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Abstract: Glioblastoma (GB) stands out as the most prevalent and lethal form of brain cancer.
Although great efforts have been made by clinicians and researchers, no significant improvement
in survival has been achieved since the Stupp protocol became the standard of care (SOC) in 2005.
Despite multimodality treatments, recurrence is almost universal with survival rates under 2 years
after diagnosis. Here, we discuss the recent progress in our understanding of GB pathophysiology,
in particular, the importance of glioma stem cells (GSCs), the tumor microenvironment conditions,
and epigenetic mechanisms involved in GB growth, aggressiveness and recurrence. The discussion
on therapeutic strategies first covers the SOC treatment and targeted therapies that have been
shown to interfere with different signaling pathways (pRB/CDK4/RB1/P16ink4, TP53/MDM2/P14arf,
PI3k/Akt-PTEN, RAS/RAF/MEK, PARP) involved in GB tumorigenesis, pathophysiology, and
treatment resistance acquisition. Below, we analyze several immunotherapeutic approaches (i.e.,
checkpoint inhibitors, vaccines, CAR-modified NK or T cells, oncolytic virotherapy) that have been
used in an attempt to enhance the immune response against GB, and thereby avoid recidivism or
increase survival of GB patients. Finally, we present treatment attempts made using nanotherapies
(nanometric structures having active anti-GB agents such as antibodies, chemotherapeutic/anti-
angiogenic drugs or sensitizers, radionuclides, and molecules that target GB cellular receptors or
open the blood–brain barrier) and non-ionizing energies (laser interstitial thermal therapy, high/low
intensity focused ultrasounds, photodynamic/sonodynamic therapies and electroporation). The aim
of this review is to discuss the advances and limitations of the current therapies and to present novel
approaches that are under development or following clinical trials.

Keywords: glioblastoma; targeted therapy; immunotherapy; nanotherapy; non-ionizing radiation

1. Introduction
1.1. The Nature and Prognosis of Glioblastoma

Glioblastoma (GB), categorized as a grade IV astrocytoma, is the most prevalent, ag-
gressive, and lethal primary brain tumor in adults. In 2021, the World Health Organization
(WHO) introduced significant changes in the criteria for the diagnosis of gliomas, focusing
on the importance of genetic and molecular alterations. According to these new criteria
(Figure 1), GB should be diagnosed in adults as an isocitrate dehydrogenase wild-type
(IDHwt) diffuse astrocytic glioma if there is microvascular proliferation or necrosis (the
conventional criteria), and/or at least one of the following three criteria: concurrent gain
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of whole chromosome 7 and loss of whole chromosome 10 (+7/−10), telomerase reverse
transcriptase (TERT) promoter mutations, and epidermal growth factor receptor (EGFR)
amplification [1,2]. The primary driver behind the change in diagnosis criteria is the IDH
mutation status, which results in the following modifications: restricting the diagnosis
of GB to tumors that do not have IDH mutations (IDHwt); reclassifying tumors previ-
ously identified as IDH-mutated GBs as astrocytomas with IDH mutations (grade IV); and
establishing the presence of IDH mutations as a requirement for classifying tumors as
astrocytomas or oligodendrogliomas Consequently, due to its more favorable prognosis,
the previously designated IDH-mutant GB is now categorized within the astrocytomas
group, which covers grades II–IV, thus eliminating the term IDH-mutant GB [3]. Moreover,
in IDHwt diffuse astrocytomas occurring in younger people, diagnostic consideration
should be given to the different types of diffuse pediatric-type gliomas [1]. Gliosarcoma,
epithelioid cell GB and giant cell GB are still registered subtypes of GBs, and the term
“glioblastoma multiforme” should not be used [4,5]. New clinical trials will need to be
designed with these new distinctions in mind [6].
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GB typically appears in the cerebral hemispheres, with 95% of these tumors arising
in the supratentorial region, especially in the frontal and temporal globes. It infiltrates
inside the brain parenchyma and usually does not spread to other parts of the body [7–9].
Histologically, GBs are characterized by prominent cellular and nuclear atypia, increased
mitotic activity, areas of necrosis, and microvascular proliferation. At least one of these
two features must be present for a histologic diagnosis of GB [5]. GB causes death in less
than 6 months if untreated [10]. Despite advances in neurosurgery, chemotherapy and
radiotherapy, GB remains one of the most treatment-resistant malignancies and its relapse
is, in practice, inevitable [7,11,12]. Recurrence often implies a more aggressive form and
a median survival of less than 18 months in treated patients [13,14]. Survival beyond
5 years is observed in less than 5.8% of patients [7]. Patients with recurrent GB (rGB) show
an approx. 6-month progression-free survival (PFS6) in only 15% of the cases, and overall
survival (OS) ranging between 24 and 40 weeks. Survival rate decreases with age [11,15].

As suggested by the moniker “multiforme”, GB has a widespread tumoral hetero-
geneity and plasticity at the cytopathological, transcriptional, and genomic levels [16–21].
Moreover, its highly infiltrative nature and the protection by the blood–brain barrier
(BBB) have posed significant treatment challenges [9,22,23]. Glioma stem cells (GSCs)
are a small subpopulation of cells within the GB, with genomic instability, self-renewal
and tumor-initiating capacity, and the ability to differentiate into different GB subpop-
ulations, being responsible for tumor heterogeneity [24–27]. Moreover, GSCs are resis-
tant to apoptosis [28–31], can modulate the components of the tumor microenvironment
(TME), are involved in angiogenesis activation and immunosuppression and drive ra-
dio/chemoresistance [22,32,33]. The inability of current therapies to eliminate specific GSC
subpopulations has been considered a major factor contributing to the inevitable recurrence
after treatment [33,34].
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Verhaak et al. proposed a four-subtype classification of GB (classical, mesenchymal,
proneural, and neural) based on the analysis of mutational changes in 601 genes in the con-
text of The Cancer Genome Atlas (TCGA) [35]. Verhaak’s latest update removed the neural
subtype attributing its origin to a peripheral contamination of the tumor samples [20].
The proneural subtype is associated with a more favorable outcome with respect to the
mesenchymal, but this difference is relative to the more favorable outcome of IDH-mutant
GBs which were consistently classified as proneural GBs [20,36]. Moreover, mesenchy-
mal GSCs are enriched with genes associated with angiogenesis, inflammation, and cell
migration/invasion. They tend to develop immunosuppression and exhibit increased
radio/chemoresistance, all of which are features linked to a worse prognosis [36–39]. In
any of the cases, the survival difference is minimal because both subtypes can coexist in the
same tumor, and dynamic transitions from a proneural to a mesenchymal phenotype can
be induced by TNF-α, temozolomide (TMZ), or radiation through an NF-κB-dependent
mechanism [20,36,40,41]. Meanwhile, multiplatform analyses of the genetic, epigenetic,
and transcriptional profiles have proven useful in refining the classification of gliomas and
predicting patient outcomes [42–45].

1.2. Incidence and Risk Factors

GB is the most common (50.1%) among all malignant brain tumors [15]. The annual
incidence is low (≈3.19 per 100,000 people in developed countries) but seems to be in-
creasing in some countries owing to aging populations and improvements in diagnosis,
among other factors [46]. The median age of diagnosis is approx. 64 and the incidence
increases with age reaching its maximum value (15 per 100,000 people) between 75 and
84 years [11,15,47]. It is extremely rare in a pediatric population (0.15 per 100,000), which
usually shows longer survivals. The occurrence of GB is 1.6 times more common in males
than females and in Caucasians relative to other ethnicities [15,48].

Beyond rare cases of genetic susceptibility and high-dose radiation exposure, there are
no known GB risk factors. An increased risk is seen in some specific genetic diseases, such as
hereditary retinoblastoma or Cowden, Turcot, Lynch, Li-Fraumeni and Maffucci syndromes.
However, less than 1% of GB patients have a known hereditary disease. Radiation-induced
GB can be diagnosed several years after radiation therapy for another tumor or condition
in children [49], but no increased risk was observed in adults exposed to IR [50]. Patients
diagnosed with previous non-neurological cancers may have an overall elevated incidence
of GB compared to the general population [51].

1.3. Criteria to Evaluate Treatment Response and Progression

The MacDonald criteria [52] have traditionally been used to determine treatment
response and progression by assessing contrast-enhancing tumor size [by computed to-
mography (CT) or magnetic resonance imaging (MRI)] along with clinical evaluation and
corticosteroid dosage. These criteria categorized the response into four groups: complete
response (CR), partial response (PR), stable disease (SD), and progressive disease (PD).
Nevertheless, these criteria have several limitations. One is the temporary increase in tu-
mor enhancement (known as pseudo-progression), which occurs in 20–30% of the patients
treated with chemo/radiotherapy and challenges differentiation with a real tumor progres-
sion. Another limitation is the high radiographic response rates seen with anti-angiogenic
agents and other treatments [53]. To address these issues in 2010, the Response Assessment
in Neuro-Oncology (RANO) criteria were developed to address these limitations. Although
the RANO criteria improved therapy evaluation in high-grade glioma, the assessment of
treatment-related side effects can hinder accurate response evaluation. The appearance of
new lesions is considered a criterion for disease progression according to both RANO and
MacDonald criteria. However, neuro-oncology patients receiving immunotherapies may
experience the transient appearance of new enhancing lesions, either locally or in distant
sites. In such cases, it is advisable to evaluate imaging findings within 6 months of starting
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immunotherapy, including the development of new lesions or radiographic progression, as
long as there is no significant clinical deterioration [54].

To tackle the challenges in assessing immunotherapy response for neuro-oncology, the
immunotherapy RANO (iRANO) criteria were introduced. The iRANO criteria combine
the response assessment framework of RANO with guidelines for confirming disease pro-
gression, as originally proposed by the Immunotherapy Response Criteria in Solid Tumors
to assist in clinical decision-making. The aim is to minimize premature discontinuation
of potentially beneficial therapies while ensuring patient safety [54]. However, in most
recurrence cases, there is a mixture of tumor cells and tissue affected by radiation injury.
Radiologists strive to identify the predominant component of the lesion to determine prog-
nostic factors and categorize the findings according to the RANO criteria, thus providing
the most appropriate treatment for the patient. To overcome the aforementioned limitations
in the follow-up, incorporating changes measured by advanced MRI and positron emission
tomography (PET) imaging, which may precede anatomical changes in tumor volume,
shows promise [55,56]. PET may also help to differentiate actual progression from pseudo
progression [57]. Additionally, 18F-FMISO-PET can localize regions of hypoxia that are
thought to drive radio/chemoresistance in GBs and promote immune suppression [58].

2. Lessons Learned in the Pathophysiology of Glioblastoma
2.1. Glioma Stem Cells and Tumor Microenvironment

The two prevailing hypotheses for the origin of GB are the GSC and the astrocyte
de-differentiation theories [25,26,37]. Neural stem cells (NSCs), as unique stem cell type in
the brain, have the ability to self-renew and can differentiate into neurons, astrocytes, and
oligodendrocytes (Figure 2) [25,59]. NSCs are most active during development, but small
populations remain functional in specific stem-cell niches in the adult brain. Compelling
evidence suggests that GSCs may arise from NSCs located in the adult subventricular
zone (SVZ) [60–65], and a recent article provided molecular genetic confirmation of this
hypothesis in a preclinical model [60]. GSCs express the mutated genes TERT, PTEN, EGFR,
TP53, and PDGF present in NSCs. In addition, there is an evident functional overlap and
similarity between both types of stem cells, reflected in numerous shared gene expression
patterns such as CD133, Sox10, nestin, vimentin, musashi, GFAP, and Olig1/2 [65–67]. Due
to the migration ability of GSCs and the unique environment of SVZ (the vascular system
of SVZ is richer than that of other brain regions), treatment-resistant GSCs easily migrate to
and colonize the SVZ [68]. Consequently, numerous retrospective studies have confirmed
that GBs in close contact with the SVZ possess more aggressive patterns of recurrence and
worse clinical outcomes [67,69,70]. Therefore, new therapy strategies are being assayed
with the aim of targeting SVZ to eradicate NSCs or GSCs [71].

The origin of GB, based on the stem cell theory, explains the versatility and plastic-
ity of heterogeneous GB tumor populations. However, several studies provide evidence
suggesting that partially differentiated glial cells, including oligodendrocyte and astrocyte
precursors, may play a role in or be responsible for tumorigenesis [60,72,73]. The astrocyte
de-differentiation theory is supported by experiments demonstrating the formation of tu-
mors that are histologically similar to GB after activation of oncogenes and/or suppression
of tumor suppressor genes in astrocytes [24,72,74,75]. Nevertheless, this manipulation
in astrocytes results in their acquisition of stem-cell-like characteristics. Consequently,
both hypotheses are not mutually exclusive and explain the presence of cancer stem cells
within the tumor [64,76,77]. Moreover, the dedifferentiation of non-GSCs to GSCs further
complicates the GSC-targeted therapy [25,78].

GSCs represent a very low percentage of cells within GBs, and are functionally de-
fined and distinguished from their differentiated tumor progeny at central transcriptional,
epigenetic, and metabolic regulatory levels [79,80]. Recognized markers of GSCs include
CD133 (PROM1) [81], CD44 [82], SOX2 and nestin [76,83], but none of them are specific
markers of GSC. Other putative biomarkers are CD15 (FUT4), A2B5 antigen, CD90 (THY1),
integrin ITGA6, CD171 (L1CAM), S100A4, ATP-binding cassette transporters and the com-
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bination of CD44 and ID1 (reviewed in [84]). GSCs develop genetic variability and possess
self-renewal capacity and specific characteristics that support tumor development, hetero-
geneity, recurrence, immunosuppression and radio and chemotherapeutic resistance [85].
Therefore, the heterogeneity of GB tumor cells can be attributed to the clonal evolution and
differentiation/dedifferentiation capacity of GSC [25,66,72,77,86,87]. The GSCs’ ability to
adapt to different niches implies that they can dynamically restructure their transcriptional
program, inducing the transient expression of genes with specific functions for each cell
state [18,36]. Furthermore, microglia and endothelial cells of the perivascular niche produce
numerous growth factors that contribute to the support of proliferation, migration, and
differentiation of NSCs and GSCs [27,88,89]. In turn, GSCs release transforming growth
factor β (TGFβ) that enhances the tumor vasculature and can even transdifferentiate and
generate endothelial cells or pericytes to form new tumor vascular niches [90,91]. GSCs
exhibit elevated migratory and invasive potential, eliciting infiltration into healthy tissue,
thus limiting the effect of total surgical resection and radiotherapy [92]. Residual cells have
the ability to regenerate GB in brain regions distant from the initial tumor by acquiring new
and different driver mutations that make them resistant to treatments [41]. Consequently,
GSCs are more radioresistant than GB cells [93], can be resilient to TMZ-mediated cell
death [94], and have mutations that facilitate recurrence after therapy [95]. DNA damage
repair mechanisms, such as ATM, ATR, CHK1, and PARP1, are upregulated in GSCs, and
CHK1 is preferentially activated following irradiation [96,97].Consequently, GSCs exhibit
rapid G2-M cell cycle checkpoint activation and enhanced DNA repair [98]. The preferential
activation of DNA damage checkpoint responses [34] and the increased expression of drug
efflux pumps and antiapoptotic proteins [99] contribute to GSC recruitment after treatment.
Interestingly, the inhibition of DNA repair protein RAD51 homolog 1 has been found to
delay G2 cell cycle arrest, thereby sensitizing GSCs to radiation [100].

Ionizing radiation also enhances the motility, invasiveness and aggressiveness of GSCs.
The increased motility and invasiveness result from the activation of the HIF(hypoxia-
inducible factor)-1α, whereas aggressiveness is attributable to a pro-neural-to-mesenchymal
transition associated with the activation of the STAT3 transcriptional factor [101]. STAT3
is overexpressed in GSCs [87] and plays a crucial role in sustaining stem-like characteris-
tics [102]. Moreover, it enhances the expression of pro-tumorigenic genes related to cell
cycle progression, extracellular matrix remodeling, as well as the secretion of cytokines and
growth factors [103]. Consequently, STAT3 deletion or inhibition in GB cell lines markedly
decreases tumorigeneses in vitro and in vivo [103,104] and has a radiosensitizing effect [93].
WP1066, one of the most promising STAT3 inhibitors, will be investigated in a phase II
clinical trial for patients with recurrent malignant glioma [105].

GB cells have the ability to manipulate the TME to favor immunosuppression and
to develop a niche sustaining tumor growth, invasion, migration, and survival [28,106].
GB cells can evade immune surveillance through the release of various soluble mediators
such as TGFβ, IL-10, and PGE-2. In the presence of TGFβ, CD4+ T cells upregulate FoxP3
and differentiate into Treg cells with potent immunosuppressive potential. This cytokine
inhibits the expression of cytolytic gene products (perforin, granzyme A, granzyme B, Fas
ligand, and IFN-γ) which are co-responsible for CD8+ T-cell-mediated tumor cytotoxicity.
Increased secretion of IL-10 is associated with enhanced expression of anti-inflammatory
cytokines, such as IL-4, CCL2, and TGFβ. In the presence of IL-10, TAMs downregulate
the expression of antigen-presenting molecules, thereby impairing CD4+ T cell activation.
In turn, PGE-2 has been shown as a key mediator of immunosuppressive activity through
the expansion of myeloid-derived suppressor cells (MDSCs) [107]. In fact, GSCs and GB
cells play the role in recruiting and activating MDSCs [108] and M2 macrophages to drive
immune suppression [109–111]. Simultaneously, GSCs protect themselves from T-cell-
mediated killing by secreting extracellular vesicles containing programmed death ligand 1
(PD-L1) [112,113].
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Consequently, new therapies that effectively target this important population may
help to prevent recurrence and improve patient survival, and for sure, no single therapeutic
modality will be effective against such a heterogeneous population of cells.
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Figure 2. Origin of glioblastoma. During normal embryonic development and in the adult brain,
neural stem cells (NSCs) generate glial and neuronal cells. Glioma stem cells (GSCs) arise from
NSCs, astrocytes, oligodendrocytes, or glial precursor cells through the activation of oncogenic
pathways (inactivation of TP53, NF1 or PTEN). GSCs are described as slow-dividing or quiescent
cells, with multilineage differentiation capacity that allows them to differentiate into GB cells and
cells with astrocytic, neuronal, and endothelial features and even trans-differentiation abilities. In GB
tumors, there exists a dynamic equilibrium between quiescent and proliferative GSCs, and between
GSC populations and their lineage-committed counterparts (differentiated non-GSC) that can also
dedifferentiate into stem-lineage GSCs. Created with BioRender.com, accessed on 24 January 2024.

2.2. Metabolic Features Favoring Growth and Resistance

Metabolic reprogramming plays a crucial role in enabling GB invasive cells to generate
the energy required for colonizing the surrounding brain tissue and adapting to hypoxic
microenvironments [114,115]. The metabolism of GB is characterized by the upregulation
of the PI3K/Akt/mTOR signaling pathway, a high rate of glycolysis, and increased lipid
storage [116,117]. Aerobic glycolysis along with glucose consumption and lactate produc-
tion supports rapid GB growth and correlates with a lower survival rate [118]. Nevertheless,
GB cells adapt their metabolism according to glucose availability, which gives them extra
resistance to hypoxia or altered redox situations. Selective pressure on GB cells makes
them overexpress glucose transporters (GLUT1 and, particularly, GLUT3). GLUT3 has a
five-fold higher affinity for glucose compared to GLUT1, thus facilitating glucose uptake in
environments with lower glucose concentrations. Additionally, the acquisition of a stem cell
state is associated with a significant increase in GLUT3 expression in induced pluripotent
cells, and this overexpression correlates with poor glioma patient survival [119,120]. When
glucose levels are low, HIF-1α guarantees the upregulation of GLUT3 and hexokinase-2,
increasing the glycolytic pathway [121,122].
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The activation of sterol regulatory element-binding protein-1, a crucial transcription
factor controlling fatty acid and cholesterol synthesis, as well as cholesterol uptake, enables
GB to obtain significant quantities of lipids essential for its rapid growth [123]. GSCs exhibit
high expression of mediators of lipid metabolism, such as brain-fatty-acid-binding protein
(FABP7), which leads to an increase in lipid contents that are specifically metabolized
under glucose-deprived conditions [116]. GB cells direct significant amounts of lipids
into specialized storage organelles known as lipid droplets, thus avoiding lipotoxicity.
This process involves the overexpression of diacylglycerol acyltransferase-1 and sterol-O-
acyltransferase-1, which convert surplus fatty acids and cholesterol into triacylglycerol
and cholesteryl esters, respectively, increasing the storage as neutral lipids within lipid
droplets [123].

Amino acids play a crucial role as important fuels for GB growth. Gene expression
profiling has shown an upregulation of the L-Gln importer ASCT2 in GB compared to
low-grade gliomas, and L-Gln deprivation has slowed tumor growth in some in vitro
studies [124]. The L-Gln-derived glutamate and glucose-derived pyruvate are substrates
for the glutamate-pyruvate transaminase 2 (GPT2), which synthetizes α-ketoglutarate.
Through GPT2 upregulation, the anaplerotic replenishment of the TCA cycle is possible;
otherwise, it is impaired by augmented pyruvate conversion to lactate. In other words,
the Warburg effect, manifested as increased lactate release, drives L-Gln addiction in
order to maintain the TCA cycle function [124]. Moreover, L-Gln has been shown to
promote the mTOR-dependent signaling pathway, a potent driver of GB growth and
progression [125,126]. Other amino acids are also utilized to fuel bioenergetic reactions
and the synthesis of macromolecules in GBs [114]. L-Asp has been shown to be a limiting
metabolite for GB cellular proliferation in hypoxic conditions [127]. L-Arg is involved in
GB cell adhesion, and thereby in tumor cell migration and invasion [128]. L-Trp and L-Arg
metabolism have also been linked to decreased detection by neighboring immune cells,
creating a favorable environment [129].

In gliomas, autocrine glutamatergic signaling has been identified as a promoter of
invasion [130]. GB cells release high levels of glutamate, which not only enhances tumor
invasiveness but also promotes the turnover of GSCs [131]. In other words, GB cells create
a positive feedback system whereby an excess of glutamate promotes their own growth
and secondarily causes excitotoxicity-induced cell death in surrounding brain tissue [132].
It is probable that such tissue damage contributes to cerebral edema and the neurotoxicity
associated with a growing GB. Consequently, the inhibition of glutamatergic signaling has
been proposed as a strategy to mitigate GB-induced neurotoxicity [133].

Moreover, the invasive nature of GB is modulated by cell-to-cell crosstalk within
the TME and altered expression of specific genes, such as ANXA2 (encoding the protein
annexin A2, a Ca2+-dependent phospholipid-binding protein that helps to organize ex-
ocytosis of intracellular proteins to the extracellular domain) [134], GBP2 (encoding the
guanylate-binding protein 2, which binds to guanine nucleotides and works in intracellular
signaling) [135], FN1 (encoding fibronectin, which binds to integrins and facilitates adhe-
sion, growth, migration, and differentiation) [136], PHIP (encoding the pleckstrin homology
domain interacting protein, which regulates growth and survival of GB cells) [137], and
SLC2A3 (encoding the glucose transporter 3) [114,138].

2.3. Ion Channels

Different studies have demonstrated the upregulation of Ca2+ selective ion channels
in GB, contributing to invasion, proliferation and resistance to apoptosis [139]. By blocking
L-type voltage-gated Ca2+ channels, cell invasion is inhibited as filopodia (also known as
tumor microtubes, TMs) formation is blocked [140]. Indeed, GB cells possess the ability
to extract specific signals from healthy neurons using TMs [141]. Furthermore, inhibition
of T-type Ca2+ channels has been shown to induce apoptosis in GB cells [142]. Therefore,
blocking Ca2+ could prevent tumorigenesis through several mechanisms, i.e., cell cycle
progression, induction of apoptosis and inhibition of cell migration.
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K+ ion channels play a crucial role in the proliferation and the resistance to apoptosis in
GB. Specifically, certain voltage-gated K+ channels are overexpressed in GBs participating
in signaling pathways that promote proliferation and inhibit apoptosis [143]. Some of these
effects are due to the role of K+ channels in establishing the resting membrane potential, and
therefore affecting the cell cycle. Different studies have shown that inhibition of K+ channels
improves survival in GB patients, which emphasizes their role in GB development and
progression [144]. Consequently, blocking of ion channels could represent an interesting
therapeutic approach against GB progression.

2.4. Epigenetics of Glioblastoma

GB progression is associated with different types of epigenetic alterations, including
histone modifications, DNA methylation, chromatin remodeling, and aberrant microRNA
(miRNA) [145,146], a group of small non-coding RNA (19–22 nucleotide long) molecules
that regulate the post-transcriptional degradation of mRNA [147]. Ciafré et al. performed
the first experiment related to miRNAs in GB, investigating the expression of 245 miRNAs
using microarrays [148]. The most interesting results came from miR-221 upregulation,
and a set of brain-enriched miRNAs (miR-128, miR-181a, miR-181b, and miR-181c) that
are down-regulated in GB. At the same time, miRNAs have been shown to be important
regulators of gene expression and may also regulate cellular processes, including apoptosis,
proliferation, invasion, angiogenesis, and chemoresistance [149,150]. Therefore, microR-
NAs can be classified according to their role in tumorigenesis (i.e., tumor suppressor or
oncogenic). Table 1 summarizes what is known, at present, regarding miRNAs and their
role in GB progression and resistance to therapies.

Table 1. microRNAs: role in GB, functions, and targets.

Tumor-Suppressing Oncogenic

Name Regulation Targets Name Regulation Targets

miRNA-7
[151–154]

Survival,
proliferation,

apoptosis,
invasion,

angiogenesis

FAK, EGFR, Akt,
c-KIT, TGFβ2,
CDK6, Akt2,

LRRC4, YBX1,
CD24, MTDH

miRNA-10b
[148,155–157]

Survival,
proliferation,

apoptosis,
invasion, stemness

HOXD10, uPAR,
RhoC, PTEN,

TFAP2C, BCL2L11,
CDKN1A

miRNA-34
[148,158–167]

Survival,
proliferation,

apoptosis,
migration,

invasion, stemness

SIRT1, c-Met,
Notch1/2,

PDGFRA, Msi1,
Akt and Wnt

miRNA-21
[168–174]

Survival,
proliferation,

apoptosis,
migration,
invasion,

chemoresistance

HNRPK, TAp63,
PDCD4, P53,

TGFβ, MMPs,
Ras/Raf, SPRY2,
ANP32A, PTEN,
SMARCA4, ERK,

LRRFIP1

miRNA-128
[175–186]

Stemness,
radioresistance,

apoptosis,
proliferation,
angiogenesis

P70S6K1, SUZ12,
BMI1, PDGFRA,

EGFR, E2F3a,
WEE1 and Msi1

miRNA-93
[179,187,188]

Survival,
proliferation,
angiogenesis,

stemness

Integrin b8

Abbreviations: Akt (Akt serine/threonine kinase), Akt2 (Akt serine/threonine kinase 2), BCL2L11 (BCL2 like
11), BMI1 (BMI1 proto-oncogene, polycomb ring finger), CDKN1A (cyclin dependent kinase inhibitor 1A), CDK6
(cyclin-dependent kinases), CD24 (CD24 molecule), c-KIT (receptor tyrosine kinase), c-Met (MET proto-oncogene,
receptor tyrosine kinase), EGFR (Epidermal growth factor receptor), E2F3a (E2F transcription factor 3), FAK (Focal
adhesion kinase), HOXD10 (homeobox D10), Integrin b8 (Integrin b8), LRRC4 (leucine rich repeat containing 4),
MMPs (matrix metalloproteinases) miR (miRNAs), MTDH (metadherin), Msi1 (musashi RNA binding protein 1),
Notch1/2 (notch ½), P70S6K1 (ribosomal protein S6 kinase B1), PDGFRA (platelet derived growth factor receptor
alpha), PTEN (phosphatase and tensin homolog), RhoC (ras homolog family member C), SIRT1 (sirtuin 1), SUZ12
(SUZ12 polycomb repressive complex 2 subunit), YBX1 (Y-box binding protein 1), TGFβ2 (transforming growth
factor beta 2), uPAR (urokinase-type-plasminogen-activator receptor, WEE1 (WEE1 G2 checkpoint kinase), Wnt
(Wingless/Integrated).
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CircRNAs exert their biological effects through four different mechanisms: serving
as sponges of RNA binding proteins, modulating parental gene transcription, encoding
functional proteins and, most importantly, serving as sponges of miRNAs [189]. As is
thoroughly reviewed in [189,190], circRNAs regulate GB proliferation and invasion and
are also involved in angiogenesis activation. Good stability, broad distribution and high
specificity make circRNAs promising biomarkers for GB prognosis and/or diagnosis,
although their clinical implementation still has a long way to go.

Long-noncoding RNAs (lncRNAs) are a class of regulatory noncoding RNAs
(>200 nt) that interact with DNA, RNA, and proteins to regulate various biological processes.
As reviewed in [191–194], numerous studies have shown that lncRNA regulates the expression
of genes involved in GB tumorigenesis (CHRM3-AS2, DLGAP1-AS1, DGCR10, LINC01057,
LINC-PINT, MIR31HG, MIR210HG, NEAT1, NONHSAT079852.2, PVT1, SEMA3B, RBPMS-
AS1), progression (ASLNC22381, ASLNC20819, CRNDE, DGCR10, HNF1A-AS1, HOXD-AS2,
HRA1B, HOTAIRM1, LINC-PINT, PRADX, NEAT1, OXCT1-AS, TCONS-00004099) and ther-
apeutic resistance (H19, MALAT1, MUF, DANCR, HOTAIR, HOTAIRM1, LINC00511, UCA1,
OIP5-AS1, DANCR, FOXO3, HERC2P2) of GB cells. Moreover, lncRNAs exhibit stable
secondary structure; thus, some of them (HOTAIR, GAS5, HOXA11-AS, HOTAIRM1,
AGAP2-AS1, and AC002456.1) have been proposed as prognostic and diagnostic GB
biomarkers [195–198]. More specifically, SBF2-AS1, MALAT1, CRNDE, TP73-AS1 and
LINC00511 have been suggested as biomarkers of TMZ resistance in GB [198]. Lately, some
evidence has indicated that lncRNAs also take part in GB cell metabolism. For instance,
the lncRNA TP53TG1, under glucose deprivation, may promote cell proliferation and
migration by influencing the expression of glucose-metabolism-related genes in glioma
cells [199], and the lncRNA LEF1-AS1 facilitates the multiplication of GB cells and im-
pedes apoptosis via the Akt/mTOR pathway [200]. Clinical trials involving the use of
lncRNA as biomarkers for GB detection and prognosis are only in the recruitment phase but
look promising.

Other epigenetic alterations, such as DNA methylation, histone modifications, and
chromatin remodeling, are mechanisms involved in transcriptional activation of critical
genes for GB development, lethality and resistance [145,201–203]. Thus, several epigenetic
agents, including histone methyltransferase inhibitors, DNA methyltransferase inhibitors,
histone deacetylase (HDAC) inhibitors, and other agents, are currently being tested for
GB treatment in preclinical and clinical trials [146,203]. Protein arginine methyltransferase
5 (PRMT5) is a member of the PRMT family of proteins that plays a key role in the regulation
of cellular signaling and gene expression by methylating histones as well as nonhistone
proteins [204]. Nuclear expression of PRMT5 negatively correlates with glioma patient
survival [205]. Engineered loss of PRMT5 or treatment with CMP5 (a PRMT5 inhibitor)
results in apoptosis or loss of self-renewal for differentiated or undifferentiated GB cells,
respectively, [206]. CMP5 derails the negative regulation of PTEN by PRMT5, which, in
turn, decreases Akt activity in patient-derived GB neurospheres [207].

HDACs have been widely studied in GBM cells due to their relationship with thera-
peutic resistance, cell proliferation and invasion, angiogenesis and apoptosis [208–211]. In
preclinical studies, HDAC inhibitors (HDACi) have proven to be effective anti-GB agents
via multiple mechanisms, such as upregulating the expression of tumor suppressor genes,
inhibiting oncogenes, inducing cell cycle arrest, promoting cell apoptosis and differentia-
tion, inhibiting motility/migration, abolishing autophagy and tumor angiogenesis, and
upregulating natural killer (NK)-cell-mediated tumor immunity [212–215]. Additionally,
HDACis have demonstrated the capability to reduce cancer stem cell burden in GB tu-
mors by modulating stemness, proliferation, differentiation, cell cycle arrest, apoptosis,
autophagy and vasculogenic mimicry of GSCs [209,210,216]. Several HDACis (i.e., valproic
acid, voristonat, panobinostat) have been assayed in clinical trials due to their capacity to
act as chemo/radio-sensitizers and target GSCs [216]. Voristonat combination regimens
with TMZ/radiotherapy and/or bevacizumab (BEV, recombinant humanized monoclonal
antibody that blocks VEGFR-A) have proven to be tolerable (NCT01738646), but no statisti-
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cal improvement in OS and/or PFS was noted [217]. Similar results were obtained with
panobinostat in combination with BEV (NCT00859222) [218]. Valproic acid is a potent anti-
convulsant that promotes apoptosis and impairs glioma cell proliferation and invasiveness
and sensitizes GB cells to several anticancer drugs, such as TMZ, etoposide, gefitinib, ni-
trosoureas, and radiation therapy [219–221]. A meta-analysis [222] and a recent open-label
phase II study [223] results seem to confirm that GB patients may experience prolonged
survival due to valproic acid administration, providing further justification for a phase
III trial of valproic acid/SOC. Levetiracetam (LEV), a relatively new antiepileptic drug,
modulates HDAC levels ultimately silencing MGMT, thus increasing TMZ effectiveness in
GCSs [224]. Retrospective analyses and an open-label phase II study (NCT02815410) seem
to evidence that LEV improves GB patients’ PFS and OS [225,226]. So, it is perhaps time to
reconsider the results performed in 2016, where a pooled analysis of a large series of cases
treated with valproic acid or levetiracetam failed to find an association with patients’ sur-
vival [227]. A double-blind randomized clinical trial (ChiCTR2100049941) focusing on the
clinical benefits of LEV + TMZ in the treatment of GB is ongoing in China. Nuclear imaging
of HDAC expression in GB can be useful to improve the understanding and role of HDAC
enzymes in gliomagenesis and identify patients likely to benefit from HDACi-targeted
therapy [215,228].

2.5. The Angiogenetic Capacity of Glioblastoma

Aberrant vascular proliferation, necrosis, and infiltration of surrounding brain tissues
are considered “hallmarks” of GB. Neo-vessels form from preexisting blood vessels due
to VEGF expression by tumor and stromal cells under hypoxic conditions. The combi-
nation of VEGF with FGF (fibroblast growth factor)-2 or PDGF (platelet-derived growth
factor) is known to synergistically enhance angiogenesis [229]. Vasculogenic mimicry
(VM) is a new mechanism of tumor neovascularization in which highly invasive and
genetically dysregulated tumor cells acquire vascular cell function, forming de novo
vascular-like structures [230]. The involvement of GSCs in VM has been reported by several
studies [231,232]. The disruption of GB vasculature through radiation or anti-angiogenic
therapies induces a hypoxic microenvironment that promotes VM as an adaptative strategy
to assist GB cells in surviving and progressing even when angiogenesis is blocked [233,234].
In keeping with this idea, the inhibition of vasculogenesis, but not sprouting angiogenesis,
prevents the recurrence of GB after irradiation in mice [235].

SCs play a crucial role in VM, mainly due to their high plasticity and potential dif-
ferentiation into endothelial-like cells [236]. The vascular niche is very important for the
maintenance of GSCs as it promotes their survival and proliferation [230,237]. Additionally,
communication between endothelial and tumor cells allows tumor vasculature formation
and tumor cell dissemination [232,238]. Tumor vasculature has been considered a contribu-
tor to treatment resistance and relapse [239]. GSCs seem to be attached to the arterioles but
not to the capillaries [240]. Arterioles transport, but do not exchange, gasses and nutrients,
and promote a peri-hypoxic area. Integrin ligation causes an activation of the integrin-
linked kinase leading to increased HIF-1α, as well as increased VEGF production [241].
HIF-1α acts as a potent activator of angiogenesis by stimulating the production of VEGF-A,
PDGF and many other factors that initiate endothelial cell proliferation, invasion, and
migration [242]. In GB, HIF-1α is not only influenced by oxygen but also by oncogenic
signaling pathways, such as MAPK/ERK, p53, and PI3K/Akt/mTOR [243]. Although
many approaches have been tried to inhibit HIF-1α, drugs that only target specific com-
ponents of the hypoxia signaling pathway have generally failed to produce an enduring
clinical response in GB. It is thought that the complete inhibition of HIF-1α is necessary to
show potent antitumor activity and to promote the activation of the immune system [243].
Inhibition HIF-2α, which can also block the hypoxia pathway, is an alternative attractive
strategy for GB treatment. HIF-2α is specifically overexpressed in GB cells and GSCs, but
not in normal tissues [244]. Although the HIF-2α inhibitor PT2385 had limited activity
in rGB (phase II, NCT03216499) [245], other HIF-2α inhibitors that are currently under
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research may help in blocking GB progression. It is also important to mention that recent
findings suggest that GB hypoxia regulates gene expression in an HIF-independent way. In
that sense, Srivastava et al. demonstrated that FAT1 (a FAT atypical cadherin) modulates
the epithelial-mesenchymal transition and stemness gene expression in hypoxic GB [246],
and hypoxia induces epigenetic regulation of the transmembrane protein odd Oz, altering
DNA methylation status and activating the ODZ1-mediated migration of GB cells [202].

Importantly, Aderetti et al. demonstrated the existence of hypoxic peri-arteriolar GSC
niches in GB tumor samples [247]. Apparently, GSCs remain attached to peri-arteriolar
niches by the same receptor–ligand interactions as hematopoietic stem cells in the bone mar-
row. GSCs’ infiltration can be promoted via VEGF secreted by endothelial cells, which may
induce the trans-differentiation of GSCs into endothelial cells, promoting angiogenesis and
invasiveness [86]. Furthermore, a phenomenon of metabolic zonation has been described
depending on the relative distance between the tumor cell and the blood vessel [248]. Prox-
imity to the blood vessels promotes the mammalian target of rapamycin mTOR-derived
anabolic metabolism and enhances tumor aggressiveness and therapy resistance [248].
Indeed, GB cells located in the perivascular tier exhibit robust anabolic metabolism and
deviate from the Warburg principle by extensively engaging in oxidative phosphoryla-
tion. These perivascular cancer cells acquire specific functional characteristics, such as
heightened tumorigenicity, enhanced migratory and invasive abilities, and surprisingly,
remarkable resistance to chemotherapy and radiation; most of these traits are dependent
on the mTOR pathway [248].

The BBB is a major obstacle to drug penetration within the brain parenchyma. Only
20% of small molecules/therapeutics agents cross the BBB and reach tumor cells at an
effective concentration. GSC or GB cells protected against therapeutic agents by an intact
BBB are the source of tumor recurrence [23]. P-glycoprotein, multidrug resistance proteins,
organic anion transporters and breast cancer resistance proteins are especially important
efflux pumps within the BBB that limit the accumulation of small-molecule-targeted thera-
pies [249]. To make it more difficult, GSCs overexpress ABC transporters, further hindering
drug delivery. ABC transporters promote therapy resistance by promoting the efflux of
exogenous compounds, such as TMZ, at the cellular and BBB levels [22]. Infiltrating tumor
cells are known to compromise the integrity of the BBB, resulting in a vasculature known as
the blood–tumor barrier (BTB), which is highly heterogeneous and characterized by numer-
ous distinct features, i.e., non-uniform permeability and active efflux of molecules [249].
Therefore, delivering therapeutic agents across the BBB and BTB, but avoiding their ac-
cumulation in the healthy parenchyma, is essential to making significant progress in GB
treatment.

3. Present Therapy and Challenges
3.1. Standard of Care in Newly Diagnosed GB Patients

The Stupp protocol became the standard of care (SOC) for newly diagnosed GB (ndGB)
patients since a randomized phase III trial (Table 2) evidenced an improved mOS from 12.1
to 14.6 months and an increase in the 2-year survival rate from 10% to 27% [7]. This SOC
includes maximal safe resection, radiotherapy with concurrent (75 mg/m2/day × 6 weeks)
and adjuvant TMZ (150–200 mg/m2/day × 5 days for six 28-day cycles). Since then, similar
results (mOS 15–18 months) have been observed in other clinical studies [250–252]. Despite
significant advances in the understanding of the molecular biology and pathophysiology
of the GB, SOC has remained unchanged, excepting the possibility of adding or not tumor
treating fields (TTFields) [13,253,254].
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Table 2. Phase III clinical trials that support the SOC in ndGB patients.

Name/Trial Number Treatment No./Type of Patients Outcome Ref.

EORTC-NCIC
NCT00006353

RT
RT+TMZ (SOC) 573 ndGB patients

SOC had survival benefits in all groups, including
patients ≥ 60 years

mOS: 12.1 m (RT) vs. 14.6 m (RT+TMZ)
OS (2,3,4,5 years): 10.9%, 4.4%, 3%, 1.9% (RT) vs. 27.2%,

16%, 12.1%, 9.8% (SOC)

[7,255]

EF-14
NCT00916409

SOC
SOC+TTFields 695 ndGB patients The addition of TTFields to the SOC extended mOS (16

vs. 20.9 m) and mPFS (4.0 vs. 6.7 m) [13,256]

NCT00304031 RT+TMZ (SOC)
RT+TMZ (DD) 833 ndGB patients

No difference was found in mPFS and mOS (16.6 vs. 14.9
m) between both arms.

GEINO14-01 (Spain) and EX-TEM (Australia) studies
confirm the results of this trial

[257,258]

CeTeG/NOA-09
NCT01149109

SOC+Lomustine
SOC

129 ndGB or gliosarcoma
patients with +MGMT

Combined treatment might improve mOS (48.1 vs. 31.4
m), but these findings should be interpreted with

caution, owing to the small size of the trial
[259]

AVAglio
NCT00943826

SOC+BEV
SOC

921 supratentorial ndGB
patients

The addition of BEV to SOC increased in 4.4 mo. the
mPFS but not mOS (16.8 vs. 16.7 m). Maintenance of
baseline QoL and performance status were observed

with BEV, but with higher rate of AE

[260,261]

RTOG 0825
NCT00884741

SOC+BEV (adjuvant)
SOC 637 ndGB patients

The addition of BEV to SOC increased the PFS in 7.3 m,
without differences in mOS. Higher rates of

neurocognitive decline, symptom severity, and decline
in health related QoL affected patients treated with BEV

+ SOC.

[262,263]

NCT00017147 O6BG+BCNU+RT
BCNU+RT

179 ndGB or gliosarcoma
patients

The addition of O6BG did not provide benefit and
caused additional toxicity. Significantly more grade 4/5

AE in the experimental arm.
mOS: 11 m (O6BG + BCNU + RT) vs. 10 m.

[264]

NOA-08-Trial
NCT01502241

TMZ (100 mg/m2)
RT (60 Gy, 2 Gy per fr.).

412 patients with
anaplastic astrocytoma or

ndGB ≥65 years

TMZ or RT alone render similar results (mOS: 8.6 vs. 9.6
m).

+MGMT patients had better responses with TMZ, vs.
−MGMT patients that better responded to RT.

[265]

ISRCTN81470623

TMZ
Hypofractionated RT
(34 Gy, 3–4 Gy, fr. over
2 weeks)
Standard RT (60 Gy, 2
Gy fr. over 6 weeks)

291 patients with ndGB >
60 years

Standard RT was associated with poor outcomes,
especially in patients > 70 years. Similar OS (8.4 vs. and

7.4 m) in TMZ vs. hypofractionated RT.
Both strategies should be considered as standard

treatment options in the elderly. +MGMT status is a
predictive marker for TMZ-derived benefits.

[266]

NCT00482677
RT(40 Gy/15 fr.)+
TMZ
RT alone (40 Gy/15 fr.)

562 ndGB patients ≥ 65
years

PFS (5.3 vs. 3.9 m) and (OS 9.3 vs. 7.6 m) were longer if
TMZ was added to RT vs. RT alone. QoL was similar in

both groups.
[267]

Abbreviations: AE, adverse events; BCNU, carmustine; DD, dose-dense; fr., fraction; +MGMT, methylated
MGMT promoter; -MGMT, unmethylated MGMT promoter; m, months; ndGB, new diagnosed glioblastoma; PFS,
progression-free survival; O6-BG, O6-benzylguanine; OS, overall survival; QoL, quality of live; SOC, standard of
care treatment; TMZ, Temozolomide; TTFields, tumor treating fields; RT, radiation therapy.

GB mostly recurs within 2–3 cm from the borders of the initial lesion and with multiple
lesions, thus, maximal surgical resection improves survival irrespective of the age of the pa-
tient or the molecular status of the tumor [252,268]. Preoperative brain mapping techniques
such as navigated transcranial magnetic stimulation (nTMS), magnetoencephalography,
functional MRI, and diffusion tract imaging (DTI) are used to facilitate safe resections and
minimize surgical complications [269]. Compared to non-nTMS techniques, nTMS has been
associated in GB patients with smaller craniotomy size, less residual tumor tissue, shorter
hospital stays, and improved survival at 3, 6, and 9 months, with no significant difference
in surgery-induced neurological deficits [270].

During surgery, various tools are employed to optimize the extent of resection and
minimize residual tumor volume. These include functional monitoring, fluorescence-based
visualization of the tumor using 5-aminolevulinic acid (5-ALA), ultrasonography, and
intraoperative MRI (ioMRI) [268,269,271]. Additionally, techniques like evoked potentials,
electromyography, and brain mapping in awake patients, under local anesthesia, are used to
monitor and preserve language and cognition during resections in critical brain areas [272].
The use of the amino acid 5-Ala helps to identify tumor volume and areas of neoplastic
infiltration through fluorescent visualization, improves PFS, OS, and reduces postoperative
neurological damages [269,273–276]. 5-Ala has also been effectively used in rGB resection,
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but the risk of false-positive fluorescence for reactive non-tumor tissue is more remarkable
in relapse forms, likely due to an altered BBB [277]. Nevertheless, recently, an off-label
fluorophore (sodium fluorescein) has become popular due to numerous benefits compared
to 5-Ala, including lower cost, non-toxicity, easy administration and a wide indication for
other brain tumors [278]. Microsurgical resection of GB using sodium fluorescein has been
associated with an increased GTR rate and OS [279], although it is still considered inferior
compared to 5-Ala [280].

Intraoperative ultrasound (ioUS) involves the use of sonography to locate tumor tissue
during surgery and to delineate it from healthy brain tissue. As opposed to 5-Ala, which
can only identify high-grade gliomas, ioUS is able to identify both low- and high-grade
gliomas. In practice, 5-Ala and ioUS are considered complementary techniques [269].
Intraoperative magnetic resonance imaging (IoMRI) improves the accuracy and defini-
tion of the tumor and provides near real-time information about the dynamic changes
occurring during surgery [281]. Analysis of residual GB volumes and neurological out-
comes demonstrates that ioMRI is significantly superior to 5-Ala and white-light surgery
at comparable peri- and post-operative morbidities [282]. The combination of ioMRI and
5-Ala facilitated achievement of the highest extent of resection (95%), followed by ioMRI
alone (94%), 5-Ala alone (74%), and no imaging (73%), and this was associated with fewer
post-chirurgic neurological deficits [283,284]. However, the lack of evidence regarding
the cost-effectiveness compared to less advanced techniques raises uncertainty [268,285].
Regardless of the technique used, a postoperative contrast-enhanced MRI should be carried
out within 48 h to assess the extent of resection and serve as a baseline for further treat-
ments. Additionally, MRIs are performed every 2–3 cycles of TMZ treatment to monitor
the tumor’s response [286].

After surgery, the smallest amount of residual tumor correlates with higher sur-
vivals [287,288]. However, radical surgical resection is limited by the highly invasive
nature of GB cells [289]. Additionally, postoperative complications are a negative prog-
nostic factor, and in this it is essential to prevent permanent neurologic deficits to safe-
guard the quality of life of the patients [14,47,289]. Carmustine (BCNU) wafers placed in
the tumor resection cavity at the time of surgery provide a modest survival advantage
(≈2 months) [290]. Wafer implants have been approved by the FDA and the EMA, but
are not included in the SOC mainly due to their limited brain penetration, safety and
tolerability, and because the treatment may preclude patients from enrolling into clinical
trials [291]. Where surgical resection is not possible, stereotactic biopsy or open biopsy
are alternative options for histological diagnosis and further molecular testing, which can
determine an optional therapy [292,293]. However, this recommendation is not exempt
from criticisms since in GB patients with low-performance status and/or advanced age,
biopsies imply very little clinical gain [294].

Compared with surgery alone, postoperative radiotherapy is used to control micro-
scopic unresectable disease, delay neurological deterioration and increase survival [7,295].
Radiotherapy is less efficacious in hypoxic TME due to a lower oxidative stress and because
cancer cells develop mechanisms to repair DNA [115].

TMZ is a mono-alkylating agent that induces cytotoxic lesions including
N7-methylguanine, N3-methyladenine and O6-methylguanine. N7-methylguanine and
N3-methyladenine are repaired by base-excision repair (BER) and contribute minimally to
the overall cytotoxicity of TMZ, while O6-methylguanine is repaired by O6-methylguanine-
DNA-methyl transferase (MGMT) [296]. Methylation of the MGMT gene promoter (40% of
GB patients) causes a reduction in MGMT protein expression and activity that results in
persistent O6MeG lesions that trigger replicative stress and cytotoxicity via futile cycles of
mismatch repair (MMR) [297]. Therefore, MGMT promoter methylation confers a better
prognosis and overall survival (OS) associated with a positive response to alkylating agents
in GB patients aged <70 years [7,13,298]. Radiotherapy has been shown to upregulate
MGMT, whereas prolonged exposure to alkylating agents may suppress MGMT activity
making the cells more susceptible to TMZ [257]. Nevertheless, several trials (Table 2)
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evidence that extending post-radiation TMZ from 6 to 12 months does not improve PFS6
and is associated with greater toxicity, functional deterioration, and poorer quality of
life [257,258].

TMZ is a cornerstone of GB treatment, but its effectiveness is limited by the blood–brain
and blood–tumor barriers, and the inherently or acquired GB resistance [19,299–301]. Upon
TMZ treatment, GB and GSC cells induce DNA repair mechanisms, NF-kB signaling medi-
ated antiapoptotic pathways, the expression of anti-apoptotic Bcl-2 family members, EGFR
activity, drug efflux by ATP-binding cassette (ABC) transporters, autophagy-mediated
resistance, expression of STAT3 and miRNAs, and overexpression of antioxidant pro-
teins [83,299,301–305]. Nitrosoureas, i.e., lomustine (CCNU), carmustine and procarbazine,
were widely used before the availability of TMZ, but their use is now limited to the
treatment of rGB. At is shown in Table 2, patients in good physical condition with hyper-
methylated MTMG promoters (NCT01149109) slightly increase their OS survival by the
addition of lomustine to SOC (48.1 vs. 31.4 months) [259,306]. Nevertheless, the benefit of
this regimen remains unclear since the sample size was small and few patients were able to
complete all six cycles of adjuvant treatment due to the greater hematologic toxicity in the
lomustine-TMZ arm [307]. The addition of BEV to the SOC improved PFS but not OS in
both AVAglio and RTOG 0825 trials (NCT00943826 and NCT00884741) [260,262].

Up to now, TMZ is still commonly used for GBs with unmethylated MGMT promoters,
due to the lack of significant benefits of alternative options (BEV plus irinotecan, dose-
dense TMZ, BEV+SOC) [257,260,262,298]. Several preclinical studies demonstrated that
O6-benzylguanine (O6BG) or O6-bromothenylguanine inactivate MGMT, but the addition
of O6BG to radiation and BCNU treatment (Table 2, NCT00017147) did not provide further
benefit and instead increased toxicity [264].

3.2. Tumor-Treating Fields (TTFields)

TTFields is a non-invasive cancer treatment modality that applies low-intensity
(0.7–3 V/cm), intermediate-frequency (100–500 kHz), and alternating electric fields over re-
gions of the body where tumors are localized [308,309]. In growing GB cells, TTFields cause
chromosome missegregation, disrupt DNA repair, inhibit mitosis and the cell cycle, and
induce apoptosis and autophagy [310–317]. TTFields also interfere with the directionality
of cancer migration by inducing changes in the organization and dynamics of microtubules
and actin and ablate the primary cilia on GB cells that contribute to tumor growth and
chemoresistance to TMZ [318]. TTFields also downregulate the expression levels of VEGF,
HIF-1α, and matrix metalloproteinases (MMP2 and MMP9), which are necessary for tumor
growth, invasion and metastasis [319]. TTFields also increase the membrane permeability
of cancer cells and the BBB [320,321], which can help to increase the uptake and bioefficacy
of chemotherapeutic drugs. Although this treatment modality reduces the viability of
proliferating T cells [322], it also stimulates maturation and phagocytosis by dendritic cells
(DCs) [323], increases CD8 T infiltration in TME [315], promotes the production of type I
IFNs in GB cells in a cGAS/STING- and AIM2 inflammasome-dependent mechanism [324]
and, thereby, facilitates the immune system response. Interestingly, the combination of
hyperthermia and TTFields has shown synergistic effects in GB [325].

Over the past decade, TTFields have emerged as a complementary treatment strat-
egy, which is now part of the SOC in GB treatment [289,326–328]. The FDA’s approval of
rGB was based on the results from the EF-11 trial (NCT00379470) showing that TTFields
monotherapy provided similar efficacy compared to the best physician’s choice chemother-
apy in patients with rGB, albeit with better quality of life, less toxicity and a lower incidence
of serious adverse events [329]. A randomized clinical trial in ndGB patients (NCT00916409)
previously treated with chemoradiotherapy showed that patients treated with the TTFields
and TMZ had a median free survival (mPFS) of 6.7 months compared to 4.0 months
with TMZ alone. The addition of TTFields to the SOC therapy improved median OS
(mOS) from 15.6 to 20.5 months without a negative influence on the health-related quality
of life [13,330,331]. In ndGB, TTFields are applied within 6 weeks after the end of the
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radio-chemotherapy, ideally simultaneously with TMZ monotherapy [13,328]. Patients
with compliance > 90% showed extended median and 5-year survival rates [256]. The
most common adverse effect is skin irritation, occurring in 43% of patients (2% grade 3 or
higher) [13,309,327,332], which is generally managed with array relocation and topical treat-
ments including antibiotics and steroids. The frequency of systemic adverse events was 48%
in the TTFields-TMZ group and 44% in the TMZ-alone group. Several limitations should be
noted in the NCT00916409 trial: (a) only PF patients after the completion of chemoradiation
were enrolled, which excluded those who were more likely to have a poor prognosis;
(b) randomization in the EF-14 trial occurred over 2 months after diagnosis, which suggests
a selection bias of patients who did not have progression after the initial treatment and
would therefore likely have a better survival rate; (c) a “sham” device—to better discern
a potential placebo-effect of wearing the device—was not used; (d) second-line therapies
(chemotherapies, salvage radiation, radiosurgeries or craniotomies) after tumor progression
in both groups were not reported while the TTFields plus TMZ group allowed patients to
continue TTFields for up to 24 months or after the second GB progression; (e) molecular
markers, such as the IDH1/2 status, were not performed [308,333]. Recently, recognized
brain cancer experts concluded that TTFields plus TMZ represents a major advance in the
field of GB therapy, though other experts maintain their skepticism regarding the use of
the TTFields because of the lack of effect in some patients and because the time lengths
required to reach (modest) benefits (at least 18 h per day) limit its utility [308,309,334].

Dexamethasone is administered to GB patients to alleviate cerebral edema and pro-
vide symptomatic relief. However, the corticoid-induced immunosuppressive effects may
also increase infections and decrease survival [335,336]. In fact, a recent meta-analysis
revealed that dexamethasone interferes with the therapeutic effects of TTFields [324]. The
threshold dose at which dexamethasone can be used with minimal interactions with the
TTFields was 4.1 mg per day or lower [337]. Several ongoing clinical trials are study-
ing the optimal timing for TTFields administration (e.g., NCT04471844, NCT04492163,
NCT03705351) and the safety and efficacy of the combination of TTFields with other cancer
modalities [308,315,316,338,339]. For instance, PriCoTTFields is a phase I/II clinical trial
that evaluates the safety and efficacy of TTFields initiated prior and concomitant to com-
bined radiation and TMZ therapy in ndGB patients [340].

TTFields can reduce the DNA double-strand repair by downregulating the activity of
the breast cancer type 1 susceptibility (BRCA1) signaling pathway, thereby increasing the
sensitivity to the blockade of DNA repair caused by PARP inhibition [341]. Consequently,
an ongoing phase II trial (NCT04221503) will try to determine whether niraparib (a PARP
inhibitor) can enhance the effect of TTFields in GB patients (NCT04221503). In addition, the
combination of TTFields, TMZ and lomustine has shown benefits in ndGB patients [342]
and the triple combination of BEV, irinotecan, and TMZ plus TTFields improved the OS
of patients with rGB [343]. Mechanisms involved in the acquisition of TTField resistance
include activation of voltage-gated Ca2+ channels linked to cell migration [344]; CDK2NA
deletion, mTOR (V2006I) mutations [345], and the upregulation of autophagy which can be
reversed by combining TTFields with an autophagy inhibitor [312].

In clinical practice, TTFields are mainly used at a frequency of 200 kHz, but preclinical
studies show that different GB cell lines respond to other optimal electric frequencies,
as is the case of SF188 (400 kHz) or U87 (100 kHz) [346]. This phenomenon highlights
the need for further investigation to individualize “TTFields prescription”. Despite the
advances associated with the incorporation of TTFields to GB treatment, its clinical use
is still quite restricted. EANO guidelines argue that the clinical benefit of TTFields has
not been established yet, which contradicts the ASCO-NSO recommendations [253,347].
Certainly, price, regulation, the increase in the efficacy of combined treatments, and likely
the development of novel intracranial electrodes, may assist in increasing the utilization
and acceptance of TTFields [316].
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3.3. Treatment in Special Patient Populations

Elderly patients (>65 years) or patients with a poor functional status have worse
prognosis and are less tolerant to toxicities. Surgical resection is not associated with
improved survival [348], but according to a recent retrospective single-center study, BCNU
wafer implantation during the surgical resection is safe and improves mOS 39.0 months
(≥12 implanted wafers) vs. 16.5 months (<12 implanted wafers) in patients in “extreme”
neurosurgical conditions (>80 years and patients with preoperative Karnofsky Performance
Status score < 50) [349]. Although just a few patients (6/49) reached that number of
implants, these results are impressive, since mOS in the “extreme” conditions subgroup
was 10.0 months, and there was a significant improvement in the postoperative KPS score
compared to the preoperative KPS score.

The combination of TTFields with maintenance TMZ resulted in improved PFS and
OS in ≥ 65-year-old patients with ndGB in the phase III EF-14 trial, without affecting
patient quality of life [350]. Nevertheless, clinical trials have shown that standard radiother-
apy is associated with poor outcomes, especially in patients older than 70 years (Table 1,
ISRCTN81470623) [266]. Here, abbreviated courses of radiation therapy must be consid-
ered [266,267], although age alone should not represent the sole determining factor for the
duration and intensity of the therapy [351]. Hypofractionated radiotherapy schedule
(40 Gy delivered in 15) fractions and the addition of concurrent and adjuvant TMZ
(NCT00482677) significantly increase survival (9.3 vs. 7.6 months, respectively) without
impairing the quality of life [267]. Consequently, partial-brain fractionated radiotherapy
with concurrent and adjuvant TMZ is the SOC for elderly patients with good perfor-
mance status [352,353]. The addition of BEV to radiotherapy had no benefits in elderly
patients [354].

A single modality therapy can be considered for patients with poor functional status.
RT was more effective than TMZ for unmethylated MGMT-promoter tumors, whereas TMZ
was more effective than RT for methylated MGMT-promoter tumors [266,267].

3.4. Options of Treatment in rGB patients

Regardless of the use of multimodality treatments, GB invariably returns after a
median interval of less than 10 months, and typically even sooner (≈6 months) in older pa-
tients [267]. The genetic and biological changes induced by radiotherapy and/or cytotoxic
chemotherapy differentiate rGB from primary tumors. These changes empower GB tumors
to navigate the host microenvironment, evade the immune system, and foster intrinsic
and acquired resistance to further administration of radiation and/or alkylating agents.
Upon recurrence, patients typically exhibit a poor performance status and compromised
overall health, with GB tumors often being unresectable, thus requiring substantial use of
corticosteroids to manage cerebral edema [355]. This makes rGB prognosis much worse
than that of the primary GB.

Actually, although there is no clear SOC salvage therapy for rGB [289], patients who re-
ceived no salvage treatment had poorer survival than those who received radiation and/or
chemotherapy [356]. Therefore, re-resection, re-irradiation and systemic chemotherapy
with TMZ rechallenge, nitrosoureas, BEV, and TTFields or clinical trial enrolment to test
experimental drugs are considered for all recurrent patients [295,357–360]. Unfortunately,
fewer than 43% of rGB patients were fit enough to be included in clinical trials [361].

Consensus guidelines for selecting candidates for second surgery recommend that
patients need to have a good performance status, particularly if more than 6 months have
elapsed since the initial surgery [357,362]. According to a retrospective review of the
brain tumor database (1997–2016), stereotactic radiosurgery is associated with longer OS
and/or PFS in rGB patients with good performance status and small-volume tumor recur-
rences [363]. In practice, not more than 20–30% of relapsed patients are eligible and only
complete resections have any survival benefit (11–17 months) [364,365]. Toxicity to normal
brain parenchyma limits re-irradiation in rGB [366]. Radiosurgery or hypofractionated
radiotherapy (30–35 Gy in 5–15 fractions) is considered a potentially effective option and
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is increasingly used for younger patients with good performance status [356,367]. Data
from a few prospective studies in rGB suggest that re-irradiation modestly improves PFS
compared with systemic treatment alone [356]. OS after re-irradiation (9.7 months) was
sufficient to justify this treatment [367,368], but marginal recurrence is significantly more
frequent in patients who had prior BEV exposure [369].

Lomustine has become the SOC at relapse in Europe, with thrombocytopenia being the
most frequent limiting toxicity [358]. Lomustine is generally preferred to other nitrosoureas
given its oral formulation, schedule of administration, and better safety profile. However,
lomustine activity is largely restricted to patients with tumors with MGMT promoter
methylation and its survival benefit has been found limited: objective response rate was
around 10%, mPFS < 2 months, PFS6 was 20%, and OS was 6–9 months [358,370].

One of the most significant features of GB is its hypervascularization, mainly promoted
by the hypoxia-facilitated VEGF overexpression in tumor and stromal cells [371]. BEV is
an anti-VEGF humanized monoclonal antibody that inhibits tumor-driven angiogenesis
and may help in reducing patients’ immune suppression [234,372,373]. rGB with a low
apparent diffusion coefficient, large tumor burden, or IDH mutation is more likely to
benefit from BEV treatment [374]. BEV gained approval in 2009 for rGB treatment in
the US and later in other countries, but BEV is not approved by the EMA as an SOC
for rGB [375,376]. BEV has shown promise in extending PFS treating GB, but there is
no evidence for its ability to prolong OS [377–381]. The anti-angiogenic effect of BEV
decreases contrast uptake during MRI, which can lead to false negatives in recurrences [370].
Despite this, BEV is almost used due to the lack of alternative treatment options, and
because it also serves to control brain vasogenic edema [289,375] and to avoid the need
for corticoid treatment [382,383]. BEV combined with re-irradiation was found to be safe
and tolerable and showed a significant reduction in the incidence of radiation necrosis,
patient dependence on corticosteroids and improvement in the Karnofsky score during
disease progression-free periods. Survival benefits (10.1 months) have been reported
following fractionated stereotactic radiotherapy (35 Gy/10 fractions) and concurrent BEV
in a prospective randomized phase II trial [384,385]. A recent retrospective study showed
that BEV combined with re-irradiation improved mPFS and mOS to 8 and 13.6 months,
respectively [359]. Nevertheless, the validity of these results is constrained by the inclusion
of a small number of patients, the heterogeneity of treatment options, and the absence of a
control group. Despite these limitations, recent conclusions drawn from a meta-analysis
endorse the benefits of this therapeutic option [386]. Lomustine plus BEV for rGB (phase
II, NCT01290939) somewhat prolonged PFS but did not confer a survival advantage over
treatment with lomustine alone [387]. Although earlier reports suggested that BEV had
glucocorticoid-sparing effects, in this trial, the addition of BEV did not reduce the use of
glucocorticoids [387].

TTFields did not increase OS (phase III, NCT00379470) but showed efficacy equivalent
to chemotherapy commonly used for rGB, with lower toxicity and improved quality of
life [329]. According to a recent phase II trial (NCT01894061), the combination of BEV and
TTFields is safe and has clinical efficacy in rGB [388].

4. Targeted Therapies

Genetic changes that have been well recognized in GB cells include alterations in the
Rb/p16 pathway (> 90%), loss of heterozygosity of 10q (70%), EGFR amplification or mu-
tation (≈50%), TP53 mutations (31%), PDGF receptor gain/amplification (≈25%), mouse
double minute homolog 2 (MDM2) gene mutations (10–15%) and the phosphatase and
tensin homolog (PTEN) gene mutations (20–34%) [16,389]. Analysis of the large-scale molec-
ular and genomic information present in the Cancer Genome Atlas Program (TCGA) database
indicated that p53 pathway (TP53/MDM2/P14arfç), the PI3K/Akt/mTOR pathway, and
the RB pathway (CDK4/RB1/P16ink4) are the main signaling pathways involved in GB
tumorigenesis, pathophysiology and acquisition of resistance to treatment [16,390,391].
Intrinsically targeting these altered molecules and pathways was seen as a novel avenue
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in GB treatment. Unfortunately, despite research efforts and clinical trials, except for pro-
longed PFS afforded by the BEV, no pharmacological intervention has been demonstrated
to alter the course of disease [392,393].

4.1. pRB/CDK4/RB1/P16ink4

The retinoblastoma (RB) gene encodes a tumor suppressor protein (pRB) that inhibits
the progression of the cell cycle. This gene is inhibited by the cyclin-dependent kinase
(CDK) complex, especially CDK4, CCND2, and CDK6. The pRB-controlled pathway is
often disrupted due to CDK4/6 amplification or CDKN2A/B loss or mutation [16]. The
G1-S phase cell cycle checkpoint is mainly controlled by the kinases pathway, and thus
improper formation of the cyclin D-1 complexes with CDK 4/6 leads to the promotion of
cell-proliferation-involved carcinogenesis. Homozygous deletion of the CDKN2A-p16INK4α

gene in chromosome 9p is one of the three genetic traits of primary GB; in fact, activation of
CDK4 is commonly observed in GB cells leading to cell invasion and stemness [394–397].
Three CDK4/6 inhibitors, including palbociclib, ribociclib and abemaciclib, have been
approved by the FDA as monotherapy for treating breast cancers and are under clinical in-
vestigation in GB patients (Table 3) [398]. Palbociclib enhanced radiotherapy cytotoxicity in
GB xenografts with RB expression [395] but failed to provide a benefit (NCT01227434) [399].
Ribociclib monotherapy exhibited good CNS penetration but showed limited clinical effi-
cacy in patients with rGB, a fact that was attributed to upregulation of the PI3K/mTOR
pathway [400]. A recent pharmacokinetic study [398] shows that abemaciclib penetrated
into the human brain to a larger extent and was retained longer, thus representing a better
treatment option. In GB xenograft models, combined treatment with CDK4/6 inhibitor
and oncolytic virus (VSV∆51) induced severe DNA damage stress, amplified oncolysis,
inhibited tumor growth, and prolonged survival [401]. In the phase II trial (NCT02977780),
the addition of abemaciclib to the SOC treatment in ndGB patients was well tolerated and
prolonged PFS, but there was no evidence of an OS improvement compared to standard
radio-chemotherapy [402,403].

Table 3. Selected phase II/II trials for target therapies in GB.

Trial Number Treatment Assayed Trial Information Outcomes Ref.

NCT02977780
Abemaciclib+SOC
Neratinib+SOC
CC-115+SOC

Phase II in ndGB
with -MGMT

Addition of abemaciclib or neratinib to the SOC was well-tolerated, but
CC-115 associated with ≥grade 3 related toxicities in 58% of patients. An

increase in mPFS was observed in the first two treatments and lack of
efficacy in CC-115. None of the therapies demonstrated a benefit in OS.

[402,403]

NCT00977431
Afatinib
TMZ
Afatinib+TMZ

Phase II in rGB

Afatinib monotherapy had limited activity, but it increased mPFS in
patients overexpressing EGFR or expressing EGFRvIII. Addition of

afatinib to TMZ did not improve PFS6 rate (3% vs. 23% vs. 10%) or mPFS.
There were no significant differences in OS across the study arms.

[404]

NCT03158389
Alectinib, Idasanutlin,
Palbociclib, Vismodegib,
Temsirolimus

Phase I/IIa in ndGB
with -MGMT

The N2M2 trial is investigating a number of different targeted
compounds in combination with RT. No results have been published yet. [405]

NCT02029573 Atorvastatin+SOC Phase II in ndGB Atorvastatin did not improve PFS6. High LDL levels seem to be
associated with poor outcomes. [406]

NCT03291314 Axitinib+avelumab Phase II in rGB
Efficacy of the combination is similar to axitinib monotherapy. Addition
of avelumab does not show synergistic efficacy. Axitinib confirms its role

as a potent corticoid-sparing option to control tumor-related edema.
[407]

NCT01562197 Axitinib
Axitinib+lomustine Phase II for rGB

Axitinib’s tolerability and clinical outcomes match those of BEV.
However, axitinib offers advantages like oral dosing and a short half-life
for quick reversibility in urgent interventions. Combined treatment had

no benefits. mPFS6 was 26% vs. 17%.

[408]

NCT00967330 BEV during RT followed by
BEV+IRI

Phase II in ndGB
with -MGMT

BEV+ Irinotecan did not alter QoL and resulted in a superior PFS6 rate
and mPFS compared with TMZ. [409]

NCT00345163 BEV+Irinotecan
BEV

Randomized phase
II in rGB

BEV alone or in combination with irinotecan, was well tolerated and
active in rGB. Estimated PFS6 rates were 42.6% and 50.3%, respectively;

the mOS were 9.2 months and 8.7 months, respectively.
[410]

NCT00817284 BEV+irinotecan+SOC
BEV+SOC

Randomized phase
II in ndGB

Results did not indicate any benefit from BEV-irinotecan-SOC in first-line
therapy as opposed to BEV-SOC in terms of response and PFS. [411]

NCT00979017 BEV+irinotecan+TMZ in
combination with RT

Phase II for
unresectable GB

Combined treatment was tolerable leading to radiographic response in
unresectable and/or subtotally resected GB. [412]
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Table 3. Cont.

Trial Number Treatment Assayed Trial Information Outcomes Ref.

NCT01290939
BEV+lomustine
BEV
Lomustine

Phase III in rGB

BEV+lomustine improved mOS (12 vs. 8 vs. 8 months) compared to
either monotherapy in the prior phase II trial. In this study, despite a

somewhat prolonged PFS, there was no mOS advantage over lomustine
alone (9.1 vs. 8.1 months).

[377,387]

NCT01632228 BEV+onartuzumab Phase II in rGB No survival benefits were evidenced with the combined treatment. mOS
was 8.8 months (BEV+onartuzumab) vs. 12.6 months (BEV+placebo). [413]

NCT01730950 BEV+RT Randomized phase
II in rGB

Re-irradiation was shown to be safe and well tolerated. BEV + RT
improved PFS6 rate but no difference in OS was found. [414]

NCT00667394 BEV+tandutinib Phase II in rGB. The efficacy of combination therapy was comparable to that of BEV
monotherapy, but more toxic. [415]

NCT00883298 BEV+TMZ Phase II in rGB
Combined treatment showed efficacy and was well tolerated. The PFS6
and 12-month OS rates were 62.5% and 31.3%, respectively. mOS was

37.1 weeks. The benefits were similar to BEV monotherapy.
[416]

NCT01738646 BEV+vorinostat Phase II in recurrent
grade 4 glioma

Combined treatment was well tolerated, but not improved PFS6 or mOS
vs. BEV monotherapy. [217]

NCT01339052 Buparlisib
Phase II in rGB with

PI3K
pathway-activated

Although buparlisib achieved significant brain penetration, it had
minimal efficacy in patients with PI3K-activated rGB. [417]

NCT01349660 Buparlisib+BEV
Phase II in

relapsed/refractory
GB

The combination was poorly tolerated, with frequent dose interruptions,
and showed no greater efficacy than BEV alone [418]

NCT01934361 Buparlisib+carboplatin
Buparlisib+lomustine

Randomized phase
Ib/II in rGB

None of the combinations significantly improved the antitumor activity
compared with historical data on single-agent carboplatin or lomustine. [419]

NCT01870726 Buparlisib+INC280 Phase Ib/II in
PTEN-deficient GB

No improvement was evidenced in the
combined treatment. [420]

NCT01062425 Cediranib
Placebo

Randomized phase
II in ndGB

PFS6 was 46.6% vs. 24.5% (placebo). No difference in OS between the 2
arms. Cediranib had more AEs (≥ 3)

than placebo.
[421]

NCT00777153
Cediranib
Cediranib+lomustine
Lomustine

Phase III in rGB

Cediranib monotherapy or in combination did not improve PFS or mOS
(8.0, 9.4, and 9.8 months, for each group). Cediranib had

corticosteroid-sparing effects and clinical activity on deterioration of
neurologic function.

[422]

NCT00311857 Cetuximab+SOC Phase I/II in ndGB
Early data from trimodal therapy indicated feasibility without an

increased toxicity profile. OS was 87% at 12 months. +MGMT was not
associated with longer OS.

[423]

NCT00463073 Cetuximab+BEV+
irinotecan Phase II for rGB

Patients with an EGFR amplification lacking EGFRvIII expression had a
significantly superior PFS (3.03 vs. 1.63 months) and OS (5.57 vs. 3.97
months). However, the efficacy was not superior to the combination

BEV+irinotecan.

[424,425]

NCT02974621 Cediranib+olaparib
BEV

Randomized phase
II for rGB.

Treatment with cediranib + olaparib failed to increase PFS and OS in rGB
patients. [426]

NCT01520870 Dacomitinib
Phase II in rGB with
EGFR amplification

or EGFRvIII

Dacomitinib had minimal activity but, a subset of patients (4.1%)
experienced a durable, clinically meaningful benefit. [427]

NCT00423735 Dasatinib
Phase II in

target-selected
patients with rGB

Dasatinib was ineffective in rGB [428]

NCT02343406
Depatux-M+TMZ
Depatux-M
Lomustine or TMZ

Randomized phase
II in rGB with EGFR

amplification

OS: 19.8% vs. 5.2% (control group) vs. 10% (depatux-M). Depatux-M had
no impact on QoL, except for more visual disorders. [429]

NCT02573324 Depatux-M+SOC
Phase III in ndGB

with EGFR
amplification

Combined treatment enhanced PFS (8.0 vs. 6.3 months), particularly
among patients with EGFRvIII-mutant (8.3 vs. 5.9 months) or -MGM
tumors. However, no significant OS benefits were evidenced. Most of

depatux-M-treated patients had corneal epitheliopathy (61% grade 3–4).

[430]

NCT01753713 Dovitinib Phase II in rGB
Dovitinib was not efficacious in prolonging the PFS irrespective of prior

treatment with
anti-angiogenic therapy.

[431]

NCT02034110 Dabrafenib+trametinib
Phase II in

BRAFV600E-rare
cancers

Dabrafenib plus trametinib showed clinically meaningful activity (mOS
13.7 months) in high-grade glioma patients with BRAFV600E mutation.

Limited significance of result due to the small sample.
[432]

NCT00295815 Enzastaurin
Lomustine Phase III in rGB Enzastaurin was well tolerated and had a better hematologic toxicity

profile than Lomustine but did not show superior efficacy. [433]

NCT00337883 Erlotinib

Phase II in rGB
assessing if response

was related to
concomitant use of

EIAEDs

Erlotinib had limited activity. However, in the EIAED subgroup, the PFS6
reached or exceeded historical survival values. [434]
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Table 3. Cont.

Trial Number Treatment Assayed Trial Information Outcomes Ref.

NCT00086879 Erlotinib
Control: TMZ or BCNU

Phase II in rGB Erlotinib had insufficient single-agent activity. PFS6: 11.4% vs. 24.1% in
the control arm. Both, PFS and OS were worse in the patients with

EGFRvIII in the erlotinib arm.
[435]

NCT00671970 Erlotinib+BEV

Phase II in rGB
based on

VEGF/EGFRvIII
expression

Combined treatment improved mPFS (6.75 vs. 5.5 months) and mOS
(17.0 vs. 6.75 months). The significance of the results is limited due to the

small size of the cohort.
[436]

NCT00720356 Erlotinib+BEV (after
completion of SOC)

Phase II in -MGMT
ndGB or gliosarcoma

The combination of erlotinib and BEV was tolerable but did not meet the
primary endpoint of increased survival. [437]

NCT00187486 Erlotinib+SOC Phase II in ndGB
and gliosarcoma

Erlotinib plus SOC significantly improved OS (19.3 vs. 14.1 months) with
respect to historical controls. There was a strong positive correlation

between +MGMT
and survival.

[438]

NCT00274833 Erlotinib+SOC Phase II in ndGB The addition of erlotinib to SOC was not efficacious and had an
unacceptable toxicity. [439]

NCT0062243 Erlotinib+sirolimus Phase II in rGB Erlotinib plus sirolimus was well tolerated but had negligible activity in
rGB. [440]

NCT00445588 Erlotinib+sorafenib Phase II in
progressive and rGB

Erlotinib and sorafenib have significant pharmacokinetic interactions that
may negatively impact the efficacy of the combination regimen. [441]

NCT01062399 Everolimus+SOC Phase II in ndGB Combining everolimus with conventional SOC leads to increased
toxicities and had no survival benefit [442]

NCT00805961 Everolimus+BEV+SOC Phase II in ndGB

The addition of everolimus and BEV to SOC was feasible, deleting the
maintenance with TMZ. The PFS compared favorably to previous reports
with SOC but was similar to results achieved in other trials in which BEV

was added to first-line treatment.

[443]

NCT00250887 Gefitinib Phase II in rGB Gefitinib reaches the tumor in high concentrations, efficiently
dephosphorylates the target, but does not affect GB growth. [444]

NCT00016991 Gefitinib Phase II in GB at first
relapse

Tolerable and modest activity. 56.6% of the patients suffered therapy
failure within the initial 8-week assessment period. [445]

NCT01310855 Gefitinib+ cediranib
Cediranib

Randomized phase
II in rGB

Combined treatment was tolerated and showed a tendency to improve
PFS and response rates. mOS = 7.2 vs. 5.5 months in cediranib arm.

Incomplete recruitment led to the study being underpowered.
[446]

NCT00014170 Gefitinib+RT Phase II in ndGB
The addition of gefitinib to RT was well tolerated, but there were no

significant differences in PSF as compared to historical control cohorts
treated with RT alone.

[447]

NCT00171938 Imatinib and/or
Hypofractionated RT

Phase II for inopera-
ble/incompletely

resected GB
expressing PDGFR

Imatinib showed no measurable efficacy. [448]

NCT00154375 Imatinib+hydroxyurea
Hydroxyurea

Phase III in TMZ-
resistant progressive

GB

No clinically meaningful differences were found between the two
treatment arms (PFS6 5% vs. 7% in the monotherapy) and the primary

study end point was
not met.

[449]

NCT01268566 MEDI-575 Phase II in rGB MEDI-575 was well tolerated but showed limited clinical activity [450]

NCT00753246 Nimotuzumab+SOC Randomized phase
III in ndG

Nimotuzumab was well tolerated, but its combination with the SOC had
no significant survival benefits (22.3 vs. 19.6 months in SOC) [451]

NCT01227434 Palbociclib
Palbociclib w/o resection

Phase II in
RB1-positive rGB

Palbociclib was administered 7 days prior to resection and the analysis of
the surgical samples demonstrated tumor biologically effective

concentrations, but there was no reduction in RB1 expression or decrease
in cell proliferation, thus lacking efficacy.

[399]

NCT00459381 Pazopanib Phase II in rGB Pazopanib did not prolong mPFS (12 weeks) but showed in situ
biological activity as demonstrated by the radiographic responses. [452]

NCT01051557 Perifosine Phase II in rGB Perifosine is tolerable but ineffective as monotherapy for GB. [453]

NCT02926222 Regorafenib
Lomustine

Randomized phase
II in rGB

mOS was significantly improved in the regorafenib group (7.4 months)
compared with the lomustine group (5.5 months). Despite the criticisms

of the study and the high rate of AEs, the encouraging results led
regorafenib to become the SOC in Italy.

[454]

NCT00621686 Sorafenib+BEV Phase II in rGB No improvement in the outcome of patients. [455]

NCT00597493 Sorafenib+TMZ (LD) Phase II in rGB
Combined treatment was feasible and safe, showing some efficacy.

Patients: 12% partial response, 43% stable disease, 48% progression. PFS6
was 26% and mOS was 7.4 months.

[456]

NCT00544817 Sorafenib+SOC Phase II in ndGB The addition of sorafenib did not improve the efficacy of SOC [457]

NCT00535379 Sunitinib Phase II in rGB
Minimal anti-GB activity and substantial toxicity when sunitinib was

given at higher doses. c-KIT expression in vascular endothelial cells was
associated with improved PFS.

[458]
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Table 3. Cont.

Trial Number Treatment Assayed Trial Information Outcomes Ref.

NCT01100177 Sunitinib Phase II in
non-resectable ndGB No efficacy as monotherapy. [459]

NCT01100177 Sunitinib+SOC Phase II in ndGB
with -MGMT

The addition of sunitinib modestly increased OS. Sunitinib potentially
sensitizes -MGMT GB to adjuvant TMZ. [460]

NCT00022724 Temsirolimus Phase II in rGB Temsirolimus was well tolerated, but there was no evidence of efficacy. [461]

NCT00016328 Temsirolimus Phase II in rGB
Temsirolimus was well tolerated. Radiographic improvement was

observed in 36% of patients and was associated with significantly longer
median time to progression.

[462]

NCT01019434 Temsirolimus Phase II in ndGB
with -MGMT Temsirolimus showed no clinical benefit compared to TMZ. [463]

NCT00800917 Temsirolimus+BEV Phase II in rGB Temsirolimus + BEV treatment was well tolerated but did not improve
BEV monotherapy. [464]

NCT00821080 Vandetanib
Phase I/II in

recurrent malignant
glioma

Vandetanib did not have significant activity in unselected patients with
recurrent malignant glioma. mOS was 6.3 months in the GB arm.

Seizures were an unexpected toxicity of therapy.
[465]

NCT00272350 Vandetanib+SOC Phase II in ndGB or
gliosarcoma

The addition of vandetanib was reasonably well tolerated. However, the
regimen did not prolong OS (16.6 months) compared with SOC (15.9

months).
[466]

NCT01026493 Veliparib
Randomized phase

I/II in TMZ resistant
rGB

Combined treatment did not significantly improve PFS6 in the BEV-naïve
or BEV-failure patients who were previously treated with TMZ. [467]

ACTRN12615000407594Veliparib+SOC
Randomized phase

II in ndGB with
-MGMT

Combined treatment showed no clinical benefit. PFS6: 46% (experimental
arm) vs. 31% in SOC. mOS = 12.7 months (experimental arm) vs. 12.8

months (SOC).
[468]

NCT02152982 Veliparib+SOC Phase II/III in
+MGMT ndGB

There was no significant difference in mOS (28.1 vs. 24.8 months in the
SOC-treated group). [469]

Abbreviations: AEs, adverse events; BCNU, carmustine; BEV, bevacizumab; EGFR, epidermal growth factor
receptor; EIAEDs, CYP3A4 enzyme-inducing antiepileptic drugs; GB, glioblastoma; LD, low dose; +MGMT,
methylated MGMT promoter; -MGMT, unmethylated MGMT promoter; mOS, median overall survival; mPFS,
median progression-free survival; ndGB, new diagnosed glioblastoma; QoL, quality of life; PFS6 progression-free
survival at 6 months; rGB, recurrent glioblastoma; TMZ temozolomide; VEGFR vascular endothelial growth factor
receptor; SOC, standard of care treatment; RT, radiotherapy.

CDKN2A encodes two tumor suppressor proteins INK4a (p16INK4a) and ARF (p14ARF),
which are crucial regulators of the pRB- and p53-dependent growth control, respec-
tively, [470]. One of the most frequent mutations found in GBs is the homozygous deletion
of the p16INK4a/p14ARF/p15INK4b locus [471]. Loss of p14ARF promotes the accumulation
of the p53 repressor, reducing p53 levels, and thereby promoting tumorigenesis. In turn,
P16INK4a inhibits the association of CDK4 and CDK6 with cyclin D. When p16INK4a is
lost, CDK4 and CDK6 associate with cyclin D and participate in the phosphorylation (in-
hibition) of the RB protein, which in turn facilitates the release of E2F (E2 transcription
factor), leading to aberrant cell proliferation. Furthermore, Labuhn et al. found that the
co-deletion of ARF and INK4a increased, accordingly with tumor progression, from low- to
high-grade gliomas, thus suggesting that deletions of this locus may be fundamental for
GB development [471]. A novel piperazine-based benzamide derivative regulates the cell-
cycle-related proteins and influences the p16INK4a-CDK4/6-pRb pathway. It significantly
inhibited the growth, migration, and invasion of human GB cell lines in vitro. The most
interesting aspect of this study is that it could penetrate the BBB with an exceptional brain-
to-plasma ratio of 1.07 in vivo, which was accompanied by a superior anti-GB potency on
the U87-MG-xenograft model without any apparent host toxicity [472].

4.2. TP53/MDM2/P14arfç

TP53 is a gene that encodes the p53 tumor suppressor protein, commonly referred to
as the “Guardian of the Genome” due to its ability to respond to genotoxic stress and to
protect the genome by inducing a variety of biological responses including DNA repair,
cell cycle arrest, and apoptosis [473,474]. The principal regulators of p53 are the proto-
oncogenes MDM2 and ARF (open reading frame). MDM2 is an E3 ubiquitin ligase that
hampers p53 by promoting its ubiquitination and subsequent degradation through the
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proteasome [475]. Conversely, ARF triggers the activation of p53 through direct physical
interaction with MDM2, effectively blocking MDM2’s ability to interact with p53. This
intricate regulation has fueled intensive research efforts and the development of successful
therapeutic approaches to modulate p53 in recent years [476–478]. The p53-ARF-MDM2
pathway is dysregulated in 84% of patients with GB and in 94% of the GB cultured cell
lines [479]. Furthermore, there is a high occurrence of TP53 and ARF co-inactivation
observed in GB [480]. p53 mutations play a particularly significant role in the development
of secondary GBs [470], and the insurgence/progression of GB, as well as the related
chemoresistance, have often been attributed to MDM2 overexpression [481,482].

Activation of p53 has become a pivotal therapeutic objective within this regulatory
trio. In China, starting in 2003, wild-type p53-induced expression within tumor sites has
been utilized as a therapeutic approach for several cancer types [480]. Several pharma-
cological agents have been assayed in order to restore normal p53 functions. One option
is to inhibit the MDM2/p53 complex to prevent degradation of the p53, thus restoring
the function of wild-type p53 in tumors with mutant p53, and inhibiting gain-of-function
mutations in mutant p53 [474,478]. Combining an MDM2 inhibitor with chemotherapy
or radiotherapy, higher levels of p53 can be achieved, leading to the activation of apop-
tosis [482], which is also a viable strategy to overcome resistance to therapy [483,484].
AMG232 (a p53-MDM2 inhibitor) exhibited the most remarkable efficacy against GB stem
cells and spheroids [479,485]. The first molecules reported to interrupt the p53–MDM2
interaction were nutlins (1, 2, and 3) [486]. Preclinical studies show that nutlin-3 induces
apoptosis and cellular senescence in human GB cancer cells and enhances the efficacy
of radiotherapy [487]. TMZ/nutlin3a was synergistic in decreasing growth of wild-type
p53 GB cells. The inhibition of cell growth following exposure to TMZ/nutlin3a corre-
lated with (1) activation of the p53 pathway; (2) downregulation of DNA repair proteins;
(3) persistence of DNA damage; and (4) decreased invasion. In a xenograft model of
intracranial GB, TMZ/nutlin3a treatment resulted in a significant increase in survival com-
pared with single-agent therapy [483]. Nutilin-3 was followed by the development of other
MDM2 inhibitors such as idasanutlin (RG7388, NCT03158389), AMG232 (NCT01723020),
navtemadlin (NCT03107780) and BI-907828 (NCT05376800), which are undergoing clinical
trials for GB and other brain cancers [482].

4.3. PI3K/Akt/mTOR

Constitutive activation and mutation of this [488] signaling pathway play crucial
roles in the development of GB and are present in GSCs [297,489]. As illustrated in
Figure 3, engagement of an extracellular domain with its ligand activates the intracellular
tyrosine kinase that translocates to the plasma membrane resulting in the formation of phos-
phatidylinositol 3,4,5-triphosphate (PIP3), which further stimulates the serine/threonine
kinase phosphoinositide-dependent kinase 1 (PDK1) and protein serine-threonine kinase
(Akt, also known as protein kinase B) activities [490]. The tumor suppressor phosphatase
and tensin homolog deleted from chromosome 10 (PTEN) negatively regulate the PI3K/Akt
pathway by removing the phosphate group from PIP3 to PIP2 [491,492]. PTEN also func-
tions as a lipid phosphatase and in this manner; it is capable of regulating cell polarity,
motility and senescence [493] and, in addition, is involved in modulating innate and adap-
tive immune responses [494]. Akt is a crucial regulator of cell proliferation and survival and
is hyperactivated in many cancers. After Akt phosphorylation and induction, mTOR, as a
downstream target, is activated. In the PI3K pathway, mTOR acts as a downstream effector
and also as an upstream regulator of apoptosis and cell cycle progression. mTOR is a pro-
tein kinase localized in two structurally and functionally distinct multiprotein complexes
known as mTORC1 and mTORC2 [495,496]. Via the PI3K/Akt pathway, growth factors, low
energy status, low oxygen level, and DNA damage converge in mTORC1 activation which,
in turn, influences cell growth and proliferation by promoting biosynthetic pathways,
limiting catabolic processes, and inhibiting autophagy [497,498]. Differently, mTORC2
activation is triggered by growth factors but does not respond to nutrient availability. Once
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activated, mTORC2 drives reorganization of the cytoskeletal structure, motility, cell prolif-
eration, and survival and is also involved in the induction of the Warburg effect [495,499].
Recently, it has been shown that acetyl coenzyme A is used by GB cells to induce RICTOR
acetylation (a core component of the mTORC2 signaling complex) that results in mTORC2
activation. This mechanism creates an autoactivation loop whereby mTORC2 triggers
cell proliferation and growth, bypassing growth factor-activated upstream signaling and
rendering GB cells resistant to receptor tyrosine kinase and mTORC2 inhibitors [500].

The PI3K pathway is altered in about 70% of GBs, either by deletion of PTEN or
amplification of EGFR and/or VEGFR and/or PDGF receptor (PDGFR) [470,501–503].
PTEN is deleted or mutated in 30–60% of GB cases and, consequently, the PI3K signaling
pathway is hyperactivated, which in turn accelerates tumor growth, progression, and
metastasis [504,505].

EGFR alteration, including overexpression or gene amplification, is present in 50–60%
of GBs [9]. EGFR can activate a variety of signal transduction pathways (PI3K/AKT/mTOR,
RAS/RAF/MEK/ERK, JAK/STAT, and PKC)[506–508]. EGFR gene amplification is de-
tected in 57.4% of primary GBs, whereas the EGFR variant III (EGFRvIII) is a characteristic
mutation that emerges later in tumor development [509,510]. EGFRvIII is characterized
by a deletion of 267 amino acids in the extracellular domain, leading to a receptor that
is unable to bind to a ligand yet is constitutively active [511,512]. Together with its im-
paired internalization and degradation, the EGFRvIII enhances the tumorigenic potential
of GB by activating and sustaining mitogenic, anti-apoptotic and pro-invasive signaling
pathways [513]. EGFRvIII is associated with a more aggressive tumor behavior and worse
prognosis and contributes to therapy resistance [514–517]. However, GB samples taken
from the first diagnosis and at the time of progression show that in 80–90% of cases,
the EGFR amplification status is unchanged, whereas the expression of EGFRvIII often
changes [429].

First-generation EGFR inhibitors (gefitinib, erlotinib and lapatinib) were designed to
orthosterically block the ATP/substrate-binding pocket of EGFR (Figure 3) [510]. Although these
inhibitors showed promising results in inhibiting growth and improving survival in preclinical
models, no benefits were observed in clinical trials (Table 3) [435,444,445,518–524]. Erlotinib
as monotherapy or as part of combined treatments has been assayed in multiple trials in
rGB and ndGB (Table 3). It is worth mentioning the study carried out by D’Alessandris
et al. in which, despite not giving positive results, the administration of BEV and erlotinib
was tailored to the molecular profile of the patient’s tumor (VEGF overexpressing tumors
or EGFRvIII tumors, respectively) [436]. A phase II trial showed that ndGB patients
treated with erlotinib plus SOC had significantly improved OS (19.3 vs. 14.1 months in
historical controls) [438], which is surprising because just one year later, another phase II
trial reported that combined treatment not just was ineffective but also had an unacceptable
toxicity [439]. The effectiveness of erlotinib was also assessed in combination with SOC and
with BEV in patients with unmethylated MGMT promoter (Table 3), with a lack of survival
benefits [437,439]. Lapatinib, which binds to EGFR better than erlotinib or gefitinib, showed
a modest inhibition of EGFR achieved in biopsied post-treatment tumors, highlighting the
important limitation of crossing the BBB [525,526].

Second-generation EGFR inhibitors (afatinib and dacomitinib) are designed to bind
irreversibly to the tyrosine kinase domain of EGFR and other ERBB family members [527].
Both showed good safety but limited single-reagent activity in clinical trials in rGB pa-
tients (Table 3) [404,427,528]. Afatinib (with and without TMZ) showed limited activity in
unselected patients, but an increase in the PFS was observed in patients overexpressing
EGFR or expressing EGFRvIII [404]. Dacomitinib (PF-00299804) had limited activity in
rGB with EGFR amplification, although the molecular characterization of four patients
with positive response can be useful to select patients who could benefit from EGFR inhi-
bition [427,528,529]. The third generation of EGFR inhibitors (rociletinib and osimertinib)
was designed to target the T790M resistance mutation, which is responsible for about 50%
of the acquired resistance to the earlier generation of tyrosine kinase inhibitors [530,531].
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Osimertinib (AZD9291) induced GB cell cycle arrest and significantly inhibited colony
formation, migration, and invasion to a greater extent than other EGFR tyrosine kinase
inhibitors, and prolonged survival of orthotopic GB-bearing mice [532]. Compared with
afatinib, AZD9291 demonstrated lower potency in inhibiting EGFRvIII, but it showed
excellent BBB penetration making it an attractive candidate for inhibiting EGFR in GB.
ZD9291 has been approved for the treatment of lung cancer with good safety and toler-
ability. ZD9291/BEV combination was marginally effective in most rGB patients with
simultaneous EGFR amplification and EGFRvIII mutation, but it is interesting to mention
that OS was superior to regorafenib (7.4 months) and a subgroup experienced a long-lasting
meaningful benefit [533]. Several anti-EGFR monoclonal antibodies, such as cetuximab,
GC1118, ABT-806, ABT-414 and nimotuzumab (Table 3 and Figure 3) failed in clinical trials
to increase OS in GB patients [423,424,429,430,451,534,535]. Depatuxizumab mafodotin
(depatux-M, ABT-414) is a tumor-specific antibody–drug conjugate comprising ABT-806
and the toxin monomethyl auristatin-F. It was evaluated in a randomized controlled phase
II trial (NCT02343406) for EGFR-amplified rGB patients, either as a single agent or in
combination with TMZ. The combination therapy demonstrated an improved OS of 19.8%
compared to 5.2% in the control group and 10% in the monotherapy group. These findings
suggest clinical benefits for the Depatux-M + TMZ combination, particularly in patients
relapsing more than 16 weeks after the last TMZ cycle [429]. On the contrary, Depatux-
M + TMZ treatment in ndGB patients had negative outcomes in a phase III clinical trial
(NCT02573324) [430].
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Nimotuzumab is another monoclonal antibody against EGFR that binds more specif-
ically to EGFR overexpressing cells. It showed promising efficacy in a phase II trial for
high-grade glioma, but failed to increase survival in a randomized phase III trial in ndGB
patients [451]. The heterogeneity of GB tumors, in which EGFR deletion and EGFR am-
plificated mutations can coexist in different cells, leads to adverse effects arising from
collateral inhibition of EGFR in normal tissues, as well as to redundant and alternative
compensatory pathways, which represent the most important escape mechanisms that
limit the anti-glioma effects of the different EGFR-targeting drugs [536–539].

Similar to EGFR, the PDGFRs (α and β) are involved in the activation of the PI3K
(Figure 3) [540]. PDGFRα is the second most frequently amplified tyrosine kinase receptor
in GB behind EGFR, and its expression associates to poor prognosis [541]. Once activated,
PDGFR triggers intracellular signaling cascades that regulate cancer cell survival, growth,
and progression. Consequently, dysregulation of PDGF signaling stimulates malignant
transformation of normal neural stem cells into GB cells and enhances GB cell growth and
motility through autocrine signaling [542,543]. No specific PDGFR inhibitor exists; thus,
PDGFR is either targeted by specific anti-PDGFR antibodies (IMC-3G3 and MEDI-575) or
multi-kinase inhibitors (alone or in combination with other chemotherapeutics). MEDI-575
was well tolerated but showed limited activity in rGB [450]. Pazopanib, sorafenib and
sunitinib inhibit both VEGFR and PDGFR but clinical evaluations (Table 3) did not provide
any significant benefit in GB [441,452,456–460,522]. Similar results were obtained in other
clinical trials with dasatinib [428] and imatinib plus hydroxyurea [544]. ERBB3 (Erb-B2
Receptor Tyrosine Kinase 3), IGF1R, and TGFβR2 seem to be responsible for the resistance
to PDGFR inhibitors. Consistent with this notion, a combination of PDGFR inhibitors with
inhibitors targeting either ERBB3 or IGF1R more potently suppressed the growth of GB cells
than each inhibitor alone. ERBB3 has been suggested as potential prognostic marker and
therapeutic target for GB with high PDGFR-α expression [545]. Recently, the PDGFRα/β
inhibitor CP-673451 induced differentiation of GSCs and improved the anti-tumor effects
of TMZ in vivo using a subcutaneous xenograft mouse model [546].

Targeting angiogenesis has been and continues to be an attractive therapeutic modal-
ity in GB. The best-known angiogenesis regulators in GB progression include VEGF, ba-
sic fibroblast growth factor (bFGF), PDGF, EGF, TGFβ, MMPs, and angiopoietins [547].
These angiogenic factors are upregulated in GB by a variety of mechanisms including
oncogene activation, loss of tumor suppressor gene function, and/or hypoxic microen-
vironments [243,548]. Loss of the PTEN signaling leads to VEGFR2 expression in GB
cells, which may contribute to resistance to anti-angiogenic treatments [549], and is also
involved in resistance to TMZ [550]. As was previously mentioned, trials evaluating BEV
(Tables 1 and 3) as monotherapy or in combination with lomustine or TMZ have not im-
proved OS in GB [260,262,387,409,411,412], and lack of discernible benefits was evident in
clinical trials where BEV was combined with erlotinib, temsirolimus, sorafenib, or tandu-
tinib in rGB [415,455,464,519]. Despite these negative results, BEV is widely used for the
treatment of rGB and, in fact, it is often the control arm in many clinical trials. Regorafenib
is an oral multikinase receptor inhibitor that blocks tyrosine kinases active in angiogenesis
(VEGFR1–3 and TIE2) and cancer growth (KIT, RET, RAF1, BRAF and BFRAFV600E), growth
factors (FGFR and PDGFR), and tumor immunity promoters as the colony-stimulating
factor 1 receptor (CSF1R) [370]. Regorafenib has shown superior activity to lomustine in
rGB patients with tumors bearing the methylated MGMT promoter. The REGOMA phase
II randomized trial (NCT02926222) showed a small mOS benefit of regorafenib (7.4 months)
versus lomustine treatment (5.6 months) [454,551]. Age and MGMT methylation appeared
to influence OS, thus suggesting that regorafenib treatment could be an alternative in older
patients [552]. Regorafenib (phase II/III trial, NCT03970447) has not received the EMA
approval, although it is the first-choice treatment for rGB according to Italian Association
of Medical Oncology guidelines [553,554]. Most probably, this is due to some questioned
results of the clinical trial [555]: (1) low OS in the lomustine group (other clinical trials
achieved mOS rates of 8–10 months); (2) the absence of a molecular tumor characteriza-
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tion in 31% of 119 recruited patients; (3) high rate of adverse effects in the regorafenib
arm (grade 3–4 adverse events occurred in 56% of patients) in 40% of patients treated
with lomustine; and (4) the difference in the two groups of study, i.e., two patients with
more favorable prognostics (IDH-mutated GB) were included in the regorafenib group,
whereas no IDH mutation was reported in the lomustine group [454]. Multivariate analysis
confirmed that MAPK pathway mutations predicted a shorter PFS after regorafenib treat-
ment, while EGFR-altered cases had a better response to regorafenib [556]. Further data
from retrospective studies support the efficacy of regorafenib in GB [557], and retrospec-
tive analysis on 54 rGB patients treated with regorafenib reports an even longer mOS of
10.2 months [558]. Five trials of regorafenib are ongoing (NCT04810182, NCT04051606) or
are being recruited (NCT06095375, NCT03970447, NCT06047379) for the treatment of GB.

Despite the importance of angiogenesis in the growth and acquisition of resistance of
GB, none of the anti-angiogenic therapies tested in clinical trials (Table 3), i.e., vandetanib
(NCT00821080) [465], cediranib (NCT01062425, NCT00777153, NCT01310855) [421,446,559],
dovitinib (NCT01753713) [431], and axitinib (NCT01562197, NCT01290939) [407,560], have
managed to improve the benefits obtained of historical controls. Preclinical studies showed
that cediranib sensitizes cancer cells to PARP inhibitors by downregulating homology-
directed DNA repair [561], but cediranib combined with olaparib (NCT02974621) failed
to increase PFS and OS in rGB patients [426]. These results demonstrate that the use of
anti-angiogenic agents (either as first- or second-line treatment, and either as a single
agent or in combination with chemotherapy), while possibly improving quality of life,
does not extend survival in unselected GB patients [230,393,562]. Mechanisms involved in
disappointing results of anti-angiogenic chemotherapy in GB include the compensatory
switch to alternative angiogenic pathways (i.e., the vasculogenesis mentioned before), GSC
transdifferentiation, temporary and dependent treatment dosage and duration until the
vasculature returns to normal, the impact of angiogenesis inhibition on tumor distribution
of other chemotherapeutic agents [563,564], and upregulation of the hypoxia-inducible
protein 2 [244].

Currently, more than 50 PI3K inhibitors have been designed and produced for cancer
treatment, but just a few, such as enzastaurin, BKM120, XL147 and XL765, have entered
into clinical trials for GB treatment [565,566]. Enzastaurin was well tolerated and had an
acceptable hematologic toxicity profile (phase III, NCT00295815), but did not show superior
efficacy than lomustine [433]. Currently, buparlisib (BKM120) is the most frequently tested
panPI3K inhibitor in clinical trials (Table 3) since it is well tolerated and permeable to the
BBB [126]. BKM120 induces G2/M cell cycle arrest and apoptosis in GB cells through
microtubule misalignment and mitotic dysfunction in a p53-dependent manner [567], and
has shown antiproliferative and proapoptotic properties in various GB cell lines, as well
as in xenograft models [568–571]. However, single-agent BKM120 had minimal response
(NCT01339052) in patients with PI3K-activated GB at first or second recurrence. BKM120
had significant brain penetration, and the lack of clinical response was attributed to the
incomplete blockade of the PI3K pathway in tumor tissues [417]. Paradoxically, even though
BKM120 inhibits Akt phosphorylation, patients harboring PTEN loss and/or PIK3CA
mutations were not sensitive to BKM120 treatment [572]. The results of clinical trials
(Table 3) in which BKM120 was part of combined treatments with BEV [418], carboplatin,
lomustine [419], capmatinib [420] did not show benefits vs. monotherapies.

Akt inhibitors or induction of PTEN expression can reverse the resistance and sensitize
cells to chemo- and radiotherapy by impairing DNA repair [573,574]. Akt inhibition
induced by perifosine (Figure 3) enhanced the growth inhibition effects of low-dose heavy-
ion radiation on GB C6 cells, via proliferation inhibition, apoptosis and oxidative stress [575].
However, perifosine faces certain constraints, such as the restricted ability to penetrate the
BBB, which justifies its lack of effectiveness in the clinical trial for rGB (NCT01051557) [453].
The drugs that target Akt, combined with TMZ and fractional radiation, gradually enter
the field of vision because chemoradiotherapy should increase the level of phosphorylated
Akt [574]. To counteract the impact of Akt, which remains persistently active in GB, an
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alternative therapeutic strategy involves targeting mTOR, which is hyperactivated in 90%
of GBs and is associated with poorer prognosis [505].

The pharmacological inhibition of mTOR inhibits GB growth, induces autophagy and
reduces the invasive potential of GSCs [576]. Rapamycin (sirolimus) and its analogs, includ-
ing everolimus (RAD001), temsirolimus (CCL-779), and ridaforolimus (AP23573), exhibit
inhibitory effects on mTORC1 in in vitro and in vivo models and have been extensively
clinically studied (Table 3) for GB treatment [442,462,463,492,577,578]. The effectiveness of
rapamycin was noticed in terms of antitumor activity during a phase I trial involving pa-
tients with rGB [579], but in combination with erlotinib, did not render satisfactory results
due to persistent mTORC2 signaling [440,580]. Combining everolimus with conventional
SOC leads to increased toxicities and has no survival benefit in ndGB [442]. Surprisingly,
these adverse events were not shown when BEV and everolimus were assayed as part
of first-line combined modality therapy for GB (NCT00805961). Here, the PFS compared
favorably to previous reports with SOC and was similar to results achieved in other trials
in which BEV was added to first-line treatment [443]. Third-generation inhibitors of mTOR,
(torin1 and 2, vistusertib (AZD2014) and rapalink-1) bivalently target both mTORC1 and
mTORC2 [581]. In preclinical models, torin2 effectively inhibited both mTOR pathways
in GB, leading to significant suppression of proliferation and migration of GB cells and
GSCs [582]. Torin2 displayed a longer half-life, improved water solubility, and better oral
bioavailability than torin1. Rapalink-1 targets GSCs and acts synergistically with TTFields
to reduce resistance against TMZ [583]. Similarly, vistusertib enhances the radiosensitivity
of GSCs in both in vitro and in vivo conditions [584] and, combined with TMZ, shows
good safety at the tested dose levels in patients with rGB (phase I, NCT02619864) [585].
The clinical lack of efficacy of mTOR inhibitors can be attributed to the activation of par-
allel signaling pathways (MAP/ERK) or adaptive and acquired resistance after an initial
response [586]. Moreover, mTOR inhibitors act both on tumors and on immune cells;
thus, one can hypothesize that the putative anti-tumor efficacy of mTOR inhibitors might
be counterbalanced by their suppressive effects on immune cells, thereby building an
immunosuppressive environment that facilitates tumor progression [497].

Despite strong preclinical evidence for the therapeutic potential of tyrosine kinase inhibitors tar-
geting the PTEN/PI3K/Akt/mTOR pathway, clinical trials conducted over the past 20 years have
not resulted in the desired therapeutic breakthrough for GB [497,503,514,565,587,588].
Brar et al.’s (2022) review focuses on the potential of tyrosine kinase inhibitors in GB therapy
and provides a clear insight into the reasons behind the unsuccessful clinical trials in GB, despite
the success in treating other cancer types [589].

4.4. RAS/RAF/MEK/ERK

The Ras/RAF/MEK/ERK pathway (or MAPK signaling pathway) is hyperactive in vir-
tually all GBs owing to the overexpression of key regulators like EGFR and
PDGFR [546,590]. Activation of the Ras protein occurs through the replacement of GDP by
GTP, initiating the activation of MAP kinases. These kinases phosphorylate and activate
downstream ERK proteins, which translocate to the nucleus and induce transcriptional
pathways, leading to cellular proliferation, survival, and dedifferentiation (Figure 3).

The BRAFV600E missense mutation leads to constitutive activation of the
Ras/Raf/MEK/Erk pathway, promoting tumor cell proliferation, survival and inhibi-
tion of apoptosis [591,592]. GBs with BRAF mutation differ significantly in location, age of
diagnostic, survival rates, and global gene-expression profiles from the rest of GBs [593,594].
Several cases of impressive response to BRAFV600E inhibitors (vemurafenib and dabrafenib)
in GB have been reported, including cases of prolonged disease control [595–598]. The
clinical trial (NCT01524978) showed that vemurafenib treatment had a durable antitumor
activity in some patients with BRAFV600-mutant gliomas, although efficacy seemed to vary
qualitatively by histologic subtype [599].

MEK1/2 are involved in tumor development and apoptosis inhibition, enhancing
DNA damage repair capacity and migration/invasion of GB cells. MEK inhibitors (MEK162,
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trametinib, PD0325901) in GSCs showed antiproliferative and apoptotic cell death and
induced neuronal differentiation in sensitive GSCs. Trametinib decreased tumor growth
and improved survival in GSC xenografts [600]. Targeting multiple RAS effector pathways
with a combination of MEK and mTOR kinase inhibitors is a strategy that has been tested
in melanoma and has provided survival benefits in preclinical models of glioma with
BRAF mutations or KRAS mutations [601]. At present, concurrent use of trametinib and
dabrafenib exhibits notable clinical importance in addressing low-grade gliomas that carry
the BRAFV600E mutation [602]. A recent case report presented the case of a young female
with BRAFV600E GB who had a prolonged response to targeted therapy with dabrafenib
and trametinib [603]. Although the specific BRAFV600E mutation is uncommon in GB
patients, dabrafenib in combination with trametinib showed clinically meaningful activity
in patients with recurrent or refractory BRAFV600E mutated high/low-grade glioma (phase
II, NCT02034110) [432]. The significance of the results is limited because just 31 GB patients
were included in the study, but we completely agree with the conclusions of researchers
that “genetic testing tumor profiling should be introduced early in the management plan to
promptly identify those patients who may be eligible for BRAFV600E-targeted treatment”,
which should be extended to all GB studies.

4.5. PARP Inhibitors

Poly(ADP-ribose) polymerase-1 (PARP-1) facilitates the repair of DNA strand breaks.
PARP-1 mRNA expression is associated with poor survival in GB patients [604]. Since
TMZ induces replicative stress via futile attempts of DNA repair at O6MeG:T mismatches,
and PARP inhibitors (PARPis) enhance stress by compromising the stability of stalled
replication forks, it seems logical to think that PARPis may restore TMZ sensitivity in GB
and GSCs [605–607]. In addition, PARP inhibitors synergize with radiation therapy because
PARP-1 activity increases 500-fold in the presence of DNA damage [608].

Although several promising PARPis have limited distribution across BBB, some of
them reached GB margins in vivo. The brain-to-plasma concentration ratio of veliparib
(ABT-888) is substantially higher than other PARPis such as olaparib, rucaparib, or tala-
zoparib. Veliparib restores sensitivity in TMZ-resistant glioma cells and xenografts [609]
and extends survival in the MGMT-hypermethylated GB model, but is ineffective in
MGMT-unmethylated lines [610]. Unfortunately, veliparib did not increase the efficacy of
TMZ in rGB patients (NCT01026493) [467] and had no clinical benefit in ndGB patients
with hypermethylated (NCT02152982) [469] or unmethylated-MGMT promoter status
(NCT02152982) [468]. The authors support the clinical interest of the last trial, based on
the radiosensitizing effects of veliparib [611], and mention “encouraging responses when
applied to MGMT-unmethylated cell lines” without citing their sources. Unfortunately,
they did not take into consideration the contradictory results previously shown in [610]
that are in agreement with the lack of efficacy of the treatment in this trial. More recently,
Wu et al.’s (2021) results demonstrated that inhibition of PARylation by PARP inhibitor
(talazoparib) reduces MGMT function rendering sensitization to TMZ, providing a ratio-
nale for combining PARP inhibitors to sensitize TMZ in MGMT-unmethylated GB [612].
The potential of veliparib in GB can best be demonstrated in patients with PTEN null
tumors; therefore, clinical trials with veliparib should evaluate these patients as a separate
group [612]. Olaparib combines DNA repair inhibition and impairment of cancer cell
respiration as anticancer activities [613]. In vivo, mice treated with TMZ alone or in combi-
nation with olaparib showed greater survival than those untreated or with the olaparib
monotherapy, as well as a significant decrease in tumor volume; however, there was no
significant difference in survival between both groups [614]. Encouragingly, olaparib was
found to penetrate brain tumors at radiosensitizing concentrations (NCT01390571). A
combination of olaparib and low-dose TMZ was safe and well tolerated (NCT01390571),
yielding PFS6 rates [615,616].

PARPi meriting further clinical study include pamiparib and talazoparib (NCT04740190).
Compared to olaparib, pamiparib demonstrated improved penetration across the BBB in
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mice and the strongest capacity to inhibit brain tumor growth in the xenograft model. EGFR-
amplified GSCs showed remarkable sensitivity to talazoparib treatment, which significantly
suppressed tumor growth in EGFR-amplified subcutaneous models [617]. In the SCLC-
derived TMZ-resistant H209 intracranial xenograft model, the combination of pamiparib
with TMZ overcomes TMZ resistance and shows significant tumor inhibitory effects and a
prolonged life span [618]. These results support the phase I trial (NCT03150862) in which
pamiparib is being assayed in combination with SOC in nd/rGB patients [619].

Bisht et al. have recently reviewed several strategies to increase penetration through
BBB and reverse the resistance to PARPi [620].

4.6. Other Assayed Strategies

In preclinical studies, statins (well known as hypocholesterolemic drugs) exerted
potent anti-GB effects through different mechanisms stemming from the inhibition of the
mevalonate cascade, and resulting in the inhibition of proliferation, migration, invasion, and
in the induction of apoptosis and autophagy [621–625]. Blockade of the Ras/MEK/ERK
and Ras/PI3K/Akt pathways by statins reduces the expression of TGFβ as an angio-
genic factor in GB [626]. Synergistic action with other anticancer drugs has also been
described [627–629]. For instance, atorvastatin augments TMZ’s efficacy in vitro as well as
in GB xenografts via prenylation-dependent inhibition of Ras signaling [630]. However,
atorvastatin did not improve PFS when was evaluated in combination with radiotherapy
and TMZ in GB patients (phase II, NCT02029573) [406].

As tyrosine kinase receptors usually activate similar downstream pathways, in GB
upregulation and/or activation of IGF receptors (IGF-1R and IGF-2R), c-Met, and PDGFRβ
contribute to resistance to EGFR/EGFRvIII inhibition [505]. Approximately 37% of patients
with GB have c-Met overexpression, which plays an important role in promoting invasion
and tumor recurrence [631]. Moreover, concomitant c-Met/VEGFR2 overexpression was
associated with worse overall survival in GB and is linked to resistance to anti-angiogenic
drugs [632]. A phase II study investigated the effect of the monovalent MET inhibitor
onartuzumab plus BEV in rGB, but found no evidence of further clinical benefit [413].
Crizotinib in combination with SOC was safe and resulted in a highly promising efficacy
for ndGB (phase Ib/ NCT02270034), warranting further investigation [633].

IGF-R1 is overexpressed and is necessary for neoplastic transformation in GB. IGF-1R
blockade can inhibit GB growth by different mechanisms, including direct effects on the
tumor cells as well as indirect anti-angiogenic effects [634]. High IGF1R expression is
associated with chemoresistance to TMZ as well as reduced survival, thus suggesting its
possible use as a biomarker [635]. Tyrosine kinase inhibitors, anti-sense oligonucleotides,
or monoclonal antibodies (cixutumumab) targeting the IGF-IR have been clinically tested
to inhibit IGF signaling in GB, with lack of benefits or inconsistent results [636]. On the
contrary, autologous glioma cells treated ex vivo with an antisense oligodeoxynucleotide
targeting the IGF-IR, and re-implanted in patients (phase 1b, NCT02507583), seem to
increase the OS in ndGB-treated patients [637].

Some natural polyphenols (resveratrol, curcumin, silibinin, quercetin, etc.) have
shown antiGB potential and synergize with radio/chemotherapy in vitro. Inhibition of
proliferation, migration, cell invasion and angiogenesis are mechanisms proposed to ex-
plain the potential effect of polyphenols on reducing GB progression [638–643]. Specifically,
metformin and resveratrol have been suggested to inhibit GB cell proliferation, invasion
and migration by downregulating the PI3K/Akt pathway, activating mTOR, and increasing
AMPK phosphorylation [644]. Rutin, epigallocatechin-3-gallate, quercetin and curcumin
have shown synergistic effects with TMZ, whereas curcumin enhances the action of etopo-
side, paclitaxel, cisplatin, camptothecin, and doxorubicin [641,645–647]. Nevertheless,
most of these proposed mechanisms only have in vitro support. It should be pointed out
that, under in vivo conditions, the antitumoral activity of polyphenols is limited due to
their short half-life. Even when polyphenols are administered at high doses, their rapid
metabolism precludes reaching efficacious anti-tumor concentrations in a growing cancer.
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In practice, after an oral dose as high as 100 mg/kg, the peak plasma level of resveratrol was
11 ± 4 µM at 10 min, pterostilbene was 25 ± 6 µM at 10 min, EGCG was 5 ± 2 µM at 30 min,
curcumin was 27 ± 6 µM at 15 min, quercetine was 8 ± 2 µM at 15 min, and genistein was
17 ± 5 µM at 10 min. Plasma levels of all these PFs were <1 µM at 60 min [648]. Exposure
of many different cancer cells (i.e., U87 and LN229 GB cells) to these concentrations for just
1 h does not affect their growth and viability. Our results are supported by Beylerli et al.
who recently pointed out that, although potential beneficial effects exerted by polyphenols
are promising, their efficacy in vivo is strongly limited by their bioavailability and BBB
permeability [646]. Zanotto-Filho et al. showed that resveratrol, a BBB-permeable drug,
improved TMZ/curcumin efficacy in brain-implanted tumors in rats [647]. In these experi-
ments, 50 mg curcumin/kg × day and 10 mg resveratrol/kg × day were administered i.p.,
but it is uncertain at which concentration each polyphenol reached the tumor and for how
long. Based on the above discussion, it is easy to deduce that the tumor levels of in vivo
administered polyphenols will be very low and acting for a short period of time. Facts
that raise many doubts about the real mechanisms involved in the anti-tumor effects. The
effect of curcumin has also been assayed using its intratumoral injection [649]. In this case,
curcumin (100 mg/kg) inhibited U87 xenografts growth by approx. 50%. However, all
the mechanisms proposed for curcumin were studied under in vitro conditions and using
unreliable conditions compared to the in vivo setting. Methods to improve polyphenol
absorption, pharmacokinetics, and efficacy [650–652] are key in order to deliver thera-
peutic concentrations at specific target sites and to increase the antitumoral bioefficacy of
polyphenols in vivo.

5. Immunotherapies

Recent studies show the presence of a variety of immune cell types within the GB TME
with a dominance of immunosuppressive cells, i.e., MDSCs, microglia, M2 macrophages,
FoxP3+ regulatory T cells (Tregs), and antigen-presenting cells (APCs) (including DCs
and bone-marrow-derived macrophages). The presence of M2 macrophages is linked to
an increased GB aggressiveness and plays a pivotal role in the acquisition of chemo and
radioresistance of GB cells [653,654]. In addition, frequently, CD4+ and CD8+ T cells are
functionally deficient, inactivated, or exhausted, often co-expressing immune checkpoint
molecules, i.e., programmed cell death receptor 1 (PD-1), lymphocyte activation gene 3
(LAG3) and T cell immunoglobulin mucin 3 (TIM-3) [655]. GB cells secrete immunosup-
pressive factors such as TGFβ2, PGE-2, IL-1, IL-10 (check Section 2.1) and indoleamine
2,3-dioxygenase (IDO), which work cooperatively to suppress the activity of effector cells
and to evading the anti-tumor immune response [516,656]. As described here below, a
plethora of novel immunotherapies, i.e., checkpoint inhibitors (ICIs), vaccines, T-cell-based
immunotherapies, NK-cell-based therapies, viral therapies, and combined treatments, have
been attempted in order to control GB expansion and/or recurrence.

5.1. Checkpoint Inhibitors (ICIs)

Cytotoxic T lymphocyte antigen 4 (CTLA-4) and programmed cell death 1 (PD-1),
also known as checkpoints, are co-inhibitory receptors expressed on the T cells surface
to promote immunotolerance to self-antigens. GBs (and other cancer cells) overexpress
programmed cell death ligand 1 (PD-L1) which, upon interaction with PD-1, inhibits T cell
proliferation and the T cell receptor (TCR)-dependent IL-2 production and suppresses the
CD4+ and CD8+ response [657]. Thus, PD-L1 overexpression triggers T cell exhaustion and
leads to the immunosuppressive TME that promotes GB progression and correlates with
patients’ worse outcomes [658]. Pro-inflammatory molecules (i.e., IFNs, IL-12 or TGFβ)
and several pro-oncogenic transcription factors (HIF-1α, STAT3, EGFR or PTEN loss) have
been identified as direct regulators of PD-L1 transcription [391,659].

Monoclonal antibodies targeting CTLA-4 (ipilimumab), PD-1 (pembrolizumab,
nivolumab, and cemiplimab) or its associated programmed cell death ligand 1 (PD-L1,
atezolimumab, durvalumab and avelumab), known as checkpoint inhibitors (ICIs), have
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been approved by the FDA for the treatment of various types of cancer [660]. Blockage
of the interaction between PD-1 and PD-L1 may re-establish proper immunity against
GB. Preclinical studies have confirmed this hypothesis and demonstrated a survival ben-
efit in immunocompetent murine models of GB following dual radiation and anti-PD-1
treatment [661]. The results of the phase II/III trials testing ICIs on GB are presented in
Table 4. None of them showed significant increases in mOS. Pembrolizumab was ineffective
as monotherapy and combined with BEV for rGB [662]. CheckMate 143 (NCT02017717)
compared nivolumab with BEV therapy in rGB patients. Although the follow-up of
12 months did not find significant differences between the two arms (42%), the objective
response rate was significant higher with BEV (23.1%) vs. nivolumab (7.8%), disfavoring
the experimental drug [663]. The addition of nivolumab to the SOC has been assayed in
two clinical trials for ndGB patients with or without hypermethylated MGMT promoters
(NCT02617589 and NCT02667587) without evidence of clinical benefits [664,665].

Table 4. Selected phase II/III clinical trials on immunotherapy for GB.

Trial Number Treatment Trial Information Outcome Ref.

Allogenic DC vaccination Phase II for GB or grade 4
astrocytoma

OS (27.6 ± 2.4 months) was 75% greater in the vaccinated
GB group. [666]

NCT01213407
Audencel (tumor
lysate-charged autologous
DCs)+SOC

Randomized phase II in ndGB
Combined treatment had no clinical benefits. PFS (28.4%

vs. 24.5%) and mOS (≈18.3 months) did not differ
significantly between control and vaccine groups.

[667]

NCT01006044 Autologous DCV (in tumor
resection)+SOC Phase II in ndGB

Treatment was feasible and safe. Increase in specific
immune response (proliferation or cytokine production)
was detected in 11/27 evaluated patients. No correlation

between immune response and survival was found. mPFS
and mOS were 12.7 and 23.4 months, respectively.

[668]

NCT03400917 AV-GBM-1 Phase II in ndGB

AV-GBM-1 treatment had numerous AEs affecting the CNS.
mPFS was longer than historical benchmarks, but no mOS

improvement was noted. mPFS and mOS from ITT
enrollment were 10.4 and 16.0 months, respectively.

Two-year OS was 27%.

[669]

NCT00639639 Cytomegalovirus
Pp65+SOC+TMZ (DD) Randomized phase II in ndGB

Patients showed markedly prolonged mPFS and mOS (25.3
and 41,1 months) compared with historical controls (8.0

and 19.2 months). Four patients remained progression-free
5 years later.

[670]

NCT00045968 DCVax-L+SOC (ndGB)
DCVax-L (rGB)

Phase III in progressive ndGB
or rGB

Significant extension of survival compared with matched
external controls.

mOS in ndGB (from randomization): 19.3 vs. 16.5 months
mOS in rGB (from relapse): 13.2 vs. 7.8 months.

[671]

NCT01567202 DCV loaded with GSC
antigens Phase II for ndGB or rGB

Extension in OS to 13.7 months, up from 10.7 months. Low
B7-H4 expression identified subgroups of GB patients

more responsive to treatment.
[672]

NCT02798406 DNX-2401+ pembrolizumab Phase II rGB

DNX-2401 followed by pembrolizumab was well tolerated
with notable survival benefit in selected patients. mOS was
12.5 months; OS at 12 and 18 months was 54.5% and 20.8%,

respectively.

[673,674]

UMIN000001426
(Japan Clinical trials) Fractionated RT+ TMZ+AFT Phase I/II in ndGB

The treatment was well tolerated and resulted in favorable
survival. mPFS, mOS, 2- and 3-year survival rates were: 8.2

months, 22.2 months, 47%, and 38%, respectively.
[675]

UMIN000015995
(Japan Clinical trials) G47∆ Herpes virus Phase II in rGB

G47∆ had a significant survival benefit and good safety
profile. mOS was 20.2 months after G47∆ initiation.

Biopsies revealed increasing numbers of tumor-infiltrating
CD4+/CD8+ lymphocytes and persistent low numbers of

Foxp3+ cells.

[676]

2004-000464-28
(EU Clinical trials)

Ganciclovir+sitimagene
ceradenovec+ SOC

Randomized phase III trial in
ndGB

Ganciclovir and sitimagene ceradenovec after resection can
increase time to death or to re-intervention, although the
treatment did not improve OS (16.32 vs. 14.85 in controls

treated with SOC).

[677]

NCT00293423 HSPPC-96 vaccine Phase II in rGB

HSPPC-96 vaccine showed considerable efficacy in terms
of OS (10.65 months) and PFS (4.78 months). The improved
outcomes were associated with the number of doses and a

higher absolute lymphocyte count.

[678,679]

NCT01814813 HSPPC-96 vaccine+BEV Phase II in rGB
The study failed to demonstrate a survival benefit for

patients treated with HSPPC-96 alone or in combination
with BEV compared to BEV alone.

[680]
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Table 4. Cont.

Trial Number Treatment Trial Information Outcome Ref.

NCT01280552 ICT-107 DCV Phase II in ndGB

PFS increased by 2.2 months, but no significant
improvement in OS was shown. The HLA-A2 patient
group had higher levels of immune response than the

HLA-A1 patient group

[681]

ISRCTN84434175 Ipilimumab+SOC Randomized phase II in ndGB No improvement in PFS or OS was observed with the
addition of ipilimumab to the SOC. [682]

NCT02017717 Nivolumab
BEV Randomized phase III in rGB

mOS (13.4 vs. 14.9 months) was comparable between
nivolumab and BEV in rGB patients. The objective

response rate was higher with BEV (23.1%) vs. nivolumab
(7.8%).

[663]

NCT02550249
Nivolumab administered pre-
and post-surgical
intervention.

Phase II for ndGB or rGB that
required salvage surgical

resection

No obvious survival benefit was substantiated (mPFS and
OS were 4.1 and 7.3 months, respectively, in evaluable
patients,). Notably, 3 patients treated with nivolumab

remained alive after long-term follow-up.

[683]

NCT02667587 Nivolumab+SOC Phase III for ndGB with
+MGMT

Nivolumab added to SOC did not improve mOS (28.9
months vs. 32.1 months). [664]

NCT02617589 Nivolumab+SOC Phase III in ndGB with
-MGMT

Nivolumab added to SOC did not improve mOS (13.4
months vs. 14.9 months). [665]

NCT02337491 Pembrolizumab vs. BEV Phase II in rGB Pembrolizumab was well tolerated but was ineffective as
monotherapy over BEV. [662]

NCT03405792
Pembrolizumab+
TTFields+TMZ
(maintenance)

Phase II in ndGB

The triple combination was well tolerated and
demonstrated promising efficacy. mOS was 24.8 vs. 14.7

months in controls. 2-year OS was 52.4% vs. 12.0% in
controls. Several patients (40%) with measurable disease

achieved a partial to complete response.

[684]

NCT03532295 Retifanlimab+ BEV+
Hypofractionated RT Phase II in rGB

Combined treatment was well-tolerated and had an
encouraging OS of 9 months (71.4%) and PFS at the time of

data cutoff.
[685]

NCT01498328 Rindopepimut+ BEV Randomized phase II in rGB
PFS6 was 27% and the mOS was 12 months, which means a
significant improvement compared with controls (11% and

8.8 months, respectively)
[686]

NCT00458601 Rindopepimut+ SOC Phase II in ndGB expressing
EGFRvIII

Anti-EGFRvIII antibody titers increased ≥4-fold in 85% of
patients. PFS at 8.5 months from diagnosis was 66% and

3-year OS was 26%.
[687]

NCT01480479
Rindopepimut+
SOC
SOC

Randomized phase III in
ndGB expressing EGFRvIII

The addition of rindopepimut to SOC did not increase
mOS, which was ≈20.0 months. [688]

NCT02455557 SurVaxM+SOC Phase IIa in ndGB

No serious AEs were attributable to SurVaxM were shown.
mPFS and mOS were 11.4 and 25.9 months, measured from

first dose of SurVaxM. Specific immune response was
evidenced.

[689]

NCT02414165
Toca 511+ flucytosine
Control: Lomustine, TMZ, or
BEV

Randomized phase II/III in
astrocytoma or rGB

Toca 511 + flucytosine did not improve OS (11.1 vs. 12.22
months in control) or other efficacy end points. [690]

NCT02511405 VB-111+BEV
BEV Randomized phase III in rGB

Previous phase II trial (NCT01260506) showed a significant
improvement for VB-111 as monotherapy. On the contrary,

here, dual administration of VB-111 and BEV failed to
improve outcomes, and 67.5% of the patients developed

grade ≥3 adverse reactions. The differences were
attributed to changes in treatment regimen.

[691,692]

Abbreviations: AEs, adverse events; AFT; autologous formalin-fixed tumor vaccine; BEV, bevacizumab; DCV,
dendritic cell vaccine; EGFRvIII, epidermal growth factor receptor variant III; GB, glioblastoma; +MGMT, methy-
lated MGMT promoter; -MGMT, unmethylated MGMT promoter; mOS, median overall survival; mPFS, median
progression-free survival; ndGB, new diagnosed glioblastoma; QoL, quality of life; PFS6, progression-free survival
at 6 months; rGB, recurrent glioblastoma; TMZ temozolomide; TTFields, tumor treating fields; SOC, standard of
care treatment; RT, radiotherapy.

Two clinical studies have demonstrated enhanced T cell responses and a clinical benefit
with neoadjuvant ICI treatment versus anti-PD-1 adjuvant administration in patients with
rGB [693]. Patients in the neoadjuvant arm received pembrolizumab 14 ± 5 days prior to
surgical resection and patients in the adjuvant arm did not. After surgical resection, both
groups received pembrolizumab every 3 weeks. Compared to only adjuvant PD-1 blockade,
neoadjuvant pembrolizumab confers significant improvement in OS (228.5 days versus
417 days) and PFS (2.4 months versus 3.3 months) [693]. A single-arm phase II clinical trial,
utilizing neoadjuvant nivolumab in GB patients, demonstrated similar intratumoral and
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systemic immune changes (NCT02550249), even though survival advantages could not
be demonstrated [683]. Although the pros and cons of starting neoadjuvant therapy are
hotly contested in clinical trials [694], preclinical studies indicate the remarkable benefit of
starting immunotherapy before surgery [695], which is also in agreement with other clinical
assays evaluating the efficacy of nivolumab and neoadjuvant PD-1 blockade in melanoma,
breast and lung cancers [696,697]. No improvement in PFS or OS (ISRCTN84434175) was
observed with the addition of ipilimumab to SOC in ndGB patients

Co-suppression of CTLA-4 and PD-1 inhibited GB progression in mice models [698,699].
However, the anti-CTLA-4/PD-L1 treatment combination produced grade III-IV toxicities
in GB patients, thus drawing into question its safety [700]. TTFields upregulate different
immune checkpoints (e.g., PD-L1, CTLA-4, or TIGIT, T cell immunoglobulin and ITIM
domain), which supports the possibility that combined treatment may increase the efficacy
of immunotherapy [322–324]. In that sense, two phase II trials are evaluating possible
synergistic effects combining SOC with TTFields plus pembrolizumab (NCT03405792),
and nivolumab plus/minus ipilimumab (NCT03430791) in ndGB. The preliminary re-
sults of NCT03405792 seem promising because of evidence of an improved OS (24.8 vs.
14.7 months) in ndGB patients that received the complete cocktail treatment vs. con-
trols [684].

A recent meta-analysis concludes that a postoperative combination of radiotherapy,
chemotherapy and PD-1 inhibitors may increase antigen cross-presentation activity, pro-
mote tumor-lymphocyte infiltration, and increase the expansion of effector T cells. Further-
more, radiotherapy has a synergistic effect on immunotherapy by decreasing the number
of tumor cells and upregulating the tumor expression of PD-L1, but evidence of survival
benefits is scarce [701]. The limited efficacy of ICIs can be attributed to compensation of
blocked PD-1 function by other checkpoint molecules (i.e., LAG-3) [702]; TAMs, which have
been observed to remove anti-PD1 antibodies bound to CD8+ T cells [703]; and impaired
epigenetics and memory cell formation, resulting in T cell exhaustion [704]. LAG-3 (also
known as CD223) is expressed on activated human T (often co-expressed with PD-1), DCs
and NK cells [705]. Its binding with the major histocompatibility complex (MHC)-II in
APCs promotes apoptosis, decreases proliferation and increases T cell tolerance [705]. The
combination of anti-LAG-3 and anti-PD-1 in a variety of tumor models has led to synergistic
antitumor efficacy. Harris-Bookman et al. showed that LAG-3 is expressed in human and
mouse GB samples, and either knockdown or anti-LAG-3 antibodies improved survival in a
preclinical GB model and the efficacy of anti-PD-1 treatment [706]. Currently, a phase I trial
(NCT02658981) is underway, testing anti-LAG-3 alone and in combination with anti-PD1 in
rGB patients [707]. Ongoing research is exploring the potential of using ICIs in combination
with other immunotherapies or targeted therapies to further enhance their effectiveness in
treating GB.

5.2. Other Strategies to Avoid Immunosuppression in the GB TME

IDO1, IDO2 and tryptophan 2,3-dioxygenase (TDO2) are “rate-limiting” enzymes
in the kynurenine pathway of Trp catabolism, [708–710]. The resulting Trp metabolites
are involved in immune regulation, energy metabolism and the production of NAD+.
Expression of IDO and TDO enzymes in mammals differs by tissue location and by their
stimuli-dependent induction [711,712]. They are constitutively expressed in a restricted
set of tissues, including placenta, mucosa, and lymphoid organs [713]. IDO1 expression is
increased in many human tissues, and it is overexpressed in the majority of cancers (90% of
glioma cells) by proinflammatory cytokines, such as IFN-γ and TNF-α, or in response to
interaction with tumor-infiltrating T or NK cells [714,715]. IDO1 overexpression in glioma
cells impedes an effective immune response through increased apoptosis of CD8+ T cells
and by converting naïve T cells into inducible immunosuppressive Tregs [716]. TDO is
primarily expressed in the liver and induced by Trp and corticosteroids [717]. Human
IDO2 is a relatively inefficient Trp dioxygenase, and little is known about its link to cancer,
although different pro-inflammatory stimuli induce its expression in melanoma, pancreatic,
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gastric, and brain cancers [712]. TDO and IDO2 show higher tissue specificity and much
lower enzyme activity than IDO1 [718]. A multitude of cancer cells constitutively express
or upregulate IDO1, TDO2, or both, and coerce stromal and tumor-infiltrating immune cells
to express IDO1, thus supporting evasion of immunosurveillance [710,719,720]. Increased
expression and a high kynurenine/Trp ratio in the peripheral blood have been associated with
cancer progression, poor prognosis and lower survival in GB and other cancer patients [721].

Although GB cells typically do not express IDO, it is activated when GB cells are
identified by TILs or NK cells and exposed to important anti-cancer cytokines such as IFN-γ
and TNF-α. Moreover, IDO1 expression is elevated in GSCs compared to GB cells [722,723].
IDO1 overexpression increases the intratumoral accumulation of immunosuppressive Tregs
and decreases OS in experimental mice with brain tumors [708,716,724–726]. Compared to
healthy controls, GB patients showed decreased serum Trp levels and, surprisingly, reduced
Trp metabolite levels. High tumor volume is associated with low systemic metabolite levels,
low systemic kynurenine levels and worse OS [727]. Nevertheless, real-time measurements
of IDO1 activity in GB patients is still a follow-up strategy = pending development.

Cancer cells require Trp to produce energy, and when its availability is low, they
acquire motility in order to search for alternative sources of energy. Trp deprivation in-
hibits proliferation and induces apoptosis in DCs and T cells through the activation of
the serine/threonine-protein kinase GCN-2 (general control non-derepressible 2) [728,729].
GCN-2 activation also inhibits fatty acid production in naïve T cells, which is necessary
for their proliferation and activity [730]. However, in vivo, Trp levels show very low fluc-
tuations in the brain [731], and recent studies have questioned the immunosuppression
attributed to local Trp starvation [732], thus suggesting that accumulation of kynurenines-
associated aryl hydrocarbon receptor (AHR) activation could be the main mechanism
involved in the IDO- or TDO2-induced immunosuppression [710,733,734]. In fact, AHR
expression is associated with immunosuppression in human tumors and AHR blockade
reverses the IDO/TDO-mediated immunosuppression [720]. AHR activation by Trp catabo-
lites promotes TGFβ production in GB [735], generates immune-tolerant Treg cells and
DCs, and suppresses anti-tumor immunity [736]. AHR promotes TGFβ production in
GB [735], induces immune checkpoints such as PD-L1 [737], and induces immunosup-
pression via its effects on T cells [738], DCs [739], macrophages [739], B-cells [740], or
GB-specific TAMs [741], thereby contributing to the generation of an immunosuppres-
sive milieu [742]. Moreover, Trp metabolites like quinolinic acid, 3-hydoxyanthranilic
acid, and 3-hydroxykynurenine have been shown to induce apoptosis in Th1 helper cells,
CD8+ effector T cells, and B cells, while sparing immunosuppressive Th2 helper cells [743].
Dysregulation of kynurenine signaling promotes DNA damage, is associated with brain
edema formation (which facilitates invasion and motility of cancer cells) and induces NAD+

generation in glioma cells (a mechanism involved in the development of resistance to
therapy) [744]. Interestingly, cancer immune suppression was reversed by administration
of PEGylated kynureninase that degrades kynurenine into nontoxic and immunologically
inert metabolites [745].

Proteolysis targeting chimera (PROTAC) technology has been used in the develop-
ment of molecules capable of targeting IDO1 [746], and to date, several IDO1 inhibitors
(PF-06840003, epacadostat, indoximod, navoximod, BGB-5777, 1-methyl-tryptophan, BMS-
986205, GDC-0919) are under clinical trials for GB therapy [724,746,747]. Although the
blockade of IDO as monotherapy has not shown any effect on OS in GB patients, IDO
inhibition can enhance the response to immunotherapy. In a murine preclinical model of
GB, combined treatment with anti-IDO1, anti-CTLA-4, and anti-PD-1 showed synergistic
effects, increasing the antitumor effect compared to monotherapies [748]. The combination
of an IDO1 inhibitor (BGB-5777 or 1-methyl-tryptophan), PD-1 blockade and irradiation
significantly increased OS and resulted in long-term tumor control in 30–40% of mice with
advanced GB [749,750]. Furthermore, radiotherapy response can be enhanced by GDC-0919
by reducing radiotherapy-induced immunosuppression [129], whereas IDO inhibitors have
been shown to synergize with TMZ and radiation therapy [751]. In mice, PF-06840003
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reduced intra-tumoral kynurenic levels and inhibited tumor growth in both monotherapy
and, with increased efficacy, in combination with anti-PDL-1 antibodies [752]. Supported
by these preclinical data, a phase I multicenter clinical trial (NCT02764151) showed that
PF-06840003 was generally well tolerated, had a pharmacodynamic effect and had a durable
clinical benefit in a subset of glioma patients [753]. In mice, epacadostat generated a potent
immune response by altering the abnormal signaling pathways of cancer cells and reducing
kynurenine levels by 90% in both plasma and the tumor tissue [754], and also enhanced the
efficacy of TMZ and ICIs improving the OS [755]. Epacadostat combined with anti-PD-1
antibodies (pembrolizumab or nivolumab) improved the response rate and PFS (>6 months)
in patients with gastric cancer [756], but in GB patients, non-significant improvements in
OS were observed (NCT02327078). Preliminary results of a phase II study (NCT03532295)
in rGB with retifanlimab (PD-1 inhibitor) plus or minus epacadostat in combination with
BEV and hypofractionated radiotherapy suggests that treatment is well tolerated and had
encouraging OS and PFS at the time of data cutoff [685].

Interestingly, advanced age is associated with an increase in brain IDO1 expression,
and this is not reversed by treatment with IDO1 inhibitors [757], which can contribute to
explaining the decreased survival of older GB patients during treatment with immune
checkpoint blockade therapy.

5.3. Vaccines

Vaccines targeting cancer have two types of antigens: tumor-associated antigens
present on health tissues and overexpressed in cancer cells, and tumor-specific antigens
(TSA, earlier described as “neo-antigens”) present only on cancer cells. Obviously, vaccines
based on TSA antigens are more selective and effective, but in highly heterogeneous tumors
such as GB, it is difficult to find them. The lack of specificity and high expression of
epitopes in GB lead to autoimmunity and side effects such as brain inflammation, which
limits the tolerability of vaccine-based strategies [758,759]. Nevertheless, here, we discuss
the results obtained with the development of cellular (tumor cell and DC) and non-cellular
(peptide) vaccines.

5.3.1. Tumor Cell Vaccines

Early vaccines utilized dead or inactivated tumor cells, with very limited success.
To improve the efficacy, gene editing of tumor cells began in the late 1980s, involving
the expression of certain immune-stimulating cytokines, granulocyte macrophage colony-
stimulating factor (GM-CSF) being one of the most studied [760]. Phase I trials were
completed using the latest generation of autologous and allogeneic tumor cell lines secreting
GM-CSF (e.g., K-562, lymphoblast cells isolated from the bone marrow of a 53-year-old
chronic myelogenous leukemia patient). The effectiveness of vaccination depends on T cell
activation and anti-tumor immunity [761]. Additionally, research into the direct injection
of formalin-fixed GB as an antigen for treating GB has been studied. A phase I/IIa trial
of fractionated radiotherapy, TMZ and autologous formalin-fixed tumor vaccine (AFT)
showed a favorable PFS and OS in ndGB patients [675]. IGV-001 consists of autologous
GB cells that are incubated with an antisense oligodeoxynucleotide (IMV-001) targeting
IGF-1R that is implanted in patients’ abdominal for approximately 48 h, as opposed to
other autologous cancer vaccine modalities, which require multiple dosages over weeks.
The results are promising because ndGB patients had a PFS of 9.8 months compared to
6.5 months in historical controls receiving SOC [762]. There is a phase IIb trial (NCT04485949)
opened for accrual for ndGB patients.

5.3.2. Dendritic Cell Vaccines (DCV)

DC vaccination has gathered considerable attention after some encouraging reports
showing acceptable efficacy and safety levels. DCs are powerful APCs capable of inducing
acquired and innate immunity responses. DC vaccine preparation involves the isolation of
CD-14 positive monocytes from the patient, loading of tumor antigens into the immature
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DCs, treatment of the DCs with the cytokines (GM-CSF and IL-4) to induce maturity, and
finally the preparation of human DC vaccines for re-injection into GB patients [763–765].

In a phase I/II prospective non-controlled clinical trial, 37 patients harboring GB
or grade 4 astrocytoma received monthly intradermal injections of allogenic DC vaccine,
starting at the time of first recurrence after surgery. Compared with patients in the Ge-
nomic Data Commons data bank, OS for vaccinated GB patients was 27.6 ± 2.4 months
(vs. 16.3 ± 0.7), and it was 59.5 ± 15.9 for vaccinated astrocytoma grade 4 patients
(vs. 19.8 ± 2.5). Seven vaccinated patients (two IDH-1-mutated and five wild-type) re-
mained alive at the time of the Lepski et al. report [666].

Results of phase II/III trials on DCV in GB are presented in Table 4. ICT-107 is an
autologous DC vaccine targeting six tumor antigens (MAGE-1, HER-2, AIM-2, TRP-2,
gp100, IL-13Rα2) specifically overexpressed in glioma stem cells. Patients receiving ICT-107
(NCT01280552, Table 4) reported no significant increases in mOS (17 vs. 15 months) [681].
Yao et al. assayed a DCV loaded with GSC antigens, and results seem to evidence a slight
increase in mOS (13.7 vs. 10.7 months) when compared with the placebo control [672].
Northwest Biotherapeutics developed the lysate-loaded dendritic cell vaccine (DCVax®-L)
as an adjunct for the treatment of GB [766]. Recently, Liau et al. reported impressive
results of nonrandomized phase III clinical trial (NCT00045968) ndGB and rGB patients
treated intradermally with DCVax®-L plus SOC vs. contemporaneous matched external
control patients treated with SOC [671]. The mOS of the 232 ndGB patients treated with
DCVax®-L was 19.3 vs. 16.5 months in controls. Survival at 48 months was 15.5% vs.
9.9%, and at 60 months 13.0% vs. 5.7% in the treated and control arms, respectively. For
64 patients with rGB, mOS was 13.2 months from relapse in the DCVax®-L group vs.
7.8 months in the external control cohort [671]. Despite these promising results, the study
design received criticisms [767,768], e.g., the criteria adopted for recruiting GB patients
did not consider the latest WHO classifications [253] and there was a lack of evaluation
of IDH mutations. Consequently, it is possible that treated patients with longer survivals
might have less aggressive GBs [767,768]. In fact, other randomized phase II clinical trials
(Table 4, NCT01280552, NCT01213407, NCT03400917) have not shown similar survival
benefits [667,669,681]. Compared to the peptide vaccine, the DC vaccine ensures high
antigen-presenting efficiency with sufficient exogenous costimulatory signals, whereas
DC maturation may be impeded by insufficient costimulatory signals in patients with a
weak primary immune status. This can be one explanation for such different results in
clinical trials.

Cytomegalovirus is a herpes virus with a high detection rate in many primary or
metastatic brain tumors, including GB, whereas it is not detected in surrounding normal
brain tissue [769]. Cytomegalovirus has oncogenic features, and its presence in gliomas
is linked to the increased production of PGE2, IL-10 and B7-H1. PGE2 activates cell
proliferation and angiogenesis, inhibits apoptosis, and activates invasion, and promotes
the formation of the TME [770]. IL-10 recruits M2 macrophages that contribute to TME
immunosuppression and B7-H1 enhances tumor stem cell migration [771]. Many studies
have suggested that anti-cytomegalovirus therapy can restrain glioma progression, and
for this purpose, valganciclovir (inhibits viral DNA duplication) [772,773], dendritic cell
vaccine and adoptive cytomegalovirus-specific T cell therapy (NCT02661282) [774] have
been attempted in GB treatment [770], with promising results. Valganciclovir treatment
is well tolerated and, in combination with SOC, significantly increased ndGB patient
survival (24.1 months vs. 13.1 months in patients with shorter treatment duration and
13.7 months in the control group) [775], and survival of rGB patients with unmethylated
and methylated MGMT promoter genes [776]. Cytomegalovirus-DC vaccines usually target
the pp65 antigen. After the radio/chemotherapeutic treatment for ndGB, this vaccine was
combined with dose-intensive TMZ and GM-CSF, resulting in a significant increase in
survival (Table 4) [670]. A second trial (NCT00639639) compared the effects of tetanus
toxoid preconditioning and a DC vaccine with standard TMZ, and resulted in a 36% survival
rate at 5 years from diagnosis [777,778]. According to the results of these trials, nearly
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one-third of the GB patient population receiving cytomegalovirus-specific DC vaccines
showed exceptional long-term survival. However, these studies have some limitations:
a) consolidative results for the presence of cytomegalovirus within GB are needed; b) the
onco-modulatory role of cytomegalovirus for gliomagenesis is not confirmed; and c) it is
necessary to confirm positive clinical outcomes in larger and randomized studies [779].

The addition of tumor lysate-pulsed autologous DCs vaccination to tumor resection
combined radio-chemotherapy was feasible and safe according to a recent phase II trial
(NCT01006044). An increase in tumor-specific immune response was shown in 11/27 eval-
uated patients, but no correlation between immune response and survival was found [668].
No increase in OS was shown. A new phase II randomized clinical trial (NCT03395587) is
now ongoing for ndGB patients [780].

A recent systematic meta-analysis review concludes that adjuvant DC vaccine is feasi-
ble, overall toxicity is limited and anti-tumoral cytotoxic responses have been demonstrated.
Regimens including DC vaccines led to a significantly longer 1-year and 2-year OS in GB
patients after the induction of an immune response (which is not always observed) [781],
thus suggesting the need for more time to achieve an anti-GB immune response. The results
of these trials robustly support the continued investigation and development of DCV as a
treatment for GB.

5.3.3. Peptide Vaccines

Protein/peptide variations derived from mutated genes are distinct to tumor cells and
absent in normal cells. As a result, they can serve as TSA to induce immune responses
against tumor cells. While only a few mutations are transformed into new epitopes, their
presentation by APCs on the human leukocyte antigen (HLA) can lead to T-cell-based
immunity. However, many potential tumor antigens do not originate from mutations
but arise due to errors or overexpression of normal proteins also present in other tissues.
Targeting such antigens may lead to autoimmunity, resulting in unintended effects like
brain inflammation [782]. The lack of specificity and the high expression of epitopes in GB
pose challenges in the development of peptide vaccine-based strategies. Vaccine adjuvants
refer to immunostimulatory components, given in addition to the antigen, to enhance the
durability and magnitude of the immune response.

IMA950 is an example of this type of vaccine, containing 11 tumor-associated pep-
tides designed to activate specific T cells. It consists of nine HLA-A2-restricted peptides
derived from the surface of GB tumor samples and two HLA-isotype DR-binding peptides
that facilitate the CD4+ T cell response. One advantage of using pre-set antigens in the
vaccine is that it opens up the possibility of neoadjuvant usage, allowing treatment before
tumor samples (through biopsy or surgical resection) become available. To induce the
CD8+ T cell response, the vaccine is combined with polyinosinic-polycytidylic acid stabi-
lized with polylysine and carboxymethylcellulose (poly-ICLC), an immunogenic molecule
(NCT01920191). In this trial, a multipeptide CD8+ and sustained T helper-1 CD4+ T cell
response was observed. For the entire cohort, CD8+ T cell responses to single or multiple
peptides were found in 63.2% and 36.8% of patients, respectively. OS was 19 months for GB
patients [783]. A randomized phase I/II trial called IMA950-106 (NCT03665545) for rGB is
assessing IMA950/Poly-ICLC in combination with pembrolizumab.

Liu et al. characterized the immunogenomic landscape of the aggressive orthotopic GB
CT2A model and tested the efficacy of a CT2A-specific neoantigen vaccine combined with
an anti-PD-L1 blockade combination [784]. In mice bearing CT2A tumors, the neoantigen
vaccine alone did not affect median survival, while immune checkpoint blockade alone
only slightly prolonged median survival from 17.5 to 25 days. However, the combination
resulted in a 60% long-term survival, thus suggesting that the immune checkpoint blockade
facilitates the clonal expansion and activity of neoantigen-specific T cells [784].

In the GAPVAC trial, 16 ndGB patients received two synthesized vaccines: one tar-
geting neoantigens (APVAC2) and the other unmutated peptides (APVAC1), both applied
independently by intradermal injections during TMZ therapy. Both vaccines elicited CD8+
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and CD4+ T cell responses, inducing 84.7% (APVAC2) and 50% (APVAC1) immunogenicity,
and mPFS and OS were encouraging [785]. SurVaxM is a peptide vaccine that is designed
to activate the immune system against survivin, which is highly expressed by GB cells. The
addition of SurVaxM to the SOC (NCT02455557) appeared to be safe and well tolerated and
seemed to have clinical benefits in both methylated and unmethylated ndGB patients [689].

Heat shock protein (HSP) binds TSAs. HSP–peptide complexes can be taken up by
antigen-presenting cells and then trigger both innate and adaptive antitumor responses [786].
Therefore, after a simple purification of HSP–peptide complexes from a patient’s tumor,
these complexes can be directly administered as a personalized polyvalent antitumor vac-
cine. HSP peptide complex-96 (HSPPC-96) is the most widely used to treat gliomas [787].
A trial in rGB patients tested this hypothesis and showed an increase in the mOS, a specific
peripheral immune response to the peptides bound to HSPPC-96, a focal cellular infiltrate
of CD4+ and CD8+ and, in addition, brain biopsies were consistent with specific immune
responses at the tumor site [678,679]. A following phase II trial (NCT01814813) failed to
demonstrate a survival benefit for patients treated with HSPPC-96 alone or in combination
with BEV compared to BEV alone [680]. HSPPC-96 may improve survival for ndGB patients
when combined with SOC (NCT02122822) and warrants further study [788].

Up to now, therapeutic vaccines have generally yielded limited efficacy, despite their
theoretical basis [360,789]. Combining diverse antigens, including tumor-associated anti-
gens, neoantigens, and pathogen-derived antigens, and optimizing vaccine design or
vaccination strategy may help with clinical efficacy improvement [790,791].

5.4. CAR T-Cell Therapy

CAR-T cells are genetically modified T cells (derived from T cells of a patient’s own
blood) that express an extracellular TSA recognition domain (CAR, chimeric antigen re-
ceptor) and an intracellular activation domain to keep T cells constitutively active. The
union between a CAR-T cell and a tumor cell triggers a strong cytotoxic response with
the additional release of different proinflammatory cytokines serving as a defense against
the immunosuppressive TME [792,793]. Recent studies show that multiple intratumoral
(or intraventricular) infusions enhance the persistence of CAR-T cells, their cytotoxic effi-
cacy and the durability of tumor control [794]. Moreover, CAR-T cells can cross the BBB,
providing the additional advantage that can be parenterally administered. In a preclinical
model of orthotopic GB, a complete antitumor response was achieved when an i.v. dose
of anti-GD2 CAR-T cells was administered after focal irradiation. Intravital microscopy
images successfully visualized the localization of CAR-T cells and confirmed apoptosis
of the tumor cells. According to the authors, radiotherapy allows rapid extravasation
and intratumorally expansion of CAR-T cells, leading to a more aggressive and durable
immune response [795]. Interestingly, the cytotoxic activity of CAR-T cells is unaffected by
TTFields, which provides possible compatibility between both treatments [322].

Six CAR-T cell products have been approved by the FDA for 12 different indications,
but none include the GB [796]. Several clinical trials are examining the efficacy of CAR-
T cell treatment for GB, being the most tested targets HER2, EGFRvIII, IL-13Rα2, and
CD70 [794,797]. The expression of human HER2 plays a crucial role in cell proliferation
and motility in cancer cells, and its overexpression in GB is usually associated with an un-
favorable prognosis [798]. One potential strategy to optimize the persistence of adoptively
transferred T cells relies on the expression of CARs in virus-specific T cells (VSTs) [799].
HER2-CAR–VSTs cells persisted after infusion for up to 12 months in 17 HER2-expressing
GB patients. HER2-CAR VST treatment was feasible and safe, and induced transient tumor
reduction and/or tumor necrosis effects that resulted in a clinical benefit in 8 of 17 treated
patients [800]. Despite this encouraging result, and considering the expression of HER2 in
some important organs, the safety of HER2-directed drugs still needs to follow more strict
experiments before it is widely used in clinics [801].

IL13Rα2 is rarely expressed in healthy brain tissue and is overexpressed in up to
50–80% of GBs, being associated with poor prognosis [802,803]. Based on preclinical
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promising results in murine models, a pilot study assayed the efficacy of IL-13Rα2-directed
CD8+ cytotoxic T cells (NCT00730613) following tumor resection in three rGB patients [804].
The results of the study demonstrate the feasibility of repetitive intracranial delivery of
autologous CART cells via an implanted reservoir/catheter system, showing no serious
adverse events. Despite transient regression of the tumor, along with corresponding
increases in cytokines and immune cell levels in the cerebrospinal fluid, patients died,
most likely due to downregulation of the target antigen IL13Rα2 [804]. One of the pa-
tients initially showed a complete remission response after infusion, but had a recurrence
7.5 months later [805].

GD2 is a disialoganglioside overexpressed on tumors of neuroectodermal origin, and
especially in GSCs [806]. Animal studies have shown that CAR-T cells against GD2 can
effectively eliminate GD2-positive human GB tumors implanted orthotopically in mice
without obvious neurotoxicity or off-target effects [807]. GD2-specific fourth-generation
chimeric antigen receptor 4SCAR-T cells have been evaluated in a phase I clinical trial assay
(NCT03170141) and both single and combined infusions of GD2-specific 4SCAR-T cells
were safe and well tolerated in GB patients, with no severe adverse events [805]. More
recently, Liu et al. developed a novel combined immunotherapeutic using genetically engi-
neered PBMC-derived induced neural stem cells (iNSCs) expressing HSV-TK and second-
generation CAR-NK cells against GB. PBMC-derived iNSCsTK possessed tumor-tropism
migration and exhibited considerable anti-tumor activity in the presence of ganciclovir.
In addition, combined with GD2NK92, the therapeutic efficacy of iNSCsTK improved the
tumor-bearing animal model’s median survival [808].

CARs require higher antigen density for full T cell activation. Hence, the main mech-
anisms involved in the disease relapse after CAR-T therapy include downregulation of
target antigen in response to therapy, inadequate T cell potency, intratumoral heterogeneity,
incomplete antigen coverage, upregulation of suppressive ligands (Fas, PD-L1, and other
checkpoint molecules), downregulation of anti-inflammatory cytokines (IL-10 and TGF-β),
an immunosuppressive tumor microenvironment, and secondary effects of palliative treat-
ment with corticosteroids [809–812]. CAR T-cell therapy is relatively safe but is not exempt
from complications. Neurotoxicity is not an infrequent, and potentially fatal complication.
The spectrum of manifestations ranges from delirium and language dysfunction to seizures,
coma, and fulminant cerebral edema [813]. Toxicity is related to the location of the tumor
and may be reversible with intensive supportive care [814].

The expression of inhibitory immune checkpoints, e.g., PD-1, on CAR-T cells has been
associated with a remarkable decrease in their ability to target tumor cells. In this regard,
two approaches have been proposed to repress PD-1 expression, i.e., co-administration of
anti-PD-1 monoclonal antibodies and CAR-T cells, and PD-1 gene editing in the CAR-T
cells [815–817]. Work is underway to combine CAR-T cell therapies with immunomod-
ulators designed to maintain the activity of immune cells or to resist specific immuno-
suppressive mediators. Currently, therapies are being developed using CAR-T cells and
multiple antigens (such as B7-H3, CD147, GD2 or MMP2) and a new approach is studying
the efficacy of combining EGFR CAR-T with pembrolizumab in rGB [818].

5.5. CAR NK-Cell Therapy

CAR NK-cell therapy offers a different approach to targeting cancer. Firstly, NK cells
can recognize tumors composed of heterogeneous cells by employing multiple activating
and inhibitory receptors, even when MHC class I (MHC-I) molecules are diminished or
absent [819]. Secondly, NK cells play a crucial role in attracting conventional type 1 DC
and subsequently CD8+ T cells [820,821]. These functions facilitate the activation of the
cancer immunity cycle, which offers the advantage of overcoming the immunosuppressive
GB tumor microenvironment [822].

NK cells play a key role in eradicating tumor cells that reduce their surface expression
of MHC-I. However, the interaction between MHC-I and killer cell immunoglobulin-
like receptors can inhibit NK cell function, leading to reduced destruction of healthy
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cells [823,824]. Due to these advantageous properties, numerous preclinical and clinical
trials have explored the effectiveness of CAR NK-cell-based immunotherapy against GB,
utilizing NK cells as either autologous or allogeneic therapy [825]. Allogeneic NK cells
offer potential benefits for immune-suppressed patients as they exhibit greater anti-tumor
capabilities against GB when compared to exhausted NK cells derived from patients’
peripheral blood mononuclear cells [826]. Cord blood-derived mononuclear cells also hold
promise as a valuable source for allogeneic NK cell therapy.

Different approaches utilizing CAR NK-cell therapy include adoptive NK cell therapy
(autologous and allogeneic therapy which implies obtaining the patient’s cells and tissues,
expanding them ex vivo, and re-infusing them back into the patient), CAR-NK cell therapy
(using NK cells engineered to express activating CARs), checkpoint blockade therapy
(e.g., combination therapy of NK cells activated by IL-2 and TDK derived from HSP70,
and anti-PD1 antibody), and gene editing NK therapy (e.g., the CRISPR/Cas9 genetic-
editing system widely utilized to genome-edit T cells to disrupt inhibitory genes such as
PD1 and CTLA4) (see [825] for a recent review). CAR-NK cells have advantages in safety
profile compared with CAR-T cells, including reduced risk of graft-versus-host disease,
cytokine release syndrome, and neurotoxicity [827]. Based on the above considerations
and taking into account the inter- and intratumoral heterogeneity of GB, along with its
immunosuppressive microenvironment, CAR NK-cell-based immunotherapy appears a
suitable approach for addressing GB. In this, it is remarkable the pivotal role of NK cells in
inducing anti-tumor responses in CD8+ T cells and other immune cells.

5.6. Multiple Immunotherapeutic Approaches against EGFR

EGFR is also a prevalent molecular target in immunotherapy assays. Rindopepimut
(also known as CDX-110) is a small peptide that mimics the mutated region of EGFRvIII
and was designed to generate humoral and cytotoxic T cell responses against GB cells
expressing this mutation [758]. The combination of rindopepimut with SOC achieved
24-month OS (phase II, NCT00458601), with 50% of patients developing a humoral immune
response to the vaccine. Moreover, 82% of the treated patients showed a loss of EGFRvIII
expression in tumor recurrence, indicating that the vaccine may be effective in targeting
this variant [687]. However, the phase III study (NCT01480479) was interrupted because it
did not confirm an increase in mOS [688]. Rindopepimut + BEV was clinically tested (phase
II, NCT01498328) to treat EGFRvIII-positive rGB [686]. Rindopepimut-treated patients
achieved robust anti-EGFRvIII titers, and the combined treatment significantly enhanced
PFS6 (27% vs. 11%) and mOS (12 vs. 8.8 months) [686]. A recent meta-analysis explored
the efficacy and safety of various BEV combination regimens in patients with rGB and
concluded that BEV + rindopepimut therapy seems to be safer and more effective [828].

In a phase I trial with DC vaccines targeting EGFRvIII, an immune response was
demonstrated with in vitro antigen-specific T cell proliferation and in vivo delayed-type
hypersensitivity responses, without significant adverse effects. Subsequently, trials have
been planned with polyvalent DC vaccines (directed to numerous GB antigen epitopes)
that have demonstrated safety despite the higher risk of autoreactive T cell selection [829].

In C57BL/6 mice, 806-28Z CAR-T cells were able to lyse GL261/EGFRvIII cells in a
dose-dependent manner, even eradicating xenografted tumors at high doses. Cell dose and
granzyme B release were crucial determinants for CAR-T efficacy, even in heterogeneous
GB tumors [830]. A phase I study (NCT02209376) administered CAR-T cells to 10 rGB
patients via i.v. infusion. One of the patients remained alive for over 18 months without
receiving additional therapy. Nonserious toxicities were observed and trafficking of CART-
EGFRvIII cells to regions of active GB was shown in seven treated patients, but with a
subsequent antigen decrease in five of them accompanied by an increased and robust
expression of immunosuppressive markers such as FOXP3 and PD-L, and infiltration by
Tregs, which pointed out the induced adaptive resistance to CART-EGFRvIII cells [831].
Mice treated with dose-intensified TMZ, before administration of CAR-T targeting the
EGFRvIII antigen, survived for a median of 174.5 days, compared to 69.5 days in mice
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pretreated with standard doses of TMZ. On this basis, a phase I trial (NCT02664363) in
patients with ndGB incorporating dose-intensified TMZ, as a preconditioning regimen
prior to CAR immunotherapy, was initiated in 2018 [832].

In addition, strategies assessing co-administration of vaccines and CAR-T engineered
with EGFRvIII and PD-1 are being assayed (NCT04003649, NCT04201873, NCT02529072,
NCT02287428). Tandem CAR-T cell targeting simultaneously EGFRvIII and IL-13Rα2
is now in preclinical investigation, with an activity superior to their monospecific CAR
counterparts in heterogeneous GB cell populations [833]. Bispecific T cell engagers (BiTEs)
are bispecific antibodies that redirect T cells to target antigen-expressing tumors. BiTE-
secreting T cells have been proposed as a valuable therapy in solid tumors, with distinct
properties in mono- or multivalent strategies incorporating chimeric antigen receptor CAR-
T cells [834]. Combining BiTEs with CAR-T cell therapy has been tested in preclinical
models to avoid antigen-negative relapse. Choi et al. [34] used T cells transduced with an
EGFRvIII-targeted CAR construct co-expressing BiTEs against EGFR. These BiTEs bound
to CD3 on T cells and EGFR simultaneously, allowing the CAR-T cells to target tumor
cells expressing EGFRvIII, EGFR, or both. Although EGFRvIII-targeted CAR-T cells were
unable to thoroughly treat GB tumors heterogeneous for EGFRvIII expression, CAR-T cells
secreting BiTE molecules were able to eliminate murine GB models after their intracranial
administration [805].

5.7. Viral Therapies

GB is particularly suitable for viral therapy to overcome TME immunosuppression
and growth being surrounded mainly by post-mitotic cells, which allows the use of viruses
that require active cell cycles for replication [835]. Viruses used to treat tumors can be di-
vided into two categories: (1) oncolytic viruses (OVs) with the natural capacity to replicate
only in cancer cells (reoviruses, and Newcastle disease viruses) or that are vulnerable to
genetic manipulation that increases their tumor selectivity (adenoviruses, herpes simplex
viruses, vaccina viruses, polioviruses, and measles viruses); and (2) viral vectors with a
low replication rate, which are used as vehicles for other therapeutic genes [836]. Any
of the viral categories can stimulate an immune response without the expression of an
immunomodulatory transgene. This is most notable for OVs, which cause lytic tumor
cell death and induce the release of tumor-associated antigens and damage-related molec-
ular patterns that lead to the activation of innate and adaptive immune responses [837].
Immunogenic cell death is characterized by an immune response that indirectly kills the
cancer cells using different mechanisms, i.e., apoptosis, necrosis, and autophagy [838].
Moreover, to potentiate anti-cancer immunity, some OVs have been genetically engineered
to express different cytokines (GM-CSF, IL12, and IL15), to enhance antigen presentation,
or to elicit a more effective immune response against cancer cells [839,840]. The immunos-
timulatory ability of OVs allows the transformation of “cold tumors” (i.e., those with an
immunosuppressive microenvironment) into immune-responsive “hot tumors” [841], and,
as a consequence, OVs function not only as direct cancer-killing agents but also as active
anticancer vaccines [842].

Genetic modification can have other purposes, such as to enhance the safety of OVs, to
improve the tropism of OVs to cancer cells, and to enhance the anti-tumor effect of OVs [843].
For instance, the genetically attenuated and modified ZIKV strain selectively targets GSCs
and exhibits good oncolytic activity [844]. Engineered OVs can also introduce specific
therapeutic genes including tumor-suppressor genes (i.e., p53, [845]), anti-angiogenic
genes [846], and immunostimulatory genes [847], or induce PI3K inhibition [848,849] in
GB cells to execute their expression. Administration of the virus must be efficient and
safe for successful therapy. The challenge of transporting viruses to the CNS, crossing
the BBB, involves potential elimination by the immune system and also limitations on
the dose of viruses [850]. The ability to administer a virus systemically could improve
efficacy by reaching distant areas where the tumor has spread, although, in the case
of GB metastases, these rarely appear [851]. To circumvent the BBB, other promising
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techniques for drug delivery have been designed such as convection-enhanced delivery
(CED) that uses a pressure gradient in a catheter to transfer therapeutic compounds to the
interstitial spaces of the CNS [852,853]. OVs can also be administered intra-arterially and
increase BBB permeability with focused ultrasounds [854] or using an osmotic agent such
as mannitol [855] (see also Figure 4).

Due to the high transfection efficiency and the development of vector engineering tech-
niques, OVs have been widely used and showed promising results in preclinical and clinical
studies in GB (see [843,856,857] for a recent review). In addition, OVs have many advantages
over conventional immunotherapies, including precise targeting, effective killing rates, and min-
imal adverse reactions [858]. To date, several clinical trials have been carried out for oncolytic
viruses to improve the treatment of GB [836,843,857]. Examples include adenovirus [859–861],
herpes simplex virus [862–864], reovirus [865,866], parvovirus [867], measles virus [868–
870], poliovirus [853,871], vaccinia virus [872] and Newcastle disease virus [873]. In ad-
dition, other ongoing or completed trials have used the following: (1) modified HSV
constructs such as G207 (NCT00028158, NCT03911388 and NCT02457845), HSV-1716
(NCT02031965), MVR-C252 (NCT05095441), M032 (NCT02062827), C134 (NCT03657576);
and (2) genetically engineered oncolytic adenovirus combined with SOC or immune
checkpoint blockade (NCT02197169, NCT01956734, NCT03896568, NCT01582516, and
NCT02798406) [874].
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Impressive results have been obtained in a phase II trial (UMIN000015995) in which
19 patients with residual or rGB received G47∆ (a triple-mutated, third-generation oncolytic
herpes simplex virus type 1) intratumorally for up to six doses. The 1-year OS rate was
84.2%, the mOS 20.2 months after G47∆ initiation and 28.8 months from the initial surgery.
Biopsies revealed an increased number of tumor-infiltrating CD4+/CD8+ lymphocytes and
a decrease in immunosuppressive Foxp3+ cells. This study led to the approval of G47∆ as
the first oncolytic virus in Japan [676]. The immunostimulatory effects of OVs make them
excellent immune adjuvants to enhance chemo- and immunotherapy for GB [875]. Intra-
tumoral DNX-2401 (a tumor-selective oncolytic adenovirus) followed by pembrolizumab
was safe and had a notable survival benefit in rGB patients (NCT02798406) [673,674]. There
is also an additional ongoing phase I study testing DNX-2401 and TMZ combination for
rGB patients in Spain (NCT01956734). A live attenuated poliovirus type 1 vaccine (PVS-
RIPO) has demonstrated promising outcomes in a phase I study (NCT01491893) involving
patients with rGB (20% of long-term survivors) [853]. Currently, PVSRIPO is undergoing
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further investigation in phase II trials for grade IV malignant glioma (NCT02986178) and
in combination with pembrolizumab (NCT04479241) for GB [876].

Despite the promising results of some of the trials presented in Table 4 [673,674,676,689,691],
others failed to demonstrate any benefit in ndGB [677] or rGB patients [690]. The discrepancy
in results can be attributed to a different replication capacity in different hosts, the concomi-
tant or previously administered treatments, or the corticoid coadministration that can limit
the immune response. A recent comprehensive analysis conclude that virotherapy has a
satisfactory safety profile and can improve the 2- and 3-year survival rates compared with
non-virotherapy (2-year survival: 15% vs. 12%; 3-year survival rate: 9% vs. 6%) [877].
Current viral strategies focus on oral treatments and combination therapies [878,879].

5.8. Immunity-Related Adverse Events

ICIs to elicit anti-tumor response can be accompanied by activation of non-specific
immune reactions against antigens expressed by normal tissues. The main immune-related
adverse events include diarrhea, colitis, hepatitis, skin toxicities (pruritus, mucositis, and
maculopapular rash) and endocrinopathies such as hypophysitis and thyroid dysfunc-
tion [880]. To increase the beneficial effects of immunotherapy, it is crucial to detect them
as soon as possible and, at the same time, develop interventional strategies to control their
severity [881].

The side effects of CAR-T treatment for rGB are still acceptable and most patients only
suffer from transient discomfort [801]. One of the most important risks associated with
CAR T cell therapy is on-target off-tumor toxicity. With the exception of EGFRvIII, all of
the GB antigens that are currently being evaluated clinically may be expressed at low levels
in normal tissues, which still can result in substantial toxicity [882,883].

The application of immunotherapy to GB implies a substantial concern for immune-
associated CNS neurologic complications. Acute neurologic complications associated with
oncolytic viruses and other immunotherapy treatments can often be more directly linked
to their intratumoral administration than to a secondary immune-response-related adverse
event [813]. While serious immune-mediated adverse events are rare overall, sometimes
it is difficult to distinguish immune-mediated adverse events from disease progression.
iRANO provides guidelines that can be applied to provide consistent metrics in clinical
trials as well as daily practice [54].

6. Nanotherapies

Invasive (local administration) and noninvasive tools to deliver drugs are continu-
ously evolving to overcome the BBB [23]. As reviewed in previous works [884–887], several
nanostructures, including polymeric nanoparticles (NPs) (e.g., dendrimers, polymer mi-
celles or nanospheres), inorganic NPs (e.g., silica, iron, gold or graphene NPs), lipid-based
NPs (e.g., liposomes, emulsions), nanogels, carbon dots and nano-implants, have been
developed as drug delivery systems and potential diagnostic agents for GB over the past
decades. These elements can contain active anti-GB agents, such as chemotherapeutic/anti-
angiogenic drugs, radio or chemosensitizers, or immune cells along with moieties that
specifically target GB cellular receptors/angiogenic blood vessels or facilitate opening of
the BBB [888,889].

Nanosystems (under 200 nm) may readily cross the BBB and fenestrated arteries,
formed during the angiogenesis process, and accumulate within the tumor. This accu-
mulation may be facilitated due to the weak lymphatic drainage system surrounding the
tumor [887] or actively through the addition of targeting moieties to the surface of the
NP [890]. The surface charge also plays a significant role since the electrostatic interaction
between positively charged NPs and the negative surface charge of the BBB endothelial
cells facilitates NP internalization through adsorptive-mediated endocytosis [891]. How-
ever, positively charged NPs can induce the generation of reactive oxygen species (ROS),
which elevates their toxicity and restricts the in vivo efficacy [892]. Moreover, nanocarriers
can also undergo dispersal throughout the brain and cause damage [893]. To overcome
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these limitations, NP surfaces can include targeting ligands that selectively recognize spe-
cific or overexpressed receptors on tumoral cells (folate, transferrin, neurokinin-1 or v3
integrin receptors) [887]. Many of these targeting ligands can also interact with receptors
present on the BBB, which enhances the ability of these systems to cross the BBB through
receptor-mediated transcytosis. Different targeting ligands (i.e., proteins, peptides and
aptamers) have been utilized to promote active targeting of nanocarriers specifically to
glioma cells [894–896].

Other advantages of NPs include the following: (1) nanoencapsulation increases their
half-life activity, for instance in the case of TMZ-loaded chitosan NPs from 1.8 to 13.4 h [897];
(2) they can incorporate additional fluorescent/MRI/radioactive compounds that allow the
non-invasive monitoring of its biodistribution [898]; (3) they increase hydrophobic drug
solubility while favoring a proper biodistribution and evading the mononuclear phagocyte
system catabolism; (4) they can combine different additional therapeutic approaches, such
as (although not exclusively) radiotherapy sensitization, immune cells stimulation, or
induction of heat/ROS [899].

6.1. In Vivo Imaging, Chemotherapy and Radiotherapy

Iron oxide nanoparticles (IONPs) have demonstrated promising applications as MRI
contrast agents to improve the visualization of intracranial neoplasms [900]. The T2*
images of Ferumoxtran-10 (first-generation ultra-small superparamagnetic IONPs) also
provide complementary information by enhancing the visualization of glioma vascularity,
inflammatory components, and differentiation from radiation necrotic areas better than
gadolinium-based contrast agents [901]. Other merits of IONPs include their excellent
biocompatibility, biodegradability, and low toxicity. Although they have received regulatory
approval for clinical use, some IONPs (i.e., abdoscan, sinerem, endorem and clariscan) were
recently discontinued by the pharmaceutical industry because of an inconclusive impact
on patient management and for marketing reasons [902].

There is recent interest in magnetic particle imaging, a novel real-time and three-
dimensional whole-body imaging modality with high tracer sensitivity and temporal–
spatial resolution [903]. Iron–platinum particles enhanced the resolution of T2-weighted
MRI images and have magnetic properties that help to guide the nanocomposite to the
tumor location [904]. In vivo fingerprint Raman Spectroscopy can distinguish between
normal brain, tumor tissue and necrosis with accuracies upwards of 90% in patients for
grade 2–4 gliomas [905]. Gold NPs can enhance the Raman signal by several orders of
magnitude because of their plasmonic effect or “surface-enhanced Raman spectroscopy”
phenomenon [906].

A number of anti-cancer drugs have been successfully delivered to the brain using
nanocarriers, i.e., TMZ, paclitaxel, docetaxel, cisplatin, doxorubicin (DOX), vincristine and
others [887]. Several nanoformulations are being developed to overcome the limitations of
TMZ penetration to improve GB treatment [907–909]. Sharma et al. developed a polyami-
doamine (PAMAM) dendrimer-chitosan conjugate that increased TMZ brain concentration
by almost two-fold [910], thus proving that polymer-based nanosystems can increase the
stability of TMZ and control its release. Most of these attempts have been carried out by
administering NPs directly into the tumor site, which is largely inconvenient in practice.
Systemic administration of the dendrimer–rapamycin conjugate (D-Rapa) allows the re-
lease of rapamycin into the TME, improving tumor reduction without significant systemic
toxicity [911].

PEGylated liposomes increased the plasma concentration of TMZ and were also more
concentrated in the brain, suggesting that PEGylation is a good strategy for overcoming
the liver and spleen reticuloendothelial system clearance [912]. Unfortunately, the repeated
intravenous injections of PEGylated liposomes led to “accelerated blood clearance” due to
the induction of anti-PEG antibodies [913], although solid lipid NPs have demonstrated
similar properties to liposomes [914].
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Polymer-based nanosystems have been used to co-encapsulate TMZ with other
chemotherapies including DOX [915], 5-fluoracil [916] and paclitaxel [917]. Behrooz et al.
demonstrated that the designed dendrimer-based pharmaceutical system was able to in-
crease the early apoptosis from 28.2% in the case of the administration of the free drugs by
up to 73.3% with the encapsulated co-delivery [917]. In orthotopic human GB xenograft
models, loco-regional treatment with TMZ-loaded thermogels caused a significant re-
duction in the growth in tumor recurrences with no systemic toxicity, compared to un-
treated controls [918]. Transferrin is overexpressed in proliferating cells and cells that
have undergone malignant transformation [919]. Indeed, targeting the transferrin receptor
has been demonstrated to be a good strategy to increase the crossing of TMZ or other
drugs through the BBB and increase their accumulation in brain tissues [920]. Recently,
Helal et al. showed that TMZ-loaded albumin NPs had good uptake by GL261 and BL6 GB
cells and increased cytotoxicity [921]. Furthermore, when administered i.v., the NP (labeled
with a fluorescent molecule) displayed co-localization with the bioluminescent syngeneic
BL6 intracranial tumor murine model used, thus highlighting the potential efficacy of this
approach to targeting and treating GBs.

Several NP-based strategies have been developed to interfere with VM formation in
GBs, such as (Asn-Gly-Arg) peptide (NGR)-modified liposomes containing epirubicin and
celecoxib. These NPs are able to cross the BBB, accumulating in the tumor areas of the
brain and destroying VM structures in orthotopic xenograft mouse models [922]. Despite
a number of treatment options to target GSCs, most of them have failed in recent clinical
trials [923]. Recent examples of GSC targeting include CD133-directed gold NPs, which
can be utilized as imaging agents for accurate diagnosis of GB [924] or to sensitize GSCs to
radiotherapy [925]. Administration of two chemotherapeutics that act through multiple
non-overlapping and synergistic mechanisms is expected to improve the efficacy of treat-
ment and prevent cancer cell drug resistance. Dual functionalized liposomes demonstrated
~12 and 3.3 fold increase in DOX and erlotinib accumulation in mouse brains, respec-
tively, compared to free drugs, and showed excellent antitumor efficacy by inducing a
~90% GB regression and significantly increasing the median survival along with minimum
toxicity [926].

Inorganic, polymeric, lipidic, and miscellaneous nanoparticles have been developed
for nose-to-brain drug delivery against GB [927]. Intranasal administration of BEV-loaded
poly(lactic-co-glycolic acid) (PLGA) nanoparticles (size < 200 nm) improved BEV bioavail-
ability in the brain, and a reduction in tumor growth was accompanied by a higher
anti-angiogenic effect compared to the free BEV [928]. Intranasal administration of TMZ
(NCT04091503) is being studied in the randomized phase I clinical trial.

Silver (AgNPs), gold (AuNPs) and iron oxide NPs have improved the radiotherapy
efficacy in vitro and in GB xenografts [929–931]. AgNPs showed more powerful radiosen-
sitizing ability than AuNPs leading to a higher rate of apoptotic cell death [930]. More
recently, AgNPs exhibited a higher capacity to radiosensitize hypoxic cells than normoxic
cells, which represents an important advantage in GB treatment [932]. To this end, several
radiosensitizing techniques are currently under investigation. These include the use of
PI3K pathway inhibitors [497,933,934], DNA repair inhibitors [935], hyperthermia [936,937],
aldehyde dehydrogenase inhibitors [938], or high atomic number metal NPs [939,940].

6.2. Gene Therapy

Aptamers are short three-dimensional structures of single-stranded nucleic acids (RNA
or DNA) that bind molecular targets with high affinity. By adopting an unbiased cell-based
variant of the original combinatorial systematic evolution of ligands via the exponential
(SELEX) enrichment procedure, RNA aptamers that selectively bind GB cells and GSCs have
been generated [941,942]. The results prove that they were able to inhibit cell proliferation,
migration and stemness, and were able to strongly reduce tumor growth in vivo, thus
proving that this approach is a promising innovative diagnostic and therapeutic tool
for GB [943,944]. To date, just one clinical trial has assayed aptamers for GB treatment
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(NCT04121455). The first and only clinical trial to date using aptamer NOX-A12 in GB
patients showed promising results and was well tolerated with no dose-limiting toxicities
or treatment-related deaths, which is specifically interesting because it has been assayed
in GB patients with unmethylated promoters [945]. The addition of the CXCL12 inhibitor
NOX-A12 (olaptesed pegol) to SOC and BEV led to an overall OS rate of 83% (n = 5/6) at a
median follow-up of 15 months in ndGB patients, according to preliminary data from an
expansion arm of the phase 1/2 GLORIA trial [945].

RNA interference (RNAi)-based therapies use small RNA oligonucleotides
(21–45 base pairs) of single- or double-stranded RNA molecules to inhibit protein synthe-
sis. A lipopolymeric nanoparticle (LPNP) formulation has shown remarkable affinity for
GSCs and can encapsulate multiple siRNAs for targeted anti-GSCs therapy. When directly
infused into rat brain tumors, LPNP siRNAs efficiently inhibit tumor growth and offer
promising survival benefits. This multiplexed nanomedicine platform holds great potential
as a customized anti-GSCs therapy approach [946]. Despite the potential of RNAi-based
therapy in cancer treatment, clinical limitations include short circulatory stability, rapid
clearance from the body, and inadequate delivery to the brain tumor tissue. To solve
these problems, RNAi-aptamers such as RNAi attached to cell-penetrating peptides and
RNAi CNS-ligand conjugates have been explored for GB therapy [947–949]. Recently,
Wang et al. developed an iron oxide NP system for targeted delivery of siRNAs to suppress
the TMZ-resistance gene MGMT. The sequential intravenous administration of these NPs
and TMZ resulted in increased apoptosis of GSC and GB cells, reduced tumor growth, and
significantly prolonged survival as compared to mice treated with TMZ alone, and this
without significant tissue toxicities [950].

The Clustered Regularly Interspaced Short Palindromic Repeat associated (Cas) nu-
clease 9 (CRISPR-Cas9) system is the latest gene editing technology, which stands out as
the fastest, highly versatile, and most reliable gene editing tool for discovering genetic
alterations, oncogenic targets, and for epigenetic regulation in various cancers, including
GB [951]. It uses an engineered single guide RNA (sgRNA) to direct the Cas9 nucle-
ase to specific DNA sections, leading to double-stranded breaks (DSBs). Induced DSBs
are repaired through non-homologous end joining to generate insertions or deletions or
homology-directed repair of gene modifications at targeted genomic locations [952,953].
CRISPR-Cas 9 gene editing technology offers novel insights into the roles of various genes
in regulating proliferation, stemness, angiogenesis, and invasion of GB cell lines [951].
CRISPR-Cas9 screens are utilized to identify new biomarkers, oncogenic drivers, and
causes of chemotherapy resistance in cancer. In that sense, the CRISPR-Cas9 methodology
was used to identify growth-related subtypes of GB with therapeutical significance [954].
CRISPR-Cas9 has also been used to generate animals carrying genetic mutations to model
human diseases. Based on this, the inactivation of multiple tumor suppressor genes such
as Nf1, P53, Ptch1, and PTEN in mouse brains has facilitated the development of medul-
loblastoma and GB disease models [955,956].

The greatest challenge for CRISPR/Cas9 therapy is how to safely and efficiently deliver
it to target sites in vivo, which is especially difficult in the CNS. To overcome this problem,
CRISPR/Cas9 therapeutic delivery using viral and nonviral-based delivery vehicles is
rapidly expanding [957]. Invasive intra-brain injection of CRISPR-Cas9 complexes con-
tained in viral vectors or NPs often leads to serious side effects, i.e., infection, inflammation,
swelling, and tissue injury [958]. Thus, noninvasive delivery of encapsulated CRISPR-
Cas9 complexes is urgently needed. Rosenblum et al. describe a safe and efficient lipid
nanoparticle (LNP) for the delivery of Cas9 mRNA and sgRNAs. A single intracerebral
injection of CRISPR-LNPs against PLK1 in aggressive orthotopic GB caused tumor cell
apoptosis, inhibited tumor growth by 50%, and improved survival by 30% but showed
diverse adverse effects [959].

BBB-penetrating single CRISPR-Cas9 nanocapsules (~30 nm) have been utilized to
target GB cells [960]. Mutagenesis and immunogenicity are the disadvantages of using
virus-based vectors due to the long-term expression of CRISPR/Cas9 nuclease and sgRNA,
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so a transient delivery system is preferred to editing the genome for therapeutic purposes.
In that sense, nonviral nanoparticle-based vectors have the advantage that they are often
nonimmunogenic and permit bulk production [961].

The i.v. administration of Cas9/sgRNA ribonucleoprotein (RNP) complexes for GB
treatment is limited by poor in vivo stability of Cas9 protein and sgRNA, low BBB per-
meability, and non-specific cell targeting [962]. Ruan et al. developed an angiopep-2
decorated, guanidinium and fluorine functionalized polymeric nanoparticle uploaded with
Cas9/gRNA. The guanidinium and fluorine domains were both capable of interacting
with and stabilizing Cas9/gRNA RNP in blood circulation without impairing its activ-
ity. This NP efficiently crossed the BBB, accumulated in brain tumors, suppressed their
growth, and significantly improved the median survival time of mice bearing orthotopic
GB, while inducing negligible side or off-target effects [960,962]. Liposome-templated hy-
drogel nanoparticles (LHNPs) with a unique core-shell nanostructure have been developed
for the efficient delivery of Cas9 protein and nucleic acids. When combined with minicircle
DNA technology, LHNPs show high effectiveness in cell culture. LHNPs can be tailored
for targeted gene suppression in malignancies, especially brain tumors [963]. Addition-
ally, LHNPs can be produced using an autocatalytic brain-tumor-targeting mechanism,
which allows targeted delivery of CRISPR/Cas9 to brain tumors. Furthermore, LPHNs
nanocarriers loaded with CRISPR/Cas9 plasmids targeting the MGMT gene and modified
with the cyclic arginine-glycine-aspartic-conjugated (cRGD) peptide (which targets the
overexpressed integrin αvβ3 receptors in tumor cells) were successfully synthesized and
demonstrated the ability to protect pCas9/MGMT from enzymatic degradation. In vivo,
microbubble–LPHN–cRGD complexes safely and locally enhanced the permeability of the
BBB under the effect of focused ultrasound radiation. This facilitated the accumulation
of NPs in GB tumors, enhanced the therapeutic effect of TMZ and prolonged survival
in mice with orthotopic GB tumors [964]. Systemic delivery of CRISPR/Cas9 engulfed
into extracellular vesicles showed improved CRISPR-Cas9 loading efficiency, excellent
glioma targeting and penetration potentials, and sensitization of GB cells to radiotherapy,
in preclinical animal models, without off-target side effects [965].

Recently, gene editing techniques targeting the PD-1/PD-L1 pathway have attracted
considerable interest. However, efficient distribution without causing side effects in clinical
trials remains a challenge. To address this, a nanoparticle delivery method, using a low-
molecular-weight polyethylenimine (PEI) lipid shell and a PLGA core to package the PD-L1
gRNA-CRISPR/Cas9 plasmid, has been developed. This system effectively transfected
human U87 glioma cells with PD-L1. The results represent a promising immunotherapy
platform for treating GB [966]. In addition, PEI-coated Fe3O4 NPs have been utilized as a
vehicle for delivering therapeutic siRNA to GB cells. These NPs effectively reduced cell
proliferation and migration [967]. Similar results have been obtained by a dual-sgRNA
CRISPR/Cas9 knockout of PD-L1, thus indicating that intracellular PD-L1 is necessary for
tumor progression [968]. CRISPR/Cas9 technology has also allowed an increase in the
efficacy of CAR immunotherapy in preclinical GB models. Human neutrophils effectively
cross the BBB and display effector immunity against cancer cells, but the short lifespan and
resistance to genome editing of primary neutrophils have limited their broad application
in immunotherapy. Human pluripotent stem cells were engineered with CARs and dif-
ferentiated into CAR-neutrophils that are loaded with rough silica (SiO2) NPs containing
hypoxia-targeting tirapazamine or other drugs, as a dual immunochemotherapy. Systemi-
cally administered CAR-neutrophil@R-SiO2-TPZ NPs first attack external normoxic tumor
cells by forming immunological synapses and killing tumor cells through phagocytosis.
Thereafter, CAR-neutrophils release R-SiO2-TPZ NPs, which are taken up by hypoxic tu-
mor cells. These CAR-neutrophils loaded with drug-containing SiO2 NPs display superior
anti-tumor activities against GB, prolong lifespan in mice bearing orthotopic xenografted
GBs and reduce off-target drug delivery [969].

Existing approaches to deliver CRISPR-Cas9 to the brain include viral vector delivery
(lentivirus and adeno-associated viruses) [970] and nonviral synthetic delivery (gold, lipid,
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and polymers) [971], which have provided a valuable in vivo proof of principle. Neverthe-
less, they are not ideal systems for human clinical applications due to their limited BBB
penetration and lack of specific brain disease site targeting [960,972]. Moreover, viral vector
delivery can generate highly risky immune responses due to off-targeting effects. Current
nonviral delivery systems are limited by their loading efficiency, non-disease targeting,
and problematic clearance out of the brain [973]. These problems are being solved one
by one [960,962,974] and, although most of the aforementioned studies are in preclinical
phases, these novel CRISPR-Cas9–brain delivery systems seem a versatile and potent
platform for treating GB and other brain diseases.

6.3. Nanosystems Used for Immunotherapeutic Purposes

NP platforms can be designed to efficiently deliver tumor antigens, cytokines, lym-
phocytes, and therapeutic agents, stimulating the host’s immune system to effectively
target tumor cells in a safe manner. CCL21 is a cytokine predominantly expressed in
the lymphoid tissue that functions as a chemoattractant for DCs, lymphocytes, and NK
cells. Intratumor injection of CCL21-coupled vault NPs enhanced immune response and
significantly inhibited GB growth in mice models [975]. T cells can be encapsulated in
a poly(ethyleneglycol)-g-chitosan-based degradable hydrogel, which releases T cells to
treat GB effectively [911]. Targeted nanoscale immunoconjugates with poly(β-L-malic acid)
(a natural biopolymer), covalently attaching a-CTLA-4 or a-PD-1, crossed the BBB and
activated a local brain anti-GB immune response. This resulted in an increase in CD8+ T
cells, NK cells and macrophages with a decrease in Tregs in the GB tumor area, and in a
significantly increased survival compared to animals treated with single free anti-CTLA-4
and anti-PD-1 monoclonal antibodies [976]. Other similar studies also support a greater
availability and effectiveness of ICIs when they are incorporated into NPs [977,978]. An
immunosuppressive TME in GB was efficiently altered by nanodiamonds containing dox-
orubicin (Nano-DOX) [979] and biomimetic nanoparticles (CS-I/J@CM NPs) [980], which
stimulated the GB cell immunogenicity and activated a potent anti-GB immune response.

Porous biomaterial scaffolds loaded with GM-CSF have proven to be a promising strat-
egy to increase the chemotactic signal and replenish DCs against GB [760]. Based on this
idea, Qui et al. designed an injectable nanocomposite/hydrogel system (DOX/RAcNPs@GM
gel) consisting of DOX, GM-CSF and imiquimod-loaded antigen-capturing NPs to ac-
tively recruit DCs, aiming to elicit a durable anti-tumor response. To confirm this hy-
pothesis, the authors established an orthotopic GB tumor model that was resected on
day 14 after tumor engraftment, while the remaining cavity was injected with hydrogel.
DOX/RAcNPs synergized with GM-CSF to enhance immune responses, and rats treated
with DOX/RAcNPs@gel displayed reduced tumor volume compared with controls or TMZ-
treated rats, although all animals died within 32 days (a fact attributed to the insufficient
immune infiltrates in the tumor site) [981].

NPs can protect vaccines from degradation and enhance antigen-presenting cell up-
take. Various immunostimulants, such as Toll-like receptor (TLR) agonists and stimulator
of interferon genes (STING) agonists, have been preclinically or clinically tested for in
situ tumor vaccination, but render suboptimal therapeutic efficacy due to poor tumor
retention and rapid systemic dissemination [982]. NvIH is a thermo-responsive hydrogel
co-encapsulated with ICI antibodies and novel polymeric NPs loaded with three immunos-
timulatory agonists for Toll-like receptors 7/8/9 (TLR7/8/9) and STING. In situ vaccination
with a single dose of NvIH reduced TME immunosuppression, enhanced TME antitumor
immune milieu, and elicited systemic antitumor immunity in an orthotopic murine GB
model [983].

6.4. Clinical Trials Using NPs for the Treatment of GB

Although numerous in vivo and in vitro studies have been conducted to prove the
therapeutic efficacy of nanocarrier-based treatments against GB, few clinical trials using
nanotherapies have been completed. NanoTherm® (aminosilane-coated superparamagnetic
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iron oxide NPs) generates heat upon application of an external alternating magnetic field,
inducing thermal ablation of the tumor tissue [178]. Mechanisms involved in hyperthermia-
induced chemo/radiosensitisation include the generation of a transient disruption of the
BBB, increased blood flow, interference with DNA repair mechanisms, heat-induced dam-
age to ATP-binding cassette (ABC) transporters, changes in tumor cell drug metabolism,
and an impaired ability to withstand apoptotic pathways [984]. Accordingly, in a larger
phase II study, NanoTherm® was directly injected intratumorally under stereotactic guid-
ance and then heated using an alternating magnetic field. Treatment was combined with
fractionated stereotactic radiotherapy. This approach doubled the mOS of rGB patients (up
to 13.4 months) and no serious complications were observed [985]. In Europe, these find-
ings led to the approval of NanoTherm® for magnetic hyperthermia therapy application in
combination with RT in patients with rGB.

Most clinical trials are based on liposomal drug-delivery systems. Doxorubicin
liposomal formulations have been tested following the Stupp regimen (NCT00944801,
NCT009448019) without any survival benefit [986,987]. An ongoing phase II trial
(NCT01386580) is evaluating the efficacy of glutathione pegylated liposomal doxorubicin
(2B3-101) as monotherapy and in combination with trastuzumab in patients with solid
tumors and brain metastases or recurrent malignant glioma. SGT-53 is a complex of cationic
liposomes encapsulating a normal human wild-type p53 DNA sequence in a plasmid back-
bone. This complex has been shown to cross the BBB and to deliver the p53 cDNA efficiently
and specifically to the tumor cells. SGT-53 significantly chemo-sensitized human GB cell
lines (U87 and U251) to TMZ in vitro and in vivo. Furthermore, in an intracranial GB tumor
model, two cycles of concurrent treatment with systemically administered SGT-53 and TMZ
inhibited tumor growth, increased apoptosis and, most importantly, significantly prolonged
median survival [988]. Interestingly, combining anti-PD-1 with SGT-53 was very effective
in inhibiting GB growth, inducing tumor cell apoptosis and increasing intratumoral T cell
infiltration, resulting in a significant survival benefit in mice bearing intracranial GB [989].
Unfortunately, the phase II trial (NCT02340156) studying the efficacy of SGT-53 and TMZ
combined treatment in rGB patients was terminated due to an insufficient number of
participants, making it impossible to perform statistical analysis. Ongoing clinical trials
include polysiloxane Gd-Chelates-based NP in combination with radiotherapy and TMZ in
ndGB patients (NCT04881032), and NP albumin-bound rapamycin (ABI-009) alone or in
combination with BEV, TMZ, or other drugs and radiation therapy in rGB and high-stage
ndGB patients (NCT03463265); however, the results are not available yet.

siRNA oligonucleotides arranged on the surface of small spherical AuNPs (NU-0129)
were designed to target the oncogene BCL2L12. After intravenous administration, NU-0129
uptake into glioma cells correlated with a reduction in tumor-associated Bcl2L12 protein
expression, demonstrating the potential of nanoconjugates as a potential brain-penetrant
precision medicine [990].

7. Non-Ionizing Energies in GB Therapy

In addition to the use of TTFields, which are part of the SOC for GBs, other types of non-
ionizing energies (described here below) are also being developed for therapeutic purposes.

7.1. Laser Interstitial Thermal Therapy

Laser interstitial thermal therapy (LITT) represents a cutting-edge approach for treat-
ing brain tumors that are difficult to access through conventional surgery. By inserting a
laser catheter into the tumor, LITT may eradicate the tumor by raising its temperature to
lethal levels. The catheter implantation process utilizes state-of-the-art computer imaging
techniques, ensuring precision and accuracy. Real-time MRI guides the laser through the
catheter, enabling neurosurgeons to target the thermal energy solely at the tumor site to
minimize damage to surrounding healthy brain tissue. One of the most notable advan-
tages of LITT is its minimally invasive nature and that most patients can return home
the day after treatment and quickly resume their normal activities. LITT also offers hope
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to patients who have not responded to stereotactic radiosurgery or are suffering from
radiation necrosis [991,992]. A single-center study [993] and a prospective multicenter reg-
istry [994] conclude that LITT can safely reduce intracranial tumor burden in GB patients
who have exhausted other adjuvant therapies or are poor candidates for conventional
resection techniques. A statistically significant OS advantage was observed in ndGB pa-
tients receiving both radiation and chemotherapy within 12 weeks of LITT (16.14 months)
versus those who received only one treatment modality or no treatment following LITT
(5.36 months) [995]. New neurologic deficits and postprocedural edema (normally resolved
with steroid treatment) are the most frequently reported adverse events after LITT [994].

7.2. Focused Ultrasound (LIFU and HIFU)

Focused ultrasound is an early-stage, therapeutic technology that offers possible
adjuvant or alternative treatment strategies for GB [996]. This groundbreaking approach
involves precisely targeting deep areas of the brain with beams of ultrasonic energy without
the need for incisions. This being said, it is important to differentiate between low- and
high-intensity (100–10,000 W/cm2) focused ultrasounds (LIFUs and HIFUs). LIFU disrupt
the BBB or blood tumor barriers and enhance the uptake of therapeutic agents in the CNS.
HIFU can cause thermoablation and mechanical destruction of the tumor. Both can be
combined with radiotherapy [997,998].

The advantages of focused ultrasounds over current brain tumor treatments are
considerable: (1) eliminating concerns related to surgical wound healing and the risk of
infection, making it a safer option for patients; (2) precise targeting; (3) avoiding ionizing
radiation exposure; (4) enhancing chemotherapy delivery by temporarily opening the BBB;
and (5) their non-invasive nature allows for repeat treatments [854,997].

HIFUs produce frictional heat by causing the vibration of molecules within the tissue.
The absorbed energy can quickly elevate the temperature to over 55 ◦C, which causes
protein denaturation, DNA fragmentation and coagulative necrosis when maintained
for just a few seconds [999,1000]. This thermoablative process further increases tumor
sensitivity to radiation by damaging DNA repair enzymes [997]. To date, clinical data
are limited to case reports such as those first reported by Coluccia et al. using MRI-
guided HIFUs to achieve tumor ablation without inducing neurological deficits or other
adverse effects in a patient with rGB [1001]. Two phase I clinical trials (NCT01473485 and
NCT00147056) have evaluated the safety and efficacy of transcranial MRgFUS (magnetic
resonance-guided focused ultrasounds) thermoablation for the treatment of either brain
metastasis or recurrent glioma, but the results have not been published. MacDonell et al.
have recently proposed an interstitial HIFU device that employs an intraparenchymal
catheter to induce hyperthermia directly at the tumor tissue, assisted by an MRI-guided
robotic system. The advantages of this interstitial device over external MRI-guided HIFU
include avoiding attenuation from the skull, improving treatment margins, and enabling
concurrent tissue sampling [1002]. Animal studies have demonstrated the feasibility of this
technique, but its clinical success has not yet been validated. HIFU technology is approved
by the FDA for treatment of several cancers (i.e., prostate, uterine leiomyoma and bone
metastasis) and is under investigation for other neoplasms [1003]. The primary limitation
of its application in GB is the absence of well-circumscribed lesions [1000].

In contrast, LIFU uses relatively lower energy pulsed waves (around 500 kHz) relying
on mechanical perturbation and acoustic cavitation. Cavitation refers to the oscillation
and collapse of gas bubbles in response to the compression and refraction of the ultrasonic
pressure wave [1003]. LIFU is therefore generally used in conjunction with microbubbles,
which can be delivered intravenously and travel to the site targeted by the transducer [1004].
These particles oscillate in the presence of the ultrasound wave, expanding and contracting
to produce a stable cavitation effect that disrupts the tight junctions of endothelial cells.
Thus, LIFU has been explored as a method to transiently increase the permeability of the
BBB to enhance therapeutic delivery, limiting the side effects by ensuring that the imper-
meable state of the BBB is quickly restored [998]. The precision of LIFU can be enhanced
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using MRI (MRgLIFU), thus minimizing the effects on healthy tissue [1005]. Furthermore,
the opening of the BBB can be confirmed with contrast-enhanced MRI, allowing real-time
monitoring of the biological effects of LIFU [1003]. In animal studies, BBB opening is im-
mediate, repeatable, resolves within 6 to 8 h, and does not cause axonal or neuronal injury.
The improved delivery of BCNU, TMZ, carboplatin and others, traditionally rendered
ineffective by the impermeability of the BBB, has been verified. As a consequence, this
treatment not only delayed tumor progression but also enhanced survival in GB animal
models [1006–1008]. LIFU has also been used to deliver viruses [1009], cells [1010] and
NPs (loaded with imaging agents, therapeutic agents, or both) [1011–1013]. In addition,
the microbubbles can be loaded with tumor antigens, allowing a more focused and effec-
tive immune response [1014,1015]. It is also noteworthy that preclinical studies suggest
that LIFU reduces the TME-induced immunosuppression by increasing infiltration of NK
and CD8+ T cells, thus facilitating DCs maturation and diminishing the number of Tregs
and MDSCs [1016–1019]. MRgLIFU-mediated BBB disruption has been utilized in the
clinical setting to deliver carboplatin, TMZ, doxorubicin, fluorescein or paclitaxel in GB
patients [1020–1022]. The treatment was well tolerated, and disruption resulted in a 15–20%
increase in contrast enhancement almost instantaneously, resolving after 20–24 h. A single-
center trial (NCT02253212) did not show serious adverse events or carboplatin-related
neurotoxicity associated with the implantation of a LIFU device with microbubble injection
in rGB patients. Patients with documented BBB disruption relative to patients without
or with poor BBB disruption had longer PFS (4.11 vs. 2.73 months) and OS (12.94 vs.
8.64 months) [1020]. A small trial (NCT03712293) of six patients with GB treated with
multiple cycles of MRgLIFU had an improved penetration of TMZ without immediate or
delayed BBB-disruption-related complications. All subjects survived over 1 year, while
tumor recurrence was noted in two patients at 11 and 16 months [1021]. These recent results
evidence that LIFU-mediated BBB opening increases drug delivery in GB, thus improving
tumor control and survival, although larger sample sizes are needed to confirm efficacy
and the lack of hemorrhagic complications associated with the procedure [1023].

At present, a number of clinical trials (NCT03551249, NCT04440358, NCT04417088,
NCT05370508, NCT06039709) are ongoing or recruiting patients with GB for focused
ultrasound treatment (ClinicalTrials.gov, 4 February 2024).

7.3. Photodynamic and Sonodynamic Therapies

Photodynamic therapy (PDT) and sonodynamic therapy (SDT) are emerging modal-
ities for non-invasive cancer treatment, based on the tumor-selective accumulation of
non-toxic molecules [photosensitizers (PS) or sonosensitizers (SS)], which are activated
by laser light or ultrasound radiation to produce a localized cytotoxic effect via ROS gen-
eration [1024–1027]. Apoptotic and necrotic cells elicit the proliferation of effector T cells
in the lymph nodes, resulting in further GB eradication. Both techniques can also induce
autophagy, endothelial damage, angiogenesis inhibition (associated with ischemia and
necrosis), and immune responses [1027–1030].

Protoporphyrin IX (PpIX) and fluorescein are most widely used as PS and as SS due to
their safety profile and selective accumulation in tumor cells, and most studies in glioma
use 5-aminolevulinic acid (5-ALA) as a precursor of PpIX [1031–1033]. After surgery and
adjuvant treatment, the residual tumor is predominantly comprised of resistant GSC clones;
thus, several strategies have attempted to enhance 5-ALA uptake by this type of cells in
order to increase the efficacy of PDT and SDT [1032,1033]. Moreover, iron chelators, such as
deferoxamine and CP94, and ABC transporter inhibitors have been shown to increase PpIX
levels in GB cells when utilized as adjuvants [1034,1035]. GSCs exhibit less accumulation
of PpIX than non-GSCs, and deferoxamine-induced iron chelation significantly enhances
the 5-ALA-mediated PpIX accumulation in GSCs [1034].

Interstitial PDT (iPDT) is a minimally invasive procedure performed in patients whose
tumors are present in areas of the brain with readily identifiable neurological function, or
in fragile patients who cannot undergo a craniotomy. iPDT is applied via the stereotactic
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insertion of fiber optic cable(s) into the tumor to deliver photostimulation to the tumor mass
after administering a PS to the patient. Intracavitary PDT is applied in the resection cavity at
the end of the surgical procedure [1025]. The most frequent PDT-associated adverse events
are retinal and cutaneous photosensitivity that can last from several days to a few weeks
depending on the PS used and time of exposure. Less frequent adverse events include
post-operative hemorrhage, neurological deficits (particularly in the case of large tumors),
infection, uncontrolled cerebral edema, and even death [1025]. The use of iPDT against GB
over the last 3 decades demonstrates that, overall, the technique is safe and effective. The
mPFS was 14.5 months for ndGB and 14 months for rGB patients, which means there is
an improvement compared to historical controls [1036]. Different single-center retrospec-
tive studies have reported prolonged long-term survivals when using iPDT [1037–1040].
However, the lack of a standard control group, restricted sample sizes, and the lack of
information about their characteristics, makes it difficult to draw conclusions. Ongoing
clinical trials (NCT04469699, NCT03897491, NCT04391062) are actively investigating the
potential of PDT in GB treatment [1027]. The major disadvantage of PDT is the limited
penetration of laser light into deep tissues. This could be mitigated using near-infrared
radiation (NIR) that can penetrate 3 cm through skin and bone structures [1041]. In fact,
NIR photons also diminish both phototoxicity and background autofluorescence, which
then leads to improved bio-imaging when compared to traditional fluorescence with visible
light [1042].

Recent advances in PDT-GB research are as follows: (1) coupled NIR and photo
immunotherapy (NIR-PIT), where a photosensitizer is conjugated to a highly specific
monoclonal antibody [1043–1045]; (2) NP-based PDT to augment systemic therapies and
avoid skin photosensitization [1046,1047]; (3) NP-based PDT linked to miRNA or other
chemotherapeutic agents [1048]; (4) strategies to increase PDT efficacy in hypoxic TME con-
ditions [1049–1052]. Although some studies have demonstrated the enhanced penetration
of light by simultaneous application of ultrasounds [1053], combined effects of PDT and
SDT did not show any benefit in glioma rat models [1054].

SDT requires the interaction of an SS, ultrasounds, and oxygen. The generation of ROS
through the stimulated SS and the ultrasound-activated cavitation effects can together in-
duce apoptosis, necrosis, and autophagy, ultimately causing tumor destruction [1026]. The
major advantage of SDT for GB treatment is the ability of ultrasound energy to penetrate
into soft tissues more than 10 cm, and the possibility of delivering a tightly focused ultra-
sound beam for focal treatment [1031]. SDT inhibits tumor growth and increases animal
survival in preclinical studies [1028,1055–1057]. A significant step forward was made by
Raspagliesi et al., who reported, in a porcine animal model, the first intracranial MRI-guided
SDT with fluorescein and 5-ALA using the ExAblate system. The porcine model allows a
more precise target definition, and better approaches human conditions [1058]. The efficacy
of STD is limited in larger tumors because ultrasound waves cannot penetrate deep enough
into the tumor [1059]. Three clinical trials are currently underway to evaluate the safety and
feasibility of SDT with 5-ALA in patients with high-grade glioma (NCT04559685), in ndGBs
using the ExAblate Model 4000 Type-2 Neuro System (NCT04845919), and the efficacy of
SDT using SONALA-001 and Exablate Type-2 devices in subjects with rGB (NCT04988750).

7.4. Microwaves and Pulsed Electric Fields

Microwaves are a form of electromagnetic radiation with wavelengths ranging from
about 1 mm to 30 cm, corresponding to frequencies between 1 GHz and 300 GHz, respec-
tively [1060]. Microwaves have been introduced in medicine for cancer diagnosis [1061]
and treatment [1062,1063]. However, microwaves have well-known adverse effects on the
CNS and can affect neurotransmitter release and, thereby, cause a delay in the signaling
process [1064]. Despite these limitations, the research of Rana et al. is an excellent example
of how microwave radiation can therapeutically be used to treat GBs [1065]. These authors
have shown that a strong electric field (~23 kV/cm) of pulsed high-power microwave
(HPM) irradiation causes ROS generation, DNA damage, p53 activation and death in
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exposed GB U87 cells. Importantly, these authors show that pulse dosage causing damage
to GB cells and brain normal cells is different, thus representing a new therapeutic approach
that deserves to be tested rapidly in in vivo models. In fact, pulsed microwave-induced
thermoacoustic therapy has been recently proposed as a potential alternative modality to
precisely and effectively eradicate orthotopic GB. Interestingly, an NP composed of polar
amino acids and adenosine-based agonists has been developed having a high microwave
absorbance and selective penetration of the BBB. The NP activates the adenosine receptor
on the BBB to allow self-passage, and once it is accumulated in the TME, the NP converts
absorbed microwaves into ultrasonic shockwaves, which can mechanically destroy tumor
cells with minimal damage to adjacent normal brain tissue due to the rapid decay of the
ultrasonic shockwave intensity [1066].

Pulsed electrical fields [PEF, high voltage/short-duration (nanoseconds-milliseconds)
electrical pulses] have emerged as a non-thermal tissue ablation treatment for malignant
neoplasms. This technique, where rod/needle-like electrodes are strategically placed di-
rectly in or surrounding the tumor, is associated with the terms electroporation and electro-
permeabilization [1067]. Importantly, reversible permeabilization of the cell membrane can
also increase the uptake of chemotherapeutics or facilitate transfection approaches [1068].
In the sub-microsecond regime, intracellular effects like nuclear membrane disruption have
been observed [1069]. The strength and duration of the nanosecond pulse can create nano-
sized pores and electroporation effects [1070–1072]. Depending on these parameters, cell
electroporation and permeabilization can be reversible, with membrane recovery typically
taking minutes, although intracellular repair may require hours [1073]. Sub-microsecond
pulses have also been found to trigger apoptotic cell death in different cell lines and tumor
tissues. Apoptosis induction is associated with caspase activation [1074], intracellular Ca2+

release [1075], loss of mitochondrial membrane potential [1076], and DNA damage [1077].
These findings indicate that sub-microsecond PEF protocols, below electroporation thresh-
olds, may offer potential therapeutic benefits for GB treatment and should be explored
further [1078].

The first demonstration using irreversible electroporation (IRE) against a dog malig-
nant intracranial glioma was published in 2011 by Garcia et al. [1079]. Canine malignant
gliomas share similarities with GB in various clinical, biological, pathologic, molecular, and
genetic aspects, making them a valuable model [1080]. In the referenced study, IRE delivery
resulted in an approximately 74% reduction in tumor volume. IRE treatment was well
tolerated and achieved safe tumor ablation when combined with radiotherapy, anti-edema
treatment, and anticonvulsants, with minimal hemorrhage [1079]. More recently, further
investigations using the Nanoknife procedure in seven dog glioma models revealed that
IRE treatment was successful in six out of seven dogs without inducing or exacerbating
edema or causing a significant hemorrhage [1081]. While most adverse effects were mini-
mal or typical of post-operative surgery, one dog experienced severe cerebral edema (due
to the tumor location being close to periventricular regions, a common site of occurrence in
human glioma). This highlights the importance of considering tumor location and potential
effects during the pre-treatment and planning of IRE in the brain. IRE procedures have
shown preservation of critical structures and major blood vessels in humans which is an
advantage over microwave or radiofrequency ablation methods [1082].

High-frequency irreversible electroporation (H-FIRE, or 2nd generation of IRE) works
by delivering short, 1–10 µs pulses in a series of bursts, equivalent to a single monopo-
lar 100 µs pulse used in traditional IRE. However, this approach requires much greater
field strength to achieve the same lesion size [1083,1084]. Latouche et al. conducted an
experiment using H-FIRE treatment to selectively ablate intracranial meningioma in three
dogs. One of the dogs was alive after 6 months without evidence of the presence of a
tumor. Another dog was alive but required increased anticonvulsants to control seizure
activity, and there were suspicions of residual or recurrent tumors on an MRI 5 months after
treatment. Unfortunately, the third died after 76 days due to a recurrent status epilepticus.
This study showed no post-operative adverse effects attributed to H-FIRE [1085]. Recently,
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Campelo et al. reported further evidence that H-FIRE improves survival and immune cell
infiltration in rodents with malignant gliomas [1086]. Although the application of these
techniques is still in its infancy, available results indicate the potential of H-FIRE’s for brain
tumor ablation, thus representing an exciting opportunity for clinical applications.

7.5. Targeted Radionuclide Therapy

Targeted radionuclide therapy (TRT) is based on the use of a molecule labeled with a
radionuclide to deliver (through systemic or local administration) a toxic level of radiation
to cancer cells. This is achieved by employing a biochemical vector, which is linked to a
radionuclide and, in most cases, allows both diagnostic and also therapeutic applications.
The energy, range of radiation, and type of emission are critical in targeted radionuclide
therapy. Unlike molecular imaging, which involves the use of highly penetrating γ- and
positron (β+)-emitting radionuclides, TRT employs β−, α, or auger electron emitters with
lower penetration capacity but higher ionizing energy [1087]. β− particle-emitting radionu-
clides (e.g., 131I, 90Y, 186/188Re and 177Lu) can irradiate tissue volumes with multicellular
dimensions and induce radical formation leading to DNA single-strand breaks. For small
tumors, micrometastatic lesions, or residual disease, α-particles (emitted by 213Bi, 225Ac, or
211At) are considered a better option, owing to their short travel distance in tissue (only a
few diameters) and high linear energy transfer (LET) (50–230 keV/µm). α-particles induce
DNA DSBs that directly trigger cell death, independently of the cell cycle phase, the cell
oxygenation level and the MGMT gene promoter methylation status [1088].

Radiolabeled small molecules, radioimmunotherapy (RIT), peptide radionuclide ther-
apy (PRT) and radioNPs are four different modalities of TRT [1089–1091]. RIT uses a
monoclonal antibody to achieve targeted vectorization of a radionuclide. Clinical trials for
certain antigen targets, like EGFR [1092,1093], tenascin [1094–1097], or DNA histone H1
complex [1098], have shown positive outcomes. Tenascin targeting appears to be one of
the most promising RITs for GB. mOS of GB patients treated by fractionated intracavitary
radioimmunotherapy with 131I- or 90Y-labeled anti-tenascin monoclonal antibody reached
25.3 months, thus markedly exceeding that of historical controls, being adverse events well
controllable [1099]. In the radiopeptide approach, an agonist or antagonist peptide is used
to vectorize the radionuclide to a specific receptor overexpressed in cancer cells. In GB
clinical trials, radiolabeled somatostatin analogs have been used to target the somatostatin
receptor [1100], radiolabeled substance P has been used to target the neurokinin receptor
type 1 [1101–1103], and TM-601 (a recombinant version of chlorotoxin) has been used to
target the matrix metalloproteinase [1104]. In most of these assays, partial remissions and
an improved OS have been observed. TAM and microglia involved in TME immuno-
suppression are characterized by the upregulation of somatostatin receptor 2; therefore,
targeting this receptor has the additional advantage of increasing the immune response
against GB [1088]. RadioNP can passively accumulate in the tumor or can have a biolog-
ically active peptide or antibody for specific targeting in the same way as the molecular
radiopharmaceuticals used in RIT and PRRT.

RadioNPs can be delivered passively or actively using liposomes, metallofullerenes,
or lipid nanocapsules. Recently, Georgiou et al. administered 177Lu-AuNPs by CED to
treat orthotopic U251-Luc human GB tumors in NRG mice. A high proportion of 177Lu-
AuNPs was retained in the U251-Luc tumor for up to 21 days with minimal redistribution
to the brain or healthy tissues. The radiation dose in the tumor was 599 Gy, whereas
in the surrounding brain, it was 93-fold lower (6.4 Gy), and 2000–3000-fold lower doses
were calculated for the contralateral left cerebral hemisphere (0.3 Gy). MRI at 28 days
post-treatment showed no visible tumor in mice treated with 177Lu-AuNPs, and 5/8 of
them survived up to 150 days, whereas controls had large tumors and required sacrifice
within 45 days post-treatment. The results of this study are promising

TRT holds the potential to serve as a potent and supplementary treatment follow-
ing SOC therapy for primary GBs. It can also be employed as an auxiliary treatment
option in cases where the tumor tissue shows resistance to radiation and/or chemother-
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apy [1088,1105]. Radiopharmaceuticals can be administered systemically or intratumorally/
intracavitarily to circumvent the BBB [1089,1090]. The lack of serious adverse effects and
promising results of the previously mentioned phase I/II trials makes TRT an attractive
treatment modality that should be considered for phase III trials assays integrated into
combined-modality regimens [1106,1107]. As an added advantage, TRT allows interesting
theragnostic approaches, thus permitting personalized therapy [1089,1108].

8. Conclusions

No other cancer has witnessed as many therapeutic attempts as GB. Unfortunately,
although every treatment option in the Oncotherapy arsenal has been tried, GB almost
always recurs. In fact, if you read Dr. Siddhartha Mukherjee’s book The Emperor of All
Maladies: A Biography of Cancer, it is easy to think about GB as the emperor of all cancers.

Despite improvements in shorter-term survival rates, the 5-year survival rate after
diagnosis remains relatively constant (only 5.8% of all patients). Key advancements, limita-
tions, and perspectives can be summarized as follows:

a. GB location, aggressivity and infiltrative biological behavior represent exceptional
challenges. Surgeons face great difficulties in removing all cancerous cells without
causing damage to critical brain regions, thus preserving brain function while treating
the tumor becomes a delicate balance. Aggressive treatments might easily lead to
cognitive impairments and/or neurological deficits.

b. Standard treatment and targeted therapies have only modestly improved patient
outcomes, a fact likely due to redundant compensatory mechanisms, insufficient
target coverage (in part related to the BBB), and GSC’s ability to remain quiescent
or upregulate their molecular defenses until cytotoxic drug concentrations decrease.
Mechanisms favor treatment failure and tumor recurrence.

c. Targeting of key contributors to GSC’s self-renewal, survival, and plasticity will
contribute to avoiding recurrences. ChemoID test (NCT03632135) uses CSCs isolated
from tumor biopsies to select the most effective chemotherapeutic treatment for each
patient [1109]. Strategies like this can assist in identifying the best treatment option
and in properly designing recruitment for clinical trials.

d. The BBB restricts the entry of many therapeutic agents into the brain, limiting the
effectiveness of systemic treatments. Although the BBB and BTB can be disrupted
in a variety of ways depending on the stage of the illness, their heterogeneous
breakdown makes it quite difficult to achieve uniform drug concentrations inside
the tumor. Strategies to improve drug delivery at bioefficacious concentrations in-
clude intranasal or intratumoral administrations (with limited acceptance in clinical
practice), opening of the BBB with LIFU, and the use of nanocarriers. Especially inter-
esting are multifunctional nanocarriers that allow the delivery of diverse molecules
(chemotherapeutic and/or immunotherapeutic and/or imaging agents) and can also
be used for theranostic purposes. In addition, receptor-based therapies have the
potential to improve clinical outcomes. Nevertheless, most of these technologies are,
at this moment, in the development stages.

e. While immunotherapies have revolutionized treatment for other cancers, in GB,
patients have not achieved similar positive responses, a fact associated with the
unique challenges associated with immunosuppressive TME. GB exhibits an immune-
privileged nature characterized by limited lymphocytic infiltration, cytotoxic T cell
exhaustion, recruitment of pro-tumorigenic TAMs, downregulation of cancer cells’
MHC I complexes, and abundance of immune-inhibitory molecules such as IL-10
and TGFβ. In our opinion, DC vaccination, oncolytic virotherapy, CAR-cell therapy
or combined strategies (with ICIs) seem promising, and outcomes could likely be
improved by targeting antigens present in GCS. In any case, immunotherapy should
be considered as part of the combined treatment needed to increase patient survival.
The integration of immunotherapy with SOC for GB presents opportunities and chal-
lenges, since radio/chemotherapy can substantially influence the immune response
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in two different ways. Radiotherapy can induce immunogenic cell death, thus facili-
tating the release of tumor antigens that could potentially amplify immunotherapy
effectiveness. On the contrary, radio and chemotherapy can also induce lymphopenia
and augment the expression of immunosuppressive molecules (PD-L1) within the
TME, hence compromising the efficacy of immunotherapeutic treatments. The timing
(adjuvant or neoadjuvant) for the best synergistic effect remains a problem to resolve.

f. The implementation of multi-modal combined strategies is essential to increase
survival and the quality of life of GB patients. The design of personalized treatments
should be based on the genetic profiling and characteristics of this heterogeneous
tumor, its specific location, the selection of the most promising targets, including the
GSC, and the stimulation of the immune system. Personalized combined treatments
offer advantages in terms of efficacy and reduced collateral damage, but the time
needed to make decisions and cost represent significant challenges. The use of
mathematical models of synergism/antagonism of drugs and pathways will help in
predicting drug combinations for this multifactorial disease.

g. We should reconsider what has not been done properly. To enroll patients in a trial,
the genetic characteristics of their tumors should be considered, including only those
that present the corresponding therapeutic targets. Only in this way will we ensure
that results become objective and significant. Administering immunotherapies con-
currently with corticosteroids or other immunosuppressive treatments is nonsensical.
Such combinations must be considered when analyzing clinical study results to
prevent misleading conclusions.

h. TRT, HIFU, PDT and SDT can be alternatives (particularly in patients with poor
physical condition), complements to radiotherapy, or become part of the SOC.
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et al. Infiltrating T Cells Increase IDO1 Expression in Glioblastoma and Contribute to Decreased Patient Survival. Clin. Cancer
Res. 2017, 23, 6650–6660. [CrossRef] [PubMed]

715. Jung, M.-Y.; Aibaidula, A.; Brown, D.A.; Himes, B.T.; Cumba Garcia, L.M.; Parney, I.F. Superinduction of Immunosuppressive
Glioblastoma Extracellular Vesicles by IFN-γ through PD-L1 and IDO1. Neurooncol. Adv. 2022, 4, vdac017. [CrossRef] [PubMed]

716. Wainwright, D.A.; Balyasnikova, I.V.; Chang, A.L.; Ahmed, A.U.; Moon, K.-S.; Auffinger, B.; Tobias, A.L.; Han, Y.; Lesniak, M.S.
IDO Expression in Brain Tumors Increases the Recruitment of Regulatory T Cells and Negatively Impacts Survival. Clin. Cancer
Res. 2012, 18, 6110–6121. [CrossRef] [PubMed]

https://doi.org/10.1002/cdt3.19
https://doi.org/10.1158/2159-8290.CD-16-0577
https://doi.org/10.1038/s41591-018-0197-1
https://www.ncbi.nlm.nih.gov/pubmed/30297909
https://doi.org/10.2147/OTT.S399657
https://www.ncbi.nlm.nih.gov/pubmed/36814961
https://doi.org/10.1158/2326-6066.CIR-15-0151
https://doi.org/10.1038/s41591-019-0694-x
https://doi.org/10.1093/neuonc/nox208
https://www.ncbi.nlm.nih.gov/pubmed/29106665
https://doi.org/10.21037/atm-22-2670
https://www.ncbi.nlm.nih.gov/pubmed/36660707
https://doi.org/10.1158/2326-6066.CIR-15-0097
https://doi.org/10.1126/scitranslmed.aal3604
https://doi.org/10.1126/science.aaf2807
https://doi.org/10.1111/imr.12519
https://doi.org/10.1002/ijc.31661
https://doi.org/10.1007/s11060-021-03721-x
https://www.ncbi.nlm.nih.gov/pubmed/33651248
https://doi.org/10.3389/fimmu.2021.730289
https://www.ncbi.nlm.nih.gov/pubmed/34659216
https://doi.org/10.3389/fphys.2021.766511
https://www.ncbi.nlm.nih.gov/pubmed/34819875
https://doi.org/10.3389/fimmu.2022.807271
https://www.ncbi.nlm.nih.gov/pubmed/35173722
https://doi.org/10.3389/fimmu.2014.00485
https://doi.org/10.1016/j.pharmthera.2020.107746
https://doi.org/10.1126/science.281.5380.1191
https://www.ncbi.nlm.nih.gov/pubmed/9712583
https://doi.org/10.1158/1078-0432.CCR-17-0120
https://www.ncbi.nlm.nih.gov/pubmed/28751450
https://doi.org/10.1093/noajnl/vdac017
https://www.ncbi.nlm.nih.gov/pubmed/35990703
https://doi.org/10.1158/1078-0432.CCR-12-2130
https://www.ncbi.nlm.nih.gov/pubmed/22932670


Int. J. Mol. Sci. 2024, 25, 2529 88 of 104

717. Kim, M.; Tomek, P. Tryptophan: A Rheostat of Cancer Immune Escape Mediated by Immunosuppressive Enzymes IDO1 and
TDO. Front. Immunol. 2021, 12, 636081. [CrossRef]

718. Song, X.; Si, Q.; Qi, R.; Liu, W.; Li, M.; Guo, M.; Wei, L.; Yao, Z. Indoleamine 2,3-Dioxygenase 1: A Promising Therapeutic Target
in Malignant Tumor. Front. Immunol. 2021, 12. [CrossRef]

719. Du, L.; Xing, Z.; Tao, B.; Li, T.; Yang, D.; Li, W.; Zheng, Y.; Kuang, C.; Yang, Q. Both IDO1 and TDO Contribute to the Malignancy
of Gliomas via the Kyn–AhR–AQP4 Signaling Pathway. Sig Transduct. Target. Ther. 2020, 5, 1–13. [CrossRef]

720. Campesato, L.F.; Budhu, S.; Tchaicha, J.; Weng, C.-H.; Gigoux, M.; Cohen, I.J.; Redmond, D.; Mangarin, L.; Pourpe, S.; Liu,
C.; et al. Blockade of the AHR Restricts a Treg-Macrophage Suppressive Axis Induced by L-Kynurenine. Nat. Commun.
2020, 11, 4011. [CrossRef] [PubMed]

721. Zhai, L.; Genet, M.; Ladomersky, E.; Lauing, K.; Wu, M.; Binder, D.; Kim, L.; Rich, J.; Horbinski, C.; James, C.D.; et al. IMST-39.
IDO1 IS PROGNOSTIC FOR GLIOBLASTOMA PATIENT SURVIVAL AND CENTRALLY CORRELATES WITH POTENTLY
IMMUNOSUPPRESSIVE MEDIATORS. Neuro-Oncology 2016, 18, vi95. [CrossRef]

722. Ahlstedt, J.; Konradsson, E.; Ceberg, C.; Redebrandt, H.N. Increased Effect of Two-Fraction Radiotherapy in Conjunction with
IDO1 Inhibition in Experimental Glioblastoma. PLoS ONE 2020, 15, e0233617. [CrossRef]

723. Ozawa, Y.; Yamamuro, S.; Sano, E.; Tatsuoka, J.; Hanashima, Y.; Yoshimura, S.; Sumi, K.; Hara, H.; Nakayama, T.; Suzuki, Y.; et al.
Indoleamine 2,3-Dioxygenase 1 Is Highly Expressed in Glioma Stem Cells. Biochem. Biophys. Res. Commun. 2020, 524, 723–729.
[CrossRef]

724. Hosseinalizadeh, H.; Mahmoodpour, M.; Samadani, A.A.; Roudkenar, M.H. The Immunosuppressive Role of Indoleamine 2,
3-Dioxygenase in Glioblastoma: Mechanism of Action and Immunotherapeutic Strategies. Med. Oncol. 2022, 39, 130. [CrossRef]

725. Zhai, L.; Bell, A.; Ladomersky, E.; Lauing, K.L.; Bollu, L.; Nguyen, B.; Genet, M.; Kim, M.; Chen, P.; Mi, X.; et al. Tumor Cell IDO
Enhances Immune Suppression and Decreases Survival Independent of Tryptophan Metabolism in Glioblastoma. Clin. Cancer
Res. 2021, 27, 6514–6528. [CrossRef]

726. Pilotte, L.; Larrieu, P.; Stroobant, V.; Colau, D.; Dolusic, E.; Frédérick, R.; De Plaen, E.; Uyttenhove, C.; Wouters, J.; Masereel,
B.; et al. Reversal of Tumoral Immune Resistance by Inhibition of Tryptophan 2,3-Dioxygenase. Proc. Natl. Acad. Sci. USA
2012, 109, 2497–2502. [CrossRef]
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