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Abstract: Human brain development involves a tightly regulated sequence of events that starts
shortly after conception and continues up to adolescence. Before birth, neurogenesis occurs, implying
an extensive differentiation process, sustained by changes in the gene expression profile alongside
proteome remodeling, regulated by the ubiquitin proteasome system (UPS) and autophagy. The
latter processes rely on the selective tagging with ubiquitin of the proteins that must be disposed of.
E3 ubiquitin ligases accomplish the selective recognition of the target proteins. At the late stage of
neurogenesis, the brain starts to take shape, and neurons migrate to their designated locations. After
birth, neuronal myelination occurs, and, in parallel, neurons form connections among each other
throughout the synaptogenesis process. Due to the malfunctioning of UPS components, aberrant
brain development at the very early stages leads to neurodevelopmental disorders. Through deep
data mining and analysis and by taking advantage of machine learning-based models, we mapped
the transcriptomic profile of the genes encoding HECT- and ring-between-ring (RBR)-E3 ubiquitin
ligases as well as E2 ubiquitin-conjugating and E1 ubiquitin-activating enzymes during human
brain development, from early post-conception to adulthood. The inquiry outcomes unveiled some
implications for neurodevelopment-related disorders.

Keywords: brain development; neurodevelopmental disorders; neurodegenerative disorders; ubiquitin
proteasome system (UPS); proteome remodeling; machine learning and model classification

1. Introduction

Brain development begins shortly after conception, with critical processes occurring
during prenatal and early postnatal stages. The human brain is a complex organ composed
of billions of neurons and glial cells, and its development involves intricate and highly
regulated sequences of events [1]. Neurogenesis occurs during prenatal development,
which is the process of generating mature neurons (Figure 1).

The differentiation process foresees several changes including proteome remodeling,
which is the result of the neosynthesis of proteins because of transcriptional changes [2–4]
and of protein disposal, handled by the evolutionarily conserved ubiquitin proteasome
system (UPS) [5,6] upon selective protein ubiquitination. As the brain takes shape, neuronal
migration is a critical process. Cells move to their designated locations, accurately shaping
the brain’s structure. Hence, cell migration is a vital component of brain development as
it establishes precise patterns of connections between nerve cells and is crucial for axonal
guidance and neurite outgrowth [7]. From birth through early and middle childhood,
neuronal myelination takes place. Myelination involves the formation of a fatty insulation

Int. J. Mol. Sci. 2024, 25, 2361. https://doi.org/10.3390/ijms25042361 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms25042361
https://doi.org/10.3390/ijms25042361
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-9362-6907
https://orcid.org/0000-0003-3170-2817
https://doi.org/10.3390/ijms25042361
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms25042361?type=check_update&version=2


Int. J. Mol. Sci. 2024, 25, 2361 2 of 19

called myelin around the axons of neurons, which increases the speed and efficiency of
neural communication [8–10]. In parallel with myelination, neurons form connections with
one another through synapses [11,12]. Over time, these connections are refined and pruned,
a process that fine-tunes the neural circuits and optimizes their functioning. Synaptic
pruning continues throughout adolescence [13].

1 
 

 
  Figure 1. A timeline of human brain development during the prenatal (in post-conception weeks,

pcw) and postnatal (in years) periods. The shaded horizontal bars represent the approximate timing
of key neurobiological processes and developmental milestones. The vertical dashed lines define
the different age groups. E: embryonic stage; F: fetal development; I: infancy; C: childhood (early
childhood and late childhood); A: adolescence; Ad: adulthood; EP: early prenatal; E-M and L-M:
early-mid and late-mid prenatal; LP: late prenatal. The blue vertical arrow indicates birth. Gross
anatomical features and the relative size of the brain at different stages are illustrated at the top
(Figure created with the help of BioRender, www.biorender.com, accessed on 1 November 2023).

A finely tuned program genetically controls the different processes driving brain
development [4]. The genes orchestrating these processes play a crucial role in ensuring
that the brain forms correctly and functions optimally.

Perturbations occurring at any of the early stages of brain development can lead to
the emergence of neurodevelopmental disorders (NDDs) [14]. NDDs encompass a wide
range of conditions, each with unique features [15]. These disorders are often associated
with genetic or environmental factors that alter the typical brain development [14].

The selective protein disposal executed by the UPS relies on a coordinated and stepwise
action executed by three classes of enzymes to label a protein destined for degradation with
a polyubiquitin (poly-Ub) chain [5,6]. The enzymatic cascade leading to flagging a protein
with poly-Ub starts by activating ubiquitin. This first step is energy-dependent, relying
on ATP hydrolysis, and is catalyzed by E1 Ub-activating enzymes, which link the Ub
C-terminus to a cysteine residue of the enzyme. Afterwards, the activated Ub is transferred
as a thioester from E1 to a cysteine residue present on the catalytic site of E2-conjugating
enzymes. Ultimately, E3 Ub ligases catalyze the very last step by recruiting both E2 and
the substrate and promoting the covalent attachment of Ub to the substrate. Usually, Ub is
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conjugated to a Lys residue on the target protein, though less frequently can be attached to
other amino acid residues (i.e., N-terminal Met, Ser/Thr, and Cys) [16,17]. The processivity
of the ubiquitination reaction ensures the formation of a poly-Ub chain. In conjunction with
E2, E3 Ub ligase family members provide substrate specificity. Based on their catalytic and
3D structural features, the E3 family members are catalogued into three distinct families:
RING (really interesting new gene), HECT (homologous to the E6AP carboxyl terminus),
and RBR (ring between ring) [18]. Unlike RING, HECT and RBR family members catalyze
Ub transfer directly to the substrate through a two-step reaction. Ub is first transferred to
the catalytic cysteine residue on E3 and then covalently attached to the substrate. HECT-E3
can function alone or in conjunction with accessory or adapter proteins. The substrate
selectivity and specificity of the RING members require the assembly of multi-subunit
complexes, whereas, for the HECT and RBR members, the N-terminal region is sufficient
for substrate recognition. Remarkably, an individual E3 can recruit more than one substrate,
while on the contrary, any substrate may be targeted by more than one E3 ligase [19,20]. Due
to their intrinsic catalytic activity toward the substrate/s, the E3 HECT family members are,
among all the E3 members, the most suitable druggable candidates [21–23]. Ubiquitination
is a very versatile post-translational modification. Indeed, Ub can be conjugated directly to
a target protein or to itself through either one of its seven conserved Lys residues (Lys6,
Lys11, Lys27, Lys29, Lys33, Lys48, and Lys63) or the N-terminal Met1 residue, thus leading
to structurally distinct types of poly-Ub chains, linear or branched, of different length,
giving rise to an extremely broad Ub lexicon [24–26]. Usually, proteins modified with
poly-Ub chains internally linked through K11 or K48 appear to be the favored proteasome
substrates [27,28]. The 26S proteasome is a 2.5 MDa complex composed of different protein
subunits arranged into an elongated structure composed of a central 20S core particle (CP)
with one or two terminal 19S regulatory particle(s) (RP(s)) [29,30]. Ubiquitinated proteins
are recognized by the RP and, through an ATP-dependent mechanism, are unfolded and
then channeled to the catalytic CP, where the inner beta subunits, thanks to their proteolytic
activities, ultimately degrade them.

Over the past years, several components of the UPS have been reported to play
pivotal roles in various aspects of neuronal development, including dendrite, axon, and
synapse morphogenesis [31,32]. Additionally, some forms of NDDs, including syndromic
forms of autism spectrum disorder such as Angelman syndrome and facial dysmorphism,
macrocephaly, and intellectual disability are associated with mutations in HECT-E3 Ub
ligase-encoding genes [33–40]. Ultimately, continuous stresses and ageing lead to an
intracellular accumulation of proteinaceous aggregates (altered proteostasis). To avoid
harmful changes, the UPS and autophagy processes facilitate the degradation of unwanted
misfolded proteins that would otherwise contribute to the formation of aggregates. Consis-
tently, impairment in the UPS is often associated with neurodegenerative disorders, such
as Parkinson’s disease [41,42].

Through deep data mining and analysis and by taking advantage of machine learning-
based models, we first mapped the transcriptomic profiles of the genes encoding HECT- and
RBR-E3 ubiquitin ligases as well as E2 ubiquitin-conjugating and E1 ubiquitin-activating
enzymes during human brain development, from early post-conception to adulthood.
We then explored the transcriptional changes occurring throughout brain development,
employing high-dimensional data analysis. Eventually, and for the first time, we validated
the data by machine learning-based tools. The outcomes from this inquiry will contribute to
increasing our understanding of the role of the UPS underlying human brain development
and will unveil some implications for neurodevelopment-related disorders.
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2. Results
2.1. Gene Expression Profiling of the E1, E2, and E3 HECT and RBR Members Displays
Significant Spatio-Temporal Changes

Brain development, including that of human beings, is very complex, involving sev-
eral processes accomplished in genetically predetermined and sequential steps. Among
them, are neuron precursor differentiation, migration, and myelination and synaptogenesis,
where the UPS members are fundamental players involved in proteome remodeling [43,44].
Accordingly, their malfunctioning has been associated with neurological disorders, in-
cluding neurodevelopmental and neurodegenerative disorders, with several degrees of
severity [45]. By taking advantage of publicly available databases, we surveyed the tran-
scriptional signature of several UPS members, including E1, E2, and some members of the
E3 family (i.e., HECT and RBR) during human brain development. The whole list of the
genes surveyed, alongside those displaying the most noticeable changes, is summarized
in Table S1. The time window spanned the whole life cycle, from the very early prenatal
stages (8 post-conceptional weeks, pcw) to adulthood. When analyzing the developmental
transcriptome data, profiled according to age, we noticed that most of the genes were ex-
pressed, though to different extents, throughout the whole timeframe analyzed (Figure 2A).
Remarkably, the mRNAs amount differed significantly over the timeline.

While some genes exhibited elevated expression levels (e.g., UBA1, UBE2M, UBE2D2,
CDC34), others displayed extremely low, if any, expression levels (e.g., UBE2U) throughout
the entire life cycle. Surprisingly, all the E1, E2, and E3 members we analyzed exhibited
statistically significant differential gene expression at at least one of the time points. Hierar-
chical cluster analysis unambiguously indicated that sharp changes occurred at birth, with
a boundary line separating the prenatal, except for the late prenatal group, and postnatal
stages. Additionally, adulthood and adolescence clustered together at a closer analysis,
similarly to infancy and early childhood. An appreciable decline, though to different
extents, in mRNAs amount from prenatal to postnatal stages was observed for several
genes including UBE2T, UBE2C, Nedd4L, UBE3A, RNF19B, NAE1, UBE2Z, UBE2F, UBE2D1,
UBE2L6, UBE2R2, UBE2S, BIRC6, HECW1, UBR5, and UBA6. Conversely, we noticed that
a smaller group of genes displayed the opposite pattern, being upregulated during the
postnatal stages when compared to prenatal ones. We detected AKTIP, UBE2E2, Herc6,
RNF144B, UBA7, CUL9, and PARK2 in the latter group.

We then examined mRNA expression in the different brain regions and compared
the determined expression levels. The differences observed were less subtle compared to
those found in the temporal analysis. Indeed, the number of genes differentially expressed
dropped sharply (Figure 2B).

Interestingly, Nedd4, UBE2I, UBA2, and SMURF2 exhibited a pattern opposite to
those of UBE2E2 and RNF19B. Remarkably, hierarchical clustering revealed that ganglionic
eminence areas (i.e., CGE, LGE, and MGE) clustered with neocortical regions (i.e., TCX,
PCX, and OCX), being the former transient structures from which during fetal brain
development, several neuron types are differentiated and that contribute to originate the
neocortex. Worthy of note, the primary visual and auditory cortex areas (i.e., A1C and V1C)
clustered very close.

Overall, the mRNA amount of the genes encoding the E1, E2, and HECT- and RBR-E3
family members were spatio-temporally regulated. While the differences between the
prenatal and the postnatal stages were quite pronounced, those among the different regions
appeared more subtle, though appreciable.
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Figure 2. Hierarchical differential gene expression analysis. (A) Heatmap illustrating RNA-Seq
differential expression data among different age groups and (B) among different brain regions.
The heatmaps depict only those genes for which at least one condition displayed a significant
difference when compared to all other conditions. AMY: amygdala; A1C: primary auditory cortex;
CB: cerebellum; CBC: cerebral cortex; CGE: caudal ganglionic eminence; DTH: dorsal thalamus;
DFC: dorsolateral prefrontal cortex; HIP: hippocampus; IPC: posteroventral (inferior) parietal cortex;
ITC: inferolateral temporal cortex; LGE: lateral ganglionic eminence; M1C: primary motor cortex;
M1C-S1C: primary motor–sensory cortex; MD: mediodorsal nucleus of thalamus; MFC: anterior
cingulate medial prefrontal cortex; MGE: medial ganglionic eminence; OCX: occipital cortex; OFC:
orbital frontal cortex; PCX: parietal neocortex; S1C: primary somatosensory cortex; STC: posterior
superior temporal cortex; STR: striatum; TCX: temporal neocortex; V1C: primary visual cortex; VFC:
ventrolateral prefrontal cortex; URL: upper (rostral) rhombic lip.
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2.2. Correlation Analysis Defines Coregulated E1, E2, and E3 in the Brain

Since the UPS relies on a concerted action of multiple players lying into a cascade of
reactions, in which the activity of E1 activating enzymes precedes that of E2 conjugating
enzymes, which is eventually followed by the intervention of E3 ubiquitin ligases, we
attempted to determine any potential correlation between E1, E2, and E3. The inquiry
aimed to identify a putative coregulation of the different E1, E2, and E3 members, which
might provide insights to outline which E1 might support the activity of E2 and which E3
might be supported by which E2. The correlation assessments, aimed to unveil a poten-
tial biologically relevant gene coregulation, were performed using the variance inflation
factor (VIF) and the Spearman test and applying a stringent threshold arbitrarily set at 0.7.
Prior to this, the data were preliminarily surveyed by an exploratory analysis aimed at
assessing the fundamental assumptions of normality, homoscedasticity, and correlation.
The outcome highlighted that the data neither followed a normal distribution nor exhibited
homoscedasticity. Then, the analysis was initially carried out on the whole dataset by
averaging the different gene expression values from the different age groups (i.e., early
prenatal stage, infancy, early childhood, adolescence, adulthood, etc.), thus enabling the
exploration of a potential correlation independently of the variable “age group”. Inter-
estingly, we observed that only a single E1, ATG7, did not correlate, whereas a single
member, UBA7, anti-correlated with most of the E2-encoding genes, and many positive
correlations were identified (e.g., UBA3 vs. UBE2N/UBE2D1/UBE2Q2) (Figure 3A). When
the correlation analysis was performed between E2 and E3 members, the positive cor-
relation events increased sharply (Figure 3B), also because the magnitude of the matrix
increased considerably.
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Figure 3. Cont.
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  Figure 3. Correlation matrices. (A) Correlation matrix between E1 (plotted on the horizontal axis)

and E2 (on the vertical axis) members and (B) matrix depicting the correlation between E2 (horizontal
axis) and E3 (vertical axis) members. An arbitrary threshold of 0.7 was applied.

Overall, the analysis revealed that quite a few E1, E2, and E3 members displayed coreg-
ulated gene expression, thus letting surmise a few putative brain-specific E1, E2, and E3
cascades, including (E1)UBA6 → (E2)UBE2R2 → G2E3/ARIH1/UBR5/SMURF2/Nedd4L/
UBE3A(E3); (E1)UBA6 → (E2)UBE2J1 → (E3)G2E3; (E1)UBA1 → (E2)UBE2I → (E3)Nedd4L/
G2E3; (E1)UBA6→ (E2)BIRC6→ (E3)Herc1; and (E1)UBA5→ (E2)UBE2N/UBE2K→ (E3)UBE3A.

We then explored whether, if any, the identified correlation patterns could be af-
fected by age. Remarkably, the survey outcome indicated robust correlations among
different age groups, particularly between the early childhood and the adolescence groups
(Figure S1F,H), while when the other age groups were analyzed no significant correlations
(Figure S1A–E,G,I) were noticeable.

2.3. Clustering Reveals That the Brain Gene Expression Signatures of E1, -E2, and RBR- and
HECT-E3 Differ Significantly between Prenatal and Postnatal Stages

Based on the cluster map analysis, we first attempted to dissect the data through
unsupervised cluster analysis to determine whether specific gene expression profiles could
feature different ages.

For this purpose, to assess the presence of potential clusters as envisaged by the cluster
maps, we conducted gene expression data dimensionality reduction using t-distributed
stochastic neighbor embedding (t-SNE). When the data were projected in two dimensions
(2Ds), at least two significant clusters were detected (Figure 4A), one of which was more
sharply defined when compared to the other.
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Figure 4. Dimensionality reduction with t-SNE. Dimensionality reduction of the data using t-SNE was
applied in 2Ds to group of genes with similar expression patterns. Color codes were assigned to the
clusters based on the categorical variable of interest, such as age, gender, and ethnicity. (A) The entire
dataset was color-coded using the variables “age_group”, “ethnicity”, and “gender”, identifying two
major sharp clusters corresponding to the prenatal and postnatal groups; (B) clustering analysis was
restricted to a subset comprising only the “male” gender. In this case, observations were differentially
color-coded by using the “age_group” and “ethnicity” variables; (C) the cluster survey was applied to
a subset consisting exclusively of “European” ethnicity. In this latter case, the observations were color-
coded with the “age_group” and “gender” variables. A: African; As: Asian; A/E: African/European;
E: European; H: Hispanic; Unk: unknown.
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Afterwards, to assess whether the “age group” variable influenced the clustering,
the different clusters were color-coded according to the different age groups. A sharp
separation between prenatal and postnatal groups was observed, with the only exception
of the late prenatal group. Indeed, the latter appeared closer to the postnatal cluster
than to the prenatal one, suggesting that, at least in terms of some UPS components (i.e.,
E1, E2, and RBR- and HECT-E3), a sort of “steady-state” gene expression signature was
reached already shortly before birth. Notably, the prenatal cluster exhibited a higher
degree of compactness and homogeneity when compared to its postnatal counterpart,
which was even more appreciable when the data were projected in three dimensions (3Ds)
(https://github.com/SMagnati/SMagnati, accessed on 1 March 2023). Noteworthy, we
could not rule out the presence of other small and less defined sub-clusters in the postnatal
cluster. Likely, some sub-clusters were still present in the postnatal group, though they were
less evident when compared to the markedly different clusters observed before and after
birth. We then further mapped the same cluster restricting the analysis to two categorical
variables, namely, ethnicity and gender (Figure 4B,C).

The outcome revealed that both variables strictly influenced the intra-clustering ability.
To verify this hypothesis, we performed t-SNE on two subsets of the original dataset,
filtering the data for the most representative ethnicity (European) and a single gender
(i.e., male), respectively. Notably, gender intra-clustering, when compared to ethnicity
intra-clustering, displayed a markedly lower variability in the postnatal cluster.

Hence, when surveying E1, E2, and HECT- and RBR-E3 members’ gene expression,
birth represented a key turning point. We then intended to appraise the significantly
differentially expressed genes between the prenatal (i.e., early, early-mid, late-mid prenatal
stages) and the postnatal (i.e., adolescence, adulthood, childhood, and infancy) groups.

Since the “late prenatal” group clustered distantly from its related prenatal groups and
because of the small size of the group (n = 22), we opted to exclude the “late prenatal” group
from the analysis. Leveraging a log2-transformed data structure, we calculated the fold
change (FC) by simply taking the difference between the postnatal and the prenatal groups.
Finally, we summarized the data with a volcano plot (Figure 5A), where the positive values
indicated the genes whose expression was upregulated in the postnatal group.

Notably, the mRNA amount of ten genes was significantly decreased proceeding from
prenatal age to the postnatal stage (i.e., UBE2C, UBE2R2, G2E3, UBR5, SMURF2, UBE2S,
etc.). Conversely, only three genes exhibited higher expression levels (i.e., PARK, AKTIP,
and Herc6) in the prenatal group compared to the postnatal group. Interestingly, among the
downregulated genes, most encoded E2 conjugating enzymes (6 out of 10). On the contrary,
all the upregulated genes encoded primarily E3 members. Noteworthy, these findings are
in line with the previous correlation inquiry.

When the same survey was performed exclusively on the postnatal cluster, by dividing
it into two classes, i.e., (a) a “children” group, including “infancy”, “early childhood”, and
“late childhood”; and (b) an “adults” group, encompassing “adolescence” and “adulthood”,
the volcano plot (Figure 5B) did not reveal any significant difference, aligning with previous
observations in the cluster analysis and strengthening the previous suggestion that, at least
in terms of gene expression of some UPS components (i.e., E1, E2, and HECT- and RBR-E3),
birth represents a pivotal turning point for brain development.

https://github.com/SMagnati/SMagnati
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Figure 5. Differential gene expression between prenatal and postnatal groups and within the postnatal
group. Volcano plot of RNA-Seq expression data for the prenatal and postnatal groups. The horizontal
dashed line represents the significance threshold specified in the analysis, derived using a multiple
testing correction (FDR adjustments through the Benjamin–Hochberg test). The dashed vertical lines
bound the minimal fold change for the most differentially expressed genes. X-axis: log2 fold change;
Y-axis: −log10-adjusted p-value. While the postnatal group, when compared to the prenatal group
(A), exhibited a sharp and significant down-modulation of several E2 (e.g., UBE2C, UBE2D1, UBE2L6,
etc.) and few E3 (e.g., RNF19B, SMURF2, UBR5, etc.), the subset analysis of the postnatal group
(children vs. adult) did not show significant changes (B).
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2.4. Data Validation by Machine Learning-Based Model Classification

Due to the paucity of the material, alongside the technical difficulties in collecting
healthy fresh specimens from the different human cerebral areas at different ages encom-
passing the whole life cycle from the post-conception fetal stage to adulthood, experimental
validation was infeasible. Hence, we attempted to validate and strengthen our findings
by using machine learning approaches and eventually assessing the robustness of the
classification models. Among others, when compared to and differently from a clustering
approach that relies on unsupervised learning, this approach offered the benefit of combin-
ing data validation with the possibility to identify putative “hidden neighbors” within the
whole dataset.

The outcomes of each model’s performance metrics concerning the training and testing
sets are summarized in Table 1. The table offers a concise overview of key evaluation
metrics for the various classification models, where accuracy reflects the overall correctness,
precision estimates the accuracy of the positive predictions, recall measures the ability to
capture all positive instances, and the F1-score strikes a balance between precision and
recall. A comprehensive analysis was performed to assess the models’ effectiveness on
both training and testing datasets.

Table 1. Performance metrics—confusion matrix for the training and test sets using different clas-
sification models. The different models used are color-coded (KNN, pale yellow; SVC, white; RF,
light blue; Voting Clf, pale green; XGBoost, pink), while the training and test sets’ rows are colored in
white and light gray, respectively.

Model Set Precision Recall F1-Score Accuracy Support Class

Train

0.91 091 0.91

0.95

114 0

0.91 0.91 0.91 115 1

1 1 1 172 2

0.9 0.97 0.93 29 0

0.96 0.9 0.93 29 1

KNN

Test

1 1 1

0.96

43 2

SVC

Train

0.86 0.89 0.88

0.93

114 0

0.89 0.86 0.88 115 1

1 1 1 172 2

0.84 0.9 0.87 29 0

0.89 0.83 0.86 29 1Test

1 1 1

0.92

43 2

Train

0.86 0.86 0.86

0.92

114 0

0.85 0.85 0.85 115 1

0.99 0.99 0.99 172 2

0.79 0.79 0.79 29 0

0.79 0.79 0.79 29 1

RF

Test

1 1 1

0.88

43 2

Train

0.9 1 0.95

0.97

114 0

1 0.9 0.94 115 1

1 1 1 172 2

0.93 0.97 0.95 29 0

0.96 0.93 0.95 29 1

Voting
Clf (SVC

and
KNN)

Test

1 1 1

0.97

43 2
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Table 1. Cont.

Model Set Precision Recall F1-Score Accuracy Support Class

Train

0.96 0.95 0.96

0.98

114 0

0.95 0.97 0.96 115 1

1 1 1 172 2

0.96 0.9 0.93 29 0

0.9 0.97 0.93 29 1

XGBoost

Test

1 1 1

0.96

43 2

Remarkably the outcome of the machine learning inquiry highlighted that minimal
errors were primarily restricted within classes 0 and 1, representing the postnatal groups.
This finding was further supported by the area under the curve (AUC) plot (Figure 6A),
which depicts the receiver operating characteristic (ROC) curve, by plotting the true positive
rate (sensitivity) against the false positive rate (1-Specificity) at various threshold settings. 

6 

 
Figure 6. (A) ROC curve for XGBoost classification. The X-axis portrays the false positive rate (0 to
1), representing the proportion of actual negatives misclassified as positives. The Y-axis illustrates
the true positive rate, indicating the proportion of actual positives correctly predicted as positives.
Notably, the area under the curve (AUC) quantifies the overall performance, with AUC values of
0.99 (Class 0), 0.98 (Class 1), and a perfect 1.00 (Class 2); (B) evaluation of XGBoost performance over
iterations. A compelling observation emerges, as both training and test datasets exhibit a noticeable
plateau after 20 iterations. The graph illustrates a strikingly similar trend of the two, indicating
stability in model performance. This plateau underscores the convergence of the XGBoost algorithm,
suggesting optimal learning with diminishing returns beyond 20 iterations. (C) SHAP values feature
importance analysis highlighting key genetic contributors with superior importance scores and
shedding light on the influential role of top-ranking genes in the model’s predictive capacity.

The curve’s proximity to the upper-left corner indicated the model’s robust ability
to discriminate between different age groups, with XGBoost displaying commendable
performance. To verify and further strengthen our assessment beyond the confines of
confusion matrix metrics, we evaluated the model’s performance by introducing the error
threshold of XGBoost after 10 iterations (Figure 6B).
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Notably, it appeared that during the training session, the model exhibited substantial
“learning activity” up to the 20th iteration, after which a plateau was observed for both
training and testing sessions. For machine learning-based algorithms to achieve widespread
acceptance, the identification of the features driving the prediction is also crucial. Hence,
the analysis was further improved by assessing the importance of the features influencing
the model’s decision for each class by taking advantage of the SHAP library. Using SHAP
values, the most discriminatory genes were identified. Interestingly many of the latter
were also identified by the previous differential spatio-temporal gene expression analysis.
Among them, Nedd4L and UBE2I appeared as excellent candidates in discriminating the
adult/adolescent (class 0) and prenatal (class 2) groups, being their mRNA amounts
lowered with increasing age (Figure 6C).

This insightful analysis shed light on the critical factors guiding the model’s predictions
across different classes, offering a more comprehensive understanding of its decision-
making process.

3. Discussion

Human brain development starts shortly after conception and becomes mature in
adolescence [1]. The whole process is under tight genetic control [4]. Once brain develop-
ment ends, most of the neurons remain as post-mitotic cells, thus relying on a finely tuned
and coordinated maintenance program in which the UPS and autophagic flux dispose
of damaged and obsolete proteins and subcellular compartments [45–49]. Additionally,
during adulthood and adolescence, the UPS is actively involved in neuron-specific pro-
cesses, including synaptic plasticity and homeostatic scaling [43,50,51]. Regrettably, with
ageing, the machinery in charge of the disposal of damaged proteins and organelles (i.e.,
the UPS and autophagy) reduces its activity, which thus increases the risk of accumulating
cytosolic proteinaceous and insoluble toxic aggregates that in turn cause cell injury and
death. Consistently, those aggregates represent a landmark of neurodegenerative disorders,
including Parkinson’s and Alzheimer’s disorders [52–54].

The outcome of the survey herein presented revealed that genes encoding for the
UPS members E1, E2, and HECT- and RBR-E3 were spatio-temporally and differentially
expressed during brain development. While the expression of some members was barely
detectable (i.e., UBE2U), that of others (i.e., UBA1) displayed quite high levels throughout
the whole timeframe (i.e., from 8 pcw to adulthood). Interestingly, we detected marked
temporal differences, while the differences ascertained among the various brain regions
were more subtle, though statistically significant. Overall, but not surprisingly, the E1
members did not display considerable changes over time and, to different extents, appeared
constitutively expressed. Plausibly, this is consistent with the role played by the E1 members
in the ubiquitination process. Indeed, the E1 members catalyze the first step, and each of
them might serve several downstream E2 members, which in turn might amplify the signal
by activating an even larger number of E3 enzymes (more than 600) [55]. Therefore, E1
constitutive expression is a prerequisite for letting the downstream effectors, namely, E2
and then E3, properly execute their action. Accordingly, the loss of function of most of the
E1 members, including UBA1, UBA6, and UBA5, leads to neuronal dysfunction at various
levels and, to some extent, phenocopies the E3 loss of function [56–58]. Interestingly, while
for some HECT-E3 members, including UBE3A, HACE1, ITCH, Nedd4L, and HACE1, a
robust association between gene mutation and NDDs has been established, our survey
indicated that their gene expression underwent dramatic changes at birth. Currently, the
mechanistic meaning of this event remains unknown, and further studies are required to
ascertain it. The issue will probably be clarified when we gain some more broad insights
into the prenatal and postnatal timing and selectivity of the E3 substrate/s. Furthermore,
among the different genes that were differentially expressed, we also identified the large
Herc family members Herc1 and Herc2. Though their temporal changes in terms of gene
expression were milder, when compared to those of UBE3A or Nedd4L, large Herc members
have recently gained relevance because when their encoding genes are mutated, they
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are associated with clinical syndromes closely related to NDDs, resulting in intellectual
disability, dementia, epileptic seizures, and/or signs of autism [59]. Murine models have
helped to clarify the mechanisms underlying the phenotypes and progressive degeneration
of Purkinje cells; defects at the neuromuscular junction and impaired motor control have
been described [60]. The role of the large Herc members in controlling cell differentiation
is supported by broad observations in tissues other than the nervous tissue. For instance,
it was recently reported that large Herc members might be involved in osteoclast and
myeloid cell differentiation [61,62]. Whether large Herc family members are involved in
the removal of crucial pro-stemness proteins, thus favoring neuronal differentiation, could
be a challenging issue to be ascertained.

The outcome from the clustering analysis provided some interesting hints. Indeed,
besides the sharp separation between prenatal and postnatal age groups, it appeared that
infancy and early childhood clustered close to each other. This is consistent with the
environmental sensory experiences of human beings at that age [63–65] and currently
lead to hypothesizing a potential role of some components of the UPS and the autophagy
flux in adapting brain functions and synapses to those stimuli. Since, on this side, our
understanding is still limited, we suppose that our findings might represent a good starting
point to unravel the issue.

The correlation analysis laid the basis to suppose potential brain-specific E1 → E2 →
E3 axes. While most of the E1 and E3 members have been associated with different NDDs,
less is known about E2 members. Our findings might represent an initial steppingstone to
experimentally validate the identified potential neuron-specific E1 → E2 → E3 axes.

Because of the scarcity of the material, due to the technical difficulties in collecting healthy
fresh specimens from the different human cerebral areas at different ages ranging from the
early post-conception fetal stage to adulthood, we attempted to validate and strengthen our
findings by using, for the first time, machine learning classifier approaches and eventually
by assessing the importance of the genes that contributed to the prediction of the classes
by computing Shapley values. Shapley values were used as explanatory variables for the
machine learning-based classifiers to corroborate the association between feature importance
and predictive performance. This model provided results that were rather consistent with
those obtained with the differential spatio-temporal gene expression analysis, thus further
strengthening the classification performance. To our knowledge, this is the first report in
which this approach was applied to the brain developmental transcriptome.

Overall, coupling machine learning classifiers approaches and feature importance
analysis would be of great benefit for those settings in which paucity of the targeted material
represents a limitation.

4. Materials and Methods
4.1. Dataset Collection

We employed a publicly available dataset from the open access repository Brain Span
(https://www.brainspan.org/, accessed on 1 March 2023), which provides comprehensive
gene expression datasets generated using the mRNA sequencing technology.

The analytical pipeline used to carry out the inquiry is detailed in Figure 2 and,
basically, involved the combinational employment of statistical analyses and machine
learning approaches.

The Brain Span dataset comprises 504 observations across 89 genes, i.e., 9 E1, 37 E2,
14 RBR-E3, and 29 HECT-E3. To comply with Brain Span’s predefined categorization,
we grouped ages into nine representative categories: early prenatal, early mid-prenatal,
late-mid prenatal, late prenatal, infancy, early childhood, late childhood, adolescence,
and adulthood.

Beyond age-related details, this dataset includes additional variables, such as brain
regions, gender, and ethnicity of the donors, providing a robust foundation for analyses.

All analyses and implementations were conducted using Python (www.python.org,
accessed on 1 March 2023). The entire codebase and comprehensive workflow have been

https://www.brainspan.org/
www.python.org
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made openly accessible on GitHub (https://github.com/SMagnati/SMagnati, accessed on
1 March 2023) to facilitate transparency and enable others to scrutinize the database with
different queries.

4.2. Exploratory Data Analysis

The dataset underwent minimal preprocessing, as the original data already exhibited
high accuracy. The gene expression data were transformed into log2 format, and upon
examination, neither NaN (not a number) values nor notable outliers were detected. A few
missing values were present in the donor ethnicity and donor gender variables that, for
consistency, were subsequently labelled as “Unknown”.

To gain insights into the characteristics of the data, we conducted a thorough analysis
to assess the foundational assumptions of normality, homoscedasticity, and correlation. This
step aimed to ensure the reliability and suitability of the dataset for subsequent analyses.

4.3. Data Analysis

A series of multivariate statistical tests were conducted to determine potential sig-
nificant differences in gene expression across various categorical variables, including age,
ethnicity, gender, and brain regions. The selection between parametric and non-parametric
tests was guided by insights gleaned from an exploratory data analysis. For further details,
refer to the pipeline depicted in Figure 7.
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Figure 7. Integrated workflow pipeline—from raw data to machine learning classifications. The
diagram flows from top to bottom and from left to right. The data collection, including data cleaning,
was followed by an initial exploratory data analysis step with various checks of fundamental assump-
tions through the tests indicated in the figure. Then, data analysis for a single independent variable
was performed. This implied clustering and visualization aspects (i.e., clustermap and volcano plot).
Finally, machine learning was employed for target classification, as suggested by the clustering. The
entire process is openly available on GitHub for complete transparency.

For non-parametric tests, the Kruskal–Wallis’s test was employed. A thorough post
hoc analysis was executed using the Games–Howell procedure after obtaining statistically
significant results. On the contrary, parametric tests, specifically, the ANOVA and, when
applicable, the t-test, were employed to probe distinctions among groups. This comprehen-
sive methodology ensured a robust exploration of gene expression patterns, considering
the diverse nature of the categorical variables.

To mitigate the risk of type 1 errors (i.e., detecting significant differences solely due
to data dimensionality), we adjusted the p-values using the Benjamin–Hochberg proce-
dure. For a more stringent statistical analysis, we developed and deposited, into GitHub,
a function that also considered the confidence intervals.

Clustering analyses were implemented to uncover potential groupings based on the
dataset variables visually. To determine the presence of potentially up- or downregulated
genes within the clusters, a data visualization technique, known as a “volcano plot”,
was employed. Data are presented as means for each gene within both classes analyzed
and statistically significant differences, assessed by calculating the p-values using the

https://github.com/SMagnati/SMagnati
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Mann–Whitney U test. False positives were controlled by applying false discovery rate
(FDR) adjustments through the Benjamin–Hochberg test. Positive values indicated the
genes whose expression was upregulated in the postnatal group.

4.4. Data Validation

For data validation, a new target variable was designated with the following classes:

• Class 0: encompassing “adolescence” and “adulthood”;
• Class 1: “infancy”, “early childhood”, and “late childhood”;
• Class 2: the remaining prenatal groups (i.e., early prenatal, early-mid prenatal, late-

mid prenatal).

The “late prenatal” group was excluded due to its (a) borderline behavior and (b) small
sample size (n = 22), when compared to the other age groups.

Since the categorical variables did not exhibit homogeneity across the three target classes,
only the numerical variables related to gene expression were considered to avoid artificial
overfitting of the model. This approach ensured a more robust analysis, preventing the model
from capturing spurious correlations and enhancing its generalization capabilities.

An initial preprocessing step involved the application of min-max normalization to
the whole set of features, ensuring standardization to a uniform range. Subsequently, the
dataset was partitioned into training and testing sets, employing an 80–20 split, preserving
the class proportions within each subset. Initially, as supervised algorithms for the model
classification, the k-neighbor classification (KNN), random forest (RF), and support vector
classifier (SVC) were employed. Afterwards, the hyperparameters were finely tuned to
optimize model performance through 5-fold cross-validation. Continuous training and
test performance assessment was conducted to identify and address any signs of potential
overfitting. Thereafter, we implemented advanced machine learning techniques such as
the bagging classifier and ensemble voting classifier. To refine our modelling approach,
boosting was incorporated, utilizing XGBoost. This comprehensive strategy ensured a
robust evaluation and enhancement of model performance, exploiting a combination of
established and advanced methodologies. The evaluation of model performance was
conducted using metrics derived from confusion matrices. This assessment aimed to
determine the classification accuracy and effectiveness of the models for both the training
and the testing datasets. The confusion matrix provided a detailed breakdown of the true
positive (TP), true negative (TN), false positive (FP), and false negative (FN) predictions
made by the model. From these values, key performance metrics, including accuracy,
precision, recall, and F1 score, were computed. These metrics were calculated separately
for the training and the testing datasets to assess the model’s performance during both the
learning phase and on new, unseen data. Regular monitoring of these metrics throughout
the model development process helped identify and address potential overfitting issues
and ensured that the model maintained a good balance between precision and recall.

Ultimately, the importance of the variables that contributed to the prediction of the
model classes was computed using Shapley values for each gene to estimate feature
importance. The Shapley values are additive scale measures that represent the attribution
of variables to the prediction. The Shapley values were computed using the SHAP package.

5. Conclusions

Overall, our inquiry enabled us to map the spatio-temporal gene expression of the
different E1, E2, and HECT- and RBR-E3 UPS components in the human brain by analyzing
a publicly available dataset. The outcomes revealed that the E1, E2, and HECT- and RBR-E3
family members’ gene expression patterns undergo dramatic changes at birth. Cluster
analysis provided evidence highlighting that when human beings are exposed to external
sensory stimuli (e.g., during infancy and early childhood) the E1, E2, and RBR- and HECT-
E3 gene signature further changes. In addition, potential E1 → E2 → E3 cascades/axes
were identified. Eventually, for the first time, by applying machine learning-based models
to a brain-specific developmental transcriptome dataset, including fetal specimens, we
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validated and strengthened the findings, showing potential future applications of the
analysis pipeline we employed for peculiar datasets characterized by data paucity and
difficulty in retrieving biological material.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/ijms25042361/s1. Table S1: List of the genes analyzed in the
survey. Those displaying the most noticeable changes are highlighted in yellow. Figure S1: Correlation
patterns among the different age groups. (A) Early prenatal; (B) early mid prenatal; (C) late-mid
prenatal; (D) late prenatal; (E) infancy; (F) early childhood; (G) late childhood; (H) adolescence;
(I) adulthood. Further Supplementary Materials are available at GitHub (https://github.com/
SMagnati/SMagnati, accessed on 1 March 2023).
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