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Abstract: Identifying key causal genes is critical for unraveling the genetic basis of complex economic
traits, yet it remains a formidable challenge. The advent of large-scale sequencing data and com-
putational algorithms, such as transcriptome-wide association studies (TWASs), offers a promising
avenue for identifying potential causal genes. In this study, we harnessed the power of TWAS to
identify genes potentially responsible for milk production traits, including daily milk yield (MY), fat
percentage (FP), and protein percentage (PP), within a cohort of 100 buffaloes. Our approach began
by generating the genotype and expression profiles for these 100 buffaloes through whole-genome
resequencing and RNA sequencing, respectively. Through comprehensive genome-wide association
studies (GWAS), we pinpointed a total of seven and four single nucleotide polymorphisms (SNPs)
significantly associated with MY and FP traits, respectively. By using TWAS, we identified 55, 71,
and 101 genes as significant signals for MY, FP, and PP traits, respectively. To delve deeper, we
conducted protein–protein interaction (PPI) analysis, revealing the categorization of these genes into
distinct PPI networks. Interestingly, several TWAS-identified genes within the PPI network played a
vital role in milk performance. These findings open new avenues for identifying potentially causal
genes underlying important traits, thereby offering invaluable insights for genomics and breeding in
buffalo populations.

Keywords: buffalo; causal genes; milk production traits; GWAS; TWAS

1. Introduction

Water buffalo (Bubalus bubalis) represents a cornerstone in domesticated livestock,
playing a pivotal role in various global regions due to its economic significance and cultural
value. Valued for milk, meat, and draft power, water buffalo constitute a crucial source
of income for smallholder farmers. The growing global demand for buffalo milk, particu-
larly in Europe for premium cheeses and other dairy products, underscores its economic
importance. To sustain and further improve the buffalo’s milk production performance,
understanding the genetic basis of these traits is of paramount importance. Currently, this
remains poorly understood, presenting a significant knowledge gap in buffalo genetics
and breeding research. With the rapid advancement of genome-wide association stud-
ies (GWASs), numerous genetic variants related to important economic traits in buffalo
populations have been continuously identified. These traits encompass milk production
traits [1–3], reproductive traits [2,4,5], and growth traits [6]. While GWAS has provided
valuable insights, it is constrained by its limitations in uncovering causal variants [7–9]. As

Int. J. Mol. Sci. 2024, 25, 2626. https://doi.org/10.3390/ijms25052626 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms25052626
https://doi.org/10.3390/ijms25052626
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-3282-3899
https://orcid.org/0000-0002-7442-6739
https://doi.org/10.3390/ijms25052626
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms25052626?type=check_update&version=2


Int. J. Mol. Sci. 2024, 25, 2626 2 of 16

a result, the identification of causal loci remains a challenge, and many discoveries have
remained at the suggestive level, lacking validation across different studies.

Given the limitations of GWAS in identifying causal genetic variants, omics-based
association analyses have emerged, offering greater statistical power in the quest to detect
causal genes or loci. Over the last decade, transcriptome-wide association studies (TWAS)
have risen to prominence as a potent approach for identifying causal variants that influence
gene expression and complex traits [10]. By integrating GWAS summary statistics and
gene expression data from reference panels, TWAS can effectively prioritize potentially
causal genes associated with traits [11]. Additionally, by using the TWAS approach, it is
possible to identify candidate genes that are not only linked to disease risk but also under
the regulation of genetic variants. For example, in a study by Al-Barghouthi et al. [12],
PPP6R3 was identified as a potential causal gene for human bone mineral density. Similarly,
Cai et al. [13] discovered several TWAS genes as candidates for important economic traits
in Simmental beef cattle, including NADSYN1, NDUFS3, LTF, and KIFC2 in the liver,
GRAMD1C, TMTC2, and ZNF613 in backfat, as well as TIGAR, NDUFS3, and L3HYPDH
in muscle. Chhotaray et al. [14] reported some causal loci related to milk production
and composition traits in Murrah buffaloes. These findings emphasize the potential of
TWAS in uncovering genes underlying complex traits, making it crucial for unraveling the
genetic basis of milk production traits in buffalo populations and ultimately addressing the
limitations encountered by previous GWAS.

TWAS is a gene-prioritization method designed to detect trait-related genes regu-
lated by GWAS signals [15]. The standard TWAS contains two stages. Stage I involves
training multivariable regression models on reference data, treating gene expression as
an outcome and SNP genotypes (typically cis-SNPs near the test gene) as predictors to
determine genetically regulated expression (GReX). Stage II imputes GReX in an indepen-
dent GWAS of a complex trait using the trained expression quantitative trait loci (eQTL)
effect sizes. For TWAS stage I, a variety of training tools have been developed, including
PrediXcan [16], FUSION [17], and TIGAR-V2 [18]. PrediXcan employs the general linear
regression model with Elastic Net penalty, while FUSION incorporates Elastic-Net, LASSO,
linear mixed modeling, SuSiE (sum of single effects), and BSLMM (Bayesian sparse linear
mixed model) to estimate the effect size. In contrast, TIGAR-V2, by employing a nonpara-
metric Bayesian Dirichlet process regression (DPR) model, offers a more comprehensive
approach that captures a broader range of genetic effects. The DPR introduces an unknown
distribution on the variance parameter of SNP effect size (β) and estimates β based on the
input data rather than relying on parametric priors. Remarkably, Mai et al. [15] demon-
strated that the non-parametric DPR model significantly enhances the power of TWAS,
outperforming PrediXcan.

In light of the strengths offered by TWAS and the innovative approaches it encom-
passes, the objective of this study is to harness TWAS for the identification of candidate
causal genes associated with milk production traits in water buffalo. This endeavor seeks
to address the limitations of previous GWAS and, in turn, to bridge the current knowledge
gap within the field of buffalo genetics and breeding research. The ultimate aim is to
make substantial contributions to the sustainable enhancement of buffalo milk production
performance. In pursuit of our objective, we conducted a comprehensive TWAS using a
dataset of 100 buffaloes. This involved whole-genome resequencing and RNA sequencing
for the 100 buffalo samples, followed by GWAS for milk production traits. Subsequently,
we estimated the cis-eQTL effect through nonparametric Bayesian DPR and performed
TWAS using summary-level GWAS data to identify the causal genes.

2. Results
2.1. Genomic Profiling and eQTL Weight Analysis

In this study, we generated an impressive 9.35 billion clean reads from WGS and
6.69 billion clean reads from RNA-seq, using a dataset of 100 whole blood samples. Detailed
information on WGS and RNA-seq data can be found in Table S1. Within the WGS dataset,



Int. J. Mol. Sci. 2024, 25, 2626 3 of 16

a total of 679,118 SNPs successfully passed our quality control criteria. Among these,
10,281 SNPs, accounting for 56.94% of the total, were classified as missense mutation
variants (Figure 1B). The majority of SNPs in this dataset fell into the category of intron or
intergenic variants (Figure 1C). For the RNA-seq dataset, 14,315 genes, equivalent to 38.55%
of the total, met the expression threshold of TPM ≥ 0.1 in at least 20% of the samples. These
filtered SNPs and genes were subsequently used for the prediction of tissue-specific gene
expression models.

Figure 1. Study design and eQTL characterization in buffalo samples. (A) Design overview of
transcriptome-wide association study for milk production traits in buffalo. (B,C) SNP distribution
types in buffalo whole-genome sequencing data. (D) eGene distribution and prediction accuracy
across buffalo chromosomes. (E) Top 10 KEGG functional enrichment analysis for eQTL-regulated
genes. (F–H) Scatter plots for the relationship between prediction accuracy model properties.
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Blood-specific gene expression prediction models for buffalo were trained using the
nonparametric Bayesian DPR method, implemented in the TIGAR v2 tool. From the filtered
expression data, a total of 8687 “significant” gene expression prediction models with a
5-fold cross-validation (CV) R2 (r-square) > 0.005 were successfully developed using the
DPR model. The number of eGenes in the prediction models varied, with the highest at
855 and the lowest at 113 for different chromosomes (Figure 1D, top), resembling the gene
distribution in the buffalo genome. In addition, the median 5-fold CV R2 exceeded 0.04 per
chromosome, as shown in the central panel of Figure 1D, while the median training
R2 of genome-wide genes surpassed 0.2, as depicted in the lower panel of Figure 1D.
To gain insight into the potential biological functions of the cis-eQTL target genes, a
gene functional enrichment analysis was conducted. It was observed that eGenes were
significantly enriched (p-value < 0.05) in common KEGG pathways, including protein
processing in the endoplasmic reticulum, endocytosis, and herpes simplex virus 1 infection
(Figure 1E).

Furthermore, we explored whether prediction accuracy was influenced by specific
model properties, such as the inclusion of more variants in the input genotypic data for
expression prediction. To address this, we investigated the relationships between prediction
accuracy and three model properties: (i) the number of SNPs used for model prediction
(Figure 1F); (ii) the percentage of SNPs used for model prediction (Figure 1G); and (iii) the
number of SNPs used, adjusted for gene length (Figure 1H). While incorporating more
variants to predict gene expression levels led to a slight improvement in prediction accuracy,
the relationships were relatively weak, rendering these model properties ineffective for
assessing or improving TWAS predictions.

2.2. Identification of Causal Genes for Milk Yield

Prior to TWAS analysis, we conducted a GWAS for the MY trait in buffalo that re-
vealed a total of 53 SNPs with nominal association (p-value < 1 × 10−4). Seven of these
SNPs (Figure 2A; Table 1) were significant and passed the Bonferroni threshold level
(p-value < 7.36 × 10−8). The reliability of the GWAS analysis for the MY trait is shown
in Figure 2B, which includes a QQ plot providing a visual assessment of the concor-
dance between the expected distribution of p-values under the null hypothesis and
the observed distribution from the GWAS. In addition, it was observed that two SNPs,
specifically 2_179378512_T_C and 4_21904376_A_C, were located within the genetic
regions of the MAN1C1 and ETV6 genes, respectively. Notably, the genotypes CC and
AA were identified as the dominant allele types for the SNPs 2_179378512_T_C and
4_21904376_A_C, respectively.

Table 1. GWAS summary for estimated breeding values of milk yield in buffaloes.

SNP CHR POS Effect Size SE p-Value Nearest Genes

2_179378512_T_C 2 179378512 −0.343 0.058 4.40 × 10−11 MAN1C1
3_93238969_G_A 3 93238969 0.164 0.029 1.03 × 10−9 LOC123332809
4_21904376_A_C 4 21904376 0.287 0.061 1.59 × 10−8 ETV6
10_18455881_T_C 10 18455881 0.146 0.028 1.81 × 10−0 SASH1
12_62011074_T_C 12 62011074 −0.248 0.034 7.16 × 10−14 VPS54
18_422296_C_T 18 422296 −0.215 0.039 4.97 × 10−10 LOC123330224
19_11892609_A_G 19 11892609 0.562 0.081 8.00 × 10−14 LOC112580602

Note. GWAS: genome-wide association study, SNP: single nucleotide polymorphism, CHR: chromosome, POS:
position, SE: standard error.

Utilizing the GWAS summary statistics for MY trait and Bayesian blood cis-eQTL
weights, we detected 64 and 59 significant TWAS genes (p-values < 7.83 × 10−6) using
FUSION (Figure 2C) and SPrediXcan (Figure 2D), respectively. Among these significant
genes, 55 were common to both methods (Figure 2E), which were defined as causal genes
related to the MY trait. Further details regarding these candidate genes are listed in Table S2.
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The PPI analysis revealed that these genes could be grouped into four distinct networks,
with the BRCC3 genes having the most nodes (Figure 2F).

Figure 2. Genome-wide and transcriptome-wide association studies for milk yield in buffalo. (A) Man-
hattan plot based on GWAS for MY trait. The horizontal red dashed line represents the genome-wide
significance threshold at −log10(7.36 × 10−8). Below this figure, a distribution of genotype frequen-
cies is displayed for the most important SNPs identified in the GWAS. (B) QQ-plot for p-values based
on GWAS for MY trait. (C) Manhattan plot based on TWAS for MY trait using FUSION analysis.
The horizontal gray line indicates the genome-wide significance threshold at −log10(7.83 × 10−6).
(D) Manhattan plot based on TWAS for MY trait using SPrediXcan analysis. The horizontal gray
line indicates the genome-wide significance threshold at −log10(7.83 × 10−6). (E) Venn diagram
showing the overlapped genes. (F) Protein–protein interaction network analysis of the overlapped
genes. * indicates p-value < 0.05, ** indicates p-value < 0.01, *** indicates p-value < 0.001, **** indicates
p-value < 0.0001.
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2.3. Identification of Causal Genes for Fat Percentage

To uncover potential candidate genes associated with the FP trait, we conduct a TWAS
based on the gene-regulated expression of this trait. Prior to TWAS analysis, our GWAS
detected a total of 83 SNPs nominally related to the FP trait (p-value < 1 × 10−4), with
4 of them being significantly associated at p-value < 7.36 × 10−8 (Figure 3A; Table 2). The
reliability of the GWAS for the FP trait is depicted in Figure 3B, which includes a QQ plot
providing a visual assessment of the concordance between the expected distribution of p-
values under the null hypothesis and the observed distribution from the GWAS. Two SNPs
(6_88599507_T_C and 12_11038738_T_C) were found to be located in the genetic regions of
DAB1 and CCT7, respectively. Notably, the genotype TT was the dominant allele type in
6_88599507_T_C and 12_11038738_T_C, respectively.

Figure 3. Genome-wide and transcriptome-wide association studies for fat percentage in buffalo.
(A) Manhattan plot based on GWAS for the FP trait. The horizontal red dashed line represents the
genome-wide significance threshold at −log10(7.36 × 10−8). Below this figure, a distribution of genotype
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frequencies is displayed for the most important SNPs identified in the GWAS. (B) QQ-plot for
p-values based on GWAS for the FP trait. (C) Manhattan plot based on TWAS for the FP trait using
FUSION analysis. The horizontal gray line indicates the genome-wide significance threshold at
−log10(7.86 × 10−6). (D) Manhattan plot based on TWAS for the FP trait using SPrediXcan analysis.
The horizontal gray line indicates the genome-wide significance threshold at −log10(7.86 × 10−6).
(E) Venn diagram showing the overlapped genes. (F) Protein–protein interaction network analysis
of the overlapped genes. ** indicates p-value < 0.01, *** indicates p-value < 0.001, **** indicates
p-value < 0.0001.

Table 2. GWAS summary for estimated breeding values of fat percentage in buffaloes.

SNP CHR POS Effect Size SE p-Value Nearest Genes

4_86264798_C_T 4 86264798 −0.111 0.019 4.09 × 10−11 SLC38A1
6_88599507_T_C 6 88599507 0.077 0.013 2.34 × 10−10 DAB1
12_11038738_T_C 12 11038738 0.102 0.016 1.58 × 10−11 CCT7
20_56894773_G_T 20 56894773 0.054 0.010 1.19 × 10−9 LOC102392630

Note. GWAS: genome-wide association study, SNP: single nucleotide polymorphism, CHR: chromosome, POS:
position, SE: standard error.

Leveraging the GWAS summary statistics of the FP trait and Bayesian blood cis-
eQTL weights, we detected 79 significant TWAS genes (p-values < 7.86 × 10−6) using
both FUSION (Figure 3C) and SPrediXcan (Figure 3D). Among these, 71 candidate genes
overlapped between both methods (Figure 3E), and these were designated as causal genes
responsible for the variation in the FP trait. Additional information for these candidate
genes can be found in Table S3. An analysis of PPI revealed that these genes clustered into
five networks, with the SMG1 genes having the most nodes (Figure 3F).

2.4. Identification of Causal Genes for Protein Percentage

In our quest to identify genes associated with the PP trait, we conducted a TWAS
based on gene-regulated expression. Traditional GWAS for this trait uncovered a total of
398 nominally related SNPs (p-value < 1 × 10−4). However, when considering Bonferroni
correction, no significant signals were detected (Figure 4A). Although no significant signals
were observed, the QQ plot in Figure 4B reveals a small deviation in the observed p-values
from the expected distribution under the null hypothesis. Using the GWAS summary
statistics for the PP trait and Bayesian blood cis-eQTL weights, we determined 116 and
108 significant TWAS genes (p-values < 8.03 × 10−6) for this trait using both FUSION
(Figure 4C) and SPrediXcan (Figure 4D) approaches, respectively. A total of 101 genes were
shared between both methods (Figure 3E), and these genes are considered causal genes
associated with the PP trait. For in-depth information on these candidate genes, please
refer to Table S4. A PPI analysis revealed that these genes are organized into 15 different
networks, with the SLC41A1 gene exhibiting the highest degree of interconnected nodes
(Figure 4F).
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Figure 4. Genome-wide and transcriptome-wide association studies for protein percentage in buffalo.
(A) Manhattan plot based on GWAS for the PP trait. The horizontal red dashed line represents
the genome-wide significance threshold at −log10(7.36 × 10−8). (B) QQ-plot for p-values based on
GWAS for the PP trait. (C) Manhattan plot based on TWAS for the PP trait using FUSION analysis.
The horizontal gray line indicates the genome-wide significance threshold at −log10(8.03 × 10−6).
(D) Manhattan plot based on TWAS for the PP trait using SPrediXcan analysis. The horizontal gray
line indicates the genome-wide significance threshold at −log10(8.03 × 10−6). (E) Venn diagram show-
ing the overlapped genes. (F) Protein–protein interaction network analysis of the overlapped genes.

3. Discussion

While GWASs in buffalo have been extensively used in recent years, the translation
of their findings into practical applications within animal breeding remains limited. This
limitation is primarily attributed to factors such as small sample sizes, the complexity of the
traits under examination, and the scarcity of high-quality records [1–3,19,20]. Furthermore,
the challenges of extensive linkage disequilibrium and the elusive “missing heritability”
phenomenon further hinder the precise identification of causal genetic variants [21,22]. As
a result, many previous discoveries in buffalo GWASs have remained at the suggestive
level, while few significant loci were detected and did not overlap among different studies,
leaving them awaiting validation.

In the current study, we encountered similar circumstances with the identification of
significant GWAS signals. Specifically, we discovered seven SNPs significantly associated
with MY and four SNPs related to FP. The SNPs linked to MY were located proximate to
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four protein-coding genes (MAN1C1, ETV6, SASH1, and VPS54) and three ncRNA genes
(LOC123332809, LOC123330224, and LOC112580602). It is noteworthy that only two SNPs
(2_179378512_T_C and 4_21904376_A_C) were positioned within the genetic region of the
MAN1C1 and ETV6 genes, respectively. Existing evidence supports the role of MAN1C1 in
lactation persistency in Canadian Holstein cattle [23], while ETV6 is considered a candidate
gene affecting fat yield in North American Holstein cattle [4]. Moreover, we found that
only three SNPs associated with FP were mapped to protein-coding genes, including
SLC38A1, DAB1, and CCT7. Among these, SLC38A1 has been previously reported for milk
protein synthesis [24], and DAB1 was reported to be associated with mammary gland
morphogenesis [25] and fatty acid intake [26], while there is no supporting evidence to
establish a connection between CCT7 and milk fat percentage.

In the present study, we utilized TWAS technology to identify causal genes related
to milk production traits within a buffalo population consisting of 100 individuals. We
conducted extensive analyses to estimate the effect size of cis-eQTL and investigated
the factors affecting cis-eQTL weights. In this regard, we successfully identified 55, 71,
and 101 genes exhibiting significant associations with MY, FP, and PP traits, respectively.
Growing evidence suggests that expression quantitative trait loci (eQTLs) are more likely
to be found in SNPs linked to complex traits [27]. Incorporating eQTL information, such
as eQTL weights, into GWAS has the potential to enhance its power. Estimating eQTL
weights can be approached through different modeling techniques, including the Elastic Net
model [28], the Bayesian sparse linear mixed model [29], Dirichlet process regression [30],
the linear mixed model [31], and Bayesian variable selection regression [32]. In our study,
we employed a non-parametric Bayesian DPR strategy to train a gene expression imputation
model using 100 buffalo blood samples and estimate cis-eQTL weights. Impressively, the
DPR model effectively trained 8687 genes, achieving a 5-fold CV R2 >0.005. Additionally,
we observed that the median 5-fold CV R2 per chromosome exceeded 0.04, with the
training R2 value surpassing 0.2. Both values exceeded those reported in human blood
studies conducted by Parrish et al. [18], suggesting the suitability of these cis-eQTL weight
estimates for further analyses. Furthermore, we explored the potential impact of specific
model properties on prediction accuracy. Interestingly, we found that prediction accuracy
exhibited a weak relationship with model properties, including the number and percentage
of model variants used for prediction, as well as the number of model variants adjusted for
gene length. This observation implies that these model properties may not be utilized to
improve the prediction performance of TWAS.

It is well established that eQTL analyses, including TWAS, play a pivotal role in
interpreting GWAS results and improving the power of identifying GWAS signals [33].
This approach holds immense promise for unraveling functional sequence variations
and understanding the fundamental mechanisms of gene regulation [34]. Several genes
identified in our TWAS analysis have robust support from prior functional studies and have
been linked to known loci associated with milk production traits. For example, CCDC34
has been proposed as a candidate gene affecting fat percentage in Indian buffaloes [4]. FTO
has been suggested as a functional signature for fat percentage [35]. Additionally, three
genes (TTI2, RNF122, and NLRP1) have been associated with milk yield in buffaloes [8].
A recent study by Wen et al. [36] has demonstrated that copy number variations of the
USP16 gene play an important role in milk production traits in Chinese Holstein cattle,
underscoring its potential as a molecular marker for assisted selection. Moreover, NUCKS1
has emerged as a novel regulator of milk synthesis, including milk protein, milk fat, and
lactose synthesis [37]. Lastly, both SLC25A53 and SLC41A1, members of the solute carrier
family, have been associated with mammary protein synthesis [38].

The identification of causal genes contributing to phenotypic variation significantly
advances our understanding of buffalo biology and holds substantial potential for improv-
ing buffalo breeding and productivity. To pinpoint the most promising TWAS genes, we
further refined our analysis through PPI network analysis. In this regard, a total of 9, 15,
and 17 TWAS genes associated with MY, FP, and PP traits, respectively, were classified into
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large networks (degree nodes > 4). The majority of these genes were found to be directly
or indirectly linked to the biological functions associated with mammary gland develop-
ment and lactation. For example, USP16 has been identified as a modulator of the Wnt
pathway in mammary epithelia [39], thereby influencing mammary gland development
and lactation [40]. In Chinese Holstein cattle, Wen et al. [36] found that the copy number
variation of the USP16 gene was associated with milk traits. BRCC3 plays a crucial role in
the modulation of cell survival and proliferation [41]. EIF3A is vital for stimulating protein
synthesis [42,43]. The silencing of CSNK2β significantly inhibits cell growth and induces
apoptosis [44], suggesting its critical role in modulating the proliferation and apoptosis
of mammary epithelial cells. SMAD2 is a member of the SMAD protein family, a key
intermediary in transforming growth factor beta (TGF-β) signaling [45], which plays a
vital role in mammary gland development [46]. Notably, evidence showed that SMAD2
was associated with goat growth traits [47], sheep litter size [48], and buffalo milk yield
traits [49]. In addition, SMG1 belongs to the phosphatidylinositol 3-kinase-related kinase
(PIKK) protein family, triggering the activation of AMPK, which aids in the regulation of
milk production and mammary gland biology [50]. These findings strongly indicate that
these TWAS genes are correlated with milk performance in buffaloes.

In the present study, a relatively small sample size serves as a limitation, which can be
addressed by including larger cohorts in future research. Next, while genetically predicted
models were assessed in blood samples, it remains essential to validate these models in
biologically relevant tissues such as mammary glands and mammary epithelial cells for
more accurate results. Finally, it is worth noting that TWAS may not capture all genes,
especially those with SNPs that influence milk production traits independently of cis
expression, which may be overlooked. Addressing these limitations paves the way for
future investigations seeking a more comprehensive understanding of the genetic basis of
buffalo milk production traits in dairy animals.

4. Materials and Methods
4.1. Animals and Phenotype

A total of 100 buffaloes with complete records were used. These buffaloes were
crossbred with the Murrah or Nili-Ravi buffalo and Chinese native buffalo. These animals
were sourced from the Guangxi Buffalo Research Institute in Guangxi, China. Over a five-
year period (2017–2022), a dataset comprising 2084 test-day records for these buffaloes was
collected. All records, including daily milk yield, fat percentage, and protein percentage,
were collected and measured by the Hubei Dairy Cattle Performance Measurement Center
(Wuhan, China). A minimum of five test-day records within each parity, limited to the first
three lactations, was mandated to ensure a comprehensive representation of the phenotypes.
Prior to conducting further analyses, it was crucial to adjust for non-genetic factors and
obtain a single value for each animal, accurately representing each animal’s phenotype. In
this context, all available factors were initially tested for significant effects using a linear
model with the ‘lm’ function in R. Only significant factors were retained for use in the
subsequent model. In the final model, the estimated breeding values (EBVs) for each
individual were computed using a random regression test-day animal model implemented
with the R package “blupADC” [51]. This model incorporated the following fixed effects:
herd–test-date (HTD), calving year–season (YS), and month of calving (MC). To account
for variations related to the lactation stage and day-to-day fluctuations, fixed regressions
involving days in milk (DIM) and third-order Legendre polynomials were used. In addition
to these fixed regressions, we also considered individual additive genetic and permanent
environmental effects as random regression effects in the model. The model equation used
for this analysis is as follows:

yijklmn = HTDi + YSj + MCk +
3

∑
n=0

blnLn(wt) +
3

∑
n=0

amnLn(wt) +
3

∑
n=0

PmnLn(wt) + eijklmn
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where yijklmn is used to indicate the test-day records (MY, FP, or PP), while HTDi denotes
the fixed effects of the ith herd-test day; YSj represents the fixed effects of the jth calving
year–season and MCk specifies the fixed effects of the kth month of calving. The bln are the
nth fixed regression coefficients corresponding to the nth Legendre polynomials, whereas
amn represent the nth random regression coefficients representing additive genetic effects
of the mth buffaloes and Pmn denote the nth random regression coefficients for permanent
environment effects of the mth buffaloes. The Ln(wt) are the nth covariate of Legendre
polynomials at day t in milk (DIMt) and wt signifies the normalized time value at DIMt
(DIM = 5, 6, . . . , 300); and eijklmn are the random residual effects. The relationship ma-
trix utilized in this model was constructed using data from a relatively small pedigree
of 215 animals. This figure is notably modest when compared to the standard practice
in dairy cattle studies. The primary reason for this limited number of animals in the
pedigree file is the common lack of comprehensive pedigree records in buffalo farming,
particularly for animals with complete test-day records during their first three lactations.
Notably, previous studies conducted under similar circumstances have provided valuable
evidence supporting the effectiveness of using small sample sizes with extreme pheno-
types in dairy buffaloes [1,21,52]. This aligns with established practices within buffalo
studies for adjusting phenotypes for non-genetic factors and underscores the relevance of
our approach.

4.2. SNP Genotyping

For the DNA analysis, 5 mL of blood samples were obtained from the previously
mentioned 100 individuals. These samples were collected from the jugular vein in sterilized
vacutainer tubes coated with EDTA as an anticoagulant. The samples were kept on ice and
promptly transferred to the laboratory for further analysis. SNP genotyping was carried out
on each of these samples using whole-genome resequencing technology implemented in the
Genome Analysis Toolkit v4.2 (GATK) [53] on the Illumina HiSeq 2500 platform. The refer-
ence genome employed was the Indian Murrah genome (assembly version: NDDB_SH_1).
Subsequently, SNPs were imputed using Beagle version 5.4 software [54]. Following im-
putation, all imputed SNPs were subjected to quality control procedures utilizing PLINK
1.9 software [55]. The quality control criteria included SNP call rate > 99%, individual
call rate > 99%, minor allele frequency (MAF) > 0.95, and Hardy–Weinberg Equilibrium
(HWE) with a threshold greater than 1 × 10−6. As a result, 100 buffaloes and 679,118 SNPs
successfully passed the quality control measures and were used for further analysis.

4.3. RNA-Seq and Analyses

For our transcriptome analysis, we collected 10 mL of blood samples from each of
the 100 buffaloes with mid-lactation, all drawn from the jugular vein. The samples were
immediately preserved in liquid nitrogen before being transferred to −80 ◦C storage for
subsequent RNA extraction. After that, each of the aforementioned 100 samples, yielding
a total of 2 µg of RNA per sample, was utilized to construct libraries using the TruSeq
RNA Sample Preparation Kit (Illumina, San Diego, CA, USA). Subsequently, we performed
sequencing for each library on the Illumina HiSeq 4000 platform (Illumina, San Diego, CA,
USA). To ensure data quality, we conducted a quality check for the raw data using fastp
ver. 0.23.4 software [56]. The cleaned data were then mapped using the Hisat2 ver2.2.1
software [57], aligning it with the Indian Murrah genome as a reference. Subsequently, the
featureCounts function in the Rsubread package [58] was used to create the gene count
matrix for the samples studied. Finally, transcripts per million (TPM) values for each gene
were obtained using the DESeq2 R package [59], and gene annotation and enrichment
analysis were performed with the clusterProfile R package [10].

4.4. GWAS Analysis

GWAS for milk production traits in the buffalo population was performed using
the Fixed and random model Circulating Probability Unification (FarmCPU) method,
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implemented in rMVP version 0.99 software [60]. To mitigate potential false positive
signals, we adjusted for population structure and relatedness among individuals through
principal component analysis (PCA; n = 3) and a kinship matrix, respectively. For the
purpose of multiple testing corrections, we set the threshold level for Bonferroni correction
at p-value < 0.05/N, where N represents the number of SNPs that passed quality control
criteria (679,118). A significance cutoff of p-value < 1 × 10−4 and 7.36 × 10−8 was selected
to indicate nominal and significant associations, respectively.

4.5. TWAS Analysis

In this study, a two-stage TWAS approach was employed for the analysis of EBVs
for milk production traits in buffaloes using TIGAR-V2 software (https://github.com/
yanglab-emory/TIGAR, (accessed on 16 January 2024)) [18]. Initially, we constructed gene
expression prediction models using both transcriptomic and genetic data from the same
samples. In these models, we used the genotypic data (G) of cis-SNPs located within a 1 Mb
window surrounding the transcripition start site (TSS) of the target gene (g) as predictors.
We assumed an additive genetic model for the expression of quantitative traits (Eg) in
relation to the target gene. The model equation can be represented as follows:

Eg = Gw + ε; ε ∼ N
(

0, σ2
ε I
)

(1)

where Eg is the gene expression levels for the target gene g, G is the genotype matrix
encompassing all considered SNP genotypes (encoded as the number of minor alleles
of SNPs within a 1 Mb interval of the target gene region), and w is the cis-eQTL effect
size vector.

To predict the GReX values, TIGAR-V2 employs the estimates of cis-eQTL effect sizes
and genotype data as inputs. The imputation of GReX values is accomplished using the
following formula:

ĜReX = Gnewŵ (2)

where Gnew is the genotype matrix for the new samples. TIGAR-V2 implements nonpara-
metric Bayesian DPR to estimate w, which incorporates eQTL effect sizes in a broad sense,
irrespective of whether the SNP has a genome-wide significant eQTL p-value.

In this analysis, the burden test was utilized to examine the association between GReX
values (as a covariate) and the phenotype of interest (as a response variable) based on the
general linear regression model. The burden test statistics consist of both FUSION and
SPrediXcan Z-score statistics. These statistics were estimated using the following Equations
((3) and (4), respectively):

∼
Zg, FUSION =

∑m
l=1(ŵlzl)√

ŵ′Vŵ
, V = Corr(G0) (3)

∼
Zg, SPrediXcan =

∑m
l=1(ŵl σ̂lzl)√

ŵ′Vŵ
, σ̂2

l = Var(G0,1), V = Cov(G0) (4)

where Z denotes the Z-score statistic value of genetic variant l by a single-variant GWAS
test. The required covariance matrix of linkage disequilibrium (or correlation matrix for the
FUSION test statistic) among test cis-SNPs (V) and the genotype variance of test cis-SNPs
can be derived from reference genotype data (G0).

4.6. Statistical Considerations for TWAS

For the TWAS analysis, we defined the threshold for identifying significant signals as
p-value < 0.05/N, where N represents the effective number (N = 6389, 6363, and 6228 for
MY, FP, and PP, respectively) after Bonferroni correction. We conducted gene annotation of
the TWAS signals using Bedtools ver.2.31.0 [61], with the Indian Murrah genome GTF file

https://github.com/yanglab-emory/TIGAR
https://github.com/yanglab-emory/TIGAR


Int. J. Mol. Sci. 2024, 25, 2626 13 of 16

as the reference. Specifically, we considered a region of approximately 25 kb surrounding
the TWAS signals. To explore the protein–protein interaction (PPI) relationship among the
TWAS genes, we utilized the STRING database (v12.0).

5. Conclusions

In summary, this study harnessed the power of TWAS to identify 227 (55 for MY, 71
for FP, and 101 for PP) potentially causal genes associated with milk production traits,
addressing the constraints of prior GWAS for the same traits in buffalo populations. Among
these, 9 (USP7, USP16, BRCC3, EIF3A, NAS2, RRP8, CACUL1, DCUN1D4, and OCIAD1),
15 (SSRP1, CSNK2B, CBX4, KDM5A, ACTG1, SMAD2, SMG1, ANKRD32, MALT1, PUM2,
LDAH, MTO1, KPTN, XP_006074182.1, and XP_006049223.1), and 15 (RAB7L1, NUCKS1,
PM20D1, SLC41A1, TMEM161B, NCOA7, APOBR, ATXN2L, PRSS53, XP_006057024.1,
PRPS1, TRMT11, PUS1, ARMCX3, and TMEM135) TWAS genes emerged as promising
determinants for MY, FP, and PP traits, respectively. Additionally, our network analysis
elegantly pinpointed TWAS genes with potential involvement in mammary gland devel-
opment and lactation, underscoring their critical roles in milk production performance.
While the study boasts strengths like non-parametric Bayesian DPR for cis-eQTL weight
estimation and comprehensive expression data, it is not immune to limitations, notably
the modest sample size and the exclusive focus on blood rather than mammary tissues.
Notwithstanding these constraints, our research lays a solid foundation for forthcom-
ing investigations in buffalo genetics and breeding, providing invaluable knowledge for
optimizing milk production in this economically vital livestock species.
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