolic disorders and AT malfunction, including obesity,

insulin resistance, chronic inflammation, mitochondrial
dysfunction, and fibrosis [38–41].
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Table 1. Cont.

Function Description/References

Mechanical protection and body
temperature regulation

AT has important mechanical properties, serving to protect
organs and cushion body parts exposed to high levels of

mechanical stress. Dermal AT is primarily responsible for
insulation. This is particularly important in cold environments to
prevent heat loss and to help regulate body temperature [42,43].

Endocrine function and
hormone storage

The identification and characterization of leptin in 1994
established AT as an endocrine organ. AT was identified as a

major site for the metabolism of sex steroids and the production
of adipsin. AT secretes a variety of bioactive peptides

(adipokines), lipids (lipokines), and exosomal microRNAs, which
act at both the local (autocrine/paracrine) and systemic

(endocrine) levels. In addition, AT expresses numerous receptors
that allow it to respond to afferent signals from traditional

hormone systems as well as the central nervous system [44,45].

Appetite regulation

Leptin represents the satiety hormone. The leptin hormone is
produced mainly by the gastric mucosa, enterocytes, and
adipocytes. This hormone is a marker of energy stores, as

triglyceride levels in the fat cells determine the level of leptin
secretion [46].

3. ADSCs Isolation, Proliferation and Differentiation Properties

The AT is made of a large number of adipocytes, connective tissue, vascular and neural
tissues, and non-fat cells [47]. ADSCs have demonstrated the ability to differentiate into
various cell lineages, including AT, bone, cartilage, cardiomyocytes, muscle, neuronal cells,
and ECs (Figure 1) [48–50]. In 2013, Ogura et al. illustrated the presence of adipose [48–50]
Multilineage Differentiating Stress Enduring (adipose-Muse) cells in adult human AT [51].
Additionally, it was reported that adipose-Muse cells are positive for the pluripotency
markers SSEA3, TR-1-60, Oct3/4, Nanog, and Sox2. They can spontaneously differentiate
into mesenchymal, endodermal, and ectodermal cell lineages with efficiencies of 23%, 20%,
and 22%, respectively. Moreover, the use of specific differentiation media significantly
enhances differentiation efficiency in adipose-Muse cells (82% for mesenchymal, 75% for
endodermal, and 78% for ectodermal) [52]. These cells are capable of generating cell types
representing all three germ layers from a single cell and effectively differentiating into
targeted cells when induced by cytokines. There are reports indicating that ADSCs retain
their phenotypic characteristics, differentiation capacity, and ability to proliferate even after
undergoing 25 passages [53]. Moreover, in a comparative investigation involving stromal
cells derived from bone marrow and AT obtained from identical donors, De Ugarte et al.
illustrated that ADSCs achieved initial confluence within one week with approximately
5% of the cell number required for marrow cells. This indicates a greater proliferative
capacity for ADSCs, suggesting that the heightened proliferative activity of the AT-derived
population would expedite the generation of a clinically effective cell dose compared to
bone marrow cells [54].

Additionally, the ADSCs yield is impacted by different factors, including AT location,
age, species, and harvesting methods [55–57]. Subcutaneous depots, situated both superfi-
cially and deeply within the abdomen, are regarded as a superior reservoir of stem cells in
comparison to other fat depots [58]. Additionally, a separate comparative study suggested
that the stromal vascular fraction (SVF) obtained from superficial AT is better than other
sources [59]. These collective findings highlight the potential of superficial abdominal AT
as a promising source for ADSCs. Nevertheless, in contrast to the aforementioned studies,
a recent investigation demonstrated a considerably higher yield of ADSCs and SVF in the
inner and outer thigh regions when compared to those from the waist, abdominal, and
inner knee regions [60]. AT is commonly acquired through two distinct methods: standard
en bloc resection or lipoaspiration. The yield, viability, and growth attributes of ADSCs are
notably influenced by the specific harvesting approach employed. Vermette et al. demon-
strated a 1.8-fold higher cell yield at the point of extraction for lipoaspiration-derived cells,
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which exhibited similarly or slightly superior proliferation in culture compared to cells
obtained through resection [61]. Nonetheless, studies indicate that ultrasound-assisted lipo-
suction leads to a reduced frequency of proliferating ADSCs and an extended population
doubling time when contrasted with the resection method [62]. In the process of harvesting
ATs for the isolation of ADSCs, thorough evaluations have been conducted on factors
such as donor site, gender, and age, which have also been widely assessed [63]. Research
conducted by Buschmann et al. demonstrated a notable decrease in ADSC yield in the
elderly population when compared to the middle-aged group [64]. In a rabbit model, aging
was found to adversely affect ADSC yield and adipogenic potential, while osteogenic and
clonogenic properties remained largely unaffected [65]. The systematic review published
in 2017 provides evidence suggesting a decline in the proliferation and differentiation
potential of ADSCs with advancing age and increasing body mass index [66]. Furthermore,
evaluating the impact of donor health status on the viability and quality of ADSCs can
provide valuable insights for optimizing cell-based therapies and regenerative medicine
approaches in various clinical contexts. Shahram et al. analyzed the viability of ADSCs
from healthy donors and gamma-irradiated ones. In conclusion, the authors suggested
that gamma irradiation damages cells’ DNA and reduces cell viability [67]. A review of
published articles on obesity and ADSCs from 2019 concluded that obesity reduces ADSC
qualities and may affect the therapeutic value of ADSCs by reducing ADSC angiogenic
differentiation, proliferation, migration, and viability [68]. The results of other studies have
shown that diabetes can lower the activity of ADSCs in proliferation assays and alter their
phenotypical characteristics. Type 2 diabetes has been found to affect the activity of stem
cells, while insulin resistance influences the proliferation of ADSCs [69].
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3.1. Impact on Angiogenesis

Being a key for future successful clinical applications, functional vascular networks
are critical to ensuring viability, functionality and preventing poor outcomes. They are
also dependent on the neovascularization potential of the graft [70–73]. The circulatory
system plays a vital role in sustaining organ function by supplying oxygen and nutrients.
While the turnover of the adult vasculature in many organs is generally low, the formation
of new blood vessels occurs in response to ischemia, ensuring the delivery of oxygen to
the ischemic tissues [74]. In the human body, depending on the tissue type, the average
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capillary density is approximately 40 µm, and typically metabolically active tissue is not
more than 100–200 µm away from a neighboring vessel. This means that the smallest
vessels (capillaries) play the main role in oxygen and nutrient diffusion [75,76]. Tissue
repair is a blood-dependent process, and new blood-vessel formation occurs through angio-
genesis and neovasculogenesis [77–79]. While both processes share the common objective
of generating new blood vessels, angiogenesis specifically involves the creation of new
branches or protrusions from pre-existing vessels. In contrast, neovascularization pertains
to the development of entirely new blood vessels [31]. Angiogenesis is a process governed
by growth factors and cellular signaling pathways. Comprehending the molecular mecha-
nisms underlying angiogenesis is crucial. Sprouting angiogenesis for vessel development
commences with the release of proangiogenic growth factors along a gradient from oxygen-
and nutrient-deprived microenvironments. These factors prompt quiescent ECs to transi-
tion into an activated state. Among the key underlying mechanisms, activated ECs produce
matrix metalloproteinases (MMPs) to degrade the basement membrane, enabling them
to exhibit invasive properties. Consequently, endothelial tip cells extend protrusions and
migrate toward the origin of the angiogenic stimulus. Additionally, endothelial sprouts
are believed to possess filopodia at their tips, facilitating cell migration and guidance [80].
After the guidance provided by tip cells, stalk cells undergo proliferation to facilitate the
elongation of the sprouting process and may establish lumens. Tip cells from adjacent
sprouts merge to form vessel loops, known as anastomosis, contributing to the extension of
the lumen and the initiation of blood flow within the newly formed vessels. In research
conducted by Gerhardt et al., it was observed that endothelial sprouts elongate filopodia in
reaction to extracellular VEGF-A signaling [81,82]. VEGFR2 plays a role in controlling cell
migration. VEGFR2, along with its ligand VEGFA, plays a crucial role in neovascularization.
Additionally, vascular stalk cells were stimulated by VEGF-A to proliferate upon the bind-
ing of the growth factor to its receptor [83]. Stalk cell proliferation and paracrine factors,
like granulocyte-colony stimulating factor (G-CSF), which aids in recruiting stem cells,
contribute to the formation of these structures. Chemotactic factors, such as the chemokines
stromal cell-derived factor 1 (SDF-1) and VEGF, have demonstrated attractive properties
and may serve to attract progenitor cells to ischemic sites [22]. Additionally, chemokines
like MCP-1 or IL-8, which are associated with immune-competent cells, represent another
example of agents that can attract progenitor cells [84]. The mechanism by which ADSCs
manage tissue repair and regeneration is mainly accomplished by the secretion of growth
factors (FGF, HGF, PDGF), the release of immunomodulatory cytokines, and the ability
to differentiate into different cell types [26]. The neoangiogenesis mechanism might be
both the direct differentiation of ADSCs into ECs and the indirect effect of angiogenic GFs
released from ADSCs [85]. VEGF stands out among these growth factors as one of the
most potent regulators of vascular biology. It plays a pivotal role in maintaining vascular
integrity and stimulating both angiogenesis and vasculogenesis [86]. Another significant
growth factor is fibroblast growth factor 2 (FGFB), known for its pro-angiogenic effects by
contributing to extracellular matrix degradation [87]. Platelet-derived growth factor (PDGF)
serves as a key mitogen for ECs, particularly at sites of vascular injury, and is released by
platelets [88]. Transforming growth factor β (TGF-β) is essential for normal vascular devel-
opment and the formation of tube-like structures [89]. Additionally, hepatocyte growth
factor (HGF) is also noteworthy for its ability to enhance endothelial cell proliferation and
migration [90]. ADSCs can contribute to angiogenesis by differentiating into ECs. This
differentiation process is facilitated by the use of endothelial cell growth medium supple-
mented with growth factors and proteins such as VEGF and IGF-1, which are essential for
promoting endothelial differentiation [91]. Research conducted in an ischemic model has
shown that a three-dimensional (3D) culture, relying on hADSCs’ adhesion to a substrate,
augments the endothelial differentiation of hADSCs. This enhancement is characterized
by heightened expression levels of angiogenesis-promoting proteins, including matrix
metalloproteinase (MMP)-9, HGF, VEGF, and IL-8 [92]. FGFB, another critical factor in the
differentiation of hADSCs into ECs, functions by activating the protein kinase B (AKT)
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pathway and phosphorylating FOXO1 (forkhead box protein O1) [93,94]. Moreover, hy-
poxic conditions applied during cell culture can enhance the endothelial differentiation of
hADSCs by upregulating the expression of paracrine factors such as VEGF [95]. Studies
propose that ischemic conditions induce plaque angiogenesis, resulting in significantly
larger plaque sizes following the regeneration of endothelial cell populations [22]. Various
methods exist for augmenting the angiogenesis induced by ADSCs. One of the limitations
of stem cell therapy strategies with ADSCs, especially conventional injection-based cell
delivery, is that the procedure’s efficacy is significantly hindered by the low engraftment
rate, primarily due to cell losses during transfer and subsequent cell death after initial
retention. The implantation of ADSCs in scaffolds has the potential to overcome the lim-
itations of stem cell therapy. Using scaffolds can ensure cellular cohesion and facilitate
the co-delivery of ADSCs [96]. Wang et al. examine the function of ADSCs preloaded
with superparamagnetic iron oxide (SPIO) nanoparticles in enhancing heart function. It
demonstrates that SPIOASCs can differentiate into ECs, promote angiogenesis, and sup-
press ischemic cardiomyocyte apoptosis [97]. Delivery methods capable of transporting
progenitor ECs or growth factors, like heparin-pluronic (HP) nanogels, could be employed
to promote angiogenesis [98]. Moreover, a precise balance of growth factors is essential
for orchestrating effective angiogenesis. On the other hand, more than 30 miRNAs have
been identified to either upregulate or downregulate angiogenesis, and mRNAs can exert
downstream effects influencing angiogenesis, such as enhancing the expression of VEGF.
Specifically, miR-126 and miR-132 are two well-studied miRNAs intricately involved in
promoting the proliferation and migration of ECs during blood vessel formation [31,99].
ADSCs also have the ability to release diverse growth factors and microRNAs during
the process of neovascularization. In hypoxic environments, ADSCs exhibit a significant
increase in the secretion of VEGF, a crucial angiogenic factor. Transplantation of ADSCs
preconditioned with VEGF led to enhanced capillary density and the restoration of cardiac
function in the ischemic myocardium, consequently resulting in a substantial improvement
in maximal collateral blood flow delivery [100]. Additionally, ADSCs release microvesicles
(MVs)/exosomes, which are enriched with miRNAs. MicroRNAs (miRNAs) derived from
ADSCs are integral to the neovascularization process by stimulating the proliferation and
migration of ECs. Kang et al. illustrated the involvement of the miR-3/hypoxia-inducible
factor-1 (HIF-1) pathway in facilitating the migration and formation of tubes in human
umbilical vein endothelial cells (HUVECs), as well as in the outgrowth of microvessels
in mouse aortic rings and the development of vasculature in mouse Matrigel plugs [101].
Moreover, Togliatto et al. documented that the diminished expression of miR-126 in AD-
SCs from obese individuals suppressed the extracellular signal-regulated protein kinase
1/2/mitogen-activated protein kinase (Erk1/2/MAPK) pathway within the cells, resulting
in compromised angiogenesis. They further suggested that the upregulation of miR-126
could effectively restore the angiogenic capacity of ADSCs in obese individuals [102]. The
MV/exosome method, when contrasted with the stem cell therapy approach, mitigates the
risk of tumor formation resulting from unregulated cell proliferation and microvasculature
blockage upon the intra-arterial introduction of implanted cells [101]. Treatment of ADSCs
with various pharmacological agents, such as rosuvastatin, ghrelin, etc., has enhanced
their angiogenesis ability and paracrine function. Zhang et al. examined whether the
administration of rosuvastatin enhanced the survival of ADSCs following transplantation
into infarcted hearts and indicated that rosuvastatin could potentially enhance the viability,
paracrine activity, and angiogenesis ability of transplanted ADSCs, possibly by activat-
ing the PI3K/Akt and MEK/ERK1/2 signaling pathways in a rat myocardial infarction
model [103]. Han et al. also reported that ghrelin could emerge as a viable option for
hormone-driven approaches aimed at enhancing the effectiveness of ADSCs for cardiac
ischemic diseases through the PI3K/AKT pathway [104]. Further research is warranted to
elaborate on the mechanisms of these effects.
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3.2. Endothelial Cells Differentiation

It is feasible to isolate and procure significant quantities of ECs from AT [105,106].
The purified ECs from both adipose and dermal origins exhibited comparable expression
levels of standard endothelial surface markers, including PECAM-1, VE-Cadherin, and
VEGFR2 [107]. The observation that adipose-derived ECs exhibit enhanced proliferation
under poor conditions compared to dermal-derived ECs suggests a potential for superior
proliferation when used in wound treatment under poor conditions [107]. Despite the
naturally differentiated ECs, considerable attention is devoted to generating ECs from
resident stem and progenitor cells in AT [6]. The differentiation capacity of ADSCs into
ECs was initially demonstrated in 2004. In this study, they evaluated the effectiveness
of injecting cultured human SVF cells to promote revascularization in hindlimb ischemia
in immunodeficient nude mice after 15 days. The results demonstrated that these cells
markedly enhanced the angiographic score and cutaneous blood flow compared to un-
treated hindlimb ischemic nude mice. Evaluation of the potential of SVF-derived cells to
integrate into newly formed blood vessels showed numerous human CD31-positive cells
in mice hindlimbs injected with SVF. In comparison, no CD31-positive cells were observed
in the non-injected hindlimbs. These findings strongly indicate that, in vivo, SVF-derived
cells of human origin can differentiate into ECs and actively participate in vascular regener-
ation. They also evaluated the in vitro endothelial differentiation capacity of cultured SVF
cells. Their results showed that cultured human SVF cells in an endothelial differentiation
medium, after 10 days, formed branched tubular structures, with the majority showing
strong positivity for CD31 and vWF, both of which are endothelial markers. Additionally,
dedifferentiated mature human adipocytes exhibit the potential to acquire the endothelial
phenotype in vitro and promote the formation of vessel-like tubes, which may suggest
a potential common precursor for cells of endothelial and adipocyte phenotypes [108].
Konno et al. showed that the absence of bFGF significantly reduced the capacity of ADSCs
to uptake Ac-LDL and resulted in the downregulation of EC marker expression, which
highlighted bFGF as a highly effective inducer of EC differentiation. The CD34+/CD31–
subpopulation demonstrated the ability to differentiate into ECs after culturing in sup-
plemented endothelial growth medium with IGF and VEGF. Under these conditions, the
cells exhibited a spindle-shaped morphology and displayed elevated expression levels of
EC markers, including vWF and CD31 [109]. In the in vitro study, Cao et al. isolated a
distinct cell subset of ADSCs identified as (CD34–/CD31–) and cultivated them on matrigel
supplemented with bFGF and VEGF. The features of this subset were aligned with those of
human umbilical vein ECs. In their in vivo study, they demonstrated that ADSCs have the
ability to undergo differentiation in response to local signals, giving rise to ECs that actively
participate in neoangiogenesis in hindlimb ischemia models [110]. Fan et al. illustrated
that ADSCs exhibit faster differentiation into ECs and display a more robust proliferation
capacity compared to bone marrow-derived mesenchymal stem cells (BM-MSCs) [111].

MSCs derived from AT exhibit the capability to enhance neovascularization by directly
differentiating into ECs. Remarkably, the support of hematopoiesis by adipose-derived
MSCs is more potent both in vivo and in vitro compared to MSCs derived from bone
marrow. Crucially, while there is evidence demonstrating the differentiation of MSCs
into ECs, it is probable that, upon implantation at the site of injury, MSCs predominantly
contribute to angiogenesis indirectly. This indirect involvement occurs through the secretion
of factors that stimulate the differentiation of resident cells and promote angiogenesis [31].
Santerre et al. indicated that the elevation of EC markers in porcine ADSCs induced by
VEGFR2 is facilitated through the activation of the ERK signaling pathway [112]. On the
other hand, Santerre et al. highlighted that human adipose tissue-derived microvascular
endothelial cells (HAMVECs) demonstrate characteristic features in terms of morphology,
molecular profile, and functional attributes typical of ECs. However, the present study
advocates for the application of HAMVECs to the endothelialization and vascularization
of engineered tissues. The study emphasizes that ADSCs seem particularly valuable for
vascular TEdue to their ability to remodel the extracellular matrix and serve as mural cells.
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Their findings indicate that ADSCs may contribute to the stabilization and maturation of
the endothelium, partly by aiding in the assembly of its basement membrane [6].

Endothelial progenitor cells (EPCs) represent a crucial category of stem cells with
robust angiogenic potential, playing a pivotal role in angiogenesis and vasculogenesis [113].
EPCs have proven effective in treating stroke, hindlimb ischemia, myocardial infarction,
and diabetic foot ulcers [114–117]. However, the primary challenge associated with EPC-
based transplantation lies in the limited quantity of these cells [118]. EPCs, sourced from
umbilical cord blood, bone marrow, or peripheral blood, are scarce. To overcome this
limitation, Van Pham et al. propose AT as a novel source of EPCs. In their investigation,
EPCs derived from AT exhibited the expression of EC markers, including CD31 and
VEGFR2, and demonstrated in vitro blood vessel formation similar to HUVECs. The study
underscores the feasibility of isolating EPCs from AT by selecting slowly adherent cells
from SVFs. These findings highlight the potential and rationale for utilizing AT in EPC
isolation for the treatment of vascular diseases [118]. It is crucial to note that EPCs derived
from AT exhibit greater proliferative capacity compared to EPCs sourced directly from
ADSCs [119].

3.3. Regenerative Features and Utility in Tissue Engineering

ASCs have earned significant attention in the field of TE. Making a summary of ADSCs
features, this type of cells can be categorized as low immunogenicity cells, multipotent,
self-renewal, immunomodulatory, with paracrine effects, and of course, angio progenitor
cells [120,121]. Their regenerative features, appropriate even for cadaveric ADSCs, make
them promising candidates for developing novel therapeutic strategies to treat various
diseases and injuries [122,123]. Highlighting the versatility of ADSCs and demonstrating
their potential across ex vivo and in vivo applications, ADSCs have shown great utility in
all TE fields:

Adipose TE: In 2006, Matsumoto et al. first reported a technique named cell-assisted
lipotransfer, combining aspirated fat with ADSCs. This process converts ADSCs-poor aspi-
rated fat to ADSCs-rich fat, improving the efficacy of adipose transfer through transferred
fat survival. ADSCs-rich fat helps restore tissue vascularization and organ function [124].
Since then, ADSCs have been used to engineer AT and improve outcomes in fat grafting for
tissue augmentation [125–128]. Currently, ADSCs are widely used in breast reconstruction,
especially for breast cancer patients [129,130].

Bone TE: The ability of ADSCs to differentiate into osteoblasts and to produce various
growth factors and cytokines that stimulate the proliferation and differentiation of osteo-
progenitor cells is used in TE to regenerate bone tissue in cases of bone defects, fractures,
nonunion or delayed union [131–134]. ADSCs have also been shown to promote angiogene-
sis, which is crucial for supplying nutrients and oxygen to the healing or degenerative bone,
or ADSCs may enhance the activity of bone marrow stem cells, encouraging in this way
bone regeneration [135–137]. Even more, ADSCs can be combined with scaffold materials
to promote bone growth and reduce immune responses in allotransplantation [138,139].

Cartilage TE: ADSCs have been investigated for their potential to regenerate cartilage
due to their differentiation capacity into chondrocytes and the properties of ADSCs-derived
exosomes to mitigate chondrocyte degradation [140]. ADSCs have recently been studied
for the treatment of knee osteoarthritis. ADSC injections showed improvement in cartilage
integrity [141,142]. Also, ADSCs may be an attractive therapeutic option for patients with
rheumatoid arthritis due to the immunomodulatory abilities of these cells [143].

Muscle TE: ADSCs have been explored for applications in treating muscle injuries and
degenerative muscle disorders, restoring muscle function and stimulating local angiogen-
esis [144]. The capacity of modified ADSC cells to contribute to muscle repair and their
potential to deliver a repairing gene to dystrophic muscles have been highlighted by some
in vivo studies [145,146]. Volumetric muscle loss can also be repaired by ADSCs combined
with tissue-engineered constructs [147,148].
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Corneal TE: Exploring an effective treatment that could achieve multi-dimensional
repair of the injured cornea, the use of ADSCs was reported as an important component
in the healing of corneal epithelium and limbus, the inhibition of corneal stromal fibrosis,
angiogenesis, lymphangiogenesis, and also in the repair of corneal nerves, including
diabetic corneal epithelial healing [149–152].

Nerve TE: ADSCs have been investigated for their potential in nerve regeneration;
studies show the ability of ADSCs to repair acute sciatic nerve injury in rabbits [153].
They may be used in combination with nerve guidance conduits or other biomaterials to
enhance nerve repair after injury or can be used to increase neural marker expression in an
environment similar to the central nervous system [154].

Liver and Lungs TE: ADSCs can differentiate into various cell types, including hepatic
and lung epithelial cells, showing promising application in TE for treatment or the devel-
opment of bioartificial constructs [155,156]. Exosomes derived from ADSCs can suppress
the progression of liver fibrosis [157,158]. ADSCs therapy minimized lung damage after
ischemia-reperfusion injury in a rodent model by suppressing oxidative stress and inflam-
matory reaction. Also, administration of ADSCs (in combination with other medications) is
a beneficial therapeutic approach in lung transplantation for rejection prevention [159,160].

Tissue healing: ADSCs can accelerate wound healing and/or improve healing by
promoting angiogenesis, particularly in chronic wounds [154,161]. Their regenerative
and immunomodulatory properties contribute to cell proliferation and accelerate wound
healing and cutaneous regeneration [162–165].

Cardiac TE: ADSCs have been studied for their potential to repair damaged heart
tissue after a myocardial infarction. They may contribute to the regeneration of cardiac
muscle and improve heart function [166–168]. The studies also unveiled the healing poten-
tial of ADSC-derived extracellular vesicles and sub-populations of regenerative ADSCs,
promising novel opportunities for improved cardiac healing following ischemic injury [169].
ADSCs can differentiate into cardiomyocyte-like cells and protect pre-existing cardiac cells
through their paracrine activity, releasing antiapoptotic factors. Some studies present
ADSCs induced with TGF-β1 as a good choice for stem cell therapy in cardiovascular
diseases. [170,171]. Cardiomyogenesis is an extremely complex process that depends on
the different signaling pathways. Cardiomyocyte development in vitro has a high degree
of complexity, and it is not yet known the exact protocol for in vitro cardiac differentiation
of the ADSCs [172].

Vascular TE: ADSCs play one of the central roles in promoting the formation of new
blood vessels. This property is the most valuable in engineering vascularized tissues
and improving the blood supply to implanted tissues, and for this compartment, all
the characteristics and properties of ADSCs described previously can be repeated. It is
relatively difficult for ADSCs to differentiate into vascular ECs and interconnect in the
vascular network [173]. However, when ADSCs are co-cultured with different specific
endothelial cells (HUVECs, human cardiac tissue ECs, and human pulmonary artery ECs)
and cultivated in specific conditions (hydrogel construct, ECs medium, supplements like
epidermal growth factor, vascular endothelial growth factor, insulin-like growth factor 1,
bFGF, FBS, and antibiotics), the cells successfully differentiate into vascular ECs or can
develop into a stable vascular network [174]. Several other ex vivo and in vivo studies
have shown the beneficial effects of ADSCs in TE (Table 2).

Table 2. ADSCs utility in tissue engineering.

Study Type ASCs Sources Area of Interest Outcomes Reference

In vitro Human AT Hepatic differentiation potential of
ADSCs

ASCs can be easily isolated, selected, and
induced into mature, transplantable

hepatocytes
[175]

In vitro Human AT ADSCs differentiation into
insulin-producing cells

Entiviral vector system could allow the
differentiation of ADSCs into

insulin-producing cells
[176]
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Table 2. Cont.

Study Type ASCs Sources Area of Interest Outcomes Reference

In vitro Human AT Promote wound healing and
improve scaring

Using ADSC-filled sutures can improve
wound healing by releasing key molecules

involved in angiogenesis,
immunomodulation, and tissue

remodeling

[177]

Ex vivo Human abdominal fat
tissue

Mechanism of ADSCs in wound
healing

Topical applications of ADSCs improve
wound healing by promoting

re-epithelialization and vascularization
[26]

Ex vivo Rat inguinal AT
Mechanisms of ADSCs in

preventing allografts immune
rejection

Ex vivo infusion of ADSCs prolongs the
survival of allografts after surgery [178]

Ex vivo Human AT from abdomen,
buttock, or thigh

Using transduced human ADSCs
overexpressing bone

morphogenetic protein-2

Human ADSCs overexpressing bone
morphogenetic protein-2 can heal

critical-sized femoral defects
[179]

Ex vivo Human AT

Immunosuppressive and
angiogenic activities of ADSCs
after coculture with cord blood

hematopoietic precursors
(cbHSPCs)

ADSCs retain immunosuppressive and
proangiogenic capacities with the support

of ex vivo expansion of cbHSPCs
[180]

Ex vivo
Human AT from the

abdomen, buttock, or
thigh

Osteogenic potential of
cryopreserved ADSCs that are

transduced with a
BMP-2-containing lentiviral vector

ADSCs can be frozen in liquid nitrogen for
3 weeks without any adverse effects to cell

viability, protein production, osteogenic
potential, or immunophenotype

[181]

Ex vivo Human AT Potential of ADSCs in fibrosis
treatment

Human ADSCs significantly inhibited
keloid fibroblast-related bioactivities [182]

Ex vivo Human AT
Anti-apoptotic and

pro-proliferative cytokines
secretion of ADSCs’

Direct or indirect contact of ADSCs with
ischemic retinal ganglion cells resulted in

salvage from cell death
[183]

Ex vivo Human AT ADSCs’ behavior combined with
dermal scaffolds

ADSCs showed a high yield of
proliferation and differentiation onto the

collagen–elastin matrix of ADSCs
[184]

In vivo
(on rats) Human adipose tissue Therapeutic potential of

combining ADSCs with modRNA

Significantly improved the retention of fat
grafts through proangiogenic and

pro-proliferative responses
[185]

In vivo
(on mice)

Inguinal AT from female
mice

Role of ADSCs in salivary gland
(SG) regeneration

ADSCs-released factors scavenge reactive
oxygen species and maintain SG repair and

regeneration via paracrine effects
[186]

In vivo
(on rats) Human AT Effect of ADSCs in premature

ovarian failure

ADSCs transplantation reduced the
apoptosis of ovarian granulosa cells and
secretion of follicle-stimulating hormone

[187]

In vivo
(on rats) Rat AT Differentiation of ADSCs into

neural progenitor cells

Study demonstrated the differentiation
potential of ADSCs (on fibrin matrix) into

transplantable neural progenitors
[188]

In vivo
(on rats) Rat AT

Action of ADSCs (combined with
low-level laser

photobiomodulation
therapy—LLLT) in the repair

process of burned skin

ADSCs+ can improve healing process
through significant re-epithelialization,

inflammation reduction, and angiogenesis
stimulation

[189]

In vivo
(on rats)

Human AT from bariatric
surgery

Effect of human ADSCs infusion
through the cauda equina in rats
with traumatic spinal cord injury

This research suggests that
immunomodulatory factors secreted by the

ADSCs reduced inflammation, inhibited
apoptosis, and protected neurons

[190]

In vivo
(on rats) Rat AT from abdomen Ability of ADSCs + Resveratrol to

promote sciatic nerve regeneration

Application of ADSCs+ could significantly
improve the quality of nerve repair
compared with untreated ADSCs

[191]

In vivo
(in human,
trial study)

ALLO-ADSCs, approved
for clinical studies by the
Korean Food and Drug

Administration

Safety and efficacy of using
allogeneic-ADSCs in the treatment

of the anal sphincter of patients
with fecal incontinence

Allogeneic-ADSCs have theoretical
potential for regeneration of the anal

sphincter
[192]
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Table 2. Cont.

Study Type ASCs Sources Area of Interest Outcomes Reference

In vivo
(in human,

case report)
Human abdomen fat

Effect of ADSCs injection + core
decompression in early-stage of
avascular necrosis of the femoral

head

3 months post op. MRI showed healed
femoral head with a recession of the lesion [193]

In vivo
(in human,
trial study)

Autologous ADSCs
obtained

by lipoaspiration from
abdominal subcutaneous

fat

Efficacy and safety of a single
intra-articular injection of ADSCs

for patients with knee
osteoarthritis

No changes in MRI of cartilage defect at 6
months vs defect increase in the control

group. ADSCs helps to functional
improvement and pain relief for patients
with knee osteoarthritis, without causing

adverse events at 6 months follow-up

[194]

In vivo
(in human,
trial study)

Autologous MSCs
obtained by liposuction

from the inner face of the
thighs

To evaluate the effects of cell
therapy with ADSCs on the

treatment of detrusor
underactivity in men

ADSCs therapy led to improvements in
voiding function [195]

In vivo
(in human,
trial study)

Allogeneic ADSCs from
healthy donors obtained

by liposuction from
abdominal

subcutaneous AT

To investigate if a single treatment
with direct intramyocardial

injections of ADSCs was safe and
improved cardiac function in

patients with chronic ischemic
heart failure with reduced ejection

fraction.

Direct injection with allogeneic ADSCs into
the myocardium was safe during a 3-year

follow-up period. However, in comparison
to placebo, there was no significant

improvement of left ventricular volumes or
function, or clinical symptoms 6 months

after treatment

[196]

In vivo
(in human,
trial study)

Autologous ADSCs
obtained by liposuction

from
subcutaneous AT

Evaluation of the periodontal
defects regeneration using a
mixture of ADSCs and PRP

(platelet-rich plasma)

Cell therapy using ADSCs can represent a
useful medical technology for regeneration

of periodontal defects
[197]

The differentiation potential of ADSCs can be regulated by various molecular path-
ways. In vitro differentiation of MSCs can be set up by using a combination of differentia-
tion growth factors and molecules. For example, in osteoblast differentiation, more BMP4
and BMP7 that belong to the transforming growth factor-beta (TGF-β) superfamily [198],
miR-1 could promote the ADSCs’ differentiation into cardiomyocyte-like cells and express
cardiomyocyte-specific markers in the myocardial microenvironment [199]. Stromal cells
isolated from AT expanded and grown with chondrogenic media in alginate culture present
synthesis of the cartilage matrix molecules including collagen type II, VI, as well as chon-
droitin 4-sulfate, also basal medium with insulin, transferrin, and selenious acid (ITS+)
combined with TGF-beta1-stimulated ADSCs chondrogenic differentiation. treated with
different doses of dexamethasone [200,201]. Transdifferentiated ADSCs showed positive
expression of corneal epithelial marker CK3/12 on immunostaining [202], and ADSC dif-
ferentiation into Schwann cell-like cells (dhASCs) using specific medium and glial growth
factors is described [203].

In general, ADSCs regenerative capabilities can be summarized in a few impor-
tant mechanisms:

Immunomodulatory properties—ADSCs exhibit immunomodulatory properties by
secreting factors that suppress inflammation and modulate immune responses. They can
regulate the activity of immune cells such as T cells, B cells, dendritic cells, and macrophages
through mechanisms involving cytokines like IL-10, TGF-β, Indoleamine-2,3-dioxygenase,
and PGE2 (Prostaglandin E2) [204].

The anti-inflammatory properties—ADSCs are considered powerful suppressors of
immune response, inhibitors of inflammatory cytokines (IFN-γ, TNF-α, and IL-12), and
down-regulators of Th1-type cytokine expression. ADSCs suppress T cell allo-proliferation,
secrete a high amount of immune suppressive cytokines, such as IL-6 and transforming
growth factor-β1 (TGF-β1), and increase the number of CD4 T cells producing IL-10 [205].

Angiogenic and hematopoietic properties—the cytokine profile of ADSCs involved in
angiogenesis and hematopoiesis includes interleukins (IL-6, IL-7, IL-10, IL-11), vascular
endothelial growth factor (VEGF), basic fibroblastic growth factor (bFGF), tumor necrosis
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factor-alpha (TNF-α), granulocyte colony-stimulating factor (G-CSF), and macrophage
colony-stimulating factor (M-CSF) [206].

ECM remodeling—rapid and quality remodeling of the ECM after fat grafting can hap-
pen by promoting neovascularization, regulating stem cell differentiation, and suppressing
chronic inflammation [207].

In conclusion to this section, we can certainly put into discussion the factors that
contributed to the in vivo and in vitro differentiation of ADSCs. The tissue culture mi-
croenvironment, cell passage numbers, cell source, donor variability, signaling pathway
activation, epigenetic regulation, inflammatory microenvironment, and stress response can
be just a few of the factors that significantly influence ADSCs differentiation.

4. Challenges and Future Perspectives

Although ADSCs remain a highly promising method in regenerative medicine due
to their accessibility and the simplicity of isolating them in large quantities, as well as
their potential to differentiate into multiple cell lineages, several challenges exist that must
be addressed for their future use regarding Angiogenetic Potential in clinical practice
translation. One such challenge is the safety and efficiency of materials used for the
isolation, culturing, and preservation of ADSCs. For instance, to address this issue, culture
media without animal-derived reagents should be established and made readily available
for use. Additionally, most of the biomaterials used in the process of utilizing ADSCs in
TEare derived from animal resources, which can induce long-term immune reactions in
recipients. To comprehensively understand the safety and efficiency of these materials,
further in vivo studies must be conducted. Furthermore, there is insufficient information
about the mechanisms involved in the proliferation and differentiation of ADSCs into ECs,
as well as the different formats of ADSC differentiation into ECs. Therefore, for the clinical
applications of these cells, more studies focusing on the different signaling pathways
involved in the in vitro and in vivo endothelial differentiation of these cells should be
undertaken. Despite the allure of immediate clinical application, we advocate for further
experimental research conducted in animal models that closely resemble human diseases.
Additionally, because of the restricted capability of ADSCs to differentiate into ECs, cell
transplantation might result in a relatively suboptimal therapeutic outcome. Additional
clinical trials based on ADSC transplantation are expected in the future.

5. Conclusions

ADSCs exhibit promising potential in tissue engineering, demonstrating significant
angiogenic capabilities and versatile utility. Their individual characteristics, obtained
from readily available adipose tissue, make them an attractive source for applications
in regenerative medicine. The angiogenetic potential of ADSCs holds great promise for
addressing the vascularization challenges often encountered in tissue engineering. Their
capability to differentiate into multiple cell lineages, including adipocytes, osteoblasts, and
chondrocytes, expands their utility across diverse tissue types. Furthermore, the minimally
invasive nature of AT harvest, ease of isolation, and abundance of adipose-derived cells
make them a practical choice for researchers and clinicians. As research in this field
progresses, understanding the molecular mechanisms underlying the angiogenetic potential
of ADSCs will further help in the elaboration of new research strategies. Ex vivo and in vivo
studies are essential to validate and optimize the use of ADSCs in therapeutic approaches.
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Abbreviations
AT Adipose tissue
ADSCs Adipose-derived stem cells
WAT White adipose tissue
BAT Brown adipose tissue
MSCs Mesenchymal stem cells
SVF Stromal vascular fraction
ECs Endothelial cells
miRNAs MicroRNAs
HUVECs Human umbilical vein endothelial cells
BM-MSCs Bone marrow-derived mesenchymal stem cells
HAMVECs Human adipose tissue-derived microvascular endothelial cells
EPCs Endothelial progenitor cells
TE Tissue-Engineering
cbHSPCs Cord blood hematopoietic precursors
SG salivary gland
BMP4 Bone morphogenetic protein 4
BMP7 Bone morphogenetic protein 7
TGF-β Transforming growth factor-beta
miR-1 Muscle-specific MicroRNAs
MVs microvesicles
FGF Fibroblast Growth Factor
HGF Hepatocyte Growth Factor
PDGF Platelet-Derived Growth Factor
VEGF Vascular Endothelial Growth Factor
Ac-LDL Acetylated Low-Density Lipoprotein
vWF von Willebrand Factor
ERK Extracellular Signal-Regulated Kinase
MMPs matrix metalloproteinases
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