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Abstract: Current treatments for Alzheimer’s disease (AD) focus on slowing memory and cognitive
decline, but none offer curative outcomes. This study aims to explore and curate the common
properties of active, drug-like molecules that modulate glycogen synthase kinase 3β (GSK-3β), a
well-documented kinase with increased activity in tau hyperphosphorylation and neurofibrillary
tangles—hallmarks of AD pathology. Leveraging quantitative structure–activity relationship (QSAR)
data from the PubChem and ChEMBL databases, we employed seven machine learning models:
logistic regression (LogR), k-nearest neighbors (KNN), random forest (RF), support vector machine
(SVM), extreme gradient boosting (XGB), neural networks (NNs), and ensemble majority voting. Our
goal was to correctly predict active and inactive compounds that inhibit GSK-3β activity and identify
their key properties. Among the six individual models, the NN demonstrated the highest performance
with a 79% AUC-ROC on unbalanced external validation data, while the SVM model was superior in
accurately classifying the compounds. The SVM and RF models surpassed NN in terms of Kappa
values, and the ensemble majority voting model demonstrated slightly better accuracy to the NN
on the external validation data. Feature importance analysis revealed that hydrogen bonds, phenol
groups, and specific electronic characteristics are important features of molecular descriptors that
positively correlate with active GSK-3β inhibition. Conversely, structural features like imidazole rings,
sulfides, and methoxy groups showed a negative correlation. Our study highlights the significance
of structural, electronic, and physicochemical descriptors in screening active candidates against
GSK-3β. These predictive features could prove useful in therapeutic strategies to understand the
important properties of GSK-3β candidate inhibitors that may potentially benefit non-amyloid-based
AD treatments targeting neurofibrillary tangles.

Keywords: Alzheimer’s disease; GSK-3β; neurofibrillary tangles; tau phosphorylation; machine learning

1. Introduction

Approximately 44 million people worldwide are living with Alzheimer’s disease (AD),
a devastating condition that currently has no cure and limited treatment options [1–3].
Existing medications can only slow memory and cognitive decline [4], leaving an urgent
need for breakthrough therapies, as we are still unable to reverse cognitive impairment.
Our research presents a promising pathway forward by utilizing extensive databases
(PubChem and ChEMBL) and sophisticated machine learning algorithms to identify critical
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features of drugs that could potentially reverse cognitive decline by targeting glycogen
synthase kinase 3β (GSK-3β)—a brain enzyme. Increased activity of GSK-3β in AD may
lead to abnormal neurogenesis, compromised synaptic plasticity, and adverse effects in
the hippocampus [5]. A primary therapeutic strategy for AD involves inhibiting GSK-3β
because its activity is associated with the number of neurofibrillary tangles (NFTs) in the
brains of AD patients [5,6]. The importance of exploring non-amyloid-based etiologies for
AD, particularly in individuals with dementia who are free from amyloid plaques, cannot
be overstated, and targeting GSK-3β for NFT reduction could offer a promising lead [7].

GSK-3 is predominantly located in axons; it is expressed in the central nervous system
(CNS) and has alpha and beta isoforms, which are, respectively, coded by chromosomes
19 and 3 [5]. The beta isoform (GSK-3β) is the primary kinase responsible for tau protein
phosphorylation; it can phosphorylate tau at 42 sites, inhibiting transcription factors such
as heat shock transcription factor 1 to prevent cell toxic insults and modulate intrinsic
pathways of cellular apoptosis favored by amyloid beta (Aβ) peptide [5,8–10]. GSK-3 also
plays a role in modulating regulators involved in NFT formation; it has been reported to
phosphorylate MyRF, a transcription factor that contributes to NFTs and participates in
controlling the transcription of its target genes [7,11,12].

GSK-3β is associated with memory loss and learning impairment due to its role in
increasing tau phosphorylation [5,6], which leads to tau disassembly from microtubules.
This process results in cognitive impairment, axonal alterations, enhancement of long-
term depression, and a decrease in long-lasting signal transmission between neurons by
modulating N-methyl-D-aspartate (NMDA) receptors [5,13,14]. NMDA receptors in the
CNS play a vital role in both synaptic transmission and plasticity, which are crucial for
learning and memory [15]. The activation of GSK-3β through the phosphorylation of
tyrosine 216 and serine 9 is regulated by signaling pathways such as PI3K/Akt and Wnt/β-
catenin, which may be dysregulated in AD, leading to increased GSK-3β activity [5,13,16].
The inhibition of GSK-3β has been shown to be protective against NFT formation and
neurodegeneration. For instance, in a splenectomized rat model, lithium inhibition of
GSK-3β significantly reduced phospho-tau levels and protected against neurodegeneration,
spatial learning, and memory deficits [17].

In this study, we focus on the inhibition of GSK-3β, a key factor in tau protein phos-
phorylation linked to AD pathology. We employ machine learning algorithms on active
chemical compounds with inhibitory effects on GSK-3β to identify selective important
chemical properties. The aim is to investigate the potential of drug-like molecules in
modulating GSK-3β activity as a therapeutic strategy for AD treatments, targeting tau
hyperphosphorylation and NFT formation. Our analysis seeks to understand the relation-
ship between the chemical structures of GSK-3β inhibitors and their activity within the
context of AD, utilizing a systems pharmacology framework and quantitative structure–
activity relationship (QSAR) modeling, a technique used to discover connections between
chemical compounds’ biological activities and their structural properties [18,19]. Indeed,
regulatory agencies are increasingly employing QSAR models for predictive purposes, and
to develop specialized tools and databases [20] with interpretable models using machine
learning [21,22]. More effective drugs targeting AD have been predicted using a multi-
target QSAR approach that achieved over 90% accuracy in classifying active and inactive
compounds [23]. This surpasses the limitations of current single-target drugs by capturing
a broader spectrum of drug-target interactions [23].

In brief, our research advances the identification of key properties of tested compounds
that inhibit GSK-3β activity by examining structural features, incorporating electronic and
physicochemical descriptors, and highlighting the impact of specific structural elements. This
analysis not only provides new insights into GSK-3β inhibition but also paves the way for
future investigation aimed at finding characteristics of more potent and effective inhibitors.
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2. Results

Using PubChem IDs, we selected and downloaded only those assays that contained
an active compound testing for GSK-3β inhibition, totaling 38 assays. From each bioassay,
we extracted a PubChem chemical ID (CID), the Canonical Simplified Molecular Input
Line Entry System (SMILES), and the activity outcome (active or inactive). The selected
assays comprised a total of 3093 tested compounds, including 308 active, 2475 inactive, 73
unspecified, and 237 inconclusive chemical compounds, as detailed in Supplemental Data
S1. We eliminated duplicate chemicals and excluded those with unspecified and inconclu-
sive outcomes, resulting in a refined dataset of 225 active and 1212 inactive compounds for
further data filtering and manipulation. Given the typical imbalance in bioassays which
favor more inactive than active outcomes [18], our dataset exhibited similar characteristics
with fewer active compounds. To counteract this, we employed a deliberate strategy to
balance the dataset by selecting an equal number of active and inactive compounds (225
each) for modeling. This approach ensured a balanced representation of outcomes for more
accurate and unbiased model training and validation.

We generated a graphical representation of the frequency of different standard values
(IC50) within the assay dataset (found in Supplemental Data S2) to analyze their distri-
bution and variability, and to understand the nature of the assay. IC50 values explains
the quantitative relationship between a substance’s concentration and the corresponding
biological response measured in the assay [24]. As a relative measure of inhibitory potency,
IC50 values facilitate the comparison of different substances or treatments’ effectiveness
within a specific experimental context [25]. The histogram revealed that the concentrations
followed a normal distribution, indicating that the selected compounds converged around
a common standard. The diagram showing the distribution of log transformed IC50 values
is presented in Figure 1B.
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Figure 1. (A) 2D chemical structure of GSK-3β. (B) Histogram showing the distribution of IC50
values. Selected compounds mainly converged around a similar standard.

To ensure a robust outcome, we used a balanced dataset of 450 compounds (see
Supplemental Data S3) containing all unique 225 active compounds and 225 inactive
compounds randomly selected from the total 1212 inactive compounds. Our decision for
the random selection was driven by the need to create a representative sample, ensuring
a balanced representation of active and inactive compounds. This approach is intended
to mitigate bias and improve the generalizability of our models across diverse chemical
spaces. Next, we randomly divided the dataset into two parts: 70% of the dataset was
used as a training set, and the other 30% was used as validation (15%) and testing sets
(15%), respectively. Additional validation was performed using a combined new external
dataset of 433 compounds from two PubChem bioassay records (651569, 493225). The
external validation data (EVD) (refer to Supplemental Data S4) contained 23.8% active
compounds (103 active and 330 inactive); the machine-generated molecular descriptors for
each compound were also obtained. The target variable, ACTIVITY (1 = active, 0 = inactive),
represents the compounds’ efficacy in inhibiting or modulating GSK-3β. We chose the target
variable as the key factor in the correlation analysis (Figure 2C) because it directly relates
to the central objective of our study, which is to identify relationships between molecular
descriptors and the biological activity of compounds against GSK-3β. It represents the
biological response or effect of each compound, making it a critical measure for our analysis.
By correlating it with molecular descriptors, we explored strongly associated features and
obtained insights into the characteristics of potentially effective compounds.
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Figure 2. Confusion matrix for all models and important logR features. (A) Top 10 positive and
negative logR features and their coefficient values. (B) Summary of model performance based on
the confusion matrix (C) Top 20 RF important features and their correlation with active compounds.
Color bars in Figures 2A and 2C indicate features that have a strong positive (red) or negative
correlation (blue) with the target variable (ACTIVITY). The correlation coefficient values reinforce
that the positive (+1) or negative (−1) correlation is perfect.

Next, we compared the ensemble weighting method by majority voting with the six
individual models: the combined machine-generated molecular descriptors (data with
QSAR descriptors in RDKit) and six types of machine learning methods (NN, RF, LogR,
SVM, XGB, KNN). As shown in Table 1, NN exhibited the best model prediction for active
and inactive compounds across all datasets with a 79% AUC–ROC score on the unbalanced
external validation data, which contained only 23.8% active compounds. This was followed
by SVM and RF (both at 72%) and the ensemble method (71%). While the NN method
had the best AUC–ROC score, the SVM and RF achieved higher Kappa values (Table 1),
indicating NN is likely less robust given the significant difference in prediction outcome
between the validation dataset and the training and test sets.

In terms of learning methodology, RF appeared more robust and less prone to overfit-
ting, as evidenced by the consistency of its predictions. The AUC–ROC and accuracy scores
were less likely to fluctuate in the test and validation sets. Similar scores were observed in
the SVM and ensemble models. The SVM and RF outperformed the NN model in terms of
accuracy and demonstrated superior Cohen’s Kappa values on the external validation data.
Cohen’s Kappa is a statistical measure that quantifies the extent to which the observed
agreement (accuracy) between predicted and actual labels exceeds what would be expected
by random chance [26]. It accounts for both actual and predicted accuracies, offering a
more comprehensive assessment of a model’s predictive capability than accuracy alone [26].
LogR, KNN, and XGB exhibited the lowest AUC–ROC scores (69%) on the new external
validation data.
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Table 1. Performance comparison of all models.

S/N SVM XGB NN

Training Validation Test New
(EVD) Training Validation Test New

(EVD) Training Validation Test New
(EVD)

Recall 0.87 0.87 0.88 0.67 1 0.86 0.91 0.68 0.73 0.92 0.91 0.7

Accuracy 0.93 0.9 0.9 0.74 1 0.84 0.88 0.69 0.76 0.93 0.94 0.72

AUC–ROC 0.93 0.91 0.9 0.72 1 0.84 0.88 0.69 0.76 0.97 0.96 0.79

F1-Score 0.92 0.91 0.9 0.55 1 0.85 0.52 0.5 0.75 0.94 0.94 0.54

Cohen’s
Kappa 0.86 0.81 0.79 0.38 1 0.69 0.76 0.3 0.52 0.87 0.88 0.35

Ensemble LogR KNN RF

Training Validation Test New
(EVD) Training Validation Test New

(EVD) Training Validation Test New
(EVD) Training Validation Test New

(EVD)

0.97 0.93 0.94 0.71 0.94 0.82 0.82 0.69 0.84 0.89 0.88 0.68 1 0.86 0.88 0.68

0.97 0.87 0.87 0.71 0.95 0.79 0.78 0.69 0.86 0.83 0.82 0.69 1 0.84 0.84 0.73

0.97 0.87 0.86 0.71 0.95 0.78 0.78 0.69 0.86 0.83 0.82 0.69 1 0.84 0.84 0.72

0.97 0.89 0.88 0.54 0.95 0.8 0.79 0.51 0.86 0.85 0.83 0.51 1 0.85 0.85 0.55

0.94 0.75 0.74 0.35 0.72 0.57 0.56 0.31 0.72 0.66 0.65 0.3 1 0.67 0.68 0.37

EVD—external validation data.
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Furthermore, the results showed that SVM and RF models exhibited slightly superior
predictive robustness compared to the majority voting ensemble model. While RF and the
majority voting models are forms of ensemble methods, they differ significantly in their
approach to combining predictions from individual models. Majority voting uses a simple
and straightforward method to aggregate model predictions and works well for diverse
models; but offers limited potential for improvement. In contrast, RF is a more complex
ensemble method that learns and optimizes the combination of predictions, often leading
to higher accuracy [27,28]. Research has shown that the predictive efficacy of ensemble
learning surpasses that of any single learner when the individual algorithms are both
accurate and diverse [29]. RF is considered an ensemble method that relies on multiple
decision trees to mitigate the risk of overfitting seen in individual decision trees and is
considered the benchmark for evaluating the performance of new prediction methods and
the gold standard in QSAR prediction [18].

2.1. Strengths and Limitations of Individual and Majority Voting Ensemble Models

The performance of the seven models based on their confusion matrices showed that
LogR, KNN, and XGB exhibited similar limitations with a slight bias towards false positives,
while RF identified true negatives but struggled with false positives. The NN model had a
good balance, with lower false negatives compared to other models, while SVM showed
the best overall performance in correctly identifying both active and inactive compounds,
as shown in Figure 2B.

The observed performance differential between the majority voting ensemble method
and the single models can be attributed to the specific characteristics and sensitivities of the
individual models to the dataset’s features. The ensemble method’s performance on the
EVD, at 71%, suggests that while it can leverage the strengths of individual models, it may
also inherit their limitations, particularly in handling false positives and negatives [30]. The
slightly lower performance could stem from an averaging effect, where the model-specific
advantages in recognizing critical molecular descriptors are diluted. For example, SVM’s
emphasis on structural descriptors and RF’s focus on electronic and physicochemical de-
scriptors highlight their unique approaches to parsing the dataset. These models leverage
specific types of features to predict GSK-3β inhibition outcomes accurately. The ensem-
ble method, by combining these diverse approaches, may not capitalize on the specific
strengths of each model, particularly when those strengths are derived from leveraging
deep model-specific feature sets for prediction. This explanation aligns with the under-
standing that ensemble methods can improve prediction accuracy when individual models
are both accurate and diverse [31] but may perform sub-optimally if the combination
dilutes the distinct advantages of its constituent models or fails to harmonize their insights
effectively [30].

2.2. Important Features

We selected and visualized the top 20 significant features from among 212 molecular
descriptors used in our analysis, specifically for SVM, logR, RF, and XGB models, as
illustrated in Table 2. The significant features for logR and RF were determined using their
coefficients and feature importance scores, respectively. Similarly, XGB’s gradient boosting
framework of feature importance measures is accessible and comparable to RF. Due to the
inherent limitations of the KNN model, we were unable to generate a plot for its significant
features. The KNN depends on distance metrics and lacks direct methods for evaluating
the importance of individual features in its model output [32]. The top features identified
by logR are easily interpretable, as shown in Figure 2A. LogR is a generalized linear
model that utilizes the logistic function to transform linear predictions into probabilities for
binary classification, in contrast to the nonlinear kernel of the SVM (RBF), as well as the
methodologies of RF and XGB models. The SVM, logR, and RF models each consistently
identified the same top important features across their respective runs. This stands in
sharp contrast to the NN model, where the results regarding feature importance varied
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significantly between runs. The inconsistency in feature importance identification by NN
could be attributed to its diverse architectures [18], particularly the use of dropout in our
study. NNs are often considered “black boxes,” making it challenging to understand how
feature importance is determined, unlike more transparent linear models [33]. This “black
box” nature and the architectural differences in NNs are likely the causes of the observed
variability in the feature importance plots across different runs. To address this, methods
such as SHAP (Shapley additive explanation) and LIME (local interpretable model-agnostic
explanation) have been developed. These techniques are designed to clarify how each
feature contributes to the overall prediction in black box models [34].

Table 2. Comparison of important features in SVM, logR, RF and XGB models.

S/N SVM logR RF XGB
1 fr_phenol BCUT2D_LOGPHI MaxAbsEstateIndex SMR_VSA3
2 fr_phenol_noOrthoHbond VSA_EState10 BCUT2D_MRHI Chi2v
3 frAr_OH fr_unbrch_alkane MaxEStateIndex frAr_OH
4 fr_N_O Estate_VSA2 FpDensityMorgan2 fr_methoxy
5 fr_priamide fr_N_O FpDensityMorgan3 FpDensityMorgan3
6 PEOE_VSA11 fr_sulfonamd PEOE_VSA6 HeavyAtomMolWt
7 SlogP_VSA7 fr_allylic_oxid VSA_EState3 MaxAbsEstateIndex
8 fr_imidazole Estate_VSA6 Chi2v NumRotatableBonds
9 fr_piperdine fr_Imine MolWt Chi4n
10 fr_C_S SlogP_VSA3 PEOE_VSA9 PEOE_VSA13
11 BCUT2D_MWLOW PEOE_VSA12 Chi1v SMR_VSA7
12 fr_methoxy Avglpc MolWt Fr_para_hydroxylation
13 BCUT2D_CHGLO fr_sulfide PEOE_VSA9 BCUT2D_MWLOW
14 PEOE_VSA3 SlogP_VSA1 Chi1v MolMR
15 fr_sulfide fr_imidazole BCUT2D_MWHI HallKierAlpha
16 lpc fr_methoxy ExactMolWt MaxPartialCharge
17 Estate_VSA8 SMR_VSA3 Estate_VSA2 VSA_Estate9
18 Avglpc fr_benzene Kappa1 Estate_VSA2
19 fr_oxime PEOE_VSA6 SlogP_VSA1 SMR_VSA1
20 fr_hdrzone fr_ether Estate_VSA8 fr_NHO

Color indications: Orange = structural descriptors, Green = electronic descriptors, Brown = physicochemical
descriptors, and Purple = molecular descriptors.

Furthermore, we compared the important features from SVM, logR, RF, and XGB as
presented in Table 2. These features were organized into distinct groups based on their
properties, roles, and characteristics. Features that provide insight into the molecular frame-
work, functional groups, and overall architecture of a molecule were classified as structural
descriptors. Those that describe the electronic properties of a molecule, including charge
distribution, electronic states, and molecular orbitals, were identified as electronic descrip-
tors. Key variables related to the physical and chemical properties of a molecule, such as
size, shape, and solubility, were categorized as physicochemical descriptors. Furthermore,
features that offer a comprehensive overview of a molecule’s overall properties, often
integrating information from structural, electronic, and physicochemical perspectives, were
grouped as molecular descriptors. As shown in Table 2, most of the top features identified
by SVM were primarily structural descriptors, while logR attributed more importance to
both structural and electronic descriptors. The significant variables for RF were mainly
characterized by electronic and physicochemical descriptors, whereas XGB placed greater
emphasis on molecular descriptors in its model permutation.

The analysis of SVM and RF features, as shown in Table 2, reveals that the top five
significant features identified by SVM are related to phenol, oxygen-containing compounds,
and aromatic rings. This observation may suggest that compounds featuring aromatic
hydroxyl groups, phenol groups, and phenol groups not engaged in ortho-hydrogen
bonding may be positively correlated with effective GSK-3β inhibition. Furthermore, the
top five features identified by the RF model are associated with molecular topological polar
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surface area, electronegativity, the electronic properties of atoms within a molecule, and
molecular fingerprints indicative of substructures within the molecule.

A close look at the shared key features in logR and SVM models (Figure 3) showed
that compounds containing nitrogen and oxygen atoms positively correlate with GSK-3β
inhibition. This observation suggests that the inclusion of these specific atoms may enhance
the compounds’ efficacy against GSK-3β. In contrast, the presence of structural descriptors,
such as an imidazole ring, sulfide, and methoxy groups within a compound, is negatively
associated with GSK-3β inhibition, indicating that these compounds may not effectively
inhibit GSK-3β. Notably, methoxy groups were highlighted as significant features in the
SVM, logR, and XGB models (as listed in Table 2). Additionally, compounds with lower
polarizability of atoms (Avglpc) are less likely to correlate positively with active outcomes
against GSK-3β. Understanding these structure–activity relationships can aid in developing
more effective GSK-3β inhibitors.
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3. Discussion

The inhibition of GSK-3β is considered crucial in treating AD because it has been
shown to lead to a decrease in phosphorylated tau [35,36]. Recent studies have found that
GSK-3β inhibitors can alleviate cognitive impairments associated with AD, prompting the
initiation of clinical trials for potential drug candidates [37]. In our study, we identified
hydrogen bonds, phenol groups, nitrogen, and oxygen atoms as significant structural
characteristics of compounds inhibiting GSK-3β activity with positive outcomes. Previous
research have highlighted the importance of hydrogen bonding and the presence of phenol
groups in designing ligands to stabilize the DFG-out conformation of GSK-3β through a
type II inhibition mechanism [37]. DFG-in and DFG-out refer to alternative conformations
of the activation loop in protein kinases, which are associated with the active and inactive
states of the GSK-3β kinase, respectively [38]. In the DFG-in conformation of the human
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GSK-3β enzyme, hydrogen bonds formed between specific residues—Lys103, Gln206,
and Phe175—prevented the formation of the DFG-out conformation, keeping the kinase
active [37]. Our study found that phenol groups that are not involved in ortho-hydrogen
bonding were important features correlated with active outcomes of GSK-3β inhibitors
(Figure 3 and Table 2).

GSK-3β inhibitors have neuroprotective effects, but designing a potent compound is
challenging due to the active conformation (DFG-in), where the conserved DFG motif is ori-
ented toward the ATP binding site, a site for which many have found challenging to design
an inhibitor with good selectivity and potency [37,39,40]. Our study suggests that the charge
distribution, molecular orbitals, electronic states, and electrostatic interactions of a molecule
could be considered in screening active candidates against GSK-3β. Electronic descriptors
were important characteristics commonly generated in the SVM, RF, logR, and XGB models
of our study. For instance, our results show that the PEOE_VSA family of descriptors ranks
among the top 20 important features in the four individual machine learning models (SVM,
RF, logR, and XGB). PEOE_VSA is a van der Waals surface area (VSA) descriptor designed
to capture direct electrostatic interactions [41]. While the specific PEOE_VSA type varied
across models, with PEOE_VSA6, PEOE_VSA11, and PEOE_VSA12 showing a positive
correlation with active outcomes compared to PEOE_VSA3, the PEOE_VSA descriptor was
crucial in distinguishing relatively small differences in a congeneric series of compounds.
Additionally, classical electrostatic attraction (hydrogen bonds) has been reported as a key
feature in type II GSK-3β inhibition [37]. This attraction exists between charged or polar
groups and specific amino acid residues, such as hydrogen bond attractions with the DFG
Loop Asp (Aspartic Acid), glutamic acid residue in the αC-helix, and the hinge region of
the GSK-3β kinase enzyme [37]. The αC-helix is a structural element in GSK-3β enzyme,
while the hinge region is the flexible segment connecting the N- and C-terminal lobes of
the kinase [42].

Furthermore, previous work has suggested that the underlying atomic contributions
to partial charge and molar refractivity are relevant to receptor affinity [43]. We found that
properties of compounds with lower polarizability of atoms (Avglpc) are less likely to be
associated with active outcomes against GSK-3β. Polarizability relates to an atom’s ability
to undergo induced dipole interactions and can influence the structural characteristics
associated with the DFG-out conformation. Vijayan et al. [38] have suggested the distance
between two specific pairs of atoms in the DFG motif and the αC-helix for a classical
DFG-out conformation. The influence of polarizability on the DFG-out conformation can
impact the activity of compounds inhibiting GSK-3β, highlighting that specific molecular
conformation and structural features play a significant role not only in shaping the kinase’s
conformation but also in determining interactions with ligands.

In our study, we did not observe a positive correlation between active GSK-3β inhi-
bition outcomes and the presence of certain structural descriptors, such as an imidazole
rings, sulfide, and methoxy groups. However, the precise arrangement of methoxy phenyl
rings, particularly at the fourth carbon relative to the substituent’s attachment point (para-
substitution), has been recognized in other studies to influence the binding efficacy of
micromolar hit compounds that inhibit human GSK-3β and their nuanced structural differ-
ences [37]. This emphasizes the importance of specific structural features in binding affinity.

Our study acknowledges several limitations. First, the absence of a positive correlation
with specific structural descriptors does not necessarily negate their importance; rather,
it highlights the inherent complexity of the relationship between molecular structure
and GSK-3β inhibition. Additionally, we have not explored potential synergistic effects
or interactions between multiple structural features, which could influence compound
activity. While our findings offer valuable insights into the role of structural, electronic,
and physicochemical descriptors in compounds that are active or inactive against human
GSK-3β, further studies are necessary to establish a definitive consensus on descriptors
and properties correlating with active GSK-3β inhibition. Understanding how different
substituents or modifications impact the reactivity and bioactivities of GSK-3β inhibitors
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remains a critical area for future research. Building upon existing research, this study not
only enhances our knowledge of GSK-3β inhibition but also opens exciting avenues for
developing more potent and effective inhibitors in the future.

4. Materials and Methods
4.1. Obtaining the Dataset

We searched for the UniProt ID (P49841) corresponding to GSK-3β and retrieved
the 2D chemical structure (Figure 1A) along with associated ChEMBL database informa-
tion (CHEMBL262). A comprehensive query of the ChEMBL database yielded a total
of 2803 assays related to all bioactivity associated with GSK-3β. Our primary focus was
on obtaining IC50 values from binding assays, which measure the efficacy of molecules
in inhibiting GSK-3β. Additionally, we gathered information regarding the bioactivity
experiments and the PubChem open chemistry database IDs [44]. The chemical structures
of the tested molecules were provided in the SMILES format.

4.2. Generating Descriptors of Chemical Compounds

We generated molecular descriptors for the selected compounds based on their SMILES
representation using the RDKit library in Python, an open-source toolkit for cheminformat-
ics [45]. The RDKit descriptors are reported to exhibit high predictive ability, with higher
R2 and lower RMSE in regression analysis compared to other fingerprint-type descriptor
sets [46]. Molecular descriptors quantitatively represent various molecular properties such
as structure, size, shape, and other characteristics that can be used to characterize chemical
compounds. Our generated descriptors encompass a range of standard RDKit descriptors,
including molecular weight, the number of valence electrons, and calculated properties
related to distribution and permeability. These calculated properties include the logarithm
of the partition coefficient (logP), atomic logP for lipophilicity (ALOGP), and the logarithm
of the brain-to-blood partition coefficient (LogBB).

4.3. Machine Learning Analyses

Our dataset underwent rigorous cleaning and preprocessing to ensure the data’s
quality and consistency for model training and validation. We assessed the datasets for
missing values and employed mean imputation for molecular descriptors with missing
values. The target variable (ACTIVITY) was scrutinized for missing entries, which were
removed to maintain data integrity. We applied feature standardization to normalize the
scale of molecular descriptors and to promote more stable and faster convergence in our
machine learning models.

We utilized the Keras library (integrated with TensorFlow version 2.7.0) for neural net-
work implementation, the Scikit-learn library (version 1.3.0) for machine learning methods,
and Pandas (version 1.5.3) and NumPy (version 1.24.2) for data manipulation. For plot-
ting, we used Matplotlib (version 3.4.1) and Seaborn (version 0.12.2), and we used RDKit
(version 2023.03.3) to prepare the input representation of chemical compounds. Our ap-
proach included a plain feed-forward neural network (NN) and five conventional machine
learning methods: random forest (RF), logistic regression (LogR), support vector machine
(SVM), extreme gradient boosting (XGB), and k-nearest neighbor (KNN). Additionally, we
employed majority voting to combine the predictions of the activity class (0 or 1) to which
a chemical compound belongs from these individual machine learning methods.

The NN model comprised of three fully connected dense feed-forward layers: The
first layer, with 128 units and a rectified linear unit (ReLU) activation function, is followed
by a second layer with 64 units and a ReLU activation function. To prevent overfitting, a
dropout layer with a rate of 0.5 was strategically placed after the first and second dense
layers. The final layer, designed for binary classification, features a single unit with a
sigmoid activation function. We employed the Adam optimizer [47] and utilized a binary
cross-entropy loss with a learning rate of 0.001, 10 epochs, and a mini-batch size of 32.
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Our analysis used QSAR molecular descriptors, leading to the development of seven
models that incorporated all unique combinations of machine learning algorithms (NN,
RF, LogR, SVM, XGB, KNN) and molecular descriptors (QSAR descriptors from RDKit).
The SVM model, which employed a radial basis function (RBF) kernel, was configured
with a penalty parameter of 1.0, which is the default setting. Similarly, both the XGB
and RF models were set up with 100 estimators, reflecting their default configurations
optimized through grid search and experimental efficiency. The prediction probabilities
generated by these machine learning methods were then utilized in majority voting, a form
of ensemble learning [18] designed to potentially boost the overall prediction performance.
Ensemble learning encourages a synergy among a diverse set of models, enabling them
to reach a consensus decision through majority voting [48]. In this process, individual
predictions from each model are transformed into binary outcomes (0 or 1) based on a
predefined threshold (≥3). For every data point, these binary predictions are aggregated,
and if the total reaches or exceeds the threshold, the ensemble prediction is designated as
1; otherwise, it is set to 0. The final prediction is determined by majority decision of the
individual models.

The evaluation metrics include accuracy, recall, and area under the curve–receiver
operating characteristics (AUC–ROC). Hyperparameter tuning and sensitivity analysis
were used to assess and balance trade-offs between complexity and interpretability. The
rationale is to find a model that strikes a balance in terms of complexity, performance,
and interpretability. A 10-fold cross-validation process was used to validate the models,
dividing the data into 10 segments and training the model 10 times, each time excluding a
different segment to evaluate its performance [49]. The Python script used in the analysis
is available online as Jupyter notebook in the GitHub repository.

5. Conclusions

In summary, while effective GSK-3β inhibitors are important for AD treatment, sub-
stantial work is required to develop effective compounds with refined designs and character-
istics. Our study underscores the importance of structural, electronic, and physicochemical
descriptors in screening active candidates against GSK-3β. Our machine learning NN
model achieved 79% accuracy in classifying active and inactive compounds on external
validation data with an unbalanced dataset and revealed important features such as hydro-
gen bonds, phenol groups, and specific electronic characteristics playing crucial roles in
the model permutation. Future studies should explore how these specific features affect
compound reactivity and efficacy in inhibiting GSK-3β, to expand our understanding of
molecular attributes that govern GSK-3β inhibition. Such research will not only improve
our current predictive models but also potentially reveal new molecular entities that could
act as versatile inhibitors for GSK-3β, and perhaps other targets related to AD and similar
neurodegenerative conditions. Additionally, exploring synergies between fragment-based
descriptors and our existing methodologies, could propel the discovery of novel GSK-3β
inhibitors, to contribute to the overarching goal of developing more effective therapeutic
strategies for AD.
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