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Abstract: Gastric cancer (GC) is a heterogeneous disease, often diagnosed at advanced stages, with a
5-year survival rate of approximately 20%. Despite notable technological advancements in cancer
research over the past decades, their impact on GC management and outcomes has been limited.
Numerous molecular alterations have been identified in GC, leading to various molecular classifica-
tions, such as those developed by The Cancer Genome Atlas (TCGA) and the Asian Cancer Research
Group (ACRG). Other authors have proposed alternative perspectives, including immune, proteomic,
or epigenetic-based classifications. However, molecular stratification has not yet transitioned into
clinical practice for GC, and little attention has been paid to alternative molecular classifications. In
this review, we explore diverse molecular classifications in GC from a practical point of view, em-
phasizing their relationships with clinicopathological factors, prognosis, and therapeutic approaches.
We have focused on classifications beyond those of TCGA and the ACRG, which have been less
extensively reviewed previously. Additionally, we discuss the challenges that must be overcome
to ensure their impact on patient treatment and prognosis. This review aims to serve as a practical
framework to understand the molecular landscape of GC, facilitate the development of consensus
molecular categories, and guide the design of innovative molecular studies in the field.

Keywords: gastric cancer; molecular; classification; TP53; mesenchymal; microsatellite instability;
tumor mutational burden; immune; prognosis

1. Introduction

Gastric cancer (GC) ranks as the fifth most common cancer worldwide, and is the
third leading cause of cancer-related deaths. It is an aggressive disease, often diagnosed at
advanced stages, with a 5-year survival rate of less than 30% [1,2].

In terms of classification, GC is a heterogeneous disease with multiple clinical, histolog-
ical, and molecular variables influencing disease presentation and patient prognosis [3,4].
Geographical differences have been observed between Asian and Western countries, with
GC being more prevalent in Asian regions. In fact, some high-incidence countries have
implemented screening strategies that have improved early detection and patient out-
comes [5–7]. Furthermore, geographic variations related to clinical, histological, prognostic,
surgical, and treatment response factors have been noted [8–10].

Clinically, GC can be divided into proximal and distal types, each with distinct epi-
demiological characteristics. Proximal GC is associated with obesity, gastroesophageal
reflux, and Barrett’s esophagus, while the more prevalent distal type is linked to Helicobacter
pylori infections, the male gender, smoking, and dietary habits [1,11,12].

From a macroscopic perspective, GC can be classified using the Paris classification for
superficial lesions, the Borrmann classification for advanced GC (stage pT2 or higher), or
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the Japanese Society of Endoscopy classification, encompassing both early and advanced
GC [13–15].

With respect to histological features, notable classifications include the Laurén and
the World Health Organization (WHO) systems [16,17]. Laurén’s classification, established
in 1965 as a histoclinical classification, categorizes GC into intestinal and diffuse types.
Intestinal GC forms tubules and may include papillary or solid structures, occurs in older
patients, and is associated with H. pylori infection and environmental factors. It develops
through the carcinogenic process of chronic gastritis—intestinal metaplasia—dysplasia [18].
In contrast, diffuse GC is composed of loosely cohesive cells, potentially displaying signet
ring morphology, appears in younger patients, and is induced by active inflammation
or genetic factors. Previous studies have shown that this classification correlates with
patient prognosis, treatment response, and the molecular characteristics of GC [8]. On the
other hand, the WHO classification is more complex, morphology-based, and identifies the
following four main types of GC: tubular, papillary, poorly cohesive, and mucinous [19].
This classification has shown a lower correlation with non-histological factors [20]. It
should be noted that both classifications establish a "mixed" subtype.

Regarding GC treatment, surgery remains the only curative option for GC [21]. Endo-
scopic techniques can be employed in early stages, while more advanced stages, prevalent
in Western countries, require a total or subtotal gastrectomy with lymphadenectomy [22].
For non-surgical patients, chemotherapy is the main therapeutic approach [23]. Approved
targeted drugs include antiangiogenics (anti-VEGFR-2) and anti-HER2 agents [24,25]. Addi-
tionally, the approval of pembrolizumab for solid tumors with high microsatellite instability
(MSI-H) or mismatch repair deficiency (dMMR) included GC cases [26,27]. The indication
for immunotherapy also depends on PD-L1 expression or the tumor mutational burden
(TMB) [28]. Therefore, the only established and broadly available biomarkers for GC treat-
ment are HER2 amplification, MSI-H, and PD-L1 expression [29]. The therapeutic arsenal
for GC is limited when compared to other tumor types, and current therapies have not
significantly improved patient prognosis [30,31].

In terms of molecular characteristics, technological advancements in recent years have
allowed the identification of multiple molecular alterations in various types of tumors [32].
Among these, alterations with prognostic or therapeutic value have significantly impacted
clinical practice in tumors such as lung or breast cancer, enabling personalized treatment,
improving patient outcomes, and reducing the side effects associated with conventional
treatment [33,34].

In GC, multiple studies have analyzed its genetic, epigenetic, transcriptomic, pro-
teomic, or metabolomic profiles, revealing numerous molecular changes and dysregulated
pathways, some of which carry prognostic and/or therapeutic significance [35–41]. The
synthesis of this information has given rise to several molecular classifications, with notable
examples being those published by The Cancer Genome Atlas (TCGA) and the Asian
Cancer Research Group (ACRG) [42,43]. Despite these efforts, the practical impact of these
classifications on clinical practice remains limited, primarily due to the complexity of their
implementation. Beyond these pivotal studies, various authors have proposed alternative
molecular classifications of GC that require external validation in other cohorts and the
identification of surrogate markers for their application. Consequently, there is an urgent
need to reach a consensus on molecular categories, establish easily detectable subgroups,
and identify optimal surrogate markers for each molecular subtype.

In this review, our objective is to revisit diverse molecular classifications published
in GC from a practical standpoint. We aim to highlight the correlation between these
systems, the molecular alterations specific to each subtype, and their associations with clin-
icopathological, prognostic, and therapeutic factors. We have selected the most significant
classifications, along with others offering alternative perspectives, in order to provide a
comprehensive overview of GC heterogeneity. Furthermore, we discuss the challenges
that must be overcome to ensure these classifications have an impact on clinical practice,
ultimately improving patient treatment and prognosis.
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2. Gastric Cancer Characterization, Prognosis, and Management in the Molecular Era

As previously mentioned, recent technological advancements have propelled cancer
research into the molecular era. Comprehensive genetic, transcriptomic, and proteomic
analyses are now possible, resulting in vast databases of molecular changes, including mu-
tations, copy number variants, epigenetic alterations, gene expression profiles, or disrupted
pathways across various tumor types. This wealth of information has enabled the identifi-
cation of molecular alterations with prognostic and therapeutic significance. Prognostic
alterations allow for personalized patient management, improving the cost-effectiveness of
treatment. Meanwhile, predictive molecular alterations have transformed cancer treatment
from a generic approach to an individualized approach. Targeted drugs have enhanced
patient prognosis, often with fewer side effects and better tolerance than conventional
chemotherapy [44].

2.1. The Molecular Era: Recent Advances in Molecular Techniques

Among the technological advances that have impacted the molecular characteriza-
tion of cancer in the last decade, microarrays and second- or next-generation sequencing
platforms (NGS) stand out. Microarrays allow the detection of molecular alterations at
the DNA, RNA, or protein level [45–47]. They are primarily applied in research studies,
although some commercial microarray-based platforms are used in clinical routine, mainly
in breast cancer [48,49]. NGS techniques, which have been implemented in clinical practices
in institutions worldwide, are typically employed for DNA sequencing. They facilitate the
simultaneous analysis of multiple samples, either at the whole genome or whole exome
level, or through the utilization of targeted panels containing dozens of genes of interest.
These techniques have been refined, automated, and modified to allow for the analysis of
RNA or epigenetic alterations. In GC, NGS and microarrays have played a pivotal role in
elucidating the landscape of molecular alterations [50–53]. However, in the daily practice of
GC, these techniques do not present significant applications because the necessary biomark-
ers are currently analyzed using immunohistochemistry (IHC) and in situ hybridization
methods. NGS could be useful for determining the TMB, or as a complementary technique
for assessing MSI status [54–57].

In the early 2010s, third-generation sequencing techniques emerged, enabling sequenc-
ing at a single-molecule level. Despite their potential, these techniques have not been
integrated into clinical practice, and their utilization in research studies remains limited.
Advantages over second-generation sequencing methods include the fact that they do not
require sample pre-amplification and can read longer fragments of DNA, but the error rate
is generally higher (10–15%) [58–61].

Lastly, another interesting molecular approach that has garnered attention in recent
years is single-cell sequencing (SCS), which, using second- or third-generation methodolo-
gies, enables the analysis of DNA, RNA, or methylome at the single-cell level [62–65]. Its
main advantage lies in its ability to scrutinize the molecular profile of cell subclones, thereby
offering significant potential for evaluating tumor heterogeneity, refining the personaliza-
tion of patient management, and enhancing the monitoring of treatment response and
resistance detection [66,67]. Furthermore, SCS requires a small sample size, thus making it
suitable for analyzing circulating tumor cells in liquid biopsy specimens [68]. However,
these techniques have not yet been implemented in clinical routine and require technical
refinement, standardization, and cost reduction to have a practical impact [69,70]. In GC,
research in this area is in its early stages, but promising results have been obtained [71–73].

2.2. Main Molecular Alterations in Gastric Cancer

Multiple molecular alterations and dysregulated pathways have been identified in
GC. Notably, mutations in the TP53 and CDH1 genes are prominent [74,75]. TP53 mutation
is the most common in GC, occurring in over 50% of cases, and is often associated with
chromosomal instability and an increased expression of cell-cycle progression genes [76,77].
While the TP53 mutation has been correlated with a worse prognosis in other tumors, its
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significance in GC remains unclear [75,78–80]. This uncertainty may stem from the specific
impact of different mutations on the function of the p53 protein, concomitant molecular
alterations, or treatment effects [75,81]. Additionally, most studies have focused on the
p53 protein rather than the gene, with some exceptions [75,77,82,83]. As for CDH1, it
encodes for E-cadherin, a transmembrane glycoprotein responsible for maintaining cell–cell
adhesion [84]. Germline mutations in CDH1 are associated with hereditary diffuse GC
syndrome, which increases the risk of diffuse GC and lobular breast carcinoma [85]. In
sporadic GC cases, mutations and the abnormal methylation of CDH1 are predominantly
found in diffuse GC [86,87]. Other key mutations in GC include those within the ARID1A,
PIK3CA, or BRCA2 genes [88–90].

Regarding copy number alterations, the amplification of genes involved in tyrosine
kinase receptor pathways, such as FGFR2, HER2, EGFR, or MET, stand out [91–94]. Among
these genes, HER2 amplification has significant clinical implications, serving as an indica-
tion for treatment with trastuzumab in advanced HER2-positive GC patients [95,96]. HER2
amplification occurs in 10–15% of patients with advanced GC, with a higher prevalence in
intestinal-type GC and a lower prevalence in diffuse GC [97–99]. The most frequent copy
number variation is the amplification of FGFR2, which is observed in 15% of patients and
associated with high-grade tumors and a poorer prognosis [93].

Finally, the main dysregulated pathways in GC include those related to genome
integrity, cell adhesion, chromatin remodeling, cell motility and cytoskeletal structure, Wnt
signaling, and tyrosine kinase receptors [74].

2.3. Current Treatment of Gastric Cancer

As for the management of GC, surgery remains the only curative option, and most
resectable tumors are treated with total or subtotal gastrectomy associated with D2 lym-
phadenectomy. Early stage tumors meeting certain criteria may undergo endoscopic proce-
dures, such as endoscopic mucosal resection or endoscopic submucosal dissection [100].
The assessment of tumor depth, size, grade, and the presence of ulceration is crucial to
determine the suitability of these techniques [101].

Surgery for GC typically forms part of a multimodal treatment, with the two following
options, depending on the context: surgery followed by adjuvant chemotherapy or periop-
erative therapy. Regarding the surgical procedure, according to the European Society for
Medical Oncology (ESMO) guidelines, T1 tumors can be treated with partial gastrectomy
and D1 lymphadenectomy, while for IB-III disease, total or subtotal gastrectomy with D2
lymphadenectomy is recommended [101]. Perioperative chemotherapy has become the
standard of care, supported by findings from clinical trials which have been conducted since
the 2000s, demonstrating a survival benefit for patients undergoing this approach [102–104].
ESMO guidelines advocate for the pre- and post-operative administration of FLOT regimen
(5-FU, leucovorin, oxaliplatin, and docetaxel) in patients who can tolerate it [101]. The
choice of the chemotherapy regimen may vary depending on the guideline, and the role of
radiotherapy as an adjunct is still under investigation [105–107].

The main innovations in the surgical treatment of GC include the use of laparoscopy,
which has been shown to be non-inferior to open surgery in both Asian and Western
countries, and robot-assisted gastrectomy [108–111].

Regarding non-surgical cases, it is worth noting that, despite the detection of numerous
molecular alterations and the development of multiple molecular classifications in GC,
the clinical application of this information lags behind other cancers. For instance, breast
cancer has successfully integrated molecular classification into daily practice, surpassing
the practical impact of traditional histological features. In lung cancer, multiple targetable
alterations have been identified, leading to recommendations for testing as many as nine
molecular biomarkers and PD-L1 expression in all adenocarcinomas and in squamous
cell carcinomas that meet certain criteria [112]. As a final example, in endometrial cancer,
molecular and histopathological features have been integrated to develop a new FIGO
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staging system with prognostic and therapeutic value, which has been in effect since
2023 [113].

Contrastingly, in unresectable GC, the main therapeutic approach continues to be
conventional chemotherapy, typically involving a platinum-fluoropyrimidine doublet [114].
Nonetheless, many patients develop resistance to this treatment, which often leads to
adverse effects [115–117].

The administration of targeted therapy has the potential to enhance the specificity
and efficacy of oncological treatment, while mitigating adverse effects [118]. As draw-
backs, the effectiveness of these therapies is heavily reliant on the molecular profile of
the tumor at a given time, and they are not entirely devoid of toxicity [44,119]. Accord-
ing to the latest National Comprehensive Cancer Network guidelines, the main targeted
therapies approved for advanced GC include anti-HER2 agents (trastuzumab and fam-
trastuzumab deruxtecan-nxki), anti-VEGFR-2 agents (ramucirumab), and immunotherapy
(nivolumab, pembrolizumab and dostarlimab-gxly) [120]. Anti-HER2 therapy is indicated
in HER2-amplified GC, and immunotherapy may be indicated in cases with MSI-H, PD-L1
overexpression, or a high TMB [120]. However, the latest ESMO guidelines only include
PD-L1 expression and MSI-H as indications for immunotherapy [101]. Lastly, tumors with
NTRK1, NTRK2, or NTRK3 gene fusions may be treated with entrectinib and larotrectinib,
although such cases are exceptionally rare in GC, with only one case published so far [121].

2.4. Gastric Cancer: Therapeutic Advances and Challenges

Early GC has demonstrated favorable outcomes for decades, with survival rates of
over 90% with surgical treatment [122,123]. However, in Western countries, the lack of
widespread screening techniques coupled with mild and nonspecific symptoms has lead
to over 80% of patients being diagnosed at advanced stages [124]. Despite advancements
in molecular biology and personalized therapy, the prognosis for advanced GC has seen
limited improvement [125]. Even in resectable cases, the recurrence rates range from
14–80%, often exceeding 40% within the first years following surgery [126,127]. The ad-
dition of neoadjuvant therapy in surgical cases has slightly improved patient prognosis,
but studies report recurrence rates exceeding 30% [128–130]. Unresectable cases present a
dismal prognosis, with median overall survival rates ranging from 11 to 14 months, and
5-year survival rates of less than 30% [131–134]. Notably, patients eligible for targeted
therapy or immunotherapy exhibit significantly higher survival rates overall [135,136].
However, numerous authors highlight the need to refine patient selection for these treat-
ments, enhance drug efficacy, identify new therapeutic targets, and overcome treatment
resistance [137–140].

The modest impact of the aforementioned advancements on the prognosis and man-
agement of advanced GC and the scarcity of therapeutic targets could be due to the
heterogeneity that characterizes this tumor, both phenotypically and molecularly [3,4,141].
This heterogeneity is also evident at the intratumoral and tumor microenvironmental levels,
as demonstrated by recent single-cell studies [142,143]. Additionally, molecular hetero-
geneity exists among primary tumors, lymph node metastases, and distant metastatic
sites [144–146]. Understanding spatial and temporal heterogeneity, both phenotypically
and molecularly, at primary and metastatic sites holds promise for improving prognosis
and treatment outcomes for GC patients.

New potential treatment strategies for GC encompass perioperative targeted therapy
or immunotherapy, personalized treatment guided by molecular tumor characterization,
the utilization of trastuzumab conjugates, and the development of new anti-HER2 agents.
Additionally, ongoing studies are investigating novel therapeutic approaches, such as
Claudin 18.2 targeted therapy or FGFR, MET, and EGFR inhibitors [147,148].

In summary, these circumstances highlight the need for enhancing patient stratification
in both clinical trials and practice. Additionally, identifying new biomarkers and improving
the currently available drugs is crucial to expand the range and effectiveness of targeted
therapies for GC and translate the progress seen in other tumors to GC.
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3. Molecular Classifications in Gastric Cancer

As mentioned earlier, the most significant molecular systems published in GC are those
of TCGA and the ACRG, which have been extensively analyzed in previous
studies [74,149–154]. Nevertheless, various alternative classifications have emerged, either
utilizing independent cohorts or drawing from existing databases, such as those of TCGA,
the ACRG, or the Gene Expression Omnibus (GEO) repository. These alternative classi-
fications introduce diverse perspectives, encompassing metabolic, immune, mutational
burden, proteomic, or epigenetic approaches, among others. The methodology and key
findings of each classification are presented in this section.

3.1. The Cancer Genome Atlas (2014) [42]

Researchers from TCGA analyzed tumor and non-tumor samples from 295 patients,
conducting array-based somatic copy number analysis, whole-exome sequencing, array-
based DNA methylation profiling, messenger RNA sequencing, microRNA sequencing,
and reverse-phase protein array [42]. Subsequently, they performed the unsupervised
clustering of the information obtained from each molecular method and integrated the
results, leading to the following four molecular groups: tumors positive for Epstein–
Barr virus (EBV), microsatellite instability (MSI), genomically stable (GS), and GC with
chromosomal instability (CIN).

The MSI type exhibited a high mutation rate, affecting genes such as PIK3CA, ERBB2,
ERBB3, or EGFR. Additionally, gene promoter methylation was observed, with the frequent
methylation of the MLH1 gene promoter. These tumors were not characterized by the
presence of the V600E BRAF mutation or the amplification of tyrosine kinase receptor genes.
MSI tumors appeared more frequently in women, older patients, and distal stomach

EBV-positive GC mainly presented mutations in PI3CA (80%), ARID1A or BCOR,
HER2 amplification, JAK2 amplification, and the overexpression of PD-L1 and PD-L2. This
group was defined by extensive DNA methylation without MLH1 hypermethylation, and
showed enrichment in immune-related pathways. EBV-positive GC occurred in younger
individuals, males, and in the gastric antrum.

GS tumors exhibited mutations in RHOA (15%), ARID1A, and CDH2, as well as
CLDN18-ARHGAP26 fusion. Interestingly, RHOA mutation and CLDN18-ARHGAP26
fusion were mutually exclusive. These tumors were enriched in pathways related to
cell adhesion and angiogenesis. They appeared mainly in the gastric antrum of younger
patients and were more frequently of the diffuse type.

Finally, CIN-type GC was characterized by the amplification of tyrosine kinase receptor
genes (such as VEGF, FGFR2, or HER2), cell cycle-related genes (CCNE1, CCND2, or CDK6),
and mutations in genes such as TP53 (71%), ARID1A, KRAS, PIK3CA, ERBB3, PTEN, or
HLA-B. These tumors were predominantly of the intestinal type, and were mainly located
in the esophagogastric junction or gastric cardia.

3.2. Asian Cancer Research Group (2015) [43]

The ACRG studied GC samples from 251 patients, utilizing gene expression profiling,
genome-wide copy number microarrays, and targeted gene sequencing [43]. The authors
defined the following four molecular subtypes, subsequently validating them in various
GC patient cohorts: MSI, TP53-active, TP53-inactive, and mesenchymal-like. To determine
these categories, a diagnostic algorithm is required, as seen in Figure 1. Notably, the TP53
status was determined using a two-gene TP53-activity signature (CDKN1A and MDM2).
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The MSI subtype exhibited a high mutation rate, with alterations in the genes of
the PIK3CA-AKT-mTOR pathway, KRAS, ALK, or ARID1A. It also displayed extensive
DNA methylation and a loss of MLH1 expression. MSI GC was predominantly intestinal,
more commonly located in the gastric antrum, and had the most favorable prognosis.
Mesenchymal-like GC was associated with epithelial–mesenchymal transition (EMT), fea-
tured the loss of CDH1 expression and low mutation events, appeared in younger patients
at advanced stages, and 80% of them were of the diffuse type. It represented the molecular
type with the poorest prognosis. Conversely, the TP53-inactive subtype was characterized
by the amplification of genes such as HER2, EGFR, CCNE1, CCND1, MDM2, ROBO2,
GATA6, or MYC. TP53 mutations were observed in 60% of TP53-inactive cases, and those
patients showed an intermediate prognosis. Finally, TP53-active GC presented mutations
in PIK3CA, ARID1A, KRAS, SMAD4, or APD, with TP53 mutations identified in 23.7% of
cases. This subtype also had an intermediate prognosis, albeit a slightly better one than
TP53-inactive GC.

3.3. Intrinsic Subtypes (2011) [155]

Tan et al. cultivated and analyzed 37 GC cell lines from commercial providers and
collaborators, utilizing unsupervised clustering techniques to identify two intrinsic sub-
types of GC [155]. These subtypes were subsequently validated in primary tumors from
four independent cohorts, encompassing 521 patients from Singapore, Australia, and South
Korea. It is important to note that using cell lines does not allow for the assessment of the
tumor microenvironment (including stroma, blood vessels, or immune cells). Therefore,
this approach presents both advantages and disadvantages.

The researchers established the following two categories of GC: G-INT and G-DIF [155].
G-INT GC (49.35–57%) exhibited the upregulation of genes related to carbohydrate and
protein metabolism (FUT2) and cell adhesion (LGALS4, CDH17). G-DIF GC (43–50.65%)
showed the enrichment of genes related to fatty acid metabolism (ELOVL5) and cell prolifer-
ation (AURKB). These categories can be determined by gene expression profiling techniques
(analyzing 171 genes with differential expression between the types) or conducting IHC
stains to analyze LGALS4 and CDH17 expression. According to the IHC classification, a
tumor is considered G-INT if both markers are positive, and G-DIF if neither is positive.
Positivity is based on staining intensity (CDH17 > 1+ and LGALS4 > 2+). Cases with
only one positive stain are deemed equivocal. The authors emphasize that further studies
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should validate these markers or search for others with better performances as surrogates
for their classification.

Relationship with Clinicopathological, Prognostic, and Therapeutic Variables

A significant relationship was observed between Tan’s intrinsic subtypes, the Laurén
classification (64% concordance), and the histological grade [155]. Regarding its prognostic
role, this molecular classification was identified as an independent prognostic factor, with
G-DIF tumors showing worse survival outcomes [155]. In contrast, the Laurén classification
did not exhibit significant or independent prognostic value. Notably, patients with G-INT
diffuse-type tumors demonstrated better survival than those with G-DIF intestinal-type GC.

Concerning therapeutic implications, in vivo and in vitro studies indicated that G-
INT tumors were more sensitive to 5-FU and oxaliplatin, while G-DIF tumors were more
responsive to cisplatin [155]. Additionally, in two patient cohorts, a significant interaction
was observed between intrinsic subtypes and the benefit of 5-FU-based chemoradiation.
Patients with G-INT tumors exhibited a significant survival benefit with 5-FU treatment,
whereas patients with G-DIF tumors showed no differences in the stage-adjusted hazard
ratio of death due to cancer between the 5-FU treated and untreated subgroups.

3.4. Lei’s Classification (2013) [156]

Lei et al. analyzed the expression profiles of 248 GC cases from Singapore, and
determined intrinsic subtypes using unsupervised clustering [156]. Subsequently, the
subtypes were validated in an independent set of 70 tumors from Australian patients.

Three GC groups were established as follows: mesenchymal (31.9%), proliferative
(44.8%), and metabolic (23.3%). Their molecular characteristics are presented in Figure 2.
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Figure 2. Lei’s classification. Molecular characteristics of GC types [156].

Relationship with Clinicopathological, Prognostic, and Therapeutic Variables

This classification was significantly associated with Laurén type, histological grade,
and GC location [156]. The mesenchymal subtype was enriched in diffuse-type GCs
and high-grade tumors, while the proliferative subtype had the highest percentage of
intestinal-type and low-grade GCs. In terms of location, the middle stomach had the highest
occurrence of tumors, especially in the metabolic type. Mesenchymal and proliferative GCs
were more prevalent in the lower and upper stomach, respectively.
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Survival analysis did not reveal significant or independent differences in cancer-
specific survival (CSS) or disease-free survival (DFS) between molecular categories. How-
ever, it was noted that patients with metabolic GC benefited more from 5-FU treatment
compared to other subtypes, a finding corroborated by the researchers in cell line exper-
iments. Additionally, mesenchymal GC cell lines exhibited a heightened sensitivity to
compounds targeting the PIK3CA-AKT-mTOR pathway.

3.5. Wang’s Classification (2021) [157]

Wang et al. conducted whole-exome sequencing of 70 GC samples from Chinese
patients, each paired with normal mucosa. They validated their classification in 23 cases
from an independent cohort [157]. To establish molecular categories, the authors applied
unsupervised clustering, combining genomic features (mutational signatures, copy number
variations, neoantigens, clonality, and others), clinicopathological features, metastatic
patterns, and overall survival (OS). PD-L1 staining by IHC was also performed.

Tumors were categorized into subtype 1 (31.4%), subtype 2 (22.9%), subtype 3 (17.1%),
and subtype 4 (28.6%). The main characteristics of each subtype are summarized in Figure 3.
Subtypes 1 and 2 primarily exhibited mutations in FAT4, LRP1B, and TP53. Additionally,
subtype 2 showed more frequent alterations in SYNE1, CSMD1, CSMD3, and SPTA1, while
subtype 1 displayed a higher frequency PIEZO1 alterations. Subtypes 3 and 4 showed
a lower frequency of gene mutations, with ARID1A, TP53 (though to a lesser extent),
SYNE1, and SPTA1 being the most frequently mutated genes. Copy number variations
were enriched in subtype 1, with amplifications of genes such as ERBB2 or HSP90AB1.
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Relationship with Clinicopathological, Prognostic, and Therapeutic Variables

The authors observed a significant relationship between their classification, Laurén
types, TCGA molecular classification, the first site of metastasis, and the TMB [157].

Subtypes 1 and 2 were predominantly of the intestinal type, while subtypes 3 and 4
were more frequently of the diffuse type. Regarding the association with TCGA system,
the majority of subtype 1 tumors were classified as CIN (>90%), whereas 50% of subtype 2
GCs were CIN, and 50% were GS. Most subtype 3 and 4 tumors were GS tumors (83.3%
and 75%, respectively). In terms of TMB, subtypes 1 and 2 showed a higher TMB (36.4%
and 50% with TMB > 5, respectively) and increased PD-L1 expression.
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Concerning patient prognosis, subtype 4 GC exhibited superior OS, followed by
subtype 1, while subtype 2 and 3 GC demonstrated the least favorable OS. This molecular
classification not only provided prognostic insights, but also maintained independent
prognostic value.

Lastly, subtype 1 GC showed a higher likelihood of spreading to the liver when
compared to other subtypes, while subtypes 3 and 4 displayed a greater incidence of
peritoneal involvement. This observation carries potential importance for stratifying the
risk of peritoneal involvement, indicating the possible effectiveness of intraperitoneal
chemotherapy in high-risk patients.

3.6. Shah’s Classification (2011) [158]

Shah et al. investigated the expression profiles of 36 GC samples from Western patients
through supervised analysis [158]. Prior to molecular studies, drawing on the previous
literature, the authors determined the following three GC subtypes: proximal non-diffuse
(33.3%), diffuse (27.7%), and distal non-diffuse (38.8%).

Proximal non-diffuse tumors predominantly occupied the gastric cardia (>80% of the
tumor bulk), with potential extension to the gastroesophageal junction or distal esophagus.
These tumors were intestinal or mixed, and ranged from well to poorly differentiated.
Adjacent areas displayed glandular dysplasia or carcinoma in situ, linked to chronic
inflammation without atrophy. In contrast, diffuse tumors were entirely diffuse, with
minimal extracellular mucin, and could be located anywhere in the stomach. Finally, distal
non-diffuse GC primarily comprised moderately differentiated intestinal tumors with
minor high-grade components, associated with chronic gastritis and intestinal metaplasia.
Similar to proximal non-diffuse tumors, they exhibited a spectrum of dysplasia and/or
carcinoma in situ in nearby regions.

Following subtype determination, the researchers conducted gene expression profiling,
comparing tumor samples with normal stomach samples in order to discern molecular
characteristics distinguishing each subtype (Table 1).

Table 1. Shah’s classification. Main differential features between GC subtypes.

Subtypes Upregulated Downregulated

Proximal non-diffuse
(vs. diffuse)

TRIM32, PRF1, CXCL9,
CXCL10, IF144L, PLA2G2A

PSCA, PGA3, XIST,
SST, ABCA8

Proximal non-diffuse
(vs. distal non-diffuse)

PF4V1, HMBO1, CYP2J2,
DSC3, S100A12 MSLN, IGJ, ENPP4, PLA2G2A

Diffuse
(vs. distal non-diffuse)

ABCA8, HMBOX1, COCH,
S100A12, CYP2J2

IFI44L, HOXA9, MSLN,
ENPP4

Their findings indicated a general upregulation of cancer-related genes in all tumors,
including those related to the cell cycle, cell proliferation, adhesion, platelet-derived growth
factor binding, and EGF-domain pathways. Concurrently, there was a downregulation of
genes related to lipid metabolism or digestion pathways.

Compared to normal mucosa, proximal and distal non-diffuse GC were enriched in
cell cycle, mitosis, and p53 pathways, and exhibited the downregulation of digestion and
drug metabolism pathways. The exploration of crucially altered pathways revealed the
upregulation of glycogenesis and gluconeogenesis in these two subtypes. On the other
hand, diffuse tumors did not show significantly upregulated pathways.
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While the authors did not place significant emphasis on the prognostic or therapeutic
implications of their classification, they noted that tumors with elevated expressions of
PLA2G2A may exhibit a more favorable prognosis. Additionally, the reported associa-
tion between the tumor location and the Laurén subtypes with the prevalence of HER2
amplification adds potential clinical utility to this classification [159,160].

3.7. HOPE Classification (2022) [161]

Furukawa et al. conducted whole-exome sequencing and gene expression analysis
on 499 tumor samples from Japanese patients [161]. They established the four following
distinct types of GC: hypermutators (10.8%, HMT), T-cell inflamed (33.5%, TCI), EMT-high
(18.6%, EMTH), and EMT-low (37.1%, EMTL), employing the algorithm outlined in Figure 4.
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In relation to the TCGA classification, all HMT cases exhibited MSI, although MSI
tumors were also observed in the remaining subgroups. EMTH and EMTL cases predomi-
nantly fell into the GS and CIN categories, according to TCGA. Similarly, these molecular
types aligned mainly with the mesenchymal-like and TP53-inactive categories, respectively,
according to the ACRG.

Relationship with Clinicopathological, Prognostic, and Therapeutic Variables

The molecular classification demonstrated significant associations with the patient’s
age, GC histology, location, and the pathological stage, as summarized in Figure 5. Group-
ing HMT and TCI GCs revealed significant differences in prognosis, with these two types
having the best prognosis, followed by EMTL and EMTH GC. The EMTH category emerged
as an independent prognosticator in multivariate analysis.

Non-EMTH subgroups seemed to benefit from adjuvant chemotherapy, while HMT
or TCI tumors could potentially benefit from immunotherapeutic strategies. The authors
suggested that EMTH tumors might respond positively to drugs targeting mesenchymal
cell-specific proteins.
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3.8. Wang’s Classification (2014) [162]

Wang et al. conducted a comprehensive study involving whole-genome sequencing,
DNA copy number analysis, gene expression profiling, and methylation profiling of 100
paired tumor and non-tumor samples from gastrectomy specimens, validating their find-
ings in 99 paired GC and non-GC samples [162]. They identified the three following types
of GC: MSI, stable associated with EBV, and stable not associated with EBV. Their key
characteristics are outlined in Figure 6.
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Relationship with Clinicopathological, Prognostic, and Therapeutic Variables

A significant relationship was observed between Laurén types and the detected molec-
ular alterations [162]. Additionally, RHOA mutation showed a significant correlation with
the histological grade, tumor location, and TP53 mutation. Although the researchers did not
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explicitly determine the prognostic value of their classification, prior studies have indicated
that MSI and EBV tumors generally exhibit a better prognosis. In terms of therapeutic
value, several detected alterations, including RHOA mutation, hold potential therapeutic
significance [163].

3.9. Cheong’s Classification (2022) [164]

Cheong et al. conducted a comprehensive analysis, involving samples from 612 South
Korean patients and data from TCGA, the ACRG, and other cohorts [164]. Applying a ma-
chine learning algorithm, they developed a GC-specific 32-gene signature, and performed
unsupervised clustering to identify the following four molecular types of GC: group 1
(20.1%), group 2 (22.8%), group 3 (28.6%), and group 4 (28.6%).

The main characteristics of the four molecular groups are summarized in Figure 7. The
authors did not find differences in the prevalence of MSI or EBV tumors between the groups.
In a prior study, the same research group analyzed the gene expression profile of 1259 GC
specimens, identifying the following five transcriptomic-based molecular subtypes related
to patient prognosis: inflammatory, mesenchymal, intestinal, gastric, and mixed-stromal.
In the current study, they observed that the mesenchymal type was enriched in group 4.
Additionally, mesenchymal-like tumors according to the ACRG were more frequent in
group 4, and MSI tumors were distributed among groups 2–4.
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Concerning GC management, group 3 GC seemed to benefit from adjuvant chemother-
apy, while in patients from group 1, this treatment could be potentially harmful. Notably,
the response to pembrolizumab was superior in patients from groups 1 and 3.

3.10. Zhou et al. (2023): Functional Status-Based Classification [165]

Zhou et al. examined gene expression profiles and clinical data from TCGA and
GEO databases [165]. They calculated 14 cancer functional status scores and established
3 molecular subtypes of GC as follows: cluster 1 (38.4%), cluster 2 (41.3%), and cluster 3
(20.3%). The main features of these subtypes are presented in Figure 8. This classification
holds the following prognostic and therapeutic implications: the investigators discovered
that 5-FU, cisplatin, docetaxel, mitomycin C, and paclitaxel were more effective in cluster 1
GC, and this group of patients exhibited a worse prognosis. Additionally, they proposed
multiple drugs with specific effects on each cluster.
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3.11. Ye et al. (2022): Metabolism-Based Classification [166]

Ye et al. established subtypes similar to those in Lei’s classification, focusing on GC
metabolism [156]. They conducted the unsupervised classification analysis of clinical and
transcriptomic data from 161 cases retrieved from various databases, including Genomic
Data Commons, GEO, and TCGA cohorts [166].

The authors identified the four following molecular subtypes: immune suppressed
(C1), metabolic (C2), mesenchymal/immune exhausted (C3), and hypermutated (C4).
Table 2 outlines the main characteristics of these four categories. C2 and C4 subtypes
exhibited higher metabolic activity. Interestingly, there was a significant correlation between
Ye’s classification and TCGA, Laurén, Lei’s, and WHO classifications. Types C2 and C3
resembled the metabolic and mesenchymal types from Lei’s classification, respectively.
Concerning TCGA system, over 90% of C1 tumors were categorized as CIN. C2 tumors
were predominantly CIN (64.7%) or GS (26.5%). C3 GC was mainly GS (47.1%) or CIN
(40%), and G4 tumors were primarily CIN (39.8%) or MSI (37.5%). As shown in Table 2,
Ye’s classification was also linked to treatment response and patient prognosis.

Table 2. Ye’s classification. Main clinicopathological, immune, and molecular features of GC types.

Ye et al. Molecular Features Immune and Clinicopathological Features

Immune—suppressed (C1) Pathways: HIPPO, WNT, NOTCH, cell cycle
Neutrophil-induced immune suppression

Intestinal/tubular tumors
No MSI a

Metabolic (C2) Pathways: MYC, NRF2 Abundance of T cells (Th1, cytotoxic, Tcm), B cells and
dendritic cells

Mesenchymal—immune exhausted (C3)
Pathways: TGF-β, angiogenesis

Enhanced EMT b

Diffuse/poorly cohesive tumors
Lower HER2 expression

Worse prognosis

Hypermutated (C4)
Pathways: cell cycle, TP53, PI3K

MSI
CIMP c

Abundance of Th2 cells
EBV d-related tumors

Intestinal/tubular tumors
Response to immunotherapy

Better prognosis

a MSI: microsatellite instability; b EMT: epithelial-mesenchymal transition; c CIMP: CpG island methylator
phenotype; d EBV: Epstein–Barr virus.
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3.12. Li et al. (2021): Metabolism-Based Classification [167]

The authors analyzed transcriptomic, clinical, and genomic data from TCGA database,
and identified metabolism-related long non-coding RNAs, including 38 metabolic path-
ways [167]. They determined six clusters (N1-N6) and two tumor types (C1 and C2) of GC
with different molecular profiles and responses to immunotherapy and chemotherapy.

Type C1 GC displayed higher immune and stromal scores and lower tumor purity
than C2 GC. Additionally, it had greater infiltration by B cells, CD8+ T cells, dendritic
cells, macrophages, and mast cells. This subtype was enriched in pathways related to
interferon-gamma, interferon-alpha, and inflammatory responses. Conversely, the subtype
C2 demonstrated enrichment in pancreas beta cells and bile acid metabolism pathways.
Regarding genetic alterations, C1 GC presented mutations in ARID1A, AHNAK2, PIK3CA,
and ZBTB20, while C2 GC had TP53 mutations. Each subtype featured genes whose
alterations influenced prognosis. Intriguingly, the alteration of ABCA13 had opposing
effects in subtypes C1 and C2. Concerning the treatment response, C1 GC exhibited greater
sensitivity to gemcitabine, while C2 GC responded more favorably to atezolizumab, among
other molecules.

3.13. Lin et al. (2021): Immune-Based Classification [168]

In this study, the authors investigated six cohorts of GC patients and assessed the
immune enrichment of tumors using 51 tumor microenvironment cell signatures from
previously published research [168]. Subsequently, they developed an immune microenvi-
ronment score (IMS) and categorized GC into high IMS and low IMS groups. The main
characteristics of these subtypes are presented in Figure 9. The high IMS subtype demon-
strated enrichment in the MSI type of the ACRG, followed by the TP53-inactive group and
the TP53-active group. In addition, IMS was higher in the EBV and MSI subtypes, according
to TCGA. The authors found no differences in somatic copy number variations between
the subtypes, but identified drugs with potential therapeutic effects on each subgroup.
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3.14. Wu et al. (2022): Immune-Based Classification [169]

In this investigation, Wu et al. examined 1386 samples sourced from three databases
(TCGA, GEO, and an internal cohort), with TCGA data serving as the discovery set [169].
They identified two molecular subtypes of GC based on the immune environment, labeled
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as C1 (37%, “non-activated”) and C2 (63%, “immune-activated”), utilizing a panel of
390 immune-related genes. Figure 10 outlines the key molecular and clinicopathological
features of each subtype. These subtypes exhibited varying associations with TCGA and
the ACRG molecular groups. Notably, C1 GC was significantly enriched in the EMT type,
according to the ACRG. Survival analysis revealed that this classification served as an
independent prognosticator in GC, with C1 tumors being diagnosed at more advanced
stages and having a worse prognosis.
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3.15. Li et al. (2016): Tumor Mutational Burden [170]

In their study, Li et al. examined somatic mutations and clinical features across five
geographically distinct cohorts [170]. Employing unsupervised clustering based on the
somatic mutation count, the authors divided GC into the two following groups: regular
(86.8%) and hypermutated (13.2%), with the latter being notably enriched in MSI tumors.
The regular type displayed a distinctive APOBEC mutational pattern [55]. Moreover,
regular GC showed alterations in pathways associated with genotoxic-oncogenic stress
responses, histone modification/chromatin remodeling, growth factor receptor signaling,
and Wnt signaling, presenting multiple molecular changes with therapeutic potential.

Further subtyping of the regular GC revealed two subgroups as follows: C1, with
mutations in TP53, XIRP2, APC, ERBB4, and AKAP6; and C2, with mutations in ARID1A,
CDH1, PIK3CA, and RHOA. The C2 cases were enriched in diffuse-type GC, tumors of the
gastric body, exhibited worse prognosis, and were mainly classified as GS and CIN GC,
according to TCGA. C1 GC cases were predominantly CIN tumors, according to TCGA.
The classification of tumors into C1 and C2 proved to be an independent prognostic factor.
Additionally, CDH1 mutation was an independent prognosticator in diffuse-type GC.

3.16. Wei et al. (2022): Tumor Mutational Burden [171]

In this study, researchers analyzed genetic data, gene expression profiles, and clinical
information from 433 patients in the TCGA database, and validated their findings in
433 additional cases from the GEO database [171].

Initially, they determined two types of GC based on the TMB as follows: high TMB
(49.9%) and low TMB (50.1%). The main characteristics of these subtypes are summarized
in Figure 11. Subsequently, the authors developed a risk score that included the following
four genes: MATN3, UPK1B, GPX3, and RGS2. They observed that high-risk patients had
worse OS and DFS, higher stromal scores, high expression of immune checkpoints, and
more immune cell infiltration. High-risk GC also exhibited increased sensitivity to gefitinib,
vinorelbine, and gemcitabine. Using their risk score, they created a nomogram that, along
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with age and tumor stage, successfully stratified patients according to their OS and DFS.
Finally, they developed a molecular classification based on differentially expressed genes
related to TMB, dividing patients into three groups as follows: C1, C2, and C3. C2 GC
showed reduced stromal and immune scores, increased tumor purity, low expression of
immune checkpoints, and lower levels of immune cell infiltration. The C3 type was the
least sensitive to gefitinib, gemcitabine, and sorafenib.
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3.17. Weng et al. (2023): Epigenetic-Based Classification [172]

In their investigation, Weng et al. analyzed data from 1521 GC samples across five
independent datasets from GEO and TCGA databases [172]. Utilizing an integrated clus-
tering algorithm that combined miRNA expression and DNA methylation profiles, they
identified four distinct molecular types of GC, subsequently validated into four indepen-
dent multicenter cohorts as follows: cluster 1 (C1, 30.4%), C2 (22.7%), C3 (15%), and C4
(32%). Key characteristics of each subgroup are outlined in Figure 12.
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Concerning their association with TCGA classification, types C1 and C2 were linked
to MSI GC, C3 to GS, and C4 to CIN. Furthermore, their classification showed a correlation
with the treatment response. C1 GC exhibited greater sensitivity to methotrexate, 5-FU, and
paclitaxel. Patients in C2 benefited from apatinib and cisplatin treatment, and displayed
potential sensitivity to warfarin. Conversely, C3 and C4 types demonstrated increased
sensitivity to dasatinib and LY2606368, respectively. Intriguingly, the C3 subtype showed
heightened resistance to traditional 5-FU, paclitaxel, apatinib, and/or cisplatin therapies.

3.18. Li et al. (2022): Proteomic-Based Classification [173]

Molecular classifications of GC have also been explored through the lens of the pro-
teome. In a previous study, Li et al. developed a proteome-based classification of diffuse
GC, dividing it into PX1–3 types. They observed that PX3 GC had a worse prognosis and a
greater resistance to chemotherapy [174].

Subsequently, they investigated the response to neoadjuvant therapy in GC, con-
ducting a comprehensive proteomic analysis of 206 tumor samples from therapy-naïve
patients [173]. They established four GC subtypes as follows: G-I (14.1%), G-II (29.1%),
G-III (47.1%), and G-IV (9.7%). The G-IV type demonstrated the poorest prognosis, with
resistance to chemotherapy and anti-HER2 drugs escalating from G-I to G-IV. Pathway en-
richment revealed the following distinctive features for each subtype: G-I was characterized
by endocytosis-related proteins, G-II by glycolysis (gluconeogenesis and pantothenate/CoA
biosynthesis pathways), G-III by lysosomal acid hydrolases and synthesized lysosomal
enzymes, and G-IV by extracellular matrix-receptor interaction, focal adhesion, comple-
ment/coagulation cascades, and the PI3K-AKT signaling pathway. Moreover, G-IV was
enriched in extracellular matrix proteins and displayed the fewest copy number variants.

The authors noted a correlation between their classification and the ACRG subtypes.
G-IV tumors were predominantly mesenchymal-like with a lower frequency of MSI, while
G-II GC exhibited higher MSI and hypermutation status. In terms of immune infiltration,
G-IV tumors displayed fewer cytokines and antigen presentation, more monocytes, and
fewer differentiated M1 macrophages. Lastly, G-II tumors had the highest percentage of
HER2-amplified patients.

3.19. Tanaka et al. (2021): Ascites-Disseminated GC [175]

Tanaka et al. developed a molecular classification specific to ascites-disseminated
GC [175]. They conducted a comprehensive study involving whole-genome sequencing,
RNA sequencing, DNA methylation, and enhanced landscape analysis on tumor cells and
cell lines from the malignant ascitic fluid samples of 98 patients.

Through gene expression profiling, the researchers identified two distinct molecular
types within ascites-disseminated GC. One exhibited active super enhancers at the ELF3,
KLF5, and EHF loci (non-EMT), while the other demonstrated TGF-beta activation through
SMAD3 and TEF-1 (EMT). The EMT group, associated with EMT pathways, displayed a
lower number of somatic mutations, MET amplification, CDKN2A/B homozygous loss, and
the activation of the Hippo pathway involving components like TEAD1, YAP1, or SMAD3.
Conversely, the non-EMT group exhibited FGFR2 amplification.

Regarding the potential therapeutic implications of this classification, the authors
noted that inhibitors targeting FGFR2, MET, EGFR, and ALK were effective in treating cell
lines with alterations in these genes (amplification or fusion). Within the EMT subgroup,
the inhibition of MET or the TEAD pathway could be particularly beneficial.

4. Clinical Impact of Molecular Classifications
4.1. Application of Molecular Classifications through Surrogate Markers

The integration of molecular classifications into clinical practice faces several chal-
lenges, including the limited availability of molecular techniques in many institutions, their
high cost, the absence of optimal markers for diagnosing each molecular type, and their
complexity. It should be noted that most research studies have relied on integrating vast
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amounts of data through complex computational techniques. Regarding technological
availability, among the molecular techniques mentioned previously that have transformed
the study of cancer biology, NGS is the most widely implemented platform in clinical
practice, but still remains unavailable in some healthcare centers.

In contrast, IHC methods are readily available in all pathology laboratories, are
more cost-effective, faster, and simpler to interpret [176]. IHC relies on antigen–antibody
interactions to detect and highlight specific proteins on tissue slides, and is extensively
used in daily practice to establish diagnosis, prognosis, or determine predictive markers
in various pathologies [177,178]. Moreover, IHC generally requires smaller samples than
molecular studies, allowing for the determination of the staining location at the subcellular
level, the assessment of tumor heterogeneity, the quantification of the number of stained
cells, and the intensity of staining. Breast cancer serves as a prime example of the successful
implementation of molecular categories using IHC markers [179]. In situ hybridization
techniques, which are part of molecular techniques, share many similarities with IHC
and can complement IHC methods in the search for the optimal surrogate markers of
molecular classifications [180]. For instance, in various types of tumors, HER2 IHC serves
as a screening method to conduct HER2 in situ hybridization in selected cases [97,181].

In GC, several studies have explored suitable surrogate markers for implementing
TCGA and the ACRG classifications in clinical practice [182–187]. These investigations
have spanned both Asian and Western populations, primarily utilizing IHC for mismatch
repair proteins (MSH2, MSH6, PMS2, MLH1), p53, E-cadherin, or p21, along with simple
molecular techniques like EBV fluorescence in situ hybridization.

In most cases, surrogate classifications have demonstrated prognostic value, although
some studies have reported conflicting results [186]. Our research group developed an IHC
classification based on the ACRG molecular classification, showing independent prognostic
value in our GC patient cohort [188].

For the optimal application of these classifications in clinical practice, a consensus
on the markers to use and the interpretation criteria is crucial, especially concerning p53
IHC. Several studies have considered the loss of p53 expression as a mutated pattern,
while others focus on marker overexpression. Furthermore, some authors consider both
the loss of expression and overexpression as mutated patterns. The cutoff point for p53
overexpression ranges from 20% to 70%, with 70% being the most common. Additionally,
the assessment criteria for E-cadherin also vary, with some researchers considering the loss
of membranous staining as an altered pattern, while others establish an expression cutoff
point or label any tumor without strong and complete membrane staining as altered.

Interestingly, as far as we know, no studies have been published seeking surrogate
markers for applying other molecular classifications beyond TCGA and the ACRG.

4.2. Equivalencies between Classifications, Prognostic, and Therapeutic Value

The main features of the molecular classifications of GC reviewed in this study are
summarized in Table 3.

While these classifications, along with numerous others in the literature, may not be
entirely equivalent, certain molecular categories exhibit similarities. For example, MSI-H
tumors tend to occur in younger patients, belong to the intestinal type, and generally have
a favorable prognosis. Hypermutated or immune-related tumors also typically show better
prognostic outcomes, although some researchers have reported conflicting results. In any
case, due to their high mutation rate, these tumors have a high neoantigen burden, thereby
rendering immunotherapy potentially beneficial [189,190].

Tumors displaying EMT or those of the mesenchymal-like type are commonly as-
sociated with genomic stability, carry a poor prognosis, and are enriched in the diffuse
type. Such tumors often exhibit greater resistance to traditional therapy, underscoring
the importance of developing new drugs, particularly those targeting cell adhesion or
angiogenesis-related pathways. Lastly, stable TP53-mutated GCs often display copy num-
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ber variations and demonstrate a moderate to poor prognosis. However, these tumors tend
to be more responsive to conventional chemotherapy [191].

Table 3. Molecular types of gastric cancer.

Authors Year Molecular Categories

TCGA a [42] 2014 MSI b, genomically stable, EBV c positive, chromosomal instability

ACRG d [43] 2015 MSI, mesenchymal-like, TP53 active, TP53 inactive

Tan et al. [155] 2011 Intrinsic subtypes: G-INT and G-DIF

Lei et al. [156] 2013 Mesenchymal, proliferative, metabolic

Wang et al. [157] 2021 Subtypes 1–4

Shah et al. [158] 2011 Proximal non-diffuse, diffuse, distal non-diffuse

Furukawa et al. [161] 2022 Hypermutators, T-cell inflamed, EMT e-high, EMT-low

Wang et al. [162] 2014 MSI, stable associated with EBV, stable non-EBV

Cheong et al. [164] 2022 Groups 1–4

Zhou et al. [165] 2023 Clusters 1–3 (functional status-based)

Ye et al. [156] 2022 Immune-suppressed (C1), metabolic (C2), mesenchymal-immune exhausted (C3),
hypermutated (C4)

Li et al. [167] 2021 C1 and C2 types (metabolism-based)

Lin et al. [168] 2021 High and low immune microenvironment score

Wu et al. [169] 2022 Non-activated (C1) and immune activated (C2)

Li et al. [170] 2016 Regular, hypermutated

Wei et al. [171] 2022 High TMB f, low TMB

Weng et al. [172] 2023 C1-C4 types (epigenetic-based)

Li et al. [174] 2022 PX1-3 types (proteomic-based)

Tanaka et al. [175] 2021 Two types of ascited-disseminated gastric cancer
a TCGA: The Cancer Genome Atlas; b MSI: Microsatellite instability; c EBV: Epstein–Barr virus; d ACRG: Asian
Cancer Research Group; e EMT: epithelial-mesenchymal transition; f TMB: tumor mutational burden.

It is worth noting that the presence of amplifications of tyrosine kinase receptor
genes or cell cycle mediators, characteristic of stable TP53-mutated GC, along with other
frequently observed alterations among GC subtypes such as PIK3CA mutation, holds
potential therapeutic value.

5. Maximizing Impact through Interdisciplinary Collaboration

It is essential to recognize that the molecular studies routinely conducted for the clinical
management of patients necessitate collaboration among multiple professionals, including
biologists, mathematicians or computer scientists, pathology technicians, pathologists, and
oncologists [192]. In our setting, biologists and/or pathology technicians are responsible for
obtaining tissue slides and carrying out the molecular techniques. The pathologist confirms
the presence of the tumor in the slides and quantifies tumor cellularity. Subsequently,
molecular results are interpreted either by biologists or by pathologists. For complex
techniques like NGS, the involvement of a computer scientist may also be necessary. On
the other hand, the professional who best understands the indication of the study and the
practical implications of the molecular result is the oncologist.

Thus, each molecular technique, similar to several other medical procedures, is the
result of collaboration among diverse specialties. A distinguishing feature of molecular bi-
ology lies in the significant complexity and volume of information that must be managed to
ensure a comprehensive understanding of results. This complexity is further compounded
by the need for frequent updates, given the rapidly evolving nature of the discipline. To
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foster an environment of enrichment and maximize the utilization of available knowledge,
most institutions conducting molecular techniques have established molecular boards,
where the results are discussed with the participation of various professionals.

Nevertheless, there is still room for improvement in research. Firstly, efforts should
concentrate on enhancing the training of all professionals who could potentially be involved
in molecular pathology to encourage active participation in research studies. The literature
reveals a notable gap between “basic” molecular studies, which address methodological
aspects and results of large-scale molecular techniques, and “clinical” studies, which typ-
ically discuss therapeutic possibilities and ongoing clinical trials. However, a thorough
understanding of all phases of the molecular procedure and its practical implications is
indispensable for designing and executing research studies. Review articles that summarize
molecular findings from a broader and more practical perspective, accessible to profes-
sionals from different specialties, provide valuable frameworks for understanding more
specific studies within each discipline.

Secondly, improving communication among professionals within the context of molec-
ular research is vital for refining the methodology and maximizing the practical impact of
studies. In the realm of congresses and scientific sessions, those with the highest attendance
are often specific to individual specialties, and focus on near-term practical applications.
Unfortunately, participation from other specialties is usually limited. While guidelines from
scientific societies tend to adopt a multidisciplinary approach, they may not be updated
frequently and often prioritize clinical routines over research. Therefore, organizing regular
interdisciplinary meetings on specific research topics involving clinicians and scientists
would be highly beneficial. Consensus guidelines for future research studies could emerge
from these meetings.

Thirdly, enhancing educational exchange between different specialties and among
hospitals and research centers is advisable, both during the formal training period and
in professional practice. The integration of diverse perspectives is becoming increasingly
necessary, even from a practical standpoint.

In conclusion, professionals in molecular biology are confronted with vast amounts
of information and complex technical tools. Facilitating interdisciplinary exchanges and
fostering communication among specialists from different fields are crucial for effectively
navigating through this wealth of information in order to guiding future studies towards
practical applications.

6. Future Challenges

• Technological Advancements and Improvement of Novel Molecular Techniques:
Novel molecular techniques beyond NGS or microarrays hold significant promise in
GC. For instance, third-generation or SCS techniques can be valuable for characterizing
GC in small samples, such as pre-surgical biopsies or liquid biopsy specimens, and
for assessing intratumoral heterogeneity. These methods offer significant potential for
analyzing the molecular profile of pre-neoadjuvant GC, monitoring patients, and iden-
tifying resistance mechanisms. Unfortunately, their broad availability or integration
into clinical routine still requires significant progress.

• Validation of Molecular Classifications: Despite the publication of numerous molecular
classifications in GC, those beyond TCGA and the ACRG have not been extensively
validated. In addition, it is crucial to confirm previous results in geographically distinct
cohorts due to the regional differences observed in the molecular, clinicopathological,
and treatment features of GC. In this context, the promotion of open and collaborative
GC databases could be beneficial.

• Identification of Surrogate Markers: Identifying optimal surrogate markers for apply-
ing TCGA and the ACRG classifications is essential, given the complex approaches
used in these studies. Furthermore, exploring suitable surrogate markers for molecular
classifications beyond those published by TCGA and the ACRG is also recommended,
as this would address a significant gap in the GC literature.



Int. J. Mol. Sci. 2024, 25, 2649 22 of 30

• Consensus on Molecular Classifications: Given the heterogeneity of GC, achieving a
consensus molecular classification is necessary for standardizing comparisons between
studies in different cohorts. If complete consensus proves challenging, harmonizing
the most consistent molecular types across classifications, such as MSI or high TMB
tumors, those related to EMT, or those with TP53 alterations, is advisable.

• Incorporation of Clinical and Histological Features: A notable correlation exists be-
tween molecular types and certain clinicopathological factors in GC, particularly the
Laurén type, and, to a lesser extent, tumor location and other features. Integrating
molecular alterations with histopathological findings that carry prognostic or therapeu-
tic significance, akin to the methodologies applied in endometrial cancer, could prove
to be a more effective strategy than presuming that a novel molecular classification
will completely replace the value of histological features in GC. Achieving such an
integrative classification relies on collaboration among different scientific disciplines
and a holistic approach, involving all stakeholders in the context of GC diagnosis
and treatment.

• Interdisciplinary Collaboration: Fostering an integrative approach necessitates col-
laboration among diverse professionals, encompassing biologists, clinicians, and
pathologists. Essential to this is the training of clinicians and pathologists in molecular
pathology, coupled with a deep understanding of clinical practice realities by basic
researchers. Open forums for interdisciplinary discussions and knowledge exchanges
remain vital for the successful translation of basic research into clinical practice.

• Improved Patient Stratification in Clinical Trials: Enhancing patient stratification
in clinical trials could yield valuable insights into new biomarkers. For instance,
studies have shown that categorizing patients according to the Laurén type enables
the identification of distinct subgroups with diverse treatment responses [8]. The
classification of patients in clinical trials based on molecular alterations or prominent
histological factors, such as the Laurén type, would facilitate the individualized search
for targeted therapies within more homogeneous groups, ultimately enhancing the
precision and effectiveness of personalized approaches.

7. Conclusions

In the last decade, our understanding of the molecular landscape of cancer has led to
the emergence of numerous molecular classifications across various tumor types. Some of
these classifications, such as those for endometrial or breast cancer, have become integral com-
ponents of routine clinical practices. Furthermore, the identification of molecular alterations
as biomarkers for targeted therapy has revolutionized cancer treatment, improving patient
outcomes and reducing the side effects associated with traditional oncologic approaches.

Despite these strides, technological progress has had a somewhat limited impact on
patient prognosis and management in GC. In advanced tumors, therapeutic options beyond
traditional chemotherapy are currently restricted to immunotherapy, antiangiogenic agents,
and anti-HER2 drugs. Key advancements in molecular pathology for GC include the
release of molecular classifications by TCGA and the ACRG. These groups conducted
the comprehensive analyses of large GC cohorts, defining four similar yet not equivalent
molecular subtypes. Additionally, various researchers have proposed diverse molecular
classifications, highlighting substantial molecular heterogeneity within GC. Despite the
differences among these classifications, some similarities exist, particularly in tumors with
MSI, immune infiltration or activation, TP53 mutation, or mesenchymal-like features.

A significant challenge in implementing these systems in real-world clinical settings
lies in their complexity. In this context, the utilization of IHC markers as substitutes
for TCGA or ACRG systems in previous studies has yielded promising results. This
methodology provides a practical and cost-effective approach to the molecular classification
of GC, despite variations in the selected markers and their assessment across studies.

In conclusion, for molecular classifications to exert a substantial impact on patient
management and outcomes in GC, efforts must be directed towards establishing a consensus
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framework with categories that optimally influence prognosis and treatment selection. This
entails validating different classifications in diverse cohorts, standardizing molecular sub-
groups, identifying optimal surrogate markers for practical application, integrating clinical,
histological and molecular criteria, and fostering interdisciplinary collaboration. Additionally,
patient stratification in clinical trials based on the molecular characteristics of GC may prove
instrumental in developing more effective therapies, given the significant differences in tumor
behavior and biology observed among the various molecular categories.
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