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Abstract: The study of aquaporins (AQPs) in various forensic fields has offered a promising horizon
in response to the need to have reliable elements for the identification of the manner of death and for
the individuation of forensic markers for the timing of lesions and vitality of injury. In the literature,
various tissues have been studied; the most investigated are the lungs, brain, kidneys, skin, and blood
vessels. A systematic literature review on PubMed following PRISMA 2020 guidelines enabled the
identification of 96 articles. In all, 34 of these were enrolled to identify Aquaporin-like (AQP-like)
forensic markers. The analysis of the literature demonstrated that the most significant markers among
the AQPs are as follows: for the brain, AQP4, which is very important in brain trauma and hypoxic
damage; AQP3 in the skin lesions caused by various mechanisms; and AQP5 in the diagnosis of
drowning. Other applications are in organ damage due to drug abuse and thrombus dating. The
focus of this review is to collect all the data present in the literature about the forensic application
of AQPs as forensic markers in the most important fields of application. In the current use, the
individuation, validation, and application of markers in forensic investigation are very useful in real
forensic applications in cases evaluated in court.

Keywords: aquaporins; immunohistochemical markers; forensic pathology

1. Introduction

Aquaporins (AQPs) are a family of water channels/proteins and transmembrane
proteins expressed in the tissues of various organs [1]. In the body, AQPs play an important
role in water transport and metabolism. The first AQP described was on human erythrocyte
membranes in the 1980s [2]. AQPs are organized to form tetramers, placed on the cell
membrane, where they organize to form a central pore through which water, glycerol, ions,
or other substances can pass depending on the subtype of AQPs.

In the literature, 17 mammalian AQPs have been identified; in particular, AQP0 to 12
have been found in humans, whereas AQP13 to 16 have been described in older lineages.

Based on the functions of aquaporins and their localization in various organs, a review
of the literature was carried out based on the forensic applications of aquaporins as markers
of the manner of death, vitality of lesions, or timing of injury. To use aquaporins as
markers in the forensic field, it is essential to briefly clarify the functions of aquaporins in
human tissues.

Thirteen types of AQPs are now known and are localized in numerous human organs
like the brain, kidneys, lungs, liver, gastrointestinal tract, etc. The analysis of literature
data about AQPs shows the role that these proteins play in secretion and water absorption,
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equilibrium between intra- and extracellular water, and angiogenesis migration and cell
proliferation [3,4].

The aquaporin family is ubiquitously present in all mammalian tissues and is possibly
divided into three subgroups according to its functions [1,2,4]:

(1) Aquaporins (AQP0, 1, 2, 4, 5, 6, 8) are considered a family of proteins with “pure”
selective channels for the passage of water. Among these, AQP4 has been the most stud-
ied since 1994, when, for the first time, the presence of its mRNA was described in the
supraoptic nuclei and the peri-vascular regions of the human brain [5].

In the central nervous system, the presence of three different aquaporins has been
demonstrated, with different localizations and different functions: AQP4 is expressed
in astrocytes, particularly in the cerebral cortex, and in ependymal cells [6,7]. AQP1
is expressed in the epithelial cells of the choroid plexus, and AQP9 is expressed in the
endothelial cells of the subdural vessels.

AQP4 represents the most widespread bidirectional water channel, present in all
structures of the central nervous system, placed in contact with the vascular compartment,
and is therefore implicated in the formation and resolution of cerebral edema and the
clearance of K+ ions released during neuronal activity [8]. The expression of AQP4 differs,
however, in different areas of the central nervous system; these data suggest the multiple
physiological functions of AQP4, in addition to water homeostasis. AQP4 is also implicated
in cell adhesion processes in head trauma, and it plays an important role in the process of
astrocyte migration that occurs in the process of post-traumatic scar formation [9].

AQP5 is expressed in the apical membrane of glands, including those of the submucosa
of the airways and lacrimal, salivary, and sweat glands. The apical membrane in which
AQP5 resides is the last one that water crosses during the secretion of airway fluids,
tears, saliva, and sweat. Another place where AQP5 is expressed is the lung, in type
1 pneumocytes.

An answer to the role of AQP5 in the kidney was sought starting from the observation
of how AQP5 is co-localized with pendrin on the apical membranes of B-type intercalated
cells in the renal cortex. Since this co-expression is a common feature of other epithelia, we
proceeded, in a corollary study, to evaluate whether this rigorous association could reflect
a co-regulation of the two proteins [10,11].

(2) Aqua-glyceroporins (AQP3, 7, 9, 10) contribute to the cellular diffusion of water
but also of glycerol, urea, and some monocarboxylates that facilitate the diffusion of lactic
acid [12]. AQP1 plays a fundamental role in the formation of cerebrospinal fluid, while
AQP9 is implicated in cerebral energy metabolism [8].

(3) Super-aquaporins (AQP11 and 12) are located in the cell cytoplasm and are involved
in the transport of water molecules but also intra-vesicular homeostasis and the transport
of larger-volume organelles [12].

Studies have shown that AQP1, 4, and 5 are also permeable to some gases such as O2,
CO2, and nitric oxide [13].

The abnormal expression of AQPs can be used as a new indicator in forensic science
to investigate various aspects and mechanisms. These proteins can serve as forensic
markers, with AQP5 being particularly useful in distinguishing freshwater drowning
from saltwater drowning [10] and in estimating methamphetamine intoxication [14]. In
the field of mechanical asphyxia, a Japanese study has shown that AQP5 expression
differs between asphyxial death and sudden cardiac death caused by brain lesions, making
it an essential biomarker for determining the cause of death [11]. Additionally, AQP1
and AQP4 can help predict post-burn or post-traumatic cerebral edema, and genetic
mutations in AQP1 and AQP9 can indicate the risk of SIDS [15,16]. By analyzing the
role of AQP4 in the central nervous system, it is evident that its expression in astrocytes
plays a fundamental role in the process of cerebral edema following various medical
conditions such as hypoxia/asphyxia, stroke, traumatic processes, tumors, inflammation,
and metabolic alterations [17]. This makes it a valuable tool in forensic science to help
diagnose and determine the cause of death. The potential applications of AQPs in forensic
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science are vast, and research continues to uncover new uses for these proteins. These
findings show the importance of AQPs in forensic science and the significance of further
research to expand our understanding of their role in pathophysiology.

AQPs are involved in several cell biology aspects, and in the field of forensic medicine,
the determination of the cause of death is the most important working goal on the results of
various examinations [15]. In line with some of the literature, frequently, the macroscopic
examination of the body must be improved and completed with ulterior analysis. The
abnormal expression of each member of the AQPs can be very useful in the pathophysiology
of various injuries or causes of death and may be used as a new marker or indicator in
forensic pathology. This review is focused on illustrating the literature data about the
application of AQPs in forensic sciences as markers for a specific cause or manner of death
in forensic cases, the timing of a kind of lesion, or the vitality of injuries [15].

Therefore, considering the proven involvement of AQPs in various organs, this review
aims to find all AQP applications in forensic fields, because AQPs represent excellent
immunohistochemical protein markers in drowning, traumatic brain injury, and skin
lesions [10,15,18,19]. This review is focused on summarizing the actual forensic applications
and proposing new applications in legal medicine.

2. Methods

A systematic literature review was carried out up to 28 December 2023 on PubMed,
following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-
Analyses) statement’s criteria in the PRISMA 2020 guidelines (Figure 1). In the preliminary
identification phase, the terms (“aquaporin” and “forensic”) or (“aquaporin” and “legal
medicine”) were searched in every field without time limits. From this first research,
96 articles were excluded as they met the language exclusion criterion (“not in English”).
All 91 articles satisfied the inclusion criteria. Afterward, in the screening phase, based on
the reading of the abstract, only studies concerning AQP applications like forensic markers
were assessed for eligibility (34 articles). Finally, after a full-text review, only the articles
concerning forensic pathology or legal medicine that demonstrated the use of AQP-like
markers were included in this study (Figure 1).
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3. Results and Discussion

The literature review shows various kinds of AQPs involved in the diagnoses applied
to forensic pathology. AQPs are expressed by different organs like the lungs, kidneys, skin,
brain, vessels, blood, and spleen. The use of these proteins as markers, in various forensic
fields of application, is very useful for forensic pathologists. The forensic applications
of AQPS, shown schematically in Table 1, concern asphyxial death (such as drowning,
hanging, strangulation, smothering, and choking), timing skin wounds, skin injuries (such
as blunt force, sharp force, strangulation marks, thermal injury, frost erythema, and gun-
shot wounds), burns, SIDS/SUDC, traumatic brain injuries, brain hypoxia/hypercapnia,
hypoxia–ischemic brain damage, thrombosis, methamphetamine intoxication, pulmonary
damage, etc.

Table 1. Articles included in this review.

Samples
AQP-like
Forensic
Markers

Forensic Applications Methods Authors

Brain

AQP4

Brain injuries IFC Jiang et al., 2021 [20]

Brain Traumatic brain injuries IHC
Gene Analysis and WB

Bao et al., 2012 [21] Bao et al.,
2016 [22]; Neri et al., 2018 [23];

Orhan et al., 2016 [24]

Brain Brain hypoxia/hypercapnia IHC Yu et al., 2016 [25]

Brain Hypoxia–ischemic brain
damage IHC Yu et al., 2012 [26]

Brain
(hippocampus)

Brain
SIDS/SUDC IHC

Gene Analysis
Eidahl et al., 2021 [27]
Eidahl et al., 2023 [28]

Brain AQP1 and
AQP4

Methamphetamine
intoxication. IHC and Gene Analysis Wang et al., 2014 [14]

Drowning IHC and IFC An et al., 2011 [29]

Blood and
spleen

AQP1
AQP9 SIDS Gene Analysis Opdal et al., 2021 [30]

Blood and
spleen AQP4 SIDS Gene Analysis Opdal et al., 2010 [31]

Blood AQP4 SIDS Gene Analysis Opdal et al., 2017 [32]

Lungs

AQP1 and
AQP5

Pulmonary damage ICH and Gene Analysis Wang et al., 2012 [11]

Lungs Smothering and choking ICH and Gene Analysis Wang and Ishikawa et al.,
2012 [33]

Lungs Drowning ICH and Gene Analysis Hayashi et al., 2009 [34]

Lungs

AQP5

Drowning
PCR, WB, IHC Lee et al., 2019 [35]

Barranco et al., 2019 [36]IHC

Lungs and
kidney Drowning IHC Frisoni et al., 2022 [10]

Kidney AQP2 Drowning IHC Barranco et al., 2020 [37]

Kidney AQP1, AQP2,
AQP4 Drowning IHC An et al., 2010 [38]

Skin
AQP3

Strangulation IHC Doberentz et al., 2019 [39]

Skin Timing skin wounds IHC Ramamurthy et al., 2023 [40]
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Table 1. Cont.

Samples
AQP-like
Forensic
Markers

Forensic Applications Methods Authors

Skin

AQP3
AQP1

Hanging IHC Prangenberg et al., 2021 [41]

Blunt force, sharp force,
strangulation marks, thermal

injury, frost erythema, and
gunshot wounds

IHC Duval et al., 2020 [42]

Skin Burns IHC and Gene analysis Kubo et al., 2013 [43]

Review (Skin) Hanging IHC Maiese et al., 2021 [18]

Neck skin and
dermal

capillaries
Strangulation and hanging IHC Ishida et al., 2018 [44]

Carotid Strangulation and hanging IHC Ulbricht et al., 2022 [45]

Vein thrombus Thrombosis IHC Nosaka et al., 2021 [46]

Various tissues
(kidney, tongue,

heart, muscle,
or brain)

AQP4 SIDS Gene Analysis Studer et al., 2014 [16]

Review
(various organs)

AQP1, 2, 3, 4, 5,
6, 7, 8, 9

SIDS, drowning, skin injuries,
brain injuries, intoxication IHC, Gene Analysis Prangenberg et al., 2021 [19]

Drowning, wounds (vitality
and timing), thermal

environment, thrombus age,
organ edema, Intoxication,

Sudden Death

IHC, Gene Analysis Ishida et al., 2023 [15]

The articles with forensic interest included in this review are listed in Table 1.

3.1. Brain

Numerous pieces of scientific evidence in the literature demonstrate that some proteins
belonging to the aquaporin family play an important role in the formation process of
cerebral edema. AQP1, AQP4, and AQP9 have a role in the regulation of water homeostasis
in the brain.

AQP1 and AQP4 have been identified as the main water channel proteins in the
brain [3]. In particular, aquaporin 4 (AQP4) is the one most present in the brain structures [8]
and is, therefore, with a high probability, the one most involved in the process of formation
of cerebral edema [47,48].

Since both AQP1 and AQP4 are rapidly induced by osmolarity, An et al. examined their
expression in the brains of autopsy cases for post-mortem differentiation between SWD and
FWD [38]. AQP1 was expressed on the astrocyte foot processes and blood vessels; AQP4
was found on the astrocyte foot processes, ependymal cells, and pial surfaces. Although
AQP1 expression showed no significant differences, the average value of intracerebral
AQP4 astrocytes was significantly increased in FWD compared with SWD [32]. Therefore,
the increased expression of intracerebral AQP4 by hypotonic water to prevent hemodilution
could be a useful marker in differentiating between FWD and SWD [14].

AQP4 also plays a central role in the formation process of post-burn and post-traumatic
cerebral edema, which is influenced by a synergy of cellular variations at the molecular,
structural, and functional levels of the blood–brain barrier. Indeed, after a traumatic brain
event, an alteration of the processes regulating the homeostasis of water and ions present in
the brain has been demonstrated, which contributes significantly to the poor prognosis [49].
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AQP4 plays a central role in the formation process of post-traumatic brain edema.
However, whether the presence of AQP4 plays a beneficial or detrimental role appears
to depend on the time point concerning trauma. Edema is frequently associated with
neuroinflammation with microglial activation and astrogliosis. Upregulation of AQP4 may
also contribute to the neuroinflammatory process in astrogliosis and the inactivation of
microglia. However, the role played by AQP4 is still not fully understood (Figure 2). In
a study about fatal brain trauma, the authors retrospectively examined brain samples in
cases of death after different survival times following traumatic brain injury; the results
demonstrated that AQP4 was increased in patients who survived in a period between one
day and three days until seven days of survival; these data suggest an upregulation of
AQP4 at 3/7 days compared to 1 day since the acute stages of the hypoxic insult. AQP4
expression is correlated with neuroinflammation and hypoxia, providing evidence of the
complex role of AQP4 in blunt traumatic brain injury [23].

Figure 2. A schematic representation of the principal forensic application of AQPs in the brain.

Data from the most recent literature encourage us to hypothesize that AQP4 could be
a common denominator between edema and neuroinflammation, and they underline the
importance of such studies, especially given the therapeutic potential of AQP4 modulation,
which could prevent the harmful effects of edema in the sequelae of head trauma [22,23,26].

Wang et al. showed that brain edema was profound in prolonged death due to severe
burns. At the gene level, expression of AQP1 and AQP4 is increased in brains following
prolonged death from severe burns, indicating that they are involved in the formation of
post-burn cerebral edema; that is why the detection of these proteins might be a useful
procedure in forensic death investigations [14].

Sudden infant death syndrome (SIDS) and sudden unexplained death in childhood
(SUDC) are described as brain dysfunction that causes hypoxic stress during sleep. The
expression of AQP4 in the hippocampus in SIDS/SUDC cases is associated with SIDS.
The AQP4 expression in the hippocampus is lower in infants with the rs2075575 CT/TT
genotype than the CC genotype and higher in the youngest infants (≤12 weeks) [27].
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Other studies about SIDS have indicated a vulnerability in the development and
regulation of brain function, and the authors study the genes encoding the brain aquaporins
AQP1 and AQP9. In the SIDS group, an association was found between genetic variations
in the AQP1 gene and maternal smoking and between the 3xTT combination in the AQP9
gene and being found lifeless in a prone position [30].

Consistent with this, Eidahl J.M.L. et al., in their original article, examined brain water
content, the brain weight/body weight ratio, and the brain weight/head circumference
ratio throughout the first years of life. Furthermore, they examined the relationship between
these parameters and rs2075575 in the AQP4 gene, hypothesizing that dysregulated water
homeostasis may be a risk factor for SIDS, which may be reflected by increased water
content in the brain [28] (Figure 2).

In a study about methamphetamine brain toxicity, the author’s findings suggest that
methamphetamine may induce brain damage by increasing blood–brain barrier permeabil-
ity. Wang et al. examined the gene expression of AQP4 in the brain of autopsy cases, and
they found a significantly enhanced expression of AQP4 in the brain following metham-
phetamine intoxication. This observation indicates that methamphetamine may increase
AQP4 expression, eliminating accumulated water from the extracellular spaces of the brain
and also activating the self-protective system [14].

3.2. Lungs and Kidneys

Interest in the role of AQPs in the field of drowning and asphyxia death has been
investigated by several authors (Figure 3). In particular, the greatest interest has developed
around the study of the lungs and, in more recent times, the study of the kidneys [34,37,38].
The application of AQPs is related to the limited degree of the lipid bilayer; the hypothesis
is that a limited degree of water permeability is due to simple diffusion across the plasma
membrane. However, in some tissues, the permeability to water is much greater than what
one might expect from simple diffusion, which suggests that specialized and selective
channels for water are present in these membranes; these types of channels are, in fact,
aquaporins [3]. The movement of water through aquaporins is driven by osmotic gradients,
that is, the difference in concentration between two solutions that are on opposite sides of
a semi-permeable membrane, leading to the passage of water. For example, a red blood
cell immersed in a hypertonic solution (seawater) shrivels up, and in a hypotonic solution
(freshwater), it swells and explodes with the ingress of water.

By evaluating the tissue distribution, we can see how AQP5 is present in glandular
structures and the lungs. Convincing evidence has recently been produced that AQP5 is
expressed in the distal tubule of the kidney in the apical membrane of B-type intercalated
cells where it co-localizes with pendrin [50].

One of the most interesting forensic applications of aquaporins lies in their application
in asphyxial deaths. The diagnosis of asphyxia is one of the most difficult tasks in forensic
pathology due to the absence, often, of real pathognomonic signs indicative of this manner
of death, especially for smothering and choking. Therefore, various procedures have been
developed to identify and explain the pathophysiology of death due to asphyxiation. Ex-
tremely relevant in this sense is a Japanese study that investigated the different pulmonary
expressions of AQP1 and AQP5 in asphyxiated death compared to sudden cardiac death
caused by brain lesions [33]. Indeed, a significant difference in AQP5 expression, but not in
AQP1 expression, was found between smothering and choking cases and the other causes
of death considered in the study (strangulation, acute cardiac and brain injury death). Im-
munohistochemical investigations confirmed the suppressed expression of AQP5 mRNA.
Instead, AQP5-positive aggregates and granular fragments were mostly detected in the
intra-alveolar spaces in cases of strangulation. The reduction in AQP5 expression in the
lung could therefore be considered a specific biomarker to discriminate asphyxiated death
from cardiac death [10,11,36]. Even in cases of drowning, the study of aquaporins has
proven to be relevant. The immunohistochemically different expression of AQP5 and AQP2
in the samples of lungs and kidneys from freshwater drowning compared to those from
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saltwater drowning turned out to be a valid aspect (Figure 3). Indeed, the hypo-expression
of AQP5 is a potential marker in the differential diagnosis between fresh- and saltwater
drowning and can therefore be used in the diagnosis of freshwater drowning. The expres-
sion of AQP5 is more localized in pneumocytes and bronchial epithelial cells in the lungs,
but there is also positivity in alveolar macrophages and the cortical collection duct system
for the kidney [10,35]. On the contrary, while AQP2 is more expressed on the apical plasma
membrane of collection ducts in the kidney in saltwater drowning (SWD) compared with
freshwater drowning (FWD), the positivity does not show significant changes in terms
of gender, age, or post-mortem interval [37,38]. Beyond the applications in the diagnosis
of asphyxia, in the study by Wang et al., cases of pulmonary alveolar damage correlated
with different types of injury and different survival of the subject were analyzed. All cases
showed pulmonary edema, but increased pulmonary expression of AQP1, and not of AQP5,
was found in deaths caused by non-rapidly fatal sharps injuries (mean survival 3–6 h),
indicating a possible increase in the reabsorption capacity of alveolar fluids. The results
were confirmed by studying AQP1 mRNA whose expression levels were significantly
higher in delayed sharps injury deaths. The same differences were not detected in the
AQP5 mRNA study [11].
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3.3. Skin

The use of AQPs in the study of skin lesions has been reported by various authors
with different applications. A study regarding the diagnosis of death associated with
fire investigated AQP1 and AQP3 expression in the skin and discussed their role in the
differential diagnosis of ante- and postmortem burns. In an animal experiment, the authors
demonstrated that there was no difference in AQP1 gene expression, but AQP3 expression
in the antemortem burn increased significantly, making it a potential forensic marker [43].
Aquaporin 3 is expressed in epidermal keratinocytes; the stratum corneum of the epidermis
does not contain keratinocytes and AQP3 channels [51]. Besides that, the aquaporin 1 and
3 expression is also noticeable in thermic damage and mechanic skin lesions (blunt force,
sharp force, strangulation marks, thermal injury, gunshot wounds, and frost erythema). An
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increased expression of aquaporin 3 in the keratinocytes of the epidermis was described
in all kinds of mechanical and trauma injuries. Aquaporin 1 does not show differences in
expression between injured and uninjured skin [41,44]. Regarding age estimation, several
authors showed the importance of AQP1 and 3, which may also be increased in dermal
vessels and keratinocytes, respectively [51,52].

Ishida et al. performed an immunohistochemical analysis of AQP1 and AQP3 in
human skin wounds, concluding that the presence of more than 300 AQP3+ cells would
confirm the wound age of 5 to 10 days, which is in favor of our study [44]. Regarding the
estimation of the age of injuries in fresh bodies, an interesting immunohistochemistry study
of 40 skin wound samples with anti-AQP3 antibodies was carried out by Ramamurthy
K. et al. [40]. This study about wound age estimation was performed on forensic skin
wound samples using an immunohistochemistry reaction with antibodies against AQP3.
Skin samples were chosen using hematoxylin–eosin staining and selected based on the
appropriate stages of wound healing. The immunohistochemistry staining with anti-AQP3
antibodies was quantified, evaluating the expression of AQP3 in injured and uninjured
skin tissues. The timing of the injury was correlated with the number of AQP3-positive
cells. No differences in the expression of keratinocyte aquaporin cells were found in the
various age groups and between the female and male sexes. The maximal expression of
cellular AQP3 was present in the proliferative phase of wound healing; in the inflammatory
and maturation phases, the reaction with anti-AQP3 antibodies was less evident. They
studied the role of AQP3 in wound healing concerning its expression over different healing
phases, demonstrating that (a) the immunopositive AQP3 signals were expressed more
in the cells of the proliferative phase than in the inflammatory and maturation phases of
wound healing; (b) there was no relation between the expression of aquaporin 3-positive
cells at any stage of wound healing; (c) no significant change was noted in the numbers
of AQP3-positive cells concerning mode and type of injury. The aquaporin positivity was
demonstrated to be independent of the manner or type of injury and the postmortem
interval. The results of the study showed that the expression of AQP3 in the cells in skin
wounds was maximal between 5 and 10 days, providing a marker for determining the
timing of injuries of interest to the forensic field [40].

As suggested by other authors, these markers can be useful not only for determining
the productive period of the lesion but also for evaluating its vitality in decomposed
bodies [53].

AQP1 and 3 are also significantly enhanced in ligature marks, especially on the
keratinocytes of compressed skin and in the epidermis and dermal blood vessels [39,44].
Recently, the expression of AQP3 has been observed in frost erythema in a case of lethal
hypothermia and, therefore, it could be used as a marker of vitality [41,42].

3.4. Vessels

AQPs are widely studied for diagnosing drowning and skin wound vitality, but other
forensic applications are described in the literature. The intrathrombotic expression of
AQP1 and AQP3 is very interesting. In a study, this intrathrombotic expression was found
in mouse models, implying that both AQP1 and AQP3 were involved in thrombogenesis
and wound healing and would be useful for the determination of thrombus age. In the
study performed by Nosaka et al. [46], the authors illustrated the expression of AQP1 and
AQP3 in deep vein thrombosis models in mice for the individuation of antithrombotic
markers. The antibodies selected for the immunohistochemical analyses were against AQP1
and AQP3. The study was performed with ligation intervals of one to five days; in thrombus
samples, positive areas of AQP1 were over 70%, a decrease of less than 50% was revealed
at seven days after vessel ligation, and at twenty-one days, the decrease was more evident,
11%. The positive areas of AQP3, three days after the vessel ligation, started to appear
from the peripheral part of samples, and the number of AQP3-positive cells progressively
increased and reached a peak 10 days after the vessel ligation. The study demonstrated that
AQP1 and AQP3 are important and useful markers for the determination of thrombus age.



Int. J. Mol. Sci. 2024, 25, 2664 10 of 13

A thrombus age of ≥10 days is indicated by the dimension of the intrathrombotic AQP1-
positive area, as large as the intrathrombotic collagen area or smaller, while a thrombus age
of 10–14 days is indicated by a number > 30 of AQP3-positive cells [46].

Violent lesions of the neck show various findings, both macroscopic and microscopic;
particular attention could be paid to the carotid sinus. A study on the carotid sinus in
cases of violence against the neck (suicidal and accidental strangulations) showed that
AQP3 is not a useful marker for relevant neck pressure [45]. The study was performed
on twenty-two cases of suicidal and accidental strangulations, and carotid bifurcations
were examined. The analysis based on histology showed morphological alteration of
hemorrhage and immunohistochemical signs of the expression of AQP3 and other proteins
(heat-shock proteins 27, 60, and 70). A comparison with a control group of cases without
neck lesions did not show relevant histopathological findings implying direct trauma, and
no cases showed positive aquaporin 3 staining. The results demonstrated that AQP3 is not
a useful marker for relevant neck pressure [45].

4. Conclusions

Although the pathophysiological knowledge of aquaporins is still modest, differ-
ences in AQP expression patterns are specific to causes of death and can be considered
potential biomarkers in the forensic field. Therefore, it would be desirable to conduct
a combined examination of several molecules including AQPs to obtain more powerful
forensic evidence.

The analysis of the literature demonstrated that the most significant markers among
the AQPs are AQP4 for the brain, which is very important in brain trauma and hypoxic
damage; AQP3 in the skin lesions caused by various mechanisms; and AQP5 in the
diagnosis of drowning in lung and kidney samples. Other fields of application are organ
damage due to drug abuse and thrombus dating.

AQP1-SNPs have a high incidence in SIDS, while the expression of the AQP5 gene in
the lungs of smothering would be useful for distinguishing between smothering, choking,
and sudden cardiac death.

This literature review is based mostly on experimental studies conducted for different
purposes, which use samples collected experimentally on different species and which
also differ in type, time, and manner of death. Therefore, necessarily, unambiguous
experimental conditions cannot be identified in the evaluations examined. This is due to
the presence of very limited literature about the topic.

As regards the evaluations of the brain, all the articles included forensic case studies on
subjects, mostly newborns [27,30,32], subjected to autopsies. In other cases, the evaluations
of the encephalon started from cases, always of a forensic nature, dying from drowning [38],
traumatic encephalopathy [23], severe burns, or intoxication [14]. As regards the pub-
lications selected for the evaluation of markers for AQPs in the lungs and kidneys, all
the works arise from the evaluation of forensic autopsies except for the work by S. Lee
et al. [35] based on experimental animal evaluation (rats). As regards the evaluation of the
presence of markers for AQPs in the study of skin lesions, many of the works taken into
consideration are based on forensic practice [40,41,44] but are confirmed in experimental
evaluation on animals [43] and cell cultures [51]. In the evaluation of the use of aquaporins
in determining the viability of vascular lesions or thrombosis, in the literature, there are
both more distinctly forensic evaluations, based on autopsy cases [45], and experimental
approaches on murine material [46].

In current use, also given the concordance between the evaluations that emerged on
tissue models and different case studies, having evaluated the laboratory reproducibility
of the methods in different contexts and the validation of the protocols used, the present
work encourages the identification and application of markers in forensic investigations,
which appear considerably useful in real forensic cases evaluated in court.
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