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Abstract: One of the key mechanisms enabling bacterial cells to create biofilms and regulate cru-
cial life functions in a global and highly synchronized way is a bacterial communication system
called quorum sensing (QS). QS is a bacterial cell-to-cell communication process that depends on
the bacterial population density and is mediated by small signalling molecules called autoinducers
(AIs). In bacteria, QS controls the biofilm formation through the global regulation of gene expression
involved in the extracellular polymeric matrix (EPS) synthesis, virulence factor production, stress
tolerance and metabolic adaptation. Forming biofilm is one of the crucial mechanisms of bacterial
antimicrobial resistance (AMR). A common feature of human pathogens is the ability to form biofilm,
which poses a serious medical issue due to their high susceptibility to traditional antibiotics. Be-
cause QS is associated with virulence and biofilm formation, there is a belief that inhibition of QS
activity called quorum quenching (QQ) may provide alternative therapeutic methods for treating
microbial infections. This review summarises recent progress in biofilm research, focusing on the
mechanisms by which biofilms, especially those formed by pathogenic bacteria, become resistant
to antibiotic treatment. Subsequently, a potential alternative approach to QS inhibition highlighting
innovative non-antibiotic strategies to control AMR and biofilm formation of pathogenic bacteria has
been discussed.

Keywords: quorum sensing (QS); autoinducers (AIs); bacterial pathogens; antimicrobial resistance
(AMR); biofilm formation; quorum quenching (QQ); innovative antibiofilm strategies

1. Introduction

Bacterial processes, such as biofilm formation, secretion of the virulence factor, bio-
luminescence, production of antibiotics, secondary metabolites, sporulation, apoptosis,
and horizontal gene transfer (HGT) ability, are necessary for the functioning of these
microorganisms in the external environment [1,2]. However, these metabolic processes
are ineffective if they occur during the planktonic growth phase of individual bacterial
cells [3,4]. We know, however, that bacteria have successfully developed an “intelligent”
system of cell cooperation, communication, and control mechanisms to survive in the
unfavourable conditions of the surrounding environment [5,6].

How are bacteria doing? Through quorum sensing (QS), bacteria synchronously
control the global gene expression in response to changes in cell density and species
complexity [7,8]. Detecting the quorum allows bacteria to switch between two different
gene expression programs. The first (1), preferred at low cell density (LCD), promotes
individual antisocial behaviour. The second (2), favoured at high cell density (HCD),
promotes community behaviour, also known as group behaviour [9–12]. Adapting to
environmental changes requires the bacterial community to integrate external signals and
coordinate intracellular responses based on global regulatory networks. The basic processes
related to detecting and reacting to changes in the number of bacterial cells are analogous

Int. J. Mol. Sci. 2024, 25, 2655. https://doi.org/10.3390/ijms25052655 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms25052655
https://doi.org/10.3390/ijms25052655
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-5093-5320
https://doi.org/10.3390/ijms25052655
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms25052655?type=check_update&version=1


Int. J. Mol. Sci. 2024, 25, 2655 2 of 40

in all known bacterial quorum detection systems [10,11,13,14]. First, signal molecules
called autoinducers (AIs) are synthesized intracellularly. Second, these molecules are either
passively released or secreted outside the cellular environment. As the number of cells in
the population increases, so does the extracellular autoinducer concentration. Third, when
signalling molecules accumulate above the minimum threshold required for detection, their
cognate receptors bind to the autoinducer and trigger a signalling cascade that changes
gene expression within the bacterial population [11,15,16]. Thus, quorum detection enables
the coordinated functioning of the bacterial cell population, thereby increasing the chance
of survival in adverse environmental conditions [11].

It is well known that bacteria form a biofilm under the control of the QS system [13,15,17–19].
Several excellent reviews discuss how microorganisms develop pathogenic biofilms and
their protective mechanisms against antibiotics, antimicrobial agents, and host innate
immunity [4,20–22]. In 2017, the World Health Organization (WHO) prepared a list of bac-
terial strains (ESKAPE) like Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae,
Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacter spp., which are developed
through several molecular mechanisms of antimicrobial resistance (AMR), making them
ineffective in traditional antibiotic therapy [23,24]. These pathogens are responsible for
nearly 80% of hospital-acquired infections, particularly in critically ill patients, due to their
capacity for biofilm formation [25,26]. For instance, previous studies have shown that the
pathogenicity of P. aeruginosa is closely related to the biofilm [27]. E. faecium and S. aureus
resisted various antibiotics, such as vancomycin and fluoroquinolones [28].

Currently, antibiotics are still a significant treatment for pathogens infections. How-
ever, biofilms, being a barrier around bacterial cells, reduce the receptivity of bacteria to
conventional antibiotics, leading to persistent infections. For instance, Hoiby et al. [29]
observed that biofilm bacteria increase antibiotic resistance by about 1000 fold. The inten-
sive development of bacterial resistance to antimicrobial agents is currently a new, major
threat to public health care [24,30]. Therefore, discovering alternative non-antibiotic strate-
gies for inhibiting bacterial biofilms is urgent due to biofilm resistance to already-used
antimicrobial agents [31]. Because QS controls a broad spectrum of phenotypes, including
virulence and biofilm formation, inhibition of QS may provide alternative therapeutic
methods for treating microbial infections [32]. The strategy of blocking the QS system and
inhibiting virulence factor production is called quorum quenching (QQ) [13,33,34]. QQ
is a promising non-antibiotic alternative for the treatment of a broad range of pathogenic
bacterial infections, including QQ enzymes, which inactivate QS signals, and QS inhibitors
(QSIs), which chemically disrupt QS pathways via inhibition of signal receptors [33,35].
Moreover, several other innovative therapeutic strategies, like antimicrobial peptides [36],
antibodies [37], nanoparticles [38], probiotics [39], and phage therapy [40], as well as preci-
sion genome targeting [41], aimed at effectively eradicating biofilm-related infections, are
currently under investigation. Despite tremendous progress in antibiotic-resistant mech-
anisms and corresponding strategies to override resistance, biofilm-associated infections
remain a considerable challenge.

Given the important role of quorum sensing (QS) in biofilm formation, this review
summarised recent progress in biofilm research, focusing on the mechanisms by which
biofilms, especially those formed by pathogenic bacteria, become resistant to antibiotic
treatment. In the first part of the review, the role of main QS systems in the global expression
regulation of multiple genes involved in the pathogenicity of the biofilm-forming bacteria
has been systematized. The second part of the review focused on recent developments
in antibiofilm strategies by disrupting the quorum sensing system, which is critical for
biofilm formation, and summarised different classes of antimicrobial compounds to control
biofilm formation.

2. Genetic Modules and Their Homologues as Regulatory Networks Detecting QS

The QS system presented in Gram-positive and Gram-negative bacteria is involved
in biofilm formation, bacterial adhesion, host colonization, and expression of many viru-
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lence factors [17]. Moreover, several studies have QS’s crucial role in gut microbiota–host
cell interaction [31]. QS regulates gene expression dependent on cell population density,
facilitated by small signalling molecules known as autoinducers (AIs) [11,42]. Therefore,
AIs are called “hormone-like molecules”, whereas the biofilm is considered a multicellular
organism [11,16,43]. The AIs are products of the specific genes, and then after modifica-
tion, they diffuse freely across the cell membranes or are actively transported out of the
cell [13,14,44]. Once the concentration of secreted Al molecules has reached a threshold
level, they are detected by cognate sensor proteins. These proteins either transduce the
signal to downstream transcriptional regulators or function as transcriptional regulators to
mediate changes in global gene expression [15,18,45].

2.1. QS in Gram-Negative Bacteria
2.1.1. AHL Signalling

The primary signalling molecules in Gram-negative bacteria are homoserine lactones
(AHLs), called acyl-homoserine lactones, known as AI-1 autoinducers [16]. AI-1 is used in
intraspecific communication of biofilm-forming bacteria [10], although some bacteria can
detect competing bacterial species in the surrounding environment [14]. In Gram-negative
bacteria, the QS based on AHLs plays a vital role in regulating global gene expression in
response to the density of bacterial cells [16]. This type of QS signal is found in more than
70 species of bacteria, most of which are pathogens [12,46,47].

The best-known AHL-mediated QS mechanism in Gram-negative bacteria is the
LuxI/LuxR system, which was described for the first time in V. fischeri (Figure 1). LuxI-
type proteins are responsible for the synthesis of AI-1, predominantly 3-oxo-hexanoyl-
l-homoserine lactone (3OC6-HSL), which passively penetrates the cell membrane and
transmits a signal transmission between cells [6,7]. The N-terminal domain of LuxR protein
recognises and binds AI-1. In contrast, the C-terminal domain, via conserved helix-turn-
helix motif, interacts with the promoter of multiple target genes in the region of their
palindromic sequence (lux-box), located about 40 bp upstream of the ATG codon [11,16,42].
After reaching the threshold, AHLs and LuxR form the LuxR–AHLs complex, which
recognises the “lux box” of luxI to promote the luxI transcription, creating a positive
feedback loop [48–50].

Similar LuxI/LuxR-type homologues have been identified in other Gram-negative bac-
terial species. In Pseudomonas aeruginosa, two AHL-depended systems, namely LasR/LasI
and RhlR/RhlI, responsible for the synthesis of the N-(3-oxo-dodecanoyl)-L-homoserine lac-
tone (3OC12-HSL) and N-butanoyl-L-homoserine lactone (C4-AHL) were described [51–53].
Both systems are key expression regulators of many virulence factors, including elastase
(lasB), proteases (lasA, aprA), exotoxin A (toxA), rhamnolipids (rhlAB), pyocyanin (phz-
ABCDEFG, phzM), and lectins (lecA) [54]. In turn, in Serratia, several different LuxI/LuxR-
type systems, such as SwrI/SwrR (Serratia liquefaciens MG1) [55,56], SmaI/SmaR (Serratia
sp. Strain ATCC 39006) [57], SprI/SprR (Serratia proteamaculans) [58], and SpnI/SpnR
(Serratia marcescens SS-1) have been identified [59]. In S. marcescens SS-1, SpnI protein
synthesizes at least four types of AHLs, including N-3-oxohexanoyl-homoserine lactone
(3OC8-HSL), N-hexanoyl-homoserine lactone (C6-HSL), N-heptanoyl-homoserine lactone
(C7-HSL), and N-octanoyl-homoserine lactone (C8-HSL) [60]. In contrast to most other LuxR
homologues, SpnR acts as a negative regulator and is derepressed by 3OC6-HSL [55,58]. The
SpnI/SpnR is involved in the prodigiosin, rhamnolipid, and nuclease synthesis [55,59]. In
addition, spnI/spnR genes might be located in a mobile DNA region and have been involved in
HGT. Wei et al. [55] showed that the SpnR/SpnI carried by a Tn3 transposon in S. marcescens
SS-1 can be moved between plasmids and chromosomes of this species and E. coli coexisting
in the same environment. The acquisition of the SpnR/SpnI system by E. coli, which does not
synthesize AI-1 in the natural environment, significantly changes the metabolism of this species.

Escherichia coli, Salmonella, Klebsiella, Shigella, and Enterobacter encode SdiA, a transcrip-
tion factor of the LuxR family that regulates gene expression in response to AHLs produced
by other bacterial species [61]. SdiA was found to detect a wide range of AHLs, includ-
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ing 3OC8-HSL and N-3-oxo-decanoyl-L-homoserine lactone (3OC10-HSL), N-hexanoyl-
L-homoserine lactone (C6-HSL), and N-octanoyl-L-homoserine lactone (C8-HSL) [62,63].
In Salmonella, the sdiA regulates the rck expression, which is involved in the adhesion
and invasion of host epithelial cells [64]. The rck is located on the virulence plasmid of
pRST98 [65]. In Salmonella strains carrying pRST98, AHLs increase rck expression, enhanc-
ing bacterial adherence, serum resistance, and biofilm formation [65]. In enterohemorrhagic
Escherichia coli (EHEC), Enterobacter, and E. coli K-12 BW25113, sdiA participates in the
regulation of several virulence factors such as curli production, adhesion on epithelial
cells, and biofilm formation [61,66,67]. The role of sdiA in the biofilm of pathogenic strains
has been reported in several studies [61,63,68]. Lee et al. [67] showed that the isogenic
sdiA-mutant of E.coli K-12 BW25113 increased biofilm formation 18 fold compared to the
wild type. Similar results have been reported by Suzuki et al. [69] and Lee et al. [70]. Well-
studied AHL-mediated QS systems also include the Tra/TraR in the A. tumefaciens [71],
the EsaI/EsaR in Pantoea stewartii [72], as well as ExpI/ExpR in Erwinia [73] and TraR in
Agrobacterium species [74].
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Figure 1. General mechanism of QS in Gram-negative bacteria scheme of activation of the lux operon
by luxI and luxR in Vibrio fischeri. The autoinducers (3OC6-HSL: red dots), produced by LuxI, diffuse
through the cell membrane into the growth medium at low cell density. As the cell growth continues,
the autoinducers in the medium accumulate in a confined environment. A very low intensity of
light can be detected. When enough autoinducers have accumulated in the medium, they can re-
enter the cell, directly binding the LuxR protein to activate luxICDABEG expression. High levels of
autoinducers activate the luminescent system of A. fischeri. High-intensity light can be detected. The
figure was created with BioRender (https://biorender.com/, 4 February 2023).

2.1.2. PQS Signalling

In P. aeruginosa, the third QS system is an AHL-independent system that consists of a
LysR-type regulator PqsR (also known as MyfR) and the pseudomonas quinolone signal
(PQS, 2-heptyl-3-hydroxy-4-quinolone) called PQS system [75]. Cell signalling of the PQS
system occurs via the synthesis and modification of 4-hydroxy-2-alkyquinolines (HAQ)
under the control of the transcriptional regulator PqsR. PqsR regulates the expression of
the genes involved in the production of anthranilic acid and its conversion to 4-hydroxy-2-
heptylquinoline (HHQ) [76]. The pqsABCDE, phnAB, and pqsH locus control the synthesis
of HAQ and HHQ molecules; the pqsA and pqsBCD genes encode the ligase and synthases
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involved in the precursor HHQ synthesis. HHQ, following subsequent modifications
via the action of the FAD-dependent mono-oxygenase encoded by pqsH, is converted to
PQS [77,78]. Recent studies suggest the role of pqsE in thioesterase TesB synthesis, which is
involved in the HHQ synthesis pathway [79]. The resulting PQS and HHQ autoinducers,
after exceeding the critical threshold required for QS induction, bind and activate pqsR and
pqsH mRNA transcription under the control of LasR. PQS and HHQ play dual roles as
PqsR ligands and as extracellular signalling molecules for the pqsR regulon, although there
are differences in their biological properties [77,78,80,81]. Diffusion of hydrophobic PQS
into the biofilm matrix occurs via the secretion of small membrane vesicles (MVs) [77,78].
In the P. aeruginosa genome, the PQS-PqsR complex controls the expression of over 12% of
genes involved, among others, in the biosynthesis of rhamnolipids, pyocyanin, elastase,
iron acquisition, resistance to oxidative stress, and biofilm formation [80]. PQS signalling
creates a network of connections with the PqsR, Las, and Rhl systems to regulate the
production of several common factors involved in biofilm formation, such as LecA and
siderophores [82]. The factor controlled by the PQS/PqsR system is extracellular DNA
(eDNA), which is essential for forming stable and mature biofilms [83]. Accumulation of
2-n-heptyl-4-hydroxyquinoline N-oxide (HQNO), whose production is controlled by PQS
signalling, leads to autolysis, eDNA release, and increased biofilm biomass [83]. In addition,
Cookie et al. [84] reported that PQS induces outer membrane vesicle (OMVs) formation
in P. aeruginosa. A significantly elevated PQS and OMV synthesis level was observed
during biofilm dispersion compared to the attachment and maturation stages. Authors
showed that OMVs participate in extracellular protein, lipid, and nucleotide degradation,
promoting biofilm dissemination in P. aeruginosa infections [84,85].

2.1.3. IQS Signalling

IQS has been identified as the fourth QS system in P. aeruginosa capable of integrating
environmental stress cues with the QS network [86,87]. Several previous studies reported
that synthesis of the IQS (2-(2-hydroxyphenyl) thiazole-4-carbaldehyde) is controlled by
the gene cluster ambABCDE, while the cognate receptor is unknown [88]. For example,
Lee et al. [86] reported that the disruption of LasI/LasR leads to the inhibition of the
ambBCDE expression and reduction of the IQS synthesis. Recently, Cornelis [89] presented
commentary that ambABCDE genes are not responsible for IQS synthesis. Results strongly
suggested that IQS is aeruginaldehyde derived from the siderophore pyochelin biosyn-
thetic pathway [88] and is produced by other Pseudomonas, including P. protegens and
Burkholderia thailandensis, which do not have the amb genes cluster [88,90]. Furthermore, Rojas
Murcia et al. [91] reported that the ambBCDE genes cluster is responsible for the biosynthesis
of L-2-amino-4-methoxy-trans3-butenoic acid (AMB) but did not specify IQS in P. aeruginosa.
Therefore, the accurate role of IQS in the QS system requires further investigation.

2.2. QS in Gram-Positive Bacteria

Gram-positive bacteria have developed different mechanisms of autoinducer syn-
thesis and signal transmission from the sensor proteins of a cell to the effectors [92–94].
Mechanisms and proteins involved in QS in Gram-positive bacteria are best known in
Streptococcus pneumoniae, Bacillus subtilis, and Staphylococcus aureus [95]. QS system in
Gram-positive bacteria is mediated by autoinducing peptides (AIPs), which are products
of the digestion of larger protein precursors [96,97]. One of the major differences between
LuxI/LuxR and AIPs is the location of their cognate receptors. In the Gram-positive bac-
teria, LuxR-type receptors are cytoplasmic, whereas, in the Gram-positive bacteria, API
receptors are membrane-bound and, as binary signalling proteins, transmit information
by a series of phosphorylation events [98]. Next, APIs are transported outside the cell via
specialized ATP-binding cassette transporters, interacting with transcription factors that
control the expression of target genes [99]. A typical Gram-positive QS system consists of a
membrane-bound histidine kinase receptor and a related cytoplasmic response regulator
acting as a transcription regulator (Figure 2).
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Figure 2. General mechanism of QS in Gram-positive bacteria. As in AHL quorum detection systems,
the concentration of secreted AIP autoinducers increases with increasing cell density. Phosphorylated
regulatory proteins act as DNA-binding transcription factors to modulate the expression of target
genes. In many cases, the genes encoding the autoinducer precursor, the histidine kinase receptor,
and the regulatory protein form an operon, and its expression is automatically induced by QS
detection. This configuration produces positive feedback and accelerates the transition from LCD
to HCD, a quorum-dependent mode of gene expression. The figure was created with BioRender
(https://biorender.com/, 4 February 2023).

The most typical example of AIP-mediated QS is the agr system in S. aureus [92,95,99].
The agr system is evolutionarily conserved in Gram-positive bacteria, including Lactobacillus
plantarum, Clostridium botulinum, C. perfringens, C. difficile, L. monocytogenes and Enterococcus
faecalis [100]. In S. aureus, the synthesis of AIPs and their sensors are under the control of
the P2 and P3 promoters, controlling the agrBDCA operon, which is transcribed to produce
the polycistronic RNAII and RNA III transcripts [101,102]. The AIP precursor is encoded
by the agrD, which, after subsequent modifications and the attachment of the thiolactone
ring under the control of the argB, acquires the properties of a specific autoinducer API. The
agrC is responsible for histidine kinase synthesis, while the AgrA, as a terminal regulatory
protein, is synthesized under the control of the agrA gene [103]. agrA/agrC induces RNAII
transcription, terminating the autoinduction and RNAIII circuits. Interestingly, instead of
encoding a regulatory protein, the RNAIII transcript acts as a regulatory effector molecule
for the agr system, mainly via translational inhibition of the virulence gene repressor
Rot [103,104]. In S. aureus, a specific peptide sequence defines four groups of specific AIPs
(I, II, III, IV) [105]. The agrC/agrA S. aureus system activates the expression of several
virulence genes involved in α-hemolysin, coagulase, and enterotoxin synthesis [101,106].
A well-studied AIP system is ComQXPA B. subtilis, which comprises four proteins: the
ComQ isoprenyl transferase, the ComX pre-peptide signal, the ComP histidine kinase,
and the ComA response regulator [96,102]. ComQ is required to process, modify, export
ComX, and produce the mature QS signal. Extracytoplasmic binding of ComX with ComP
leads to phosphorylation and activation of ComA, which positively regulates surfactin
production [107,108]. Another group of QS receptors is the RRNPP system, which was
discovered in Bacillus, Streptococcus, and Enterococcus [96]. The RRNPP consists of Rap,
NprR, PlcR, PrgX, and Rgg proteins [109]; the Rap is a phosphatase and transcriptional
antiactivator, whereas NprR, PlcR, and PrgX are DNA-binding transcription factors. In
B. cereus, NprR and PlcR regulate sporulation, virulence, biofilm formation, and genetic
competence [96]. In Streptococcus pyogenes, Rgg regulates the expression of genes required
for biofilm formation and virulence [110]. In turn, PrgX in Enterococcus faecalis regulates the
conjugation of the antibiotic resistance plasmid pCF10 [111].
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2.3. QS Based on Interspecies Communication
2.3.1. Autoinducer System Type 2 (AI-2)

Autoinducer-2 (AI-2) is a conserved universal QS system coexisting in Gram-negative
and Gram-positive bacteria [99,112,113]. The AI-2 system is believed to be used for cross-
species signalling by organisms living in mixed-species communities, such as biofilms [99,114].
AI-2 produced by one species can influence gene expression in another, enabling bacteria to
modify behaviours such as virulence, luminescence, and biofilm formation across different
species [99,112,114]. For example, an EHEC strain that lacks the luxI gene can communicate
within the species via Al-2 and sense Al-1 secreted by P. aeruginosa [113]. However, AI-2
produced by E. coli can be detected by V. harveyi to induce bioluminescence. Conversely,
AI-2 produced by V. harveyi can be detected by E. coli to regulate the expression of the
lsr system [114,115]. Moreover, AI-2 may coordinate microcolony formation and other
processes in multispecies biofilms such as HGT [112,116].

The enzyme responsible for the synthesis of the AI-2 is the LuxS protein, a synthase
encoded by the luxS gene [116]. LuxS is a metalloenzyme containing a zinc ion in the
active site, which is involved in the cleavage of the ribose ring during the synthesis of
AI-2 [117]. AI-2 is synthesized starting from S-adenosylmethionine, which through a
series of enzymatic reactions, including the reaction catalysed by LuxS, is converted to
4,5-dihydroxy-2,3-pentanedione (DPD), a compound that cyclizes into several furanones in
the presence of water [115]. DPD is a very reactive molecule that, in solution, spontaneously
rearranges into a collection of chemically distinct molecular forms that contain AI-2 activity,
which is recognised by receptor proteins of bacteria belonging to different species [118–120].
LuxS, the AI-2 has been identified in many bacterial species, including pathogens such as
E. coli, S. enterica Typhimurium, V. cholerae, Haemophilus influenzae, S. aureus, Streptococcus
pyogenes, B. subtilis, C. jejuni, Helicobacter pylori, Klebsiella pneumoniae, as well as Shigella
flexnerii [118,121,122]. The LuxS/AI-2 QS system modulates various cellular processes
involved mainly in the regulation of virulence factors, bacterial luminescence, sporulation,
motility, toxin production, biofilm formation, and drug resistance [112,115,116,120].

In Vibrio species, AI-2 controls bioluminescence involving two proteins, LuxP
and LuxQ [120,123]. AI-2/LuxP complex interacts with a sensor kinase, LuxQ, trig-
gering a phosphotransfer cascade that leads to luciferase production and subsequent
luminescence [99,120,121]. In S. enterica Typhimurium, the homologue of the LuxP is the
LsrB (LuxS-regulated protein B) receptor, which is part of the ABC transporter system [124].
In this system, AI-2, by binding to the LsrB receptor, is phosphorylated by the LsrK
kinase and, then, by binding to the transcription-regulating protein LsrR, activates the
transcription of the lsrACDBFGE operon, resulting in active internalization of AI-2 from
the extracellular space into the cytoplasm [119]. In pathogenic H. pylori, the function of
the AI-2 is performed by the chemoreceptor TlpB, but the signal transduction mecha-
nism has not yet been fully understood [117]. It is known, however, that AI-2 induces
pathogenicity island genes in E. coli O157: H7 [125] and is involved in the regulation of
hemolysin and protease synthesis in V. vulnificus [126], secretion of cysteine protease in
S. pyogenes [127], and expression of the virulence gene virB in Shigella flexnerii [128]. In
EHEC and enteropathogenic E. coli, LuxS is a crucial regulator of the QS and controls
the expression of the T3SS system encoded by the locus of enterocyte effacement (LEE)
pathogenicity island [46]. Transcriptomic studies have revealed that LuxS is a global regu-
lator in EHEC, controlling the expression of over 400 genes [129]. Most of these genes have
functions related to bacterial virulence, such as flagellar motility, surface adhesion, and
Shiga toxin production [130].

2.3.2. Autoinducer System Type 3 (AI-3)

The regulatory mechanism of the AI-3 autoinducer in biofilm formation and correla-
tion with QS remains incomplete. In a previous study, the production of AI-3 was reported
to depend on a luxS gene [46], but this was later shown to be due to an indirect effect [131].
It has been suggested that Al-3 may play an essential function as a QS signal in interspecies
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bacterial–host communication [132,133]. The AI-3 is a hormone-like signal transduced by
the binary QseBC system in which QseC is a histidine kinase, whereas QseB is a response
regulator [134]. The periplasmic QseC domain is preserved among several species of
Gram-negative bacteria such as enteropathogenic E. coli (serotype O26: H11 and O111ac:
H9), Shigella spp., Salmonella spp., S. enterica Typhimurium, S. typhi, E. cloacae, Yersinia
pestis, Y. enterocolitica, Pasteurella multocida and H. influenzae [135]. AI-3 acts similarly to
eukaryotic hormones since QseC is a bacterial adrenergic receptor for the eukaryotic host
hormones epinephrine and noradrenaline [46,136]. Another consequence of this struc-
tural similarity is that AI-3 is inhibited by adrenergic receptor antagonists [135,137]. In
addition, epinephrine/norepinephrine can provide a QS signal to the quorum of gut micro-
biota and activate the QseC/QseB system [137,138]. Enterohemorrhagic E. coli O157:H7
(EHEC) use human hormones such as epinephrine and noradrenaline to activate virulence
genes [136,139], which can be associated with irritable bowel syndrome induced by chronic
stress and the stress hormone cascade [132]. In E. coli, mobility and virulence are regulated
by QS using an Al-3 signalling molecule [46,134,136]. In the presence of AI-3, the QseC
domain undergoes autophosphorylation and then, by phosphorylating QseB, induces the
transcription of the main flhDC regulon located in the locus of enterocyte effacement (LEE),
which is responsible for cilia biosynthesis, cell mobility, and synthesis Shiga toxin [140].
However, the regulatory mechanisms of AI-3 for biofilm formation remain unclear.

2.3.3. Bacterial–Host Communication

It is suggested that QS may control the species composition of the gut microbiota [114,141,142].
Thompson et al. [114] showed that antibiotic therapy’s disruption of the composition of
gut bacteria species synthesizing AI-2 leads to dysbiosis. Interestingly, a much greater
percentage of Firmicutes than Bacteroidetes encode functional AI-2 signalling systems [51,114].
It has been reported that AI-2 synthesized by gut microflora such as Blautia obeum was
associated with reduced V. cholerae virulence and protection against this pathogen [143]. The
human commensal bacterium Ruminococcus obeum was shown to inhibit colonization of the
mouse gut by V. cholerae, partially through AI-2 signalling [143]. Moreover, AI-2 exposure
to host epithelial cells has been associated with increased inflammatory cytokines, such as
IL-8 [144] and IL-17A secretion, during acute P. aeruginosa infection [145]. In addition, Al-2
produced by P. aeruginosa caused apoptosis in some mammalian cells [141,146]. Recent
studies suggest that QS is involved in bacterial–host interactions [141,142]. Ismail et al. [141]
showed that mammalian epithelial cells produce an Al-2 mimic activity in response to
bacteria or tight junction disruption that acts analogously to AI-2. This AI-2 mimic can
be recognised by the bacterial AI-2 receptor, such as LuxP/LsrB, leading to the activation
of QS-controlled gene expression [51,94,141]. AI-2 mimic could be involved in host–gut
microbiota interaction and play a role in host–microbial symbiosis as epithelial cells directly
interact with colonizing bacteria [141]. Although this remains debatable, AI-2 mimic may
trigger widespread global gut microbiota gene expression changes.

The main bacterial QS systems used by selected bacteria are summarised in Table 1.

Table 1. Quorum systems of selected Gram-negative and Gram-positive bacterial strains.

QS Molecules Bacteria QS System Biological Function

3OC12-HSL Vibrio fischeri LuxI/LuxR Induction of bioluminescence
3-OH-C4-HSL

Vibrio harveyi
LuxM/LuxN Induction of bioluminescence,

virulence production [6,7,147]AI-2 LuxS/LuxP
CAI-1 CqaA/CqsS

3OC12-HSL

Pseudomonas aeruginosa
Pseudomonas fluorescent

Las/LasR Virulence (toxin A, elastase), biofilm formation,
multiple extracellular enzymes, secondary

metabolites (rhamnolipids) motility,
exopolysaccharide production [52,54,77,84]

C4-HSL RhlI/RhlR
PQS PqsABCD/PqsR

HHQ PqsH/PqsR
3OC12-HSL N.A./QscR
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Table 1. Cont.

QS Molecules Bacteria QS System Biological Function

C6-HSL;
C4-HSL

Sierratia liquefaciens
Serratia sp. ATCC 39006
Serratia proteamaculans
Serratia marcescens SS-1

SwrI/SwrR

Biofilm formation, swarming motility, protease,
prodigiosin, and lipase production [55,56,59]

LuxI/LuxR
SmaI/SmaR
SprI/SprR
SpnI/SpnR

3OC8-HSL

Escherichia coli

N.A./SdiA Motility, acid resistance, cell division, expression of
virulence factors (antibiotic resistance), motility and
biofilm formation, epithelial cell invasion [61,62,67]

AI-2 LuxS/LsrB
AI-3/Epinephrine/ ---/QseC

Norepinephrine Csrb/Csrc

3OC8-HSL Salmonella Typhimurium N.A./SdiA Motility, acid resistance [65]

C8-HSL
C6-HSL

3OC6-HSl

Yersinia
pseudotuberculosis

YpsR/YpsI
YtbR/YpsI

Biofilm formation and motility, regulation of
clumping motility [70,73]

AI-2
Klebsiella pneumoniae

LuxS/LsrB Biofilm formation, expression of virulence factors,
competence [62,63]C8-HSL ---/---

C12-HSL ---/---

CSF Bacillus subtilis ComX/ComA Competence and sporulation [96,102]

PapR Bacillus thuringiensis PapR/PlcR Exoenzymes [107]

AIP Staphylococcus aureus AgrD/AgrC Virulence production, exotoxins, and
biofilm dispersal [95,97,99]

CSP Staphylococcus pneumoniae CmC/ComD Competence, virulence
production, autolysis [101,106]

GBAP E. faecalis FsrD/FsrC Gelatinase, proteases production,
adhesion, conjugation [111]cCF10 CcfA/PrgX

N.A.: not applicable; ---: not yet characterised.

3. Molecular Mechanisms of the Formation and Functioning of Bacterial Biofilm
The Role of QS in the Global Control of Gene Expression Profiles

Biofilm formation includes several stages, which depend on the colonized surface and
the type of microorganisms [5,6]. The characteristic feature of bacterial cells that are an
integral part of the biofilm is their increased resistance to external factors such as tempera-
ture, antibiotics, and nutrient changes [148]. These properties arise from the diversity of
phenotypic subpopulations of bacterial cells forming the biofilm structure. Biofilm is charac-
terised by complex ecological and structural heterogeneity, genetic diversity, the complexity
of interactions, and the presence of extracellular substances [18,19,149,150]. The number of
genes controlled by QS is large and may even exceed 10% of the bacterial genome [151,152].
Research on the molecular mechanisms of biofilm formation and the role of the QS in this
process gained momentum with the development of high-throughput sequencing cDNA
technology (RNA-seq) applying next-generation sequencing (NGS) platforms. Compared
to the traditional methods of studying individual genes, transcriptomics provides a global
study of gene expression and has been used successfully to study biofilm formation [129,153].
Numerous data revealed that pathogenic bacteria growing in biofilm exhibit differential
gene expression (DEGs) compared with the planktonic state, including Salmonella [154],
S. pneumoniae [155], S. aureus [156,157], V. parahaemolyticus [158], and C. difficile [159].

Generally, based on numerous transcriptional studies, the genes controlled by QS can
be classified into four categories based on their biological functions [152,160,161]. The first
group includes genes involved in cell life and growth; the second group includes genes
controlling the behaviour of cells in the environment; the third group includes genes associ-
ated with HGT; and the fourth group includes genes whose expression is correlated with
the synthesis of virulence factors [152,160]. Several groups of genes expressed by induction
of the QS system, such as Las operon (lasB, aprA, toxA, rhlR), Rhl operon (lecA, Lecb, rhlAB),
Pqs operon (pqsE), and Igs operon (lasA, lasB, hcnA, rhlAB), encode proteins belonging to
proteases, elastases, coagulases, exotoxins, lectins, and other virulence factors [154,155,161].
Among the mRNA transcripts under the control of the QS system, different expression
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levels were noticed for genes involved in the stress response pathway (hslS, hslT, soxS) [156],
as well as in the cellular metabolic pathway (metK, artI, hyaA, fruK, gadB) [154,156,157].
Recently, Jiang et al. [160] showed that the differential expression of artM, artQ, ssrS, pflA,
and hutX genes (DEGs) was significantly correlated with the in vitro colonization and
adhesion ability of Haemophilus parasuis; these are the most likely genes to affect biofilm
formation. These data indicate that biofilm formation is a multifactorial process involving
stress response, structural development, and regulatory processes. Nonetheless, it should
be noted that some important signalling pathways can be regulated by phosphorylation
cascades that are not detected at the level of the global expression analyses [152].

4. QS Pathways Inhibition

Quorum-sensing inhibitory compounds might be applicable in many fields, including
medicine, agriculture, and environmental engineering. This is extremely important in the
context of resistance to preventing and treating infections associated with the pathogenic
biofilm resistant to traditional antibiotics. Many bacterial pathogens responsible for infec-
tious diseases are known to have the ability to form biofilms. Due to the increased antibiotic
resistance of human and animal pathogens, QQ is a promising antimicrobial approach.
Prevention of biofilm formation by blocking the QS signal has the advantage that no direct
bactericidal effect is associated with a lower probability of bacterial resistance develop-
ment. In combination with antibiotic therapy, it increases its effectiveness by blocking the
synthesis of a wide range of virulence factors [32].

Therefore, next-generation antibiofilm agents are being discovered and developed to
block particular virulence factors and specific matrix-targeting enzymes responsible for
biofilm formation (Figure 3). There are different ways for QS inhibition in each pathway,
such as (1) inhibition of AHL synthesis, (2) AHL receptor antagonism, (3) inhibition of
targets downstream of receptor binding, (4) sequestration of AHL, (5) the degradation of
AHL, and (6) inhibition of AHL secretion and/or transport [162].
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4.1. Biotechnological Applications
4.1.1. Natural and Synthetic QS Inhibitors

So far, many natural QS inhibitors have been isolated from bacteria, plants, fungi, and
some animals from aqueous ecosystems [148]. These compounds are typically non-toxic
to eukaryotes and offer many applications in medicine, food, and other industries. Nat-
ural compounds acting as QS inhibitors have been demonstrated in numerous species of
herbs, vegetables, and fruits [163–166]. Furocoumarins, naturally occurring substances in
grapefruit, showed more than 90% inhibition of the AI-1 and AI-2 activity in V. harveyi
and biofilm formation by E. coli O157: H7, P. aeruginosa, and S. Typhimurium [164]. In
P. aeruginosa, limonene extracted from mandarine (Citrus reticulate) inhibited biofilm forma-
tion by 41% at 0.1 mg/mL and AHL signalling production by 33%. Orange extract rich in
flavons such as hesperidin, neohesperidin, and naringenin inhibited AHL production in
Yersinia enterocolitica [165]. Antibiofilm activity was also observed for Ananas comosus extract
(pineapple) or Musa paradiciaca (banana) water extracts, which prevented the synthesis of
P. aeruginosa virulence factors such as proteases, elastases, and pyocyanin, which resulted in
decreased biofilm production [167]. Murugan et al. [168] showed that the methanol extract
from the herb Andrographis paniculata, containing diterpenoid lactone and andrographolide,
effectively inhibited the production of bacterial efflux pumps and virulence factors in
clinical strains of P. aeruginosa KMS P03 and KMS P05, resulting in increased sensitivity
of bacteria to antibiotics and inhibition of biofilm formation [168]. Similarly, ethanol ex-
tract from Amomum tsaoko inhibited the biofilm formation of food-borne pathogens such
as S. typhimurium, S. aureus, and P. aeruginosa [163]. In contrast, the biofilm formation
of E. coli and P. aeruginosa was inhibited by the methanolic extract of Buchanania lanzana
Spreng [169]. Pyocyanin production, biofilm formation, swarming motility, elastolytic, and
proteolytic activities in P. aeruginosa PAO1 were inhibited by a flavonoid extract from Cen-
tella Asiatica [170]. P. aeruginosa PAO1 virulence was studied by Vandeputte et al. [166], who
proved that specific flavonoids could decrease signal perception, which results in lower
virulence and inhibition of biofilm formation. The ability of eugenol from clove, garlic,
and phenolic extract of Rubus rosifolius to attenuate biofilm formation of P. aeruginosa and
Serratia marcescens has also been reported [170,171]. Ruttrapa and Bais [172] showed that
curcumin from Curcuma longa attenuated the virulence of P. aeruginosa PAO1 and prevented
biofilm at the early stages of its formation. Recent studies have found that quercetin can
inhibit the QS systems and target the lasIR and rhlR in P. aeruginosa and lux and agr in
Listeria monocytogenes, respectively [173]. Kalia [164] showed antibiofilm QQ-dependent
activity of secondary plant metabolites such as apigenin, naringenin, and kaempferol
against E. coli O157:H7. Other plant extracts, such as hordenine and limonoids, have shown
efficiency against biofilm formation by preventing the transcription of specific AHLs and
were investigated as control strategies for inhibiting QS and biofilm formation [174].

Synthetic QQ molecules such as cinnamyl alcohol, allyl cinnamate, and methyl trans-
cinnamate, which are derivatives of cinnamic acid, inhibited the production of the impor-
tant virulence factor, violacein, by Caenorhabditis violaceum [175]. It has been reported that
polyamine norspermidine effectively reduced the attachment of P. aeruginosa to the surface
by inhibiting the expression of lasI, lasR, rhlI, rhlR, and mvfR genes [176]. Hobley et al. [177]
showed that exogenous norspermidine prevented B. subtilis biofilm formation by condens-
ing biofilm exopolysaccharide. Moreover, the class of chemically synthesized halogenated
furanones has successfully inhibited biofilm formation [178,179]. Zhao et al. [178] reported
that furanone C-30 may inhibit biofilm formation and antibiotic resistance in P. aeruginosa
through regulating QS genes; significantly decreased lasB, rhlA, phzA2, pqsR, lasI, rhlI, pqsE,
and pqsH expression levels in the mature biofilm have been observed. It was also shown
that biofilms treated with C-30 are susceptible to tobramycin and readily dispersed by
detergents [180]. In addition, the effect of C-5 aromatic substituted furanones on inhibiting
biofilm formation and reducing virulence factor production in P. aeruginosa has also been
reported [179]. Unfortunately, despite numerous advantages, recent reports indicate the
development of bacterial resistance to QS inhibitors [152,164,181]. For example, studies of
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mexR and nalC P. aeruginosa mutants showed increased resistance to C-30 [181]. Defoirdt
et al. [182] proposed that bacteria might evolve resistance to QQ compounds under condi-
tions in which growth is directly coupled to QS. In addition, QS inhibitors can select more
virulent strains, disrupting natural selection for reduced virulence [181]. Therefore, it is
important to consider the risks associated with using the QQ strategies described above.

4.1.2. Enzymatic QS Inhibitors

Enzymatic degradation of the QS signal is a second group of the QQ strategy. QQ
enzymes were discovered in a wide range of bacteria and were classified into three major
types according to their enzymatic mechanisms: (1) lactonase that hydrolyses lactone
moiety of AHL; (2) acylase that cleaves amide bonds between lactone ring and the fatty
acid side chain; and (3) oxidoreductase that modify AHL chemical structure by oxidation
or reduction of a third carbon of the fatty acid side chain [183]. In Gram-negative bacteria,
lactonase and acylase degrade all signals and have the broadest spectrum of AHL speci-
ficity regardless of acyl side chain length or substitutions [184]. AHL lactonases, such as
SsoPox, Aii810, AiiK, AiiA, and AHL-1, isolated from different microorganisms, have been
reported to sequester AHL and reduce biofilm formation [185–187]. Rajesh and Rai [188]
showed that AiiA lactonase produced by the Bacillus cereus VT96 effectively inhibited
biofilm formation and production of pyocyanin, rhamnolipid, and exopolysaccharides in
P. aeruginosa PAO1. A reduction in lung injury and mortality in a rat P. aeruginosa model
was also observed upon nasal administration of the SsoPox-1-lactonase, which inhibited
QS signalling, virulence factor production, and biofilm formation [189]. Lactonase isolated
from Geobacillus kaustophilus HTA426 was reported to degrade the lactone ring in the AHL’s
structure, affecting Acinetobacter baumannii by impeding biofilm production [190]. En-
zymes with lactonase activity, such as paraoxonases (PONs), have also been identified in
host cells [191]. The ability of human PON1, PON2, and PON3 to AHL hydrolysis has
been reported by Chun et al. [191]. Devarajan et al. [192] showed that in PON2 deficient
mice, a marked impairment in their ability to hydrolyse 3-OC12-HSL and fight P. aeruginosa
infection was observed. Similarly, in cystic fibrosis patients, lower PON-2 expression was
associated with susceptibility to P. aeruginosa infection [193]. Gupta et al. [194] showed
that lactonase obtained from Bacillus sp. ZA12 stopped the systemic spread of bacteria,
reduced mortality, and offered synergistic activity with ciprofloxacin in a mice model of
burn infection using the P. aeruginosa reference strain PAO1.

Acylase enzymes similar to lactonases can hydrolyse AHLs and disrupt the QS of
pathogens bacteria. Acylases were derived from Streptomyces sp. M664 (AhlM) [195]
Ralstonia sp. XJ12B (AiiD) [196], Ralstonia solanacearum GMI1000 (Aac) [197], P. aeruginosa
(PydQ) [198], and Ochrabactrum sp. A44 (AiiO) [199]. In vitro experiments showed that AiiD
and AhlM could greatly reduce the swimming of P. aeruginosa, extracellular elastase activity,
secretion of pyocyanin, and the pathogenicity of nematodes [200]. Similar results have
been reported by Utari et al. [198], who studied the activity of PvdQ on the AHL signalling
molecule of P. aeruginosa in a mouse model. Results showed that PvdQ hydrolysed AHL,
leading to a decrease in P. aeruginosa infection. Paul et al. [201] showed the potential of
acylase I to reduce biofilm formation by Aeromonas hydrophila and Pseudomonas putida on
borosilicate (36% and 23%), polystyrene (60% and 73%), and a reverse osmosis membrane.
In the rabbit model of infection, the acylase, in combination with α-amylase derived from
the Bacillus amyloliquefaciens, was found to degrade the biofilm formation of E. coli and
P. aeruginosa [202]. In turn, Aspergillus melleus acylase incorporated within silicon catheters
and polyurethane coatings disrupted the biofilm formation of P. aeruginosa ATCC10145 and
PAO1 strain [202].

Regarding oxidoreductases, the novel oxidoreductase BpiB09 derived from the metage-
nomic library was found to be able to inhibit 3OC12-HSL production, leading to a significant
reduction of motility, biofilm formation, and pyocyanin synthesis in P. aeruginosa [200]. The
P-450/NADPH-P450 isolated from B. megaterium CYP102A1 was capable of the efficient
oxidation of AHLs at the ω-1, ω-2, and ω-3 carbons of the acyl chain to eliminate their QS
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activity [203]. Uroz et al. [204] reported the presence of two oxidoreductases in Rhodococcus ery-
thropolis W2, which converts 3-oxo-AHLs to their corresponding 3-hydroxy derivatives, and
an amidolytic activity, which cleaves the amide bond linking the acyl chain to the HSL residue.
Similarly, the capability of QQ-2 oxidoreductase, immobilized to the glass surface, to inhibit
Klebsiella oxytoca and clinical K. pneumoniae biofilm formation, has also been reported [205].

4.1.3. Antimicrobial Peptides as QS Inhibitors

Antimicrobial peptides (AMPs) are a class of natural (NAMPs) and synthetic peptides
(SAMPs) with a broad spectrum of antimicrobial properties [36,206]. Natural AMPs are
important components of the innate immunity of almost all living organisms, protecting
the host against infections [206,207]. NAMPs have been extracted from bacteria, fungi,
plants, insects, fish, amphibians, mammals, and the human body [206]. The largest num-
ber of AMPs derived from animals, totalling 2519 AMPs, followed by 824 AMPs from
plants, 431 AMPs from bacteria, 7 AMPs from protozoans, 6 AMPs from fungi, and, finally,
4 AMPs from archaea [208,209]. In various studies, AMPs have exhibited antibacterial and
antibiofilm activity against various MDR strains and, therefore, are promising alternatives
to current antimicrobials [36,206,207]. Antimicrobial properties of NAMPs, including gram-
icidin S from B. brevis [210], polymyxin B and A from B. polymyxa or vancomycin produced
by S. orientalis [211], have been reported in several studies [207,212]. Similarly, magainin-2
extracted from amphibians, such as frog skin, showed antibacterial activity against MDR
strains, protozoa, yeasts, and fungi [213]. Crotalicidin extracted from rattlesnakes killed
90% of E. coli and P. aeruginosa cells within 90–120 min and 5–30 min, respectively [214].
Moreover, the strong in vitro antibacterial potential of NAMPs against various pathogenic
microorganisms isolated from marine sources has also been reported [209]. Polyphemusin-I
obtained from hemocyte debris of Lumulus polyphemus showed antibacterial activity against
E. coli and Candida albicans [215]. Raghavan et al. [216] reported that MFAP9 derived from
marine Aspergillus fumigatus BTMF9 exhibited inhibitory activity against B. circulans biofilm
formation. Cathelicidins (CATH BRALE and codCath1) derived from fish showed antibac-
terial activity in a broad spectrum of Gram-positive and Gram-negative bacteria [175]. The
best-studied NAMP produced in the human body is cathelicidin LL-37, termed host defence
enzymes, which possesses antimicrobial and antibiofilm activities against a broad spectrum
of MDR strains [171,217]. A large number of studies regarding antimicrobial/antibiofilm
properties of the LL-37 are focused on strains in which antibiotic resistance is a serious
problem, including P. aeruginosa [218], S. aureus [219], S. epidermidis [220], Streptococcus
pneumoniae [221], Streptococcus pyogenes [222], Acinetobacter baumannii [223], E. coli [224],
K. pneumonia [225], Helicobacter pylori [226], and Aggregatibacter actinomycetemcomitans [227].
In P. aeruginosa PAO1 grown under biofilm conditions in a flow cell, global gene expression
analysis revealed that 4-day exposure to LL-37 (4 µg/mL) led to the downregulation of
475 genes, including QS-controlled genes such as lasl and rhlR [228]. This caused the
downregulation of over 50 genes that are part of the respective regulons and affected the
transcription of genes involved in producing virulence factors, motility, adhesion, the de-
velopment of biofilm, and the modulation of host immune responses [189]. Xiao et al. [218]
showed that sub-growth inhibitory doses of LL-37 affect biofilm formation in P. aeruginosa
PAO1 by reducing the elastase and pyocyanin levels, promoting eDNA release and biofilm
formation. In addition, LL-37 at a concentration of >20 µM suppressed S. aureus biofilm
formation, isolated from lesion skin of patients with atopic dermatitis [229]. In addition,
LL-37 reduced biofilm formed by MRSA at 41% [230]. Tachyplesin III from Southeast Asian
horseshoe crabs is also known for its antimicrobial properties [231]. Minardi et al. [231]
showed that Tachyplesin III, in combination with piperacillin-tazobactam, significantly
reduced P. aeruginosa biofilms in a rat ureteral stent model. Moreover, antibiofilm properties
of Protegrin 1 against Acinetobacter baumannii [232], indolicidin against multi-drug-resistant
enteroaggregative E. coli (MDR-EAEC) [233], as well as SMAP-29 against Burkholderia thai-
landensis isolated from pig [232], cattle [234], and sheep [235], have also been demonstrated.
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AMPs affect biofilm formation or degradation with different mechanisms of action,
including acting on the cell wall, cell membrane, and different intracellular targets, as
well as host immune system modulation activities [236]. Some AMPs destroy bacterial
cell wall structure by interfering with the biosynthesis of cell wall components such as
peptidoglycan [237,238]. Vancomycin and oritavancin can bind to the cell wall synthesis
precursor lipid II, which in turn interferes with further enzymatic processes, thereby inhibit-
ing peptidoglycan synthesis [237]. Similarly, nisin secreted by Lactococcus and Streptococcus
exerts an antibacterial effect by inhibition of peptidoglycan synthesis and forms pores at
sensitive membranes upon interaction with lipid II synthesis [238–240]. Moreover, peptides
can inhibit cell wall and protein synthesis, bacterial cell division or DNA replication by
interacting with specific proteins involved in this biological process. Di Somma et al. [241]
showed that temporin-L interaction with E. coli FtsZ protein impaired cell division by
inhibiting Z-ring formation, causing bacterial death without damaging the cell membrane.
Mardirossian et al. [242] showed the antimicrobial activity of Bac5 against E. coli, A. bau-
mannii, K. pneumoniae, S. aureus, S. enterica, and P. aeruginosa by inhibiting bacterial protein
synthesis. A similar antibiofilm mechanism for proline-rich AMPs [243] and several SAMPs,
e.g., PS1-2, 35409 or SET-M33 [209,234,236], has also been demonstrated. Moreover, studies
reported that SAMPs are more efficient NAMPs by exerting antibacterial activity at low
concentrations than their natural analogues [243,244]. For example, compared to natural
AamAP1, synthetic AamAP1-Lysine had stronger antibacterial activity and bactericidal
efficacy against S. aureus and E. coli in the low concentration range of 5–7.5 µM [244].

Although large numbers of AMPs have been characterised, a small number have
been applied in clinical trials, and a limited number have been approved by the US Food
and Drug Administration (FDA) [245]. Most clinically used AMPs are limited to topical
applications due to their systemic toxicity, the susceptibility of the peptides to degradation
by proteases, and rapid kidney clearance when administrated orally [246]. Furthermore,
oral administration of AMPs can lead to proteolytic digestion by digestive enzymes, such
as trypsin and pepsin, while systemic administration leads to a short half-life, protease
degradation, and cytotoxic profiles in blood [246].

4.1.4. Antibodies for Quenching QS Signalling

In vitro and in vivo studies have reported the effectiveness of monoclonal antibodies (mAb)
against QS signal molecules and biofilm formation, especially bacterial pathogens [247–249].
Antibodies acting against AI molecules could disrupt cell-to-cell and cell–surface interac-
tions, thereby interfering with biofilm formation [248,250]. Although many antibacterial
mAbs are still under experimental investigations, the QQ antibodies represent a promis-
ing treatment strategy that may complement antibiotic therapy to improve treatment for
biofilm-associated infections [250]. In the pioneering study from Kaufmann et al. [251],
murine anti-AHL antibody RS2-1G9 inhibited QS signalling and QS-regulated pyocyanin
in vitro production in P. aeruginosa via binding 3OC12-HSL. The MAb RS2-1G9 was also
tested for its ability to protect murine macrophages from the cytotoxicity effects of the
P. aeruginosa quorum sensing molecule 3-OC12-HSL, and it was demonstrated that RS2-1G9
protected macrophages from v-induced apoptosis. The antibody also prevents the activa-
tion of cellular stress kinase pathways, indicating that the sequestration of 3-OC12-HSL is
complete [252]. In the study from Sun, Accavitti, and Bryers [253], three isolated mAbs,
namely 12C6, 12A1, and 3C1, against S. epidermidis cell wall accumulation-associated pro-
tein (AAP) inhibited biofilm formation on abiotic surfaces. Moreover, significantly higher
biofilm inhibition was noticed for mAb mixtures compared with individual mAb. The
ability of biofilm inhibition by 12C6, 12A1, and 3C1 was 42%, 39%, and 66%, respectively.
However, 12A1 and 3C1 mixtures and 12C6 and 12A1 increased S. epidermidis RP62A
biofilm formation inhibition to 87% and 79%, respectively. In turn, a human mAb, TRL068,
was shown to disrupt S. aureus and S. aeruginosa biofilm formation via binding to the
DNABII proteins, resulting in the rapid collapse and subsequent detachment of bacteria
from their protective biofilm matrix. This leads to the subsequent pathogen clearance by
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host immune effectors or antibiotics [254]. In addition, TRL068 showed the effectiveness of
in vitro biofilm inhibition of E. faecium, S. aureus, K. pneumoniae, A. baumannii, P. aeruginosa,
and Enterobacter spp. (ESKAPE) pathogens. Moreover, antibiofilm activity of TRL068 has
also been reported in experimental biofilm models of chronic human diseases, including
otitis media (OM), caused by nontypeable Haemophilus influenzae (NTHi) in chinchillas,
lung infection by P. aeruginosa in mice, and periodontal peri-implantitis by Aggregatibacter
actinomycetemcomitans in rats [255,256]. Park et al. [195] reported that mAb AP4-24H11
against the agr locus efficiently inhibited QS in vitro via sequestration of the autoinducing
peptide AIP IV produced by S. aureus RN4850 and reduced the α-hemolysin expression.
Moreover, an in vivo study has demonstrated that mAb AP4-24H11 significantly attenuated
the pathogenicity of S. aureus in the infected mouse model [195,257]. In addition, antibody-
based QQ also involved other strategies, such as generating catalytic antibodies to degrade
and thus inactivate the AHLs. De Lamo Marin et al. [258] used this approach to screen
and evaluate catalytic antibodies for lactonase activity. A mAb XYD-11G2 was shown to
suppress pyocyanin production by hydrolysing 3OC12-HSL in P. aeruginosa cultures. Sev-
eral human mAbs capable of binding biofilm and planktonic forms of S. aureus, including
4497-IgG1, CR5132, and rF1-IgG1, have recently been identified [259]. De Vor et al. [259]
demonstrated that these antibodies had a great ability to block S. aureus biofilm formation
via direct binding to wall teichoic acid (WTA) or surface proteins of the serine–aspartate
dipeptide repeats (SDR) family.

Although monoclonal antibodies effectively block QS signalling among pathogenic
bacterial species, their applications for treating bacterial infections are still in the initial
stage [260]. Several antibodies, including ClfA, CP5 and 8, PNAG, Hla, and HlgAB
targeting S. aureus biofilm, have been tested as passive vaccines in clinical phase II and/or
III trials [261–263]. However, none of them improved the clinical outcome in treating
bacteremia and cystic fibrosis patients [261–264]. Nevertheless, several interesting S. aureus
vaccine candidates have shown promising results in pre-clinical studies [265,266]. For
instance, MEDI3902 against P. aeruginosa biofilm formation received a fast-track designation
from the FDA in 2014 [265]. Currently, several other mAbs targeting S. aureus toxins and
immune evasion proteins, e.g., ASN-100 (Arsanis) and 514G3 (X-Biotech), are being tested
in different phases of clinical trials [266].

4.1.5. Nanoparticles Strategy of QS Inhibition

Blocking the activity of the QS system with metal or metal-oxide nanoparticles (NPs)
is a new strategy in the fight against pathogenic microbes [267–270]. Due to the strong
antimicrobial properties of NPs, their pleiotropic effect on the cell, non-toxic, relatively
safe, and specificity towards QS systems, they are gaining increasing importance in treating
bacterial infections [268]. Most research on their therapeutic function concerns mainly
P. aeruginosa [271], S. aureus [272], and E. coli [273,274]. NPs based on silver (Ag NPs),
gold (Au NPs) or zinc oxide (ZnO NPs) are effective QQ due to their ability to inhibit
bacterial microcolony formation, reduce biofilm production, and change its structure [275].
The antibiofilm activity of Ag NPs has been demonstrated in numerous studies [276,277]
and summarised in comprehensive reviews [278,279]. Ag NPs are highly effective against
P. aeruginosa and inhibit the transcription of the phzA-G operon and piochelin, pyoveridin,
and rhamnolipids synthesis [271,280]. In biofilm-forming P. aeruginosa, Ag NPs disrupt
proteins due to the binding of ionic constituents to cysteine residues, causing more deterioration
and impairing the formation of exo-polysaccharides [280]. The antimicrobial activity of Ag NPs
against planktonic forms of E. coli and the inhibition of biofilm formation has been reported by
Du et al. [281]; the Ag NPs reduced E. coli biofilm formation in vitro by inhibiting bacterial ad-
hesion and icaAD expression. On the other hand, Yang et al. [282] reported that the antibacterial
activity of Ag NPs is more effective against Gram-negative (E. coli) than against Gram-positive
bacteria (S. aureus and S. epidermidis) and yeast (Candida albicans). Starch-stabilised Ag NPs have
been found to inhibit biofilm formation by food-borne pathogens like Shigella flexneri, Salmonella
typhi, and Mycobacterium smegmatis and are non-toxic to macrophages. In addition, these Ag
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NPs were more potent as antibiofilm agents than antimicrobial peptides, such as LL-37 [283]. In
addition, Au NPs have been shown to exhibit strong antibiofilm activity against P. aeruginosa
PAO1 by reducing exo-polysaccharides synthesis [284].

Recently, there has been increased interest in zinc oxide nanoparticles (ZnO NPs).
This is mainly because ZnO is one of the metal oxides listed as Generally Recognized As
Safe (GRAS) by the FDA due to its non-toxic properties. [269,283,285]. Numerous stud-
ies have been reported on ZnO NPs’ efficiency in inhibiting broad-spectrum pathogens’
growth [273,280,285,286], which could potentially replace conventional antibiotics. Ke-
mung et al. [273] reported that the anti-adherence and antibiofilm properties of ZnO NPs
against MRSA S. aureus were higher than the antibiotic vancomycin, even at low concen-
trations. Moreover, evidence has indicated that ZnO NPs exhibit potential applications
in the poultry and livestock industries, particularly as a feed supplement in the animal’s
diet [285]. Antibacterial and antibiofilm properties of ZnO NPs against P. aeruginosa PAO1,
E. coli O157:H7 (EHEC), methicillin-resistant S. aureus (MRSA), and a methicillin-sensitive
S. aureus (MSSA) have been reported by Lee et al. [280]. However, Khan et al. [285]
showed that ZnO NPs effectively inhibited the biofilm formation of oral opportunistic
pathogens, Rothia dentocariosa, and Rothia mucilaginosa. Another study demonstrated the an-
tibiofilm activity of ZnO NPs against food-borne pathogens such as S. aureus, S. enterica, and
E. coli [274]. Furthermore, Vinotha et al. [286] reported that synthesized ZnO NPs using an
insulin-rich leaf from Costus igneus showed antibiofilm activity against Streptococcus mutans,
Lysinibacillus fusiformis, Proteus Vulgaris, and Vibrio parahaemolyticus.

An antibiofilm effect has also been observed for CuO NPs, effectively destroying
biofilm produced by MRSA S. aureus strains and E. coli. In Methylobacterium spp., CuO NPs
coupled with carbon nanomaterials inhibited QS and prevented biofilm formation [287,288].
Moreover, the antimicrobial and antibiofilm capabilities of MgO and aluminum oxide
(Al2O3) NPs on planktonic and biofilm forms of antibiotic-resistant E. coli, K. pneumoniae,
and S. aureus have also been demonstrated [289,290].

Recent studies suggest that bacteria can develop resistance to NPs after long-term
exposure [291–293]. Kaweeteerawat et al. [291] showed that Ag NPs can enhance bacterial
resistance to antibiotics by promoting stress tolerance via the induction of intracellular
ROS. Panáček et al. [292] showed that E. coli 013, P. aeruginosa CCM 3955, and E.coli CCM
3954 can develop resistance to Ag NPs after repeated exposure to increased production
of the adhesive flagellum protein flagellin, which stimulates the aggregation of Ag NPs
and destruction their antibacterial effect. Additionally, in several studies, toxic effects of
the same NPs have been reported [245,293]. For example, Hemeg [294] showed that Ag
NPs can accumulate in human organs like the colon, liver, spleen or bone, causing damage
and/or decreased organ efficacy and dysfunction. In turn, exposure to Al2O3-NPs may
produce reactive oxygen species (ROS) within the cells and impair the level of antioxidant
activities [295]. Ji et al. [296] demonstrated that intranasal instillation of Al2O3 NPs led to
oxidative damage in the brains of ICR mice, impaired neurobehavioural functions, and
induced cell necrosis and apoptosis ROS production and oxidative damage induced by
CuO NPs and ZnO NPs has also been reported [294]. Therefore, further studies are needed
to verify the potential development of bacterial resistance to NP exposure.

4.1.6. Probiotic Therapies Based on QS Inhibition

Due to the abundance of commonly used antibiotics in recent decades, antibiotic
resistance of pathogen strains is ubiquitous and difficult to control. Gut microflora dysbiosis
is associated with various human diseases, including type 2 diabetes, cardiovascular
disease, Clostridium difficile infection (CDI), colorectal cancer, and obesity [297,298]. By
adopting S. typhimurium, Enterohaemorrhagic E. coli (EHEC), and Clostridium difficile as
representative pathogens, Bäumler [299] conducted comprehensive studies based on the
interactions between the gut microbiota, the host, and the above-mentioned pathogens
and antibiotic therapy. The study has shown that antibiotic treatment increased the level
of free sialic acid (from the host) and succinate (from the gut microbiota), which in turn
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promoted the expansion of Salmonella typhimurium and Clostridium difficile and damaged the
intestinal epithelial cells. In addition, EHEC has been found to use a QS system with fucose
sensors to avoid nutrient competition with commensal E. coli [300]. To reduce the defect
of antibiotic treatments that cause resistance to pathogenic bacteria, many attempts have
been made to develop probiotic therapies based on lactic acid bacteria (LAB) as vectors
for drugs and signalling molecules [301]. Moreover, probiotic delivery techniques not
only inhibited the biofilm formation of pathogenic bacteria but also stimulated the host
immune system [302]. Studies have shown that certain probiotic strains may interfere with
the QS system of ESKAPE bacteria, inhibiting pathogenic biofilm from its initial stage of
attachment and development to its dispersion [42,187]. Valdez et al. [303] demonstrated
that Lactobacillus plantarum PA100 can prevent the induction of P. aeruginosa virulence
factors by targeting AHL. According to this study, the development of biofilm, elastase,
and AHL could be inhibited by the acid filtrate and the neutralized filtrate of L. plantarum
PA100. In addition, the effect of L. crustorum ZHG 2-1 (Companilactobacillus crustorum)
on the suppression of C4-HSL and 3-oxo-C12-HSL synthesis leading to the inhibition of
P. aeruginosa biofilm formation and reduction of virulence factors (chitinases and proteases)
was also noticed [130]. Chapman et al. [304] showed that multi-strain probiotic preparation
of L. acidophilus NCIMB 30184, L. fermentus NCIMB 30226, L. plantarum NCIMB 30187, and
L. rhamnosus NCIMB 30,188 inhibited biofilm formation of pathogenic bacteria such as
Clostridium difficile, E. coli, and S. Typhimurium. The ability of L. brevis to inhibit pyocyanin
production and biofilm formation in P. aeruginosa strain PA002 has been demonstrated
by Liang et al. [305]. Moreover, the metabolites of LAB (L. lactis NCDC 309, L. rhamnosus
MTCC 5897, L. rhamnosus MTCC 5857, L. fermentum MTCC 5898, L. acidophilus NCDC 15,
L. delbrueckii subsp. lactis, and L. plantarum NCDC 372) were found to effectively inhibited
elastase and biofilm formation, as well as lasI and rhlI expression in P. aeruginosa [306].
QS in Listeria monocytogenes was inhibited by the metabolites of L. plantarum M.2 and
L. curvatus B.67 due to inhibition of agr genes [307]. A similar mechanism has been noted
for C. difficile, which has been shown to inhibit AI-2 and the luxS system upon adding
heat-treated supernatant L. fermentum Lim2 [308]. Furthermore, lipopeptides known as
phengycins produced by Bacillus subtilis have been shown to interfere with the QS system
of S. aureus by suppressing agr signal transduction, leading to inhibition of the production
of key Agr-regulated virulence factors such as phenol-soluble modulins, α-toxin, and
Panton–Valentine leucocidin [309]. Similar to the previous example, the biosurfactants
generated by L. plantarum and Pediococcus acidilactici decreased the expression of AI-2 in
a dose-dependent manner, as well as the cidA, icaA, dltB, agrA, sortaseA, and sarA genes,
which are related to biofilm formation in S. aureus [187]. In addition, the effectiveness
of other probiotic strains such as L. reuteri RC-14 [310], Bifidobacterium BB12 [311], and
Bifidobacterium adolescentis SPM1005 [312] in QS system suppression and inhibition of the
pathogenic biofilm formation has also been reported.

4.1.7. Bacteriophage Application

In recent years, bacteriophages (phages) have re-gained interest mainly due to their
host specificity and bacteriolytic activity against antibiotic-resistant strains and their
biofilms [313–315]. Applying phages in bacterial biofilm eradication involves using natu-
rally occurring strictly virulent or lytic phages that do not encode genes for virulence, toxins
or AMR [313,315]. Phage should not be able to mediate horizontal gene transfer or trans-
duce infected bacterial cells [316]. Single phages usually have a narrow host range as they
are generally specific for a limited set of strains of the same bacterial species [316]. A phage
mixture or cocktail is commonly used to target either mono or several bacterial strains due
to its greater efficacy in biofilm destruction than a single phage application [317–319]. The
use of phage cocktails arises from the fact that simultaneous treatment targeting a variety
of bacterial receptors with diverse antibacterial pathways will more efficiently decrease the
bacterial burden, expand host range coverage and lysis potential, and mitigate resistance
or development of lysogenic strains [316,320].
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In numerous in vitro biofilm studies, phages have shown their efficacy in penetrat-
ing established biofilms and eradicating bacteria [321], and the effectiveness of single
phages and phage cocktails to infect and lyse bacterial cells in single and multispecies
biofilms has been confirmed [314–316,322]. Recent reports found that phages are highly
effective at in vitro reducing and controlling bacterial biofilms, particularly those formed
by S. aureus, K. pneumoniae, Acinetobacter baumannii, P. aeruginosa, Listeria monocytogenes,
Salmonella sp., and E. coli [40,323–326]. For example, Peng et al. [327] demonstrated that
phage
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MR003 displayed a broad host range against methicillin-resistant S. aureus of hu-
man origin. Kazimierczak et al. [328] demonstrated that phages vB_SauM-A, vB_SauM-C,
and vB_SauM-D were effective against most multi-drug-resistant S aureus strains and,
additionally, showed more efficiency in biofilm reduction compared to the antibiotics used.
Moreover, antibiofilm properties of other isolated phages, such as vB KleM-RaK2 (RaK2)
against Klebsiella sp. [329], phiPA3 against Pseudomonas aeruginosa [330], phiRSL1 against Ral-
stonia sp. [331], vB_EcoM_10C2 and vB_EcoM_11B2 against E. coli O177 [332], and BPECO
19 against Escherichia coli O157:H7 [333], as well as R1-37 against Yersinia enterocolitica [334],
have been determined. Several studies report the success of lytic phages against enterococci
biofilms. Melo et al. [322], for instance, showed that newly isolated phages, the siphovirus y
BEfaS-Zip (Zip) and the podovirus vB EfaP-Max (Max), demonstrated lytic activity against
E. faecalis and E. faecium, which are the most frequent antibiotic-resistant strains present in
chronic wounds. Rakov et al. [335] showed that phages PSTCR4 and PSTCR6 exhibited
an efficient reduction of well-established MDR Providencia stuartii biofilm formed in the
catheter model. D’Andrea et al. [336] reported that vB_EfaH_EF1TV phage belonging to
the Herelleviridae family inhibited biofilm produced in vitro by E. faecalis clinical strains. In
a study by Khalifa et al. [337], phage EFDG showed effective lytic activity against various
antibiotic-resistant E. faecalis and E. faecium isolates and disrupted their biofilms. However,
Bhardwaj et al. [338] found a phage targeting multi-drug-resistant Enterococcus strains
isolated from chronic periodontitis patients, and its ability to reduce biofilm formation by
E. faecalis after 24 h of infection was observed.

Recent studies showed that applying phage cocktails in biofilm models is highly
efficient at destroying bacterial biofilms [313–315]. For example, in vitro lytic efficacies of
phage cocktails AB-SA01 and AB-PA01, which target S. aureus and P. aeruginosa, respectively,
significantly reduced biofilm biomass in mixed-species biofilms, compared to the respective
phage cocktail treatment [339]. Gutierrez et al. [340] demonstrated that the mixture of
phiIPLA-RODI and phiIPLA-C1C phages was more efficient in the planktonic phase than
in the biofilms phase during S. aureus IPLA16 and S. epidermidis LO5081 mixed-species cul-
tures. Similarly, phages ΦKpnM-vB1, ΦKpnP-vB2, and ΦKpnM-vB3 were highly efficient
in reducing K. pneumoniae biofilms when applied as a cocktail [341]. Similarly, the phage
cocktail composed of four lytic ΦEcp1, ΦEcp2, ΦEcp3, and ΦEcp4 phages completely inhib-
ited the growth of MDR E. coli and significantly prevented the development of biofilms. The
phage mixture caused strong biomass reduction of biofilm and showed the highest biofilm
inhibition, up to nearly 87% [318]. Several experiments had more extensive bactericidal
results when phage therapy was combined with antibiotics as a single treatment [328,342].
Jiang et al. [342] showed that virulent phage WV in high-concentration S. aureus culture
demonstrated a greater antibiofilm effect than streptomycin. In addition, using phage WV
and streptomycin in combination yielded significantly better antibiofilm and bactericidal
effects against S. aureus than those achieved using streptomycin or phage WV alone [342].

Recent advances in biotechnology and synthetic biology fields have enabled the
development of various methods of phage genetic engineering to modify their host range
and improve safety and antimicrobial activity [343–345]. Several engineering phages to
express degradation enzymes targeted at the EPS matrix for biofilm destruction have been
reported [346–348]. For example, the modified T7 phage with expressed dispersin B enzyme
effectively reduced more than 99% of E. coli biofilm [349]. Additionally, T7 phage expressing
AiiA lactonase was reported to effectively reduce the QS of P. aeruginosa in a mixed E. coli
biofilm, resulting in a 75% and 66% reduction in biomass after 4 and 8 h, respectively [347].
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Møller-Olsen et al. [350] used CRISPR-Cas-based selection to obtain a T7-like phage, K1F,
which was able to kill inside human cells a hybrid between E. coli strains K12 and K1,
responsible for urinary tract infections, meningitis, and sepsis. More recently, the first
clinical application of an engineered phages cocktail (Muddy, ZoeJ, and BPs) was applied
to treat a cystic fibrosis patient with a disseminated Mycobacterium abscessus infection [351].

It is important to note that a fundamental principle of phage therapeutic development
for clinical purposes is to ensure the potential phage product is safe and effective. Despite
all the successful cases of patients treated with phages documented to date [352–356], the
introduction of phage therapy in Western countries still faces major barriers, especially
regulatory issues [357]. The main limitation of phage therapy is high host specificity and
the possibility of developing resistance by targeted bacteria against phage attachment and
adsorption by altering the receptor sites [245]. Additionally, it is difficult to control the
stability and purity of phages that are prepared for clinical trials, which may result in low-
quality control data [358]. Moreover, a significant decrease in phage concentrations by the
reticuloendothelial system or neutralization by antibodies during therapeutic application
has also been reported [359].

Now, attempts to make phage therapy widely available are underway, and several
clinical trials are being carried out in Europe and the United States (US) [360,361]. For
example, a clinical trial including a phase 1b/2 trial assessing the microbiological activ-
ity of a single dose of phage therapy in cystic fibrosis patients chronically colonized
with P. aeruginosa is conducted by the APT, Inc., with Antibacterial Resistance Lead-
ership Group (ARLG) cooperation (https://aphage.com/adaptive-phage-therapeutics-
announces-first-patient-dosed-in-the-phage-clinical-trial/, 23 January 2023). Addition-
ally, in 2022, Locus Biosciences, Inc., kicked off a randomized phase 2/3 trial evalu-
ating the safety, tolerability, pharmacokinetics and efficacy of a CRISPR-enhanced phage
(crPhage®) for the treatment of urinary tract infections (UTIs) caused by MDR E. coli bac-
teria (https://www.locus-bio.com/locus-biosciences-announces-first-patient-treated-in-the-
eliminate-registrational-phase-2-3-trial-of-lbp-ec01-for-urinary-tract-infections/, 13 September
2022). On the other hand, the application phage preparations in the agro-food sector have
already been approved and supported by authorities in certain countries, such as the US,
where biopreparations against Listeria monocytogenes (ListshieldTM), S. enterica (SalmoFreshTM),
and E. coli (EcoshieldTM) for direct application to food are commercially available [362]. QQ
mechanisms of antimicrobial/antibiofilm activity are summarized in Table 2.

Table 2. QQ mechanisms of alternatives to antibiotics with antimicrobial and antibiofilm activities.

Substance (s)/
Alternative (s) Targeted Bacterial Pathogens Mechanism of Action

QS Inhibitors—Plant-Derived Bioactive Compounds

Clove E. coli, P. aeruginosa, S. aureus, K.
pneumoniae

Biofilm dispersal by downregulation relA
expression, inhibition of AHL synthesis [363]

Garlic (ajoene) P. aeruginosa
Reduction of rhamnolipid, protease synthesis by

interaction with RhlR; reduction of
C4-HSL activity [171]

Curcumin P. aeruginosa Inhibition of virulence gene expression [364]

Thymol E. coli, S. aureus, S. enteridis, P. aeruginosa
Downregulation of sarA expression, increased

membrane permeability, penetration of
polysaccharide matrix, eradication of biofilm [365]

Oregano K. pneumoniae, P. aeruginosa, A. baumanii Increase membranę permeability, penetration
polysaccharide matrix, eradication biofilm [365]

Cinnamon E. coli, MRSA, S. Typhimurium, S. enteridis,
S. epidermidis, A. baumannii

Reduction of rhamnolipid, proteases, alginate, and
lipids; disruption of DNA, RNA, and protein
synthesis; inhibition of biofilm formation by

downregulation of icaA expression [366]

https://aphage.com/adaptive-phage-therapeutics-announces-first-patient-dosed-in-the-phage-clinical-trial/
https://aphage.com/adaptive-phage-therapeutics-announces-first-patient-dosed-in-the-phage-clinical-trial/
https://www.locus-bio.com/locus-biosciences-announces-first-patient-treated-in-the-eliminate-registrational-phase-2-3-trial-of-lbp-ec01-for-urinary-tract-infections/
https://www.locus-bio.com/locus-biosciences-announces-first-patient-treated-in-the-eliminate-registrational-phase-2-3-trial-of-lbp-ec01-for-urinary-tract-infections/


Int. J. Mol. Sci. 2024, 25, 2655 20 of 40

Table 2. Cont.

Substance (s)/
Alternative (s) Targeted Bacterial Pathogens Mechanism of Action

QQ enzymes

Dispersin B S. aureus, E. coli, S. epidermidis Dispersal of biofilm by PNAG-hydrolysing
glycosidase enzymes [367]

AiiAB546 lactonase Aeromonas hydrophila QS inhibition by hydrolysing of AHLs [368]

QsdA lactonase P. aeruginosa

Hydrolysing of AHLs with an acyl chain ranging
from C6 to C14 with or without a hydroxyl or oxo
substitution on C3; reduction of rhamnolipid and

elastase levels [369]

BpiB05 lactonase P. aeruginosa Reduction of motility, pyocyanin synthesis, and
biofilm formation [369]

Lysostaphin MRSA, Streptococcus sp., S. epidermidis Degradation of cell wall by
peptidoglycan hydrolysis [370]

Dnase NucB

S. aureus, S. epidermidis, Staphylococcus
salivarius, Staphylococcus constellatus, S.

Staphylococcus lugdunesis, Staphylococcus
anginosus, E. coli, Streptococcus intermedius,

Micrococcus luteus, Bacillus subtilis

Degradation mature biofilm formation [371]

Antimicrobial peptides

Nisin A S. aureus Depolarization cell membranę [372]

Pilicides (FN075, BibC6, Ec240) E coli Inhibition of curli and Type I pili synthesis [373]

P1 Streptococcus mutants Degradation EPS matrix [374]

Esculentin (1–12) P.aeruginosa, E. coli, S. aureus, MRSA Biofilm eradication [375]

Human β-defensin 3 (hBD-3) S. epidermidis Biofilm formation inhibition, downregulation of
icaA, icaD, and icaR expression [376]

LL-37 P. aeruginosa, A. baumanni, S. aureus

Membrane disruption, reduction of swimming and
swarming motilities, promotes twitching motility,
downregulation genes of biofilm formation (rhlA,

rhhlB), influence QS system [377]

Piscidin 3 E. coli, S. aureus, A. baumannii Degradation eDNA [378]

1037 P. aeruginosa Downregulation genes of biofilm formation,
reduction of motilities, and swarming motilities [228]

Nal-P-13 Porphyromonas gingivalis Downregulation genes of transport and
binding proteins [379]

Antibodies

EbpAFull, EbpANTD E. faecalis Blocking the interaction between EbpA and the
host-inhibits biofilm formation [380]

Anti-IHFEc E. coli, H. influenzae,
Burkholderia cenocepacia Inhibition biofilm formation [381]

Cam-03 P. aeruginosa
Blocking the attachment of P. aeruginosa to cultured

epithelial cells, inhibiting the adherence or
formation of denser biofilms [382]

TRL1068 MRSA Disruption of biofilm formation [255]
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Table 2. Cont.

Substance (s)/
Alternative (s) Targeted Bacterial Pathogens Mechanism of Action

Nanoparticles

Silver (Ag)

S. epidermidis, MRSA,
vancomycin-resistant Enterococcus (VRE),

extended-spectrum beta-lactamase
(ESBL)-producing organisms, MDR E. coli,
P. aeruginosa, K. pneumoniae, carbapenem
and polymyxin B-resistant A. baumannii,
carbapenem-resistant P. aeruginosa, E. coli

Generate reactive oxygen species (ROS), stopping
cytochrome chains, membrane damage,

dissipation of proton gradients, and destabilisation
of RNA and DNA [245,383]

Copper (Cu) MDR E. coli, A. baumannii
Dissipation of cell membranes, generation ROS,

lipid peroxidation, protein oxidation, and
DNA degradation [383]

Zinc oxide (ZnO)
Enterobacter aerogenes, E. coli,

K. pneumoniae, MRSA, K. pneumoniae,
ESBL-producing E. coli

Generation of ROS, disruption of membranes,
adsorption to the cell surface, and damage to lipids

and proteins [384]

Gold (Au) MRSA

Damage membranes and respiratory chains,
decrease the binding between tRNA and

ribosomes and formation of pores in the cell wall,
inhibit ATPase activity [294]

Magnesium oxide (MgO) S. aureus, E. coli ROS generation, lipid peroxidation [383]

Probiotics

L. fermentum TCUESC01,
L. plantarum TCUESC02 S. aureus Biofilm formation inhibition by alteration of the ica

operon (icaA, icaR) [302,385]

L. fermentum KT998657 P. aeruginosa PAO1
Reduced biofilm forming, alteration of matrix and
cell assembly, cell-cell interaction, and attachment

to form biofilms [386]

L. casei, L.reuteri, L. plantarum,
L. salivarius S. mutans

Downregulation gene expression of acid tolerance,
QS and EPS production, peroxide-dependent

antimicrobial and antibiofilm activity
(L. salivarius) [387]

L. kefiranofaciens, L. plantarum,
L. rhamnosus, L. johnsonii S. mutans, S. sobrinus

Downregulation gene expression of carbohydrate
metabolism, regulatory biofilm, and adhesion

proteins [388]

L. plantarum, Pediococcus.
acidilactici S. aureus Downregulation gene expression of cidA, icaA, dltB,

agrA, sortaseA, sarA [389]

Bacteriophages

EFDG1 E. faecium, E. faecalis Mature biofilm eradication [337]

vB_SauM_philPLA-RODI S. epidermidis Penetration biofilm, inhibition
biofilm formation [340]

vB_PaeM_LS1 P. aeruginosa Disruption biofilm formation [323]

Combined Therapies

Curcumin/ciprofloxacin E. coli, K. pneumoniae, P. aeruginosa,
E. faecalis, A. aureus QS inhibition [390]

Esculentin (1–21)/Au NPs P. aeruginosa Disruption membrane forming [391]

SAP-26/rifampicin S. aureus Mature biofilm eradication, hydrolysis
bacterial wall [392]

Carvacrol/eugenol K. pneumoniae, S.aureus, P. aeruginosa,
E. faecalis Increase in membrane permeability [365,393]
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4.2. Genome Applications
4.2.1. Therapies Based on the CRISPR/Cas Systems

Palindromic repeat–CRISPR-associated (CRISPR/Cas) systems have been identified
as a bacterial adaptive immune system [394,395] and found in approximately 50% of
bacterial genomes and 87% of archaeal genomes [396,397]. The genetic loci of CRISPR/Cas
systems contain the CRISPR array, comprising short repeated sequences (repeats) and
similarly sized flanking sequences (spacers). The Cas proteins encoded by cas genes,
located in the proximity of a CRISPR array, are key functional elements of CRISPR systems
that offer adaptive immune protection against bacteriophages or other foreign mobile
genetic elements [398]. In bacteria, CRISPR/Cas systems, according to the diversity of
cas genes, are categorized into 2 classes, 6 types (I-VI), and 33 subtypes [395,399]. Each
CRISPR/Cas system has a specific protein composition for expression, interference, and
adaptation [394,395,400]. Class 1 comprises three types (I, III, and IV) and sixteen subtypes,
whereas Class 2 includes three types (II, V, and VI) and seventeen subtypes [401,402].
The Class 1 CRISPR/Cas system takes on interference through the use of a multi-Cas
effector protein complex, whereas Class 2 utilises a single effector protein responsible for
the identification and cleavage of the target sequence [403]. Among the type II CRISPR/Cas
systems, the most commonly studied effector protein is the DNA endonuclease Cas9 using
a specificity-programming guide RNA (gRNA). The gRNA is a specific RNA sequence that
recognises the target DNA region of interest and directs the Cas9 for editing [398,399,403].
Currently, Cas9 isolated from Streptococcus pyogenes (SpCas9) is extensively carried out for
gene edition due to its simplicity, versatility, efficiency, and specificity [396,400,403].

In recent years, the CRISPR/Cas9 system has emerged as a promising tool for de-
veloping next-generation antimicrobial agents to combat infectious diseases, especially
those caused by AMR pathogens [395,403]. CRISPR/Cas9 has been widely applied in
targeting genes that encode antibiotic resistance and virulence in bacteria [404]. Depending
on the localisation of the target gene, CRISPR/Cas9 can be used in two different ways, a
pathogen-focused approach and a gene-focused approach [405,406]. A pathogen-focused
way is targeting specific chromosome regions to induce bacterial cell death. On the other
hand, targeting the plasmids that carry the AMR genes is part of the gene-focused approach.
This way removes the plasmid and causes bacteria to be susceptible to antibiotics [407,408].

In several studies, CRISPR/Cas9 has been successfully used to selectively remove
target genes involved in antibiotic resistance of clinical pathogens [408,409]. For example,
Bikard et al. [410] used the CRISPR/Cas9 system to target the mecA gene conferring methi-
cillin resistance to clinical isolate S. aureus USA300, which significantly reduced the S. aureus
counts (50%) from a mixed population of bacteria as compared to the control. Furthermore,
studies using a mouse skin colonization model demonstrated that CRISPR/Cas9 selec-
tively reduced staphylococci colonization compared to other treatment conditions [410,411].
In another study, Ates et al. [412] showed that engineered CRISPR plasmids containing
sgRNAs suppressed the mecA, gentamicin (aacA), and ciprofloxacin (grlA, grlB) resistance
genes in MRSA strains, leading to altering the resistance profile and enhancing sensitivity
to antibiotics. The CRISPR-Cas9 mediated plasmid-curing system (pCasCure) was em-
ployed to resensitize Enterobacteriaceae (CRE) to carbapenems. The results showed that
pCasCure precisely cleaved blaNDM, blaKPC, and blaOXA-48 genes and targeted repA, repB,
and parA on the pKpQIL plasmid to effectively clear the prevalent plasmid carrying the
carbapenem- resistance gene and resensitize CRE, including K. pneumoniae, E. coli, E. hor-
maechei, E. xiangfangensis, and S. marcescens to carbapenem antibiotics [413]. Subsequently,
Yosef et al. [414] applied CRISPR/Cas9 system to destroy plasmids carrying beta-lactamase
genes blaNDM-1 and blaCTX-M-15 to kill extended-spectrum beta-lactamase (ESBL)-producing
E. coli. In E. coli strain O157:H7 (EHEC), a conjugative CRISPR/Cas9 system targeting the
mobile colistin resistance gene (mcr-1) eliminated not only drug-resistant plasmids and
re-sensitized to antibiotics but also prohibited horizontal gene transfer after transformation
with CRISPR/Cas9 plasmid [415]. Subsequently, Citorik et al. [416] demonstrated that the
CRISPR/Cas system targeting eae, encoding virulence factor in E. coli O157:H7 (EHEC),
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caused a 20-fold reduction in viable cell counts. However, Rodrigues et al. [417] deployed
the CRISPR/Cas9 system to selectively remove the erythromycin (ermB) and tetracycline
(tetM) resistance genes in E. faecalis in vitro and in vivo. In vivo results showed a significant
reducing the prevalence of antibiotic-resistant E. faecalis in the mouse gut after antibiotic
treatment and intestinal infections caused by this bacterium [417].

More recently, Askoura et al. [418] reported that the CRISPR/Cas9 system targeting
sdiA affected S. enterica biofilm formation, cell adhesion, and invasion. Additionally, the
CRISPR/Cas-HDR approach was used to inhibit E. coli ATCC 25,922 biofilm formation by
knockout genes involved in QS (luxS) and adhesion (fimH/bolA) [419]. Results showed that
all mutant strains lacked extracellular polymeric substances (EPS) production compared to
the wild-type strain; the noticed reduction of biofilm formation in ∆fimH, ∆luxS, and ∆bolA
strains ranged between 75.39% and 84.17%. In addition, significantly higher adherence
and cell aggregation, as well as biofilm formation on urinary catheters, were observed for
wild-type strains [419].

Apart from CRISPR/Cas9, Kiga et al. [420] utilised CRISPR/Cas13a-based antibacterial
nucleocapsids, CapsidCas13a, to effectively kill carbapenem-resistant E. coli and methicillin-
resistant S. aureus by targeting antimicrobial resistance genes. On the other hand, the
CRISPRi/dCas9 system was used to control the expression of the wcaF involved in the
colanic acid synthesis, a key EPS component in E. coli biofilm formation. Depending on
the level of the guide RNA (gRNA) controlled by a chemical inducer, wcaF expression was
regulated by gRNA-dCas9 binding to the chromosomal wcaF locus; temporal induction
showed different levels of biofilm thickness [421].

4.2.2. sRNA Technologies

Growing evidence indicated that, like other bacterial processes, the integration of
information by QS systems is regulated by noncoding small RNAs (sRNAs) called Qrr
(quorum regulatory RNA), which are global regulators that act directly and indirectly to
control gene expression via post-transcriptional mechanisms [152,422]. The role of Qrr-
sRNA in modulating QS signalling has been described for the first time in V. harveyi and
V. cholerae [423,424]. In the Vibrionaceae, the number of Qrr-sRNA is different between
species, such as, for example, four Qrr-sRNAs in V. cholerae [425] and five Qrr-sRNAs in
V. harveyi [426] and V. vulnificus [427], respectively. In V. cholerae, Qrr1-4 sRNAs inhibit
the expression of the hapR gene, which encodes a significant regulator of high-cell density
behaviour that represses biofilm formation and virulence genes [426]. Therefore, targeting
regulatory sRNAs may be another potential tool for blocking QS signalling by inhibiting the
expression of genes involved in biofilm formation [152,428,429]. Mandin et al. [430] showed
that the modulation of expression of several sRNAs, OmrR, OmrB, and McaS, leading to
the change in cell motility, the production of curli, and the export of exopolysaccharides,
results in the inhibition of E. coli biofilm formation. Also, the knockout of other sRNAs,
Arc2, SdsR, GadY, and MicA affects biofilm formation and motility, although their mode
of action remains elusive [430]. Metabolic engineering and the possibility to synthesize
artificial RNAs of choice [431] create the opportunity for silencing any specific gene and,
therefore, inhibit various steps of biofilm formation or enhance biofilm dispersal.

5. Prospects and Future Directions

Since the initial discovery of quorum sensing more than 40 years ago, the mechanistic
understanding of various QS systems and appreciation for the importance of QS in the
pathogenesis of many bacterial species have been expanded. Numerous studies confirmed
that the QS system regulates biofilm formation in Gram-negative and Gram-positive bacte-
rial strains. Bacterial biofilms, especially those formed by human pathogens, are relevant to
chronic bacterial infections. Therefore, using QS-inhibiting agents is a promising therapeu-
tic strategy targeting QS systems that is attracting attention in drug development. In recent
years, many natural or synthetic QS-inhibiting strategies that effectively reduce biofilm
formation have been developed, mainly thanks to the development of sophisticated micro-
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biological techniques. Unfortunately, the potential risk of using all QQ strategies described
above should also be mentioned [432]. Future studies in the therapeutic development of
anti-virulence/antibiofilm strategies should proceed with care and caution to avoid the
undesired fate currently associated with antibiotic development.

Funding: This review has been written under the internal Statutory Project, no. ZM-136-01 (PBM,
IBPRS-PIB, Poland).
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Bacterial resistance to silver nanoparticles and how to overcome it. Nat. Nanotechnol. 2018, 13, 65. [CrossRef]

293. Liu, H.; Zhan, W.; Fang, Y.; Yang, H.; Tian, L.; Li, K.; Lai, W.; Bian, L.; Lin, B.; Liu, X.; et al. Neurotoxicity of aluminum oxide
nanoparticles and their mechanistic role in dopaminergic neuron injury involving p53-related pathways. J. Hazard. Mater. 2020,
392, 122312. [CrossRef]

294. Hemeg, H.A. Nanomaterials for alternative antibacterial therapy. Int. J. Nanomed. 2017, 12, 8211. [CrossRef]
295. Yousef, M.I.; Roychoudhury, S.; Jafaar, K.S.; Slama, P.; Kesari, K.K.; Kamel, M.A.E.-N. Aluminum oxide and zinc oxide induced

nanotoxicity in rat brain, heart, and lung. Physiol. Res. 2022, 71, 677–694. [CrossRef]
296. Ji, Y.; Mab, M.; Su, F.; Wang, G. Particle size effect on heat transfer performance in an oscillating heat pipe. Exp. Therm. Fluid Sci.

2011, 4, 724–727. [CrossRef]
297. Johanesen, P.A.; Mackin, K.E.; Hutton, M.L.; Awad, M.M.; Larcombe, S.; Amy, J.M.; Dena Lyras, D. Disruption of the gut

microbiome: Clostridium difficile infection and the threat of antibiotic resistance. Genes 2015, 6, 1347–1360. [CrossRef]
298. Francino, M.P. Antibiotics and the human gut microbiome: Dysbioses and accumulation of resistances. Front. Microbiol. 2015,

6, 1543. [CrossRef]
299. Bäumler, A.J.; Sperandio, V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature 2016, 535, 85–93.

[CrossRef]
300. Mayer, C.; Borges, A.; Flament-Simon, S.C.; Manuel Simões, M. Quorum sensing architecture network in Escherichia coli virulence

and pathogenesis. FEMS Microbiol. Rev. 2023, 47, fuad031. [CrossRef] [PubMed]
301. Rabetafika, H.N.; Razafindralambo, A.; Ebenso, B.; Razafindralambo, H.L. Probiotics as Antibiotic Alternatives for Human and

Animal Applications. Encyclopedia 2023, 3, 561–581. [CrossRef]
302. Meroni, G.; Oanelli, S.; Zuccotti, G.; Bandi, C.; Drago, L.; Pistone, D. Probiotics as Therapeutic Tools against Pathogenic Biofilms:

Have We Found the Perfect Weapon? Microbiol. Res. 2021, 12, 916–937. [CrossRef]
303. Valdez, J.C.; Peral, M.C.; Rachid, M.; Santana, M.; Perdigon, G. Interference of Lactobacillus plantarum with Pseudomonas

aeruginosa in vitro and in infected burns: The potential use of probiotics in wound treatment. Clin. Microbiol. Infect. 2005, 11,
472–479. [CrossRef]

304. Chapman, C.M.C.; Gibson, G.R.; Rowland, I. In vitro evaluation of single- and multi-strain probiotics: Inter-species inhibition
between probiotic strains, and inhibition of pathogens. Clin. Microbiol. 2012, 18, 405–413. [CrossRef]

305. Liang, Y.; Pan, Y.; Li, Q.; Wu, B.; Hu, M. RNA-seq-based transcriptomic analysis of AHL-induced biofilm and pyocyanin inhibition
in Pseudomonas aeruginosa by Lactobacillus brevis. Int. Microbiol. 2022, 25, 447–456. [CrossRef] [PubMed]

306. Rana, S.; Bhawal, S.; Kumari, A.; Kapila, S.; Kapila, R. PH-Dependent Inhibition of AHL-Mediated Quorum Sensing by Cell-Free
Supernatant of Lactic Acid Bacteria in Pseudomonas aeruginosa PAO1. Microb. Pathog. 2020, 142, 104105. [CrossRef] [PubMed]

307. Hossain, M.I.; Mizan, M.F.R.; Roy, P.K.; Nahar, S.; Toushik, S.H.; Ashrafudoulla, M.; Jahid, I.K.; Lee, J.; Ha, S.-D. Listeria
monocytogenes biofilm inhibition on food contact surfaces by application of postbiotics from Lactobacillus curvatus B.67 and
Lactobacillus plantarum M.2. Food Res. Int. 2021, 148, 110595. [CrossRef] [PubMed]

308. Yong, C.C.; Lim, J.; Kim, B.K.; Park, D.J.; Oh, S. Suppressive effect of Lactobacillus fermentum Lim2 on Clostridioides Difficile
027 toxin production. Lett. Appl. Microbiol. 2019, 68, 386–393. [CrossRef] [PubMed]

309. Piewngam, P.; Zheng, Y.; Nguyen, T.H.; Dickey, S.W.; Joo, H.-S.J.; Villaruz, A.E.; Glose, K.A.; Fisher, E.L.; Hunt, R.L.; Li, B.; et al.
Pathogen elimination by probiotic Bacillus via signaling interference. Nature 2018, 562, 53–537. [CrossRef] [PubMed]

https://doi.org/10.1049/iet-nbt.2017.0069
https://www.ncbi.nlm.nih.gov/pubmed/29155399
https://doi.org/10.1111/eos.12152
https://www.ncbi.nlm.nih.gov/pubmed/25311638
https://doi.org/10.1016/j.jphotobiol.2019.111541
https://doi.org/10.1039/C8NR02768D
https://doi.org/10.1016/j.jhazmat.2022.128597
https://www.ncbi.nlm.nih.gov/pubmed/35247736
https://doi.org/10.1080/19443994.2014.884528
https://doi.org/10.1111/1348-0421.12580
https://doi.org/10.1080/15287394.2017.1376727
https://doi.org/10.1038/s41565-017-0013-y
https://doi.org/10.1016/j.jhazmat.2020.122312
https://doi.org/10.2147/IJN.S132163
https://doi.org/10.33549/physiolres.934831
https://doi.org/10.1016/j.expthermflusci.2011.01.007
https://doi.org/10.3390/genes6041347
https://doi.org/10.3389/fmicb.2015.01543
https://doi.org/10.1038/nature18849
https://doi.org/10.1093/femsre/fuad031
https://www.ncbi.nlm.nih.gov/pubmed/37312272
https://doi.org/10.3390/encyclopedia3020040
https://doi.org/10.3390/microbiolres12040068
https://doi.org/10.1111/j.1469-0691.2005.01142.x
https://doi.org/10.1016/j.anaerobe.2012.05.004
https://doi.org/10.1007/s10123-021-00228-3
https://www.ncbi.nlm.nih.gov/pubmed/35066679
https://doi.org/10.1016/j.micpath.2020.104105
https://www.ncbi.nlm.nih.gov/pubmed/32114155
https://doi.org/10.1016/j.foodres.2021.110595
https://www.ncbi.nlm.nih.gov/pubmed/34507740
https://doi.org/10.1111/lam.13124
https://www.ncbi.nlm.nih.gov/pubmed/30714187
https://doi.org/10.1038/s41586-018-0616-y
https://www.ncbi.nlm.nih.gov/pubmed/30305736


Int. J. Mol. Sci. 2024, 25, 2655 36 of 40

310. McMillan, A.; Dell, M.; Zellar, M.P.; Cribby, S.; Martz, S.; Hong, E.; Fu, J.; Abbas, A.; Dang, T.; Miller, W.; et al. Disruption of
urogenital biofilms by lactobacilli. Colloids Surf. B Biointerfaces 2011, 86, 58–64. [CrossRef] [PubMed]

311. Jäsberg, H.; Söderling, E.; Endo, A.; Beighton, D.; Haukioja, A. Bifidobacteria inhibit the growth of Porphyromonas gingivalis but
not of Streptococcus mutans in an in vitro biofilm model. Eur. J. Oral Sci. 2016, 124, 251–258. [CrossRef]

312. Cha, M.-K.; Lee, D.-K.; An, H.-M.; Lee, S.-W.; Shin, S.-H.; Kwon, J.-H.; Kim, K.-J.; Ha, N.-J. Antiviral activity of Bifidobacterium
adolescentis SPM1005-A on human papillomavirus type 16. BMC Med. 2012, 10, 72. [CrossRef]

313. Gildea, L.; Ayariga, J.A.; Robertson, B.K. Bacteriophages as biocontrol agents in livestock food production. Microorganisms 2022,
10, 2126. [CrossRef]

314. Gildea, L.; Ayariga, J.A.; Robertson, B.K.; Villafane, R. P22 phage shows promising antibacterial activity under pathophysiological
conditions. Arch. Microbiol. Immunol. 2022, 6, 81. [CrossRef]
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