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Abstract: Acute myocardial infarction (AMI) is a major cause of mortality and morbidity worldwide,
yet biomarkers for AMI in the short- or medium-term are lacking. We apply the discordant twin pair
design, reducing genetic and environmental confounding, by linking nationwide registry data on
AMI diagnoses to a survey of 12,349 twins, thereby identifying 39 twin pairs (48–79 years) discordant
for their first-ever AMI within three years after blood sampling. Mass spectrometry of blood plasma
identified 715 proteins. Among 363 proteins with a call rate > 50%, imputation and stratified Cox
regression analysis revealed seven significant proteins (FDR < 0.05): FGD6, MCAM, and PIK3CB
reflected an increased level in AMI twins relative to their non-AMI co-twins (HR > 1), while LBP,
IGHV3-15, C1RL, and APOC4 reflected a decreased level in AMI twins relative to their non-AMI
co-twins (HR < 1). Additional 50 proteins were nominally significant (p < 0.05), and bioinformatics
analyses of all 57 proteins revealed biology within hemostasis, coagulation cascades, the immune
system, and the extracellular matrix. A protein–protein-interaction network revealed Fibronectin
1 as a central hub. Finally, technical validation confirmed MCAM, LBP, C1RL, and APOC3. We
put forward novel biomarkers for incident AMI, a part of the proteome field where markers are
surprisingly rare and where additional studies are highly needed.

Keywords: acute myocardial infarction; tandem mass spectrometry; proteome-wide association
analysis; discordant twin pairs

1. Introduction

Cardiovascular disease (CVD) is the leading cause of mortality in humans; nearly
20 million individuals worldwide die from cardiovascular events every year [1,2]. Acute
myocardial infarction (AMI) occurs almost exclusively due to atherosclerotic occlusion of a
coronary artery, cutting off blood supply and leading to damage to the heart muscle [3]. The
underlying arterial pathology, atherosclerosis, develops over decades, including the initial
buildup of fatty streaks, which develop into inflammatory fibrofatty lesions and vulnerable
plaques as the basis for acute vascular occlusions [4]. Despite considerable improvements
in prevention, diagnosis, and treatment strategies for AMI over the last many decades, AMI
remains one of the major causes of mortality and morbidity worldwide; the prevalence of
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AMI approaches three million people worldwide and more than one million deaths each
year in the United States alone [3].

A priori hypothesis-driven studies of blood plasma molecules have led to several
useful biomarkers of AMI. These biomarkers serve two different purposes: either they are
used for the diagnosis of a present AMI or they are used to foresee the future risk of AMI.
For the biochemical diagnosis of present AMI, the increased levels of the cardiac muscle
proteins troponin T and troponin I and the creatinine kinase (CK) isoforms CK1/CK-BB
and CK2/CK-MB, reflecting damage to the myocardium, are well defined and widely
used in the daily clinic [5]. The search for protein biomarkers that can predict future
AMI has, on the other hand, been less successful [6]. The conventional risk factors for
cardiovascular events, first of all lipid biomarkers (e.g., low density lipoprotein (LDL) and
non-high density lipoprotein (non-HDL)), inflammatory biomarkers (e.g., CRP), and certain
genetic variants [6,7] have been known for decades and have been built into risk scores like
the Framingham Heart Score, where they display a moderate efficiency in pointing out
individuals at future risk on a long-term basis, but they are not very efficient regarding the
short- or medium-term basis [8,9]. Therefore, the discovery of protein biomarkers for earlier-
occurring AMI is warranted, and such biomarkers are potentially useful in a clinical setting,
for example, in relation to indications for imaging and invasive coronary diagnostics.

Contrary to a priori hypothesis-driven candidate protein studies, some studies have
applied a hypothesis-free approach, exploring all proteins present in blood plasma. While
initial studies applied laboratory techniques such as two-dimensional gel electrophoresis
followed by mass spectrometry (MS), e.g., [10,11], recent improvements in MS method-
ology have enabled more unbiased and comprehensive analyses [12]. To the best of our
knowledge, only the following three MS-based studies have investigated blood plasma
from AMI patients and controls: Xu et al. (2019) [2] measured 468 proteins in 10 patients
and 5 controls; Pan et al. (2020) [13] measured 950 proteins in 24 patients and 8 controls;
and Xie et al. (2022) [14] measured 789 proteins in 8 patients and 8 controls. In total, these
studies reported 33, 95, and 72 differentially expressed proteins, respectively. As seen from
these studies, AMI proteome studies have been case-control studies; consequently, these
studies investigate blood samples drawn after the AMI has occurred and do therefore not
enable the study of incident cases and the identification of biomarkers predicting future
AMI events. Hence, more prospective studies of AMI, also considering issues such as
multiple testing, are needed.

Finally, a challenge in attempts to identify relevant plasma biomarkers for AMI is the
difficulty of separating such biomarkers from the well-known risk factors of AMI, for exam-
ple, blood lipid levels, and from the influence of relevant genetic factors. Genetic studies
of AMI have reported several relevant genes [15], as have genetic studies of several of the
phenotypes considered AMI risk factors, e.g., blood lipid levels, hypertension, smoking
habits, obesity, and diabetes mellitus. Moreover, several studies have shown in recent years
that the concentrations of a substantial part of the plasma proteins are strongly influenced
by genetic determinants [16,17]. Consequently, the association of protein biomarkers with
AMI outcomes might be confounded by genetic variation. One way to reduce such genetic
bias is to investigate twin pairs, where one twin develops the disease of interest while
the co-twin does not; this study design is known as the discordant twin pair design [18].
This study design is statistically very powerful; for instance, it has been estimated that for
epigenome-wide association studies of more than 450,000 DNA methylation sites, only
98 monozygotic twin pairs are needed for detecting a 10% methylation difference with a
power of 80% [19], and that the classical case-control study needs a minimum of 10 times
as many individuals as investigating monozygotic twin pairs [20]. In addition to genetics,
differences in environmental factors potentially confounding the association of protein
biomarkers with AMI outcomes are also controlled in the discordant twin-pair design,
especially factors related to the shared early-life environment.

The aim of the current study is to identify proteins associated with medium-term
(<3 years) incident cases of AMI by applying the discordant twin pair design in the population-



Int. J. Mol. Sci. 2024, 25, 2638 3 of 19

based INFRA twin survey of middle-aged Danish twins of the Danish Twin Registry (DTR) [21].
By linking the 12,349 twins of the INFRA cohort to the nationwide National Danish Patients
Registry, 39 discordant twin pairs were identified, of which 12 twin pairs were monozygotic,
25 twin pairs were dizygotic, and 2 twin pairs were of unknown zygosity. Blood plasma sam-
ples from these twins were investigated by nano-liquid chromatography coupled to tandem
mass spectrometry (nano-LC-MS-MS). To the best of our knowledge, the present study is the
first of its kind for the identification of protein biomarkers of incident AMI in twins.

2. Results

Seventy-eight twins belonging to 39 twin pairs were investigated in the present study.
These twin pairs had been identified via the nationwide Danish Patient Registry as discor-
dant for their first-ever AMI diagnosis within the first three years after blood sampling.
Blood plasma samples from these twins were analyzed by mass spectrometry (MS) for pro-
teome analysis and analysis of cotinine levels, as well as by standard biochemical analysis
for lipid levels.

2.1. Time to Acute Myocardial Infarction Diagnosis and Protein Levels in the 39 Twin Pairs

Descriptives of the study population can be seen in Table 1. The 39 co-twins receiving
an AMI diagnosis within the first three years after blood sampling did so with an average
time from blood sampling to diagnosis of 1.39 years (SD = 0.83, range: 0.01–2.9 years,
median = 1.49 years). None of the 39 AMI-free co-twins died within the three years of
follow-up, while three of the AMI co-twins died. In total, 715 proteins were measured in
the MS analysis. Of these proteins, 197 were measured in all individuals (i.e., displayed
a call rate of 100%), while for the remaining 518 proteins, 63 proteins had a call rate of
>75% to <100%, 103 proteins had a call rate of >50% to <75%, 154 proteins had a call rate
of >25% to <50%, and 198 proteins had a call rate of >0% to <25%. For the 197 proteins
measured in all individuals, the mean protein values ranged from 0.91 (SD = 0.27) to
1.35 (SD = 1.04). Calculating the intra-twin pair difference in protein values (subtracting
the protein value for the co-twin without AMI from the protein value from the co-twin
with AMI), the mean differences in protein values ranged from −0.24 (SD = 1.06) to 0.18
(SD = 0.94). Finally, when inspecting the intra-twin pair correlations of the 197 proteins
measured in all individuals, 128, 49, and 46 proteins were found to be significantly (p < 0.05)
more correlated within the twin pairs than between the twin pairs for the monozygotic
(N = 12), the dizygotic same gender (N = 12), and the dizygotic opposite gender twin pairs
(N = 13), respectively, indicating a genetic influence on protein levels. On average, the
intra-twin pair correlations were 0.67 (SD = 0.14, range: 0.46–0.95), 0.63 (SD = 0.12, range:
0.45–0.92), and 0.56 (SD = 0.09, range: 0.44–0.77) for the monozygotic, the dizygotic same
gender, and the dizygotic opposite gender twin pairs, respectively.

Table 1. Descriptives of the study population.

Phenotype Descriptives

No. individuals (no. twin pairs) 78 (39)
Age at blood sampling (years) (range, mean (SD)) 48–79, 66.0 (7.9)

Gender (males (%)/females (%)) 47 (60%)/31 (40%)
Zygosity per twin pair (%) 12 monozygotic (31%)

12 same gender dizygotic (31%)
13 opposite gender dizygotic (33%)

2 unknown zygosity (5%)
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Table 1. Cont.

Phenotype Descriptives

Time from blood sample to AMI diagnosis (years) (range, mean (SD)) 0.01–2.9, 1.4 (0.8)
Smoking status (never/former (%), current (%)) 56 (72%), 22 (28%)

Systolic blood pressure (mmHg) (range, mean (SD)) 116.5–220.5, 156.2 (22.6)
Lipid levels (mmol/L):

Total cholesterol (range, mean (SD)) 2.9–8.1, 5.5 (1.2)
Triglycerides (range, mean (SD)) 0.6–10.8, 2.0 (1.3)

High-density lipoprotein (range, mean (SD)) 0.5–2.4, 1.4 (0.2)
Low-density lipoprotein (range, mean (SD)) 0.9–5.5, 3.1 (1.0)

Self-reported medication use (%)
(1) Heart and blood pressure/coagulation inhibitory/lipid-lowering medication 48 (62%)

(2) Diabetes medication 1 (1%)
(3) Non-users 29 (37%)

Body mass index (kg/m2) (range, mean (SD)) 20.1–39.6, 27.9 (3.7)
Self-reported diabetes disease status (%) 1 type–1 diabetic (1%)

6 type–2 diabetics (8%)
71 non-diabetics (91%)

Notes: No: number of; SD: standard deviation; AMI: acute myocardial infarction; kg: kilograms; m: meter; mmHg:
millimeter of mercury; mmol: millimole; L: liter.

2.2. Association Analysis of Time-To-Diagnosis and the Proteome Data in the 39 Twin Pairs

As the present study population was composed of AMI discordant twins, it is possible
to reduce the potential confounding induced by shared environmental factors and genetics
by investigating the intra-twin pair differences in protein levels. Analysis of the 363 proteins
with a call rate above 50% in the 39 twin pairs revealed 57 proteins with a nominally
significant p value (p value < 0.05), and of these, seven proteins passed correction for
multiple testing (FDR p value < 0.05) (see Table 2 and Supplementary Table S1). Among
these seven proteins, the FYVE, RhoGEF, and PH domain-containing protein 6 (FGD6), the
cell surface glycoprotein MUC18 (MCAM), and the phosphatidylinositol 4,5-bisphosphate
3-kinase catalytic subunit beta isoform (PIK3CB) revealed a hazard ratio (HR) above 1
reflecting increased level of the protein in the AMI twins relative to the non-AMI co-
twins, while the lipopolysaccharide-binding protein (LBP), the immunoglobulin heavy
variable 3-15 (IGHV3-15), the complement C1r subcomponent-like protein (C1RL) and the
apolipoprotein C-IV (APOC4) displayed a HR below 1 reflecting decreased level of the
protein in the AMI twins relative to the non-AMI twins. Of the 50 proteins with a p value
below 0.05, yet not passing correction for multiple testing, 19 displayed a HR < 1, while 31
showed a HR > 1 (see Supplementary Table S1).

Bioinformatic analyses of the seven proteins passing correction for multiple testing did
not reveal any significant findings. When including all 57 proteins, 5 immunoglobulins were
not annotated in the STRING database; consequently, pathway analyses were performed
for the remaining 52 proteins. These analyses revealed 5 KEGG and 11 Reactome pathways
(see Table 3), as well as 12 STRING clusters, 5 GO Functions, 22 GO Components, and 23
GO Processes (see Supplementary Table S2). The KEGG and Reactome pathways reflect,
among others, hemostasis, the immune system, and extracellular matrix (ECM) biology
(see Table 3). This was also reflected in the 12 STRING clusters, which all rooted back to
three clusters, namely ‘Mixed, incl. Complement and coagulation cascades, and Serine-type
endopeptidase activity’, ‘Mixed, incl. Immunoglobulin complex, and Immunoglobulin
binding’ and ‘Extracellular matrix organization, and Biomineralization’ (see Supplementary
Table S2). Finally, the 23 GO Processes foremost reflected immune biology, inflammation,
and cellular processes, such as cell migration, while the 5 GO Functions reflected binding
activity, and most of the 22 GO Components reflected cellular anatomical entities related to
the cell surface or extracellular spaces or transport, as well as protein-containing complexes.



Int. J. Mol. Sci. 2024, 25, 2638 5 of 19

Table 2. The seven proteins passing correction for multiple testing in stratified Cox regression analysis of the 39 AMI discordant twin pairs.

Accession No. Protein Description Gene HR SE p-Value 95% CI q-Value
Imputed

(Protein Call Rate
(%))

Q6ZV73 FYVE, RhoGEF, and PH domain-containing protein 6 FGD6 37.26 487.3 7.90 × 10−224 (29.84, 46.52) 2.87 × 10−221 Yes (64.1)
P43121 Cell surface glycoprotein MUC18 MCAM 22.57 473.6 4.05 × 10−183 (18.26, 27.89) 7.36 × 10−181 Yes (51.3)

P42338 Phosphatidylinositol 4,5-bisphosphate 3-kinase
catalytic subunit beta isoform PIK3CB 1.04 0.03 6.70 × 10−5 (1.02, 1.06) 8.11 × 10−3 Yes (61.5)

P18428 Lipopolysaccharide-binding protein LBP 0.91 0.06 2.27 × 10−4 (0.86, 0.95) 0.017 Yes (74.4)
A0A0B4J1V0 Immunoglobulin heavy variable 3-15 IGHV3-15 0.96 0.02 2.34 × 10−4 (0.94, 0.98) 0.017 Yes (74.4)

Q9NZP8 Complement C1r subcomponent-like protein C1RL 0.93 0.04 5.57 × 10−4 (0.90, 0.97) 0.032 Yes (87.2)
P55056 Apolipoprotein C-IV APOC4 0.95 0.03 6.14 × 10−4 (0.93, 0.98) 0.032 Yes (87.2)

Notes: APOC4: apolipoprotein C-IV; C1RL: complement C1r subcomponent-like protein; FGD6: FYVE, RhoGEF, and PH domain-containing protein 6; HR: hazard ratio; IGHV3-15:
immunoglobulin heavy variable 3-15; LBP: lipopolysaccharide-binding protein; MCAM: cell surface glycoprotein MUC18; PIK3CB: phosphatidylinositol 4,5-bisphosphate 3-kinase
catalytic subunit beta isoform; q-value: false discovery rate corrected p value; SE: standard error; 95% CI: 95% confidence interval. Call rate: percentage of individuals holding data for a
given protein (imputation of missing protein data was performed by inverse probability weighting).

Table 3. Reactome and KEGG pathway analyses of the proteins displaying a p value below 0.05 in stratified Cox regression analysis of the 39 twin pairs.

Hierarchy Group Pathway ID Description of
Pathway

Observed Gene
Count

Background Gene
Count Strength FDR Matching Proteins in the Network

Reactome

Hemostasis HSA-109582 Hemostasis 13 607 0.91 4.2 × 10−6
TLN1, SERPINF2, HSPA5, IGLL1, FN1,

QSOX1, PTPN1, ACTN1, CFL1, JCHAIN,
CFD, SELL, PIK3CB

HSA-114608 Platelet
degranulation 8 126 1.38 4.2 × 10−6 TLN1, SERPINF2, HSPA5, FN1, QSOX1,

ACTN1, CFL1, CFD

HSA-76002
Platelet activation,

signaling, and
aggregation

10 260 1.16 4.2 × 10−6 TLN1, SERPINF2, HSPA5, FN1, QSOX1,
PTPN1, ACTN1, CFL1, CFD, PIK3CB

HSA-202733
Cell surface

interactions at the
vascular wall

5 139 1.13 0.0108 IGLL1, FN1, JCHAIN, SELL, PIK3CB
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Table 3. Cont.

Hierarchy Group Pathway ID Description of
Pathway

Observed Gene
Count

Background Gene
Count Strength FDR Matching Proteins in the Network

Hemostasis/Signal
Transduction HSA-354192 Integrin signaling 3 27 1.62 0.0169 TLN1, FN1, PTPN1

Signal Transduction HSA-186797 Signaling by PDGF 4 58 1.42 0.0088 COL6A3, THBS4, STAT1, PIK3CB

Developmental
Biology HSA-9675108 Nervous system

development 9 575 0.77 0.0088 ANK3, COL6A3, TLN1, PRX, MSN,
NRCAM, CFL1, CLTCL1, PIK3CB

HSA-422475 Axon guidance 8 551 0.74 0.0187 ANK3, COL6A3, TLN1, MSN, NRCAM,
CFL1, CLTCL1, PIK3CB

Immune System HSA-168256 Immune System 16 1979 0.49 0.0108
LBP, VTN, LYZ, ANPEP, HSPA5, FN1,
PIGR, MSN, STAT1, QSOX1, FCGR3A,

PTPN1, CFL1, CFD, SELL, PIK3CB

HSA-168249 Innate Immune
System 11 1041 0.6 0.0169 LBP, VTN, LYZ, ANPEP, PIGR, QSOX1,

FCGR3A, CFL1, CFD, SELL, PIK3CB

Extracellular matrix
organization HSA-3000170 Syndecan

interactions 3 27 1.62 0.0169 VTN, FN1, ACTN1

KEGG

Cellular Processes;
Cellular community—

eukaryotes
hsa04510 Focal adhesion 7 195 1.13 3.2 × 10−4 VTN, COL6A3, TLN1, THBS4, FN1,

ACTN1, PIK3CB

Cellular Processes;
Cell motility hsa04810 Regulation of the

actin cytoskeleton 5 209 0.96 0.0196 FN1, MSN, ACTN1, CFL1, PIK3CB

Environmental
Information

Processing; Signaling
molecules and

interaction

hsa04512 ECM-receptor
interaction 4 88 1.24 0.0169 VTN, COL6A3, THBS4, FN1
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Table 3. Cont.

Hierarchy Group Pathway ID Description of
Pathway

Observed Gene
Count

Background Gene
Count Strength FDR Matching Proteins in the Network

Human Diseases;
Infectious disease:

viral
hsa05165

Human
papillomavirus

infection
6 324 0.85 0.0196 VTN, COL6A3, THBS4, FN1, STAT1,

PIK3CB

Human Diseases;
Cancer: overview hsa05205 Proteoglycans in

cancer 5 194 0.99 0.0196 VTN, ANK3, FN1, MSN, PIK3CB

Notes: ACTN1: alpha-actinin-1; ANK3: ankyrin-3; ANPEP: aminopeptidase N; CFD: complement factor D; CFL1: cofilin-1; CLTCL1: clathrin heavy chain 2; COL6A3: collagen
alpha-3(VI) chain; ECM: extra cellular matrix; FCGR3A: low-affinity immunoglobulin gamma Fc region receptor III-A; FDR: false discovery rate; FN1: fibronectin; hsa/HSA: homo sapiens;
HSPA5: endoplasmic reticulum chaperone BiP; IGLL1: immunoglobulin lambda-like polypeptide 1; JCHAIN: immunoglobulin J chain; LBP: lipopolysaccharide-binding protein; LYZ:
lysozyme C; MSN: moesin; NRCAM: neuronal cell adhesion molecule; PDGF: platelet-derived growth factor; PIGR: polymeric immunoglobulin receptor; PIK3CB: phosphatidylinositol
4,5-bisphosphate 3-kinase catalytic subunit beta isoform; PRX: periaxin; PTPN1: tyrosine-protein phosphatase non-receptor type 1; QSOX1: sulfhydryl oxidase 1; SELL: L-selectin;
SERPINF2: alpha-2-antiplasmin; STAT1: signal transducer and activator of transcription 1-alpha/beta; THBS4: thrombospondin-4; TLN1: talin-1; VTN: vitronectin.
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The protein–protein interaction network (PPI) based on the 52 proteins with a p value
below 0.05 is shown in Figure 1. In this network, all but 10 proteins had connections to
other proteins, and Fibronectin 1 (FN1) was the most connected protein. The PPI reflected
three overall sub-clusters as follows: one sub-cluster including several immunoglobulins
(bottom of figure), one large sub-cluster with FN1 in the center (top of figure), and one
smaller sub-cluster including, among others, APOC4 and C1RL (right side of figure).
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fied Cox regression analysis of all 39 AMI discordant twin pairs. 

Figure 1. Protein–protein-interaction network of the 57 proteins with a p value below 0.05 in stratified
Cox regression analysis of all 39 AMI discordant twin pairs. Notes: the colors of the edges reflect
the following: (1) known interactions; purple; experimentally determined, and turquoise; from
curated databases, (2) predicted interactions; green: gene neighborhood, red: gene fusions, dark blue:
gene co-occurrence, and (3) others; light green: textmining, black: co-expression, and light purple:
protein homology.

Notes: (a) 42 proteins have at least one connection (displayed in figure), while (b) 10
do not have connections), and (c) 5 proteins are not annotated in the STRING database).

(a) ACTN1: alpha-actinin-1; ANK3: ankyrin-3; ANPEP: aminopeptidase N; APOC4:
apolipoprotein C-IV; ART4: ecto-ADP-ribosyltransferase 4; C1RL: complement C1r
subcomponent-like protein; CD5L: antigen-like CD5; CFL1: cofilin-1; CLTCL1: clathrin
heavy chain 2; COL6A3: collagen alpha-3(VI) chain; FCGR3A: low-affinity immunoglob-
ulin gamma Fc region receptor III-A; FN1: fibronectin; GPD1: glycerol-3-phosphate
dehydrogenase [NAD(+)];GPLD1: phosphatidylinositol-glycan-specific phospholi-
pase D; HABP2: hyaluronan-binding protein 2; HSPA5: endoplasmic reticulum
chaperone BiP; IGHV3-15: immunoglobulin heavy variable 3-15; IGHV3-72: im-
munoglobulin heavy variable 3-72; IGKV1D-33: immunoglobulin kappa variable
1D-33; IGLL1: immunoglobulin lambda-like polypeptide 1; INPP4B: inositol polyphos-
phate 4-phosphatase type II; JCHAIN: immunoglobulin J chain; LCAT: phosphatidylch
oline-sterol acyltransferase; LYZ: lysozyme C; MCAM: cell surface glycoprotein
MUC18; MSN: moesin; NRCAM: neuronal cell adhesion molecule; PCOLCE: procolla-
gen C-endopeptidase enhancer 1; PCYOX1: prenylcysteine oxidase 1; PIGR: polymeric
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immunoglobulin receptor; PIK3CB: phosphatidylinositol 4,5-bisphosphate 3-kinase
catalytic subunit beta isoform; PRX: periaxin; PTPN1: tyrosine-protein phosphatase
non-receptor type 1; QSOX1: sulfhydryl oxidase 1; SELL: L-selectin; SERPINA10: pro-
tein Z-dependent protease inhibitor; SERPINF2: alpha-2-antiplasmin; STAT1: signal
transducer and activator of transcription 1-alpha/beta; THBS4: thrombospondin-4;
TLN1: talin-1; TPI1: isoform 2 of triosephosphate isomerase; VTN: vitronectin.

(b) CFD: complement factor D; DDX19B: ATP-dependent RNA helicase DDX19B; FGD6:
FYVE, RhoGEF, and PH domain-containing protein 6; GLIPR2: Golgi-associated plant
pathogenesis-related protein 1; LBP: lipopolysaccharide-binding protein; LRRC17:
leucine-rich repeat-containing protein 17; PCDH15: isoform 4 of Protocadherin-15;
QTRT2: queuine tRNA-ribosyltransferase accessory subunit 2; SYMPK: symplekin;
ZNF268: zinc finger protein 268.

(c) IGLV1–40: immunoglobulin lambda variable 1–40; IGLV1–47: immunoglobulin
lambda variable 1–47; IGLV2–23: immunoglobulin lambda variable 2–23; IGLV3–16:
immunoglobulin lambda variable 3–16; IGLV6–57: immunoglobulin lambda variable
6–57.

2.3. Investigation of the Direction of Effect of the 57 Nominal Significant Proteins in the 12
Monozygotic Twin Pairs

Of the 39 twin pairs, 12 were monozygotic, hence enabling the study of intra-twin pair
differences in protein levels in genetically identical individuals, an analysis that excludes the
potential for genetic confounding. This means that such an analysis can potentially confirm
the direction of the effect of proteins not affected by genetic variation. The 57 proteins
found to be nominally significant in the analysis of all twin pairs were examined in the
monozygotic twins; 3 proteins could not be analyzed due to missing data, yet of the
54 remaining proteins, 47 reflected the same direction of effect in the monozygotic twins as
in all twins, while 7 proteins reflected the opposite direction of effect. Of the 47 proteins
with the same direction of effect, 14 proteins displayed a p value below 0.05 in the analysis
of the monozygotic twins, while of the 7 proteins with the opposite direction of effect,
2 proteins displayed a p value below 0.05 in the analysis of the monozygotic twins (see
Supplementary Table S3). The PPI of the 47 proteins, which showed the same direction of
effect in the monozygotic twins as in all twins, reflected the same overall pattern as seen
in all twin pairs (see Supplementary Figure S1). Lastly, when including the 47 proteins in
bioinformatic analyses (see Supplementary Table S4), many of the same biological pathways
and processes were seen; of the 5 KEGG pathways, 11 Reactome pathways, 12 STRING
clusters, 5 GO Functions, 22 GO Components, and 23 GO Processes observed in all twin
pairs, 5 (100%), 9 (82%), 11 (92%), 5 (100%), and 18 (82%), respectively, 9 (39%) were reflected
also in the monozygotic twins. Many of the GO Processes not reflected in the monozygotic
twin pairs related to the immune system. Taken together the monozygotic twins overall
echo the results observed in all twins.

2.4. Investigation of the Seven Proteins Passing Correction for Multiple Testing by Parallel
Reaction Monitoring Mass Spectrometry

Finally, for experimental validation of the seven proteins passing correction for multi-
ple testing (i.e., the proteins in Table 2), we inspected these proteins by parallel reaction
monitoring mass spectrometry (PRM-MS). As a positive control, we also investigated the
APOA1 and APOB proteins, often investigated in relation to CVD and known to correlate to
HDL and LDL values, respectively. As seen in Supplementary Figure S2, both APOA1 and
APOB displayed good statistically significant correspondence between nano-LC-MS-MS
and PRM-MS, with correlation coefficients of 0.83 (APOA1) and 0.86 (APOB), respectively.
Furthermore, both types of MS data also showed statistically significant correlations to
HDL and LDL values, with correlation coefficients of 0.78 (nano-LC-MS-MS) and 0.84
(PRM-MS) for APOA1 and HDL and 0.87 (nano-LC-MS-MS) and 0.78 (PRM-MS) for APOB
and LDL. When investigating the seven proteins passing correction for multiple testing,
four of the following proteins displayed good correspondence between the two MS meth-
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ods: correlation coefficients: MCAM = 0.44, LBP = 0.62, C1RL = 0.35, and APOC4 = 0.79
(see Supplementary Figure S2). The remaining three proteins, i.e., IGHV3-15, FDG6, and
PIK3CB, could not be measured by PRM-MS.

3. Discussion

Acute myocardial infarction (AMI) remains one of the major causes of mortality and
morbidity worldwide, and biological markers for identification of short- and medium-
term incident AMI are warranted given that the present markers are not very precise
and are difficult to apply on the individual level [8,22]. In the present study, we take
advantage of applying the discordant twin pair design for this need, as this design reduces
the potential confounding induced by genetics and the early environment, as well as shared
environmental factors. The AMI diagnoses of the present study population were drawn
from the nationwide Danish Patient Registry (DPR), hence enabling analysis of incident
cases without relying on self-report.

Analysis of 39 twin pairs discordant for their first-ever AMI within three years after
blood sampling revealed 7 proteins passing correction for multiple testing and an additional
50 proteins with nominal significance. Bioinformatic analyses revealed several biological
pathways, foremost related to hemostasis, the coagulation cascade, the immune system, and
extracellular matrix (ECM) biology. Of the seven proteins passing correction for multiple
testing, three have previously been put forward as cardiovascular makers: apolipoprotein
C-IV (APOC4) is a lipid-binding protein belonging to the apolipoprotein gene family, and
the gene is located in the so-called APOE-APOC1-APOC4-APOC2 gene cluster, which has
been intensively studied in relation to cardiovascular traits and risk factors, e.g., [23]. With
respect to proteome studies, APOC4 has been reported to be associated with coronary
atherosclerosis [24], heart failure after AMI [25], and recovery from stroke [26]. Additionally,
lipopolysaccharide-binding protein (LBP) has been reported as a protein marker of AMI [13]
and to be associated with coronary atherosclerotic plaque disruption [27], as well as a
risk of AMI after human immunodeficiency virus [28] or COVID-19 infection [29]. LBP
plays a role in the innate immune response and belongs to a family of structurally and
functionally related proteins, also holding the cholesteryl ester transfer protein and the
phospholipid transfer protein. Lastly, the cell surface glycoprotein MUC18 (MCAM), also
known as CD146, is a cell adhesion molecule that, among others, plays a role in wound
healing as well as in the cohesion of endothelial cells in the intercellular junctions in
vascular tissue. MCAM was first reported for melanoma cancer, yet also as a marker for
circulating endothelial cells relevant for several CVD traits, including AMI [30], pulmonary
congestion after acute coronary syndrome [31], and ischemic rest pain after peripheral
atherosclerosis [32]. Furthermore, MCAM is characterized as a cardiovascular disease
protein in studies by the Framingham Heart Study, e.g., [33]. The four remaining proteins
are, to the best of our knowledge, less known in relation to CVD; however, some evidence
points to their relevance. FYVE, RhoGEF, and PH domain-containing protein 6 (FGD6) is a
member of the Ras-like family of Rho- and Rac proteins, which may play a role in, among
others, the regulation of the actin cytoskeleton and cell shape. FGD6 is known from the
Aarskog–Scott syndrome, characterized by short stature, facial abnormalities, skeletal and
genital anomalies, and, in some cases, heart defects and a cleft lip. Expression quantitative
trait loci in FGD6 have been reported to be associated with coronary heart disease [34] and
to have an effect on CVD, potentially also reflected in variation in human lifespan [35]. The
phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoform (PIK3CB) is
an isoform of the catalytic subunit of phosphoinositide 3-kinase beta, which participates in
several signaling pathways related to immune processes at the site of injury or infection.
PIK3CB has been reported to be associated with recurrent cardiovascular events [36]. The
immunoglobulin heavy variable 3-15 (IGHV3-15) and complement C1r subcomponent-like
protein (C1RL), also related to immune response, have, to the best of our knowledge, not
been linked to CVD previously. In general, little is known about the biological functions of
these two proteins. Lastly, APOC4 and C1Rl were located together in one of the sub-clusters
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of the protein–protein-interaction network (PPI) generated in the present study, yet the
most connected and very central protein was Fibronectin 1 (FN1). FN1 is a glycoprotein
that is present in plasma in a dimeric form and at the cell surface and ECM in a dimeric
or multimeric form and participates in several processes, including cell adhesion and
migration processes in connection to embryogenesis, wound healing, blood coagulation,
host defense, and metastasis. FN1 has been suggested in connection with AMI [37–39], as
well as T-segment elevation myocardial infarction [40,41].

The fact that the pathway analyses of the present study foremost reflected immune
response, homeostasis, blood coagulation, and ECM biology might not be surprising
given that these processes are well-known in connection to AMI; homeostasis and blood
coagulation potentially reflect blood clot formation, while inflammation and immune
response are central for both the atherosclerosis preceding AMI and the activation of
inflammatory responses after AMI. Finally, ECM remodeling is key for the reparative
responses after AMI [4,42]. Interestingly, two of the previously published proteome studies
of AMI also identified some of these processes: Xu et al. [2] identified complement and
coagulation cascades investigating 10 patients and 5 controls, while Xie et al. identified
processes related to response to wounding and wound healing investigating 8 patients
and 8 controls [14]. As previously mentioned, these two studies were case-control studies
performed after AMI had occurred, while the present study holds incident cases. Hence, it
might appear somehow contradictory that biology reflecting present AMI is identified in
the present study. On the other hand, it might simply reflect an ongoing atherosclerotic
phenotype of the cases present at the time of blood sampling. Finally, these findings
observed in all twin pairs were overall supported when restricting to the monozygotic
twins of the study population, i.e., eliminating the genetic influence, although the p values
were larger, likely due to the smaller sample size. Hence, future studies in additional
twin cohorts of monozygotic twins would be advantageous, preferably including more
monozygotic twins than in the present study population.

The present study has several strengths. First of all, the use of register data from a
national registry enables information on incident AMI, contrary to the previous published
case-control studies of blood drawn after the AMI has occurred. Furthermore, as infor-
mation on diagnosis is not self-reported, it is likely less biased. Secondly, the use of twin
data reduces potential confounding; to the best of our knowledge, the present study is the
first to apply the discordant twin pair design in relation to a proteome study of incident
AMI. Thirdly, studies of incident AMI cases are, in general, rare, calling for such studies.
However, there are also limitations to the present study; the proteome analysis performed
applied blood plasma samples; hence, the proteome profiles obtained reflect the overall
general biology of the individuals and not protein variation specific to, for instance, heart
muscle cells. On the other hand, the identification of useful protein biomarkers applicable
in blood will have great potential due to the non-invasive nature of the sampling. Secondly,
the present study is explorative in nature; we explored all detectable proteins by MS with
a call rate above 50%, but we cannot exclude false positive findings, especially among
the nominally significant observations. Thirdly, the 39 twin pairs of the present study
population included 12 monozygotic twin pairs, 25 dizygotic twin pairs, and 2 twin pairs
of unknown zygosity, which means that the association analysis performed on all twins
does not completely remove the potential genetic confounding. The influence of the shared
environment is, however, still being corrected. The findings in all twins were, however,
echoed in the monozygotic twin pairs of the present study population. Nevertheless,
validation in additional cohorts of monozygotic twins is warranted. Finally, despite the fact
that the AMI cases in the present study were defined as not having an AMI diagnosis before
blood sampling, we cannot exclude that pathological changes were already present at blood
sampling, i.e., AMI develops over years, and hence even to condition on no diagnosis
before blood sampling cannot make us sure that the proteome measured does not to some
degree reflect initial disease.
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In conclusion, we here put forward novel protein biomarkers, as well as biological
pathways, for incident AMI within three years after blood sampling. The main findings
were echoed when the analysis was restricted to the monozygotic twin pairs of the study
population to control the genetic effects. These markers could potentially benefit in the
detection of patients at risk of suffering from an AMI within a short period, yet findings
should be verified in additional study populations.

4. Materials and Methods
4.1. The Study Population

The study population was retrieved from the Danish Twin Registry (DTR) Infrastruc-
ture Study (hereon called the Infra Cohort) conducted from 2008 to 2011 [21]. The Infra
Cohort was a nationwide study of Danish twins selected from the birth cohorts of 1931–1969
with the overall aim to study aspects of midlife health, lifestyle, and functioning, as well
as the contribution to differences in late-life health and mortality. In total, 12,676 twins
took part in the Infra Cohort; of these 10,276 individuals (from the birth cohorts 1931–1969)
had not previously taken part in a twin survey at the DTR, while 2400 twins (from the
birth cohorts 1931–1952) had taken part in The Middle Age Danish Twins Study in 1998
and hence constituted a follow-up study within the Infra Cohort [21]. All participants
received a mailed questionnaire, which they filled out in advance and handed in at an
in-person meeting at one of the five survey centers located across Denmark. The question-
naire included questions regarding social status, family relations, childhood, self-rated
health, self-reported diseases, mental wellbeing, lifestyle (including tobacco use, alcohol
use, and exercise habits), medication use, and intellectual, cultural, and social activities. At
the survey center, a comprehensive examination took place regarding health and aging,
including objective measurements such as cognitive functioning, blood pressure, hand grip
strength, chair stand, body height, weight, and lung function. In addition, whole blood
samples were collected; in total, 12,391 of the twins donated blood samples, leaving EDTA
blood plasma samples for 12,349 individuals as the basis for the present study. The whole
blood samples were collected at the survey centers and shipped to the laboratory, where
samples were centrifuged and divided into fractions before storage at −80 ◦C. This makes
the INFRA cohort the largest population-based survey of twins holding blood samples
conducted by the DTR to date [21].

For the present study, the inclusion criteria were: (A) twin pairs for whom both
co-twins in the twin pair had taken part in the Infra Cohort and where blood plasma
samples were available (N = 7566), and (B) twin pairs who were discordant for the first-
ever AMI diagnosis-based diagnoses in the nationwide Danish Patient Registry (DPR)
(see https://sundhedsdatastyrelsen.dk for details) within the first three years after blood
sampling, i.e., one co-twin in each pair had at least one AMI diagnosis within three years
after blood sampling, while their co-twin remained AMI diagnosis-free. We applied a time
cut-off of three years as our overall aim of the present study was to identify biomarkers for
short- or medium-term AMI, as biomarkers for such cases are lacking in the proteome field.
The DPR contains all hospital discharges and outpatient visits from all Danish hospitals
since 1977, with International Classification of Disease (ICD) 10 codes applied from 1994
and onwards and ICD-8 back to 1977. ICD-9 codes were never applied in the Danish health
registers. AMI was defined as the ICD 10 code group DI21 (acute myocardial infarction:
DI210-DI219) and the ICD8 codes 41009/41099, the latter based on the historical definition
from Statistics Denmark (https://www.dst.dk (accessed on 10 November 2022)). Due
to general data protection regulations (Danish and EU legal regulations) at the time of
conducting this study, data from the DPR was available from the start of the DPR and until
2014, hence not allowing the investigation of later-occurring AMI. Only twin pairs where
the twin with an AMI diagnosis after blood sampling was free of diagnosis before blood
sampling (register data back to 1977) were included, i.e., only incident cases were included.
Out of 7566 individuals who belonged to 3783 complete twin pairs with available biological
material, 39 twin pairs were discordant for incident AMI. These 78 individuals (39 twin

https://sundhedsdatastyrelsen.dk
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pairs) were included in the analyses. Finally, information regarding dates of birth and death
was obtained from the Danish Civil Registration System Registry (see https://cpr.dk for
details). Out of the 78 individuals under study, three individuals died during the 3 years of
follow-up; all three individuals were twins holding an AMI diagnosis.

Informed consents were obtained from all survey participants, and the survey, as well
as the laboratory analyses (see below), were approved by the Regional Committees on
Health Research Ethics for Southern Denmark (S-VF-19980072 and S-20200214). The study
was conducted in accordance with the Declaration of Helsinki.

4.2. Laboratory Analyses

Frozen blood plasma samples were thawed and used for proteome analysis by nano-
liquid chromatography coupled to tandem mass spectrometry (nano-LC-MS-MS). The
plasma content of the nicotine metabolite cotinine was measured by LC-MS-MS using an
in-house method. Plasma levels of total cholesterol, triglycerides, high-density lipoprotein
(HDL), and low-density lipoprotein (LDL) were measured using immunochemistry (Roche
Cobas 8000, Basel, Switzerland). Prior to statistical analysis (see below), non-HDL was
calculated by subtracting HDL levels from the total cholesterol level (as carried out in [43]).

4.3. Proteome Analyses

Plasma proteins (5 µg) were reduced (5 mM dithiothreitol, 50 ◦C, 30 min) and alkylated
(15 mM iodoacetamide, 30 min, room temperature in the dark) and digested overnight
(0.25 trypsin µg, 37 ◦C overnight). Enzymatically digested peptides were randomly labeled
with either of the TMT reagents 127N, 127C, 128N, 128C, 129N, 129C, 130N, or 130C. A pool
of all samples was tagged with reagent 126 and served as an internal standard. Prior to
LC-MS-MS analysis, the resulting TMT sets were fractionated by high-pH reversed-phase
fractionation with a linear gradient of 25 min from 10% solvent B (20 mM ammonium
formate in 80% acetonitrile (ACN), pH 9.3) to 55% solvent B at a 6 µL/min flowrate on
a Dionex Ultimate 3000 RSLCnano system inline coupled to a Dionex 3000 Ultimate UV
detector (210 nm) and a Dionex Ultimate 3000 autosampler configured as a fraction collector
(Thermo Scientific, Bremen, Germany), yielding seven fractions per TMT set to be analyzed
with nano-LC-MS-MS.

Nano-LC-MS-MS analysis of the fractionated samples was conducted virtually as
previously described [44,45] using an Orbitrap Eclipse mass spectrometer (Thermo Fisher
Scientific, San Jose, CA, USA) equipped with a FAIMS interface. Prior to analysis, the
peptide fractions were separated using a nano-HPLC interface (Dionex UltiMate 3000 nano-
HPLC, Thermo Scientific, Bremen, Germany). Briefly, peptide samples were trapped by
a custom-made fused capillary pre-column (2 cm length, 360 µm OD, 75 µm ID packed
with ReproSil Pur C18 5 µm resin (Dr. Maish, GmbH, Ammerbuch, Germany)) with a flow
of 4 µL/min for 8 min followed by separation on a custom-made fused capillary column
(25 cm length, 360 µm OD, 75 µm ID, packed with ReporSil Pur C13 1.9 µm resin (Dr.
Maisch, Ammerbuch-Entringen, Germany)) using a linear gradient ranging from 88–86%
solution A (0.1% formic acid, Fluka, Seetze, Germany) to 27–32% B (80% acetonitrile (J.T.
Baker, Gliwice, Poland) in 0.1% formic acid) over 119 min.

Mass spectra were acquired in positive ion mode by switching between CVs of −50 V
and −70 V, applying an automatic data-dependent switch between an Orbitrap survey MS
scan in the mass range of 400 to 1200 m/z, followed by peptide fragmentation applying
normalized collisional energy of 40% in a 2-s cycle. MS1 spectra were acquired at a
resolution of 60,000 at 200 m/z by applying a dynamic exclusion of previously selected ions
for 60 s. MS2 spectra were acquired at 50,000 resolution at 200 m/z with a normalized AGC
target of 200% using a 0.4 m/z isolation window. The maximum injection time was 86 ms.
The MS1 AGC target was 400,000 ions, and the MS2 AGC target was 100,000 ions. The
resulting raw files were processed using Proteome Discoverer software (version 2.4.0.305)
virtually as previously described [46].

https://cpr.dk
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Protein measurements are given as ratios of the actual amount of protein in a plasma
sample to the average amount in a calibrator-plasma pool generated from all plasma
samples analyzed. The two co-twins in each twin pair were analyzed in the same MS
plex. In total, 869 proteins were measured with nano-LC-MS-MS; after removing proteins
with no or off-scale measurement values and cleaning the data [47], 715 proteins were left
for analysis.

Finally, for experimental validation of the seven proteins passing correction for multi-
ple testing (i.e., the proteins in Table 2), we performed parallel reaction monitoring mass
spectrometry (PRM-MS) of these proteins in 32 individuals for whom nano-LC-MS-MS data
were available for a minimum of six of the seven proteins. Moreover, we also analyzed the
APOA1 and APOB proteins as positive controls; APOA1 and APOB are often investigated
in relation to CVD and are known to be correlated with HDL and LDL values, respectively.
APOA1 and APOB had been measured in all individuals by the nano-LC-MS-MS method
in the present study. PRM-MS analysis was performed on an Orbitrap Eclipse Tribrid
mass spectrometer (Thermo Fisher Scientific). Peptides were trapped and separated on the
same column configuration as previously described, using a 36-min linear gradient from
91% Buffer A (0.1% FA in water) to 32% Buffer B (0.1% FA, 80% ACN/water). Precursors
were monitored in an unscheduled manner using the quadrupole to isolate precursors
with an isolation width of 0.7 m/z, followed by fragmentation using HCD (NCE = 30%).
The measurement of the fragments was performed in the Orbitrap at 15,000 resolution.
The generation of the isolation list for the previously identified proteins as well as raw
data processing were performed in Skyline (v. 21.2.0.536). The isolation list is available
in Supplementary Table S5. The nano-LC-MS-MS values and PRM-MS values for the
same individuals were plotted in two-way scatter plots, and correlation coefficients were
calculated. Finally, with the aim of obtaining a p-value for the correspondence between the
two MS measurements, a linear regression model was fitted.

4.4. Survey Data

In addition to the registry and laboratory data, survey data regarding information
on body mass index (BMI), systolic blood pressure, diabetes disease status, medication
use, zygosity, and smoking status were included in the present study. BMI (kg/m2) was
derived from measured height and weight: weight was measured once, while height was
measured twice; thus, for height, an average of the two measurements was used. Systolic
blood pressure was measured as the standard sitting blood pressure of the upper arm. The
blood pressure was measured twice with a one-minute break between, and an average of
the two blood pressure measurements was used. The status of current diabetes type 1 or 2
was based on the question, “Which serious, prolonged diseases do you have now or have
had previously? If a doctor has ever diagnosed you with one of the diseases mentioned
below, please answer “yes”. Medication use of (a) diabetes medication, (b) heart- and blood
pressure medication, (c) coagulation inhibitory medication, or (d) lipid lowering medication
was based on self-report of all medication taken. Medication was grouped based on the
ATC guidelines for 2020 (https://www.whocc.no/, 23rd edition from January 2020). The
zygosity of the twin pairs was based on four questions regarding physical similarity, which
previously have been shown to correctly classify more than 95% of the pairs as compared
to genetic markers [48]. Information concerning smoking status (never/former, or current
smoker) was obtained from questionnaire data and verified by the cotinine measurements;
out of the 78 individuals, 56 displayed a cotinine value ≤ 1.7 ng/mL, while 22 individuals
held ≥ 27 ng/mL. For 75 out of 78 individuals, the cotinine measurement corresponded
to the self-reported smoking status; consequently, one individual was transferred from
the current smoker group to the never/former smoker group, while two individuals were
transferred from the never/former smoker group to the current smoker group. Lastly,
for diabetes status and systolic blood pressure, a maximum of 2 out of the 78 individuals
had no data. These values were imputed by the most frequent answer (diabetes status)

https://www.whocc.no/
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and, respectively, the mean of the study population (systolic blood pressure). One height
measurement was corrected from 5.86 m to 1.86 m.

Information on the gender of the study participants was based on information from
the Danish Patient Registry; in the registry, the information on gender is based on midwife
journals, unless an individual has applied to the Danish Civil Registration System Registry
for a legal change of gender. In the present study, we did not perform gender stratified
analysis as the sample sizes of such analysis stratified by zygosity would not enable a
comprehensive analysis; the 13 dizygotic opposite-gender twin pairs are not applicable for
such analysis, while for the 12 monozygotic twin pairs, the 12 dizygotic same-gender twin
pairs, and the 2 twin pairs of unknown zygosity, the gender distribution was 6 male pairs
(50%) and 6 female pairs (50%); 9 male pairs (75%) and 3 female pairs (25%); and 2 male
pairs (100%), respectively.

4.5. Preparation and Imputation of Proteome Data for Statistical Analysis

Of the 715 proteins for which measurements were obtained in the nano-LC-MS-MS
analysis, 197 proteins had complete data (i.e., had a call rate of 100%), while for the
remaining 518 proteins, 63 proteins had a call rate of >75% to <100%, 103 proteins had a call
rate of >50% to <75%, 154 proteins had a call rate of >25% to <50%, and 198 proteins had a
call rate of >0% to <25%. With the aim of analyzing as many proteins as possible, inverse
probability weighting [49] was used prior to Cox regression analysis for imputing values
for the proteins not measured in all individuals. The ipw library in R version 4.1.0 was
used. Initially, different cut-offs regarding the call rate for the proteins (i.e., the percentage
of individuals holding data for a given protein) were evaluated for the imputation method.
Given the sample size of the study population and the interest in investigating the intra-pair
differences between co-twins with an AMI and co-twins without an AMI in all twins, as
well as in the monozygotic twins, only proteins with a call rate of 50% or above were
included, as the statistical models appeared most stable with this cut-off. Furthermore, to
ensure the stability of the intra-pair analysis, the protein values were multiplied by 100
before analysis (see below). The cut-off of 50% for protein call rate and the multiplication by
100 before analysis were initially determined by thoroughly investigating the protein data
grouped by 10% decreasing call rate and multiplication by either 10 or 100, solely inspecting
the stability of the calculations in R, and not inspecting the results of the statistical analysis.

4.6. Statistical Analyses

The association between the protein values and time to AMI diagnosis was analyzed
using Cox regression (using the survival library in R); the study population was analyzed
as twin pairs employing a stratified Cox model, where the baseline hazard functions were
twin pair specific (strata on twin pair ID). This model investigates the intra-pair differences
in protein levels between the twin with AMI and the co-twin without AMI. This means
that a hazard ratio (HR) above 1 can be interpreted as an increased level of a given protein
in the AMI twins relative to the non-AMI twins, and a HR below 1 can be interpreted as a
decreased level of a given protein in the AMI twins relative to the non-AMI twins. To ensure
proper age adjustment and allow non-linear relations between the protein levels and the
risk of AMI, a Cox regression model with age as a timescale was performed. We included
age at blood sampling, which defines age at delayed entry, age at diagnosis/end-of-follow-
up as the status age, and AMI status as the status variable. It was not relevant to include
age at death as status age in the analysis as only individuals getting an AMI diagnosis died
during follow-up. To ensure the stability of the intra-pair analysis, the protein values were
multiplied by 100 before analysis. Following the definitions by the European Association of
Preventive Cardiology [43], we considered the following co-variates in the analyses: gender,
smoking status (current vs. former or never smoker), systolic blood pressure, and non-HDL
level. Age at blood sampling is adjusted for by including it as the entry age. This model
was used in the analysis of all proteins. The Cox proportional hazard assumption was
tested, and the assumption was fulfilled considering the number of proteins tested. Finally,
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the adjustment for multiple testing was performed by the Benjamini and Hochberg false
discovery rate (FDR) correction method [50]. In the study population, 12 twin pairs were
monozygotic (MZ) twin pairs, hence enabling the study of intra-pair differences in protein
levels in genetically identical individuals. This analysis is robust as it excludes shared
confounding, particularly the potential genetic confounding by design. A sub-analysis
of these MZ twin pairs and the proteins with a p value below 0.05 in all twin pairs was
performed with the aim of confirming that the direction of effect was not influenced by
genetic variation. All analyses were conducted in R version 4.1.0.

4.7. Bioinformatic Analyses

Gene Ontology (GO), STRING cluster, Kyoto Encyclopedia of Genes and Genomes (KEGG),
and Reactome enrichment analyses were conducted for proteins displaying a p value
below 0.05 in the association analysis. These bioinformatic analyses were performed
using the STRING database for functional protein association networks (https://string-
db.org, [51] (accessed on 11 August 2023)). Some of the immunoglobulins in the present
dataset were not annotated in the STRING database and were consequently not included
in the bioinformatic analyses. With respect to GO analysis, biological processes, molecular
functions, and cellular components were inspected. Moreover, hierarchical groups were
identified; for KEGG, the Brite hierarchy groups were identified via the KEGG database
(https://www.genome.jp/kegg (accessed on 17 August 2023)); for Reactome, the Event
hierarchy groups were found (https://reactome.org/content/toc (accessed on 17 August
2023)); and for GO terms, the overall grouping of GO terms was examined by inspection of
ancestral charts via the QuickGO database (https://www.ebi.ac.uk/QuickGO (accessed
on 15 August 2023)). The GO terms were grouped by common ancestor term at the top
of the ancestor chart, with the purpose of reflecting the common biology of the terms
identified. The STRING clusters were grouped according to their hierarchy clustering
(https://string-db.org/cgi/download.pl (accessed on 11 August 2023)). Finally, protein–
protein interaction (PPI) networks were investigated using the STRING database.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms25052638/s1.

Author Contributions: Conceptualization of study and statistical analysis plan; H.C.B., L.M.R., M.S.,
A.M., J.M.-F. and J.H.; data acquisition and curation; H.C.B., L.M.R. and M.S.; writing—original
draft preparation and review and editing; H.C.B., L.M.R. and M.S.; formal laboratory analysis:
H.C.B., N.B.P. and P.F.N.; formal statistical and bioinformatics analysis: A.C.S. and M.S.; project
administration: H.C.B. and M.S.; funding acquisition: H.C.B., L.M.R. and M.S. All authors have read
and agreed to the published version of the manuscript.

Funding: The work was supported by the Danish Heart Foundation, the Odense University Hospital
Research Fund (Grant R22-A1187-B615), the Lundbeck Foundation, the National Program for Re-
search Infrastructure 2007 from the Danish Agency for Science, Technology, and Innovation, and the
Fabrikant Vilhelm Pedersen og Hustrus Legat on recommendation by the Novo Nordisk Foundation.

Institutional Review Board Statement: The project was approved according to Danish and EU
legislation; the study was approved by the Danish Data Protection Agency and the Legal Services
at the University of Southern Denmark (under Acadre Nos./Project Nos. 16/15711/10.585 and
17/52380/10.754, as well as Project No. 10.886 (approved in 2007 and 1 April 2016, 25 August 2017
and 18 September 2020). The study was conducted in accordance with the Declaration of Helsinki.

Informed Consent Statement: Informed consents were obtained from all survey participants, and
the survey, as well as the laboratory analyses performed, were approved by the Regional Committees
on Health Research Ethics for Southern Denmark (S-VF-19980072 and S-20200214 (approval dates: 21
February 2008 and 25 March 2021).

Data Availability Statement: According to Danish and EU legislation, the transfer and sharing of
individual-level data requires prior approval from the Danish Data Protection Agency and requires
that data sharing requests be dealt with on a case-by-case basis. Therefore, the data from the present

https://string-db.org
https://string-db.org
https://www.genome.jp/kegg
https://reactome.org/content/toc
https://www.ebi.ac.uk/QuickGO
https://string-db.org/cgi/download.pl
https://www.mdpi.com/article/10.3390/ijms25052638/s1
https://www.mdpi.com/article/10.3390/ijms25052638/s1


Int. J. Mol. Sci. 2024, 25, 2638 17 of 19

study cannot be deposited in a public database. However, we welcome any inquiries regarding
collaboration and individual requests for data sharing.

Acknowledgments: Lisbeth Aagaard Larsen is thanked for excellent support regarding data manage-
ment and access to register data.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Global Burden of Disease 2019. Available online: https://www.healthdata.org/data-visualization/gbd-results (accessed on 16

December 2022).
2. Xu, S.; Jiang, J.; Zhang, Y.; Chen, T.; Zhu, M.; Fang, C.; Mi, Y. Discovery of potential plasma protein biomarkers for acute

myocardial infarction via proteomics. J. Thorac. Dis. 2019, 11, 3962–3972. [CrossRef]
3. Mechanic, O.J.; Gavin, M.; Grossman, S.A. Acute Myocardial Infarction. In StatPearls; StatPearls Publishing LLC: Treasure Island,

FL, USA, 2022.
4. Falk, E.; Nakano, M.; Bentzon, J.F.; Finn, A.V.; Virmani, R. Update on acute coronary syndromes: The pathologists’ view. Eur.

Heart J. 2013, 34, 719–728. [CrossRef] [PubMed]
5. Aydin, S.; Ugur, K.; Aydin, S.; Sahin, I.; Yardim, M. Biomarkers in acute myocardial infarction: Current perspectives. Vasc. Health

Risk Manag. 2019, 15, 1–10. [CrossRef] [PubMed]
6. Lyngbakken, M.N.; Myhre, P.L.; Røsjø, H.; Omland, T. Novel biomarkers of cardiovascular disease: Applications in clinical

practice. Crit. Rev. Clin. Lab. Sci. 2019, 56, 33–60. [CrossRef] [PubMed]
7. Bhak, Y.; Jeon, Y.; Jeon, S.; Yoon, C.; Kim, M.; Blazyte, A.; Kim, Y.; Kang, Y.; Kim, C.; Lee, S.Y.; et al. Polygenic risk score validation

using Korean genomes of 265 early-onset acute myocardial infarction patients and 636 healthy controls. PLoS ONE 2021, 16,
e0246538. [CrossRef] [PubMed]

8. Mortensen, M.B.; Dzaye, O.; Bøtker, H.E.; Jensen, J.M.; Maeng, M.; Bentzon, J.F.; Kanstrup, H.; Sørensen, H.T.; Leipsic, J.;
Blankstein, R.; et al. Low-Density Lipoprotein Cholesterol Is Predominantly Associated with Atherosclerotic Cardiovascular
Disease Events in Patients with Evidence of Coronary Atherosclerosis: The Western Denmark Heart Registry. Multicent. Study
Circ. 2023, 147, 1053–1063. [CrossRef] [PubMed]

9. Shaw, L.J.; Taylor, A.J.; O’Malley, P.G. Cost-effectiveness of new tests to diagnose and treat coronary heart disease. Curr. Treat.
Options Cardiovasc. Med. 2005, 7, 273–286. [CrossRef] [PubMed]

10. Májek, P.; Reicheltová, Z.; Suttnar, J.; Malý, M.; Oravec, M.; Pečánková, K.; Dyr, J.E. Plasma proteome changes in cardiovascular
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