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Food shortages are one of the most serious problems caused by global warming and
population growth in this century [1]; consequently, it is important to increase food pro-
duction. Climate change influences the magnitude/frequency of hydrological fluctuations,
high/low temperature, light quality, and so on, creating an unfavorable environment for
the growth and development of crops [2–4]. The food self-sufficiency rate is 37% on a
calorie basis; conversely, 63% of food of Japan is dependent on imports, although the value
of agricultural imports increased by 31.2% in 2022 from the previous year [5]. To achieve a
stable supply of food, it is necessary to efficiently promote the expansion of production in
Japan of highly overseas-dependent items such as wheat, soybeans, feed crops, vegetables,
and so on.

Plant scientists in Japan have been working to understand plant performance under
fragile, unexpectedly but seemingly consistently changing environments, which will con-
tribute to developing plants that are more resilient to the changing climate. This includes
understanding the genetic basis of stress tolerance and employing advanced breeding
techniques to create plants beneficial to humans that can thrive under altered environ-
mental conditions [6–10]. Researchers are investigating how climate change affects plant
metabolism, including processes such as photosynthesis, respiration, development, and
nutrient uptake, as well as communications of plants with surrounding biological commu-
nities. Understanding these mechanisms is crucial for predicting how different plants will
respond to a shifting climate.

This Special Issue aims to provide a comprehensive overview of recent advances
in plant molecular science in Japan by inviting contributions from Japanese research in-
stitutes/laboratories that consolidate our understanding of this area. Potential topics
regarding molecular studies in plants include biophysics, biochemistry, molecular biology,
cell biology, developmental biology, synthetic biology, computational biology, omics, bioac-
tive phytochemicals, plant–microbe interactions, pests/diseases, and the development
of new technologies in plant sciences. This Special Issue published in the International
Journal of Molecular Sciences consists of six contributions, including five original research
articles [11–15] and one review [16].

Because the accurate analysis of a large number of transcripts, proteins, and metabo-
lites promotes the knowledge of biological systems, omics such as transcriptomics, pro-
teomics, and metabolomics has been performed on agricultural materials [17]. Based on the
results from omics analyses, the roles of key factors in plants related to stress tolerance were
carefully confirmed with molecular biological techniques [18]. “Multi-omics” application
supported by genomics, transcriptomics, proteomics, and metabolomics has been quite
useful to investigate and understand the biochemical, physiological, and molecular aspects
of plants under environmental stress conditions [19]. In this Special Issue, four articles
among five original articles are using omics techniques, such as proteomics [11,12] and
transcriptomics [13,14]. These approaches contribute to not only understanding biological
mechanisms in crops, but also producing crops.
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Watanabe et al. [11] studied the precise effects of feeder cells and auxin on the growth
and development of rice using an in vitro fertilization system. This study indicated that
hydrolytic enzymes released from feeder cells are involved in the progression of rice
zygotic development. Komatsu et al. [12] reported the usefulness of fiber crosslinked with
zinc-oxide nanoparticles to develop a more effective method using nanoparticles for the
enhancement of soybean growth. They concluded that fiber crosslinked with zinc-oxide
nanoparticles enhanced soybean growth through the increase in photosynthesis/secondary
metabolism and the accumulation of NADPH oxidoreductase, which is related to the effect
of auxin. Xiao et al. [13] elucidated the effects of light quality on metabolism and gene
expression in tomato fruit. They indicated that the altered gene-expression level encoding
metal ion-binding proteins, metal-tolerance proteins, and metal transporters in response to
blue and red light changed in the ionomic profiles of tomato.

Takase et al. [14] analyzed the expression profiles of several flowering-related genes
in gentian plants. Particularly, they focused on the expression of transcription factors at
different timepoints of the day. They found that the expression profiles of flowering-related
transcription factors such as BBX and MADS-box families were different, but clustering
analysis revealed that the expression of transcription factor genes were overlapped with that
of GtFT1. Salam et al. [15] investigated the effect of insecticides on non-target communities,
especially on endophytic bacterial communities, to understand how plant–endophytic
bacteria interactions, which are beneficial to plant life under both normal and challenging
conditions, are influenced. They found that insecticide use negatively affected non-target
endophytic bacterial communities and, interestingly, plants can regulate and moderate their
microbiome during their lifecycle depending on surrounding environmental conditions.

Heat stress negatively affects growth and development by inhibiting various physio-
logical traits of crops [20]. It is known that mitochondria, chloroplasts, and cell membranes
are particularly sensitive to heat stress [21,22]. On the other hand, targets of rapamycin
(TOR) and SNF-related protein kinase 1 (SnRK1) are known to play important roles in
switching signals underlying growth, development, and stress responses depending on
energy status [23–26]. Suzuki et al. [16] reviewed that the possible contributions of TOR
and SnRK1 to the heat responses of plants are supported by the integration of TOR and
SnRK1 with mechanisms involving heat-shock transcription factors, alternative oxidase, and
reactive-oxygen species production as well as functions of chloroplasts and mitochondria.

Considering the plant physiology research conducted globally, the research fields
covered in the original papers included in this Special Issue overlap with those that many
researchers focus on to understand fundamental mechanisms and explore applying find-
ings to applications in agriculture to improve the quality of life of human beings. For
example, the development–phytohormone relationship in embryogenesis (covered by
Watanabe et al.) has been extensively studied [27–29]. This is also the same in the research
areas covered by Komatsu et al. [30–32], Xiao et al. [33–35], Takase et al. [36–38], and
Salam et al. [39–41]. These studies promote a better understanding of the interaction be-
tween plants and their environment, offering a range of innovative solutions for achieving
higher yields while maintaining a sustainable environment.
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