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Abstract: Over the past century, molecular biology’s focus has transitioned from proteins to DNA,
and now to RNA. Once considered merely a genetic information carrier, RNA is now recognized
as both a vital element in early cellular life and a regulator in complex organisms. Long noncoding
RNAs (lncRNAs), which are over 200 bases long but do not code for proteins, play roles in gene
expression regulation and signal transduction by inducing epigenetic changes or interacting with
various proteins and RNAs. These interactions exhibit a range of functions in various cell types,
including macrophages. Notably, some macrophage lncRNAs influence the activation of NF-κB, a
crucial transcription factor governing immune and inflammatory responses. Macrophage NF-κB is
instrumental in the progression of various pathological conditions including sepsis, atherosclerosis,
cancer, autoimmune disorders, and hypersensitivity. It orchestrates gene expression related to
immune responses, inflammation, cell survival, and proliferation. Consequently, its malfunction is
a key contributor to the onset and development of these diseases. This review aims to summarize
the function of lncRNAs in regulating NF-κB activity in macrophage activation and inflammation,
with a particular emphasis on their relevance to human diseases and their potential as therapeutic
targets. The insights gained from studies on macrophage lncRNAs, as discussed in this review, could
provide valuable knowledge for the development of treatments for various pathological conditions
involving macrophages.
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1. Introduction

Inflammation, a natural and complex biological response, is crucial in defending
against infection [1,2]. Yet, chronic or uncontrolled inflammation can be harmful, con-
tributing to the development of various diseases [3]. Diet, exercise, smoking, and stress, as
lifestyle factors, can impact bodily inflammation levels, underscoring a healthy lifestyle’s
importance in preventing and managing diseases [4]. In some instances, medical treatments
target inflammation to ease symptoms and control disease progression [5,6].

Macrophages, innate immune cells with antigen-presenting capabilities, are central
to inflammatory responses, significantly impacting acute and chronic inflammation [7].
Macrophages exhibit a dual role in inflammation; pro-inflammatory M1 macrophages drive
inflammation, while anti-inflammatory M2 macrophages aid in tissue repair and inflam-
mation resolution [8]. The balance between M1 and M2 macrophages is crucial, as their
imbalance can result in immune-related diseases, including chronic inflammation, cancer,
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hypersensitivity, and autoimmune disorders [9]. This dichotomy is not strictly binary
but represents a spectrum of activation states that macrophages can adopt in response to
various signals within their microenvironment.

M1 macrophages, induced by IFN-γ alone or in combination with microbial products
like lipopolysaccharide (LPS), are potent effectors of the pro-inflammatory response [10].
They produce high levels of pro-inflammatory cytokines (e.g., TNF-α, IL-1β, IL-6), promote
Th1 responses, and are highly microbicidal. Their role is crucial in defending against
intracellular bacteria and viruses, as well as in tumor suppression. However, the chronic
activation of M1 macrophages is implicated in the pathogenesis of autoimmune and inflam-
matory diseases due to their tissue-damaging effects [11,12]. M2 macrophages are induced
by IL-4 and IL-13 and are associated with tissue repair, resolution of inflammation, and im-
mune regulation [5,10]. They produce anti-inflammatory cytokines (e.g., IL-10, TGF-β) and
growth factors that promote tissue remodeling, wound healing, and angiogenesis. While
essential for recovery from injury, excessive or inappropriate M2 activity can contribute
to fibrosis, allergic responses, and the suppression of effective immune responses against
tumors [11,12].

An imbalance between M1 and M2 macrophages constitutes a pivotal pathogenetic
mechanism in numerous diseases. A predominance of M1 macrophages can lead to chronic
inflammatory states, including rheumatoid arthritis, inflammatory bowel disease, and
atherosclerosis. In these conditions, sustained inflammation results in tissue damage and
drives disease progression [9,13]. Conversely, an excess of M2 macrophages can promote
tumor growth and metastasis and contribute to fibrotic diseases and certain infections by
failing to eliminate pathogens adequately [8,14].

Given their central role in both the promotion and resolution of inflammation, as
well as in tissue repair, macrophages present a valuable target for therapeutic intervention.
Strategies to modulate macrophage activity and polarization could offer new avenues
for treating a wide range of diseases. For instance, therapies aimed at promoting M1
activity could enhance anti-tumor immunity or combat chronic infections, while strategies
to boost M2 functions might aid in tissue repair and resolution of inflammation [8,15].
Rebalancing the M1/M2 ratio could provide therapeutic benefits in diseases characterized
by an imbalance in macrophage polarization. Therefore, targeting macrophage activity
represents a promising approach for the development of novel therapeutic strategies aimed
at a variety of inflammatory and immune-related diseases.

The nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is pivotal
in regulating inflammation, particularly in macrophages. NF-κB, comprising p50, p52, p65
(RelA), RelB, and c-Rel subunits, activates genes related to immune response, inflammation,
and cell survival by forming homodimers and heterodimers [16]. Activation of NF-κB
involves the nuclear translocation of the p65/p50 heterodimer, whereas the p50 homodimer
acts as an inhibitor [17]. NF-κB activation occurs via two primary pathways: the canonical
(classical) and the non-canonical (alternative) [18]. Differing in activation mechanisms
and stimuli, these pathways enable precise and dynamic NF-κB regulation. While the
canonical pathway primarily mediates rapid and transient NF-κB activation in response
to pro-inflammatory stimuli, the non-canonical pathway is involved in the regulation of
adaptive immune responses, lymphoid organ development, and maintenance of immune
homeostasis. Induced by cytokines like tumor necrosis factor (TNF)-α and interleukin
(IL)-1, the canonical pathway involves TNF receptor-associated factor 6 (TRAF6) and the
IKK complex (IKKα, IKKβ, IKKγ), leading to IκB phosphorylation. Subsequent degra-
dation of IκB liberates p65/p50 heterodimer for nuclear translocation. Initiated by TNF
receptor superfamily members like lymphotoxin β receptor (LTβR) or B cell-activating
factor receptor (BAFF-R), the non-canonical pathway is then mediated by NF-κB-inducing
kinase (NIK) and IKKα for phosphorylation and processing of p100 to generate p52. The
resulting RelB/p52 heterodimers then translocate to the nucleus for transcriptional ac-
tivation [18]. Dysregulation in either pathway can lead to numerous inflammatory and
immune-related diseases.
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Long noncoding RNAs (lncRNAs) constitute a heterogeneous group of RNA molecules
exceeding 200 nucleotides in length that do not encode proteins, yet are pivotal in regulating
a myriad of biological functions [19]. These molecules are characterized by their complex
roles in chromatin organization, gene transcription, RNA splicing, and epigenetic modifica-
tions [20–22]. LncRNAs influence chromatin accessibility and gene transcriptional activity
by directing chromatin-modifying enzymes to specific genomic regions (Figure 1). This
action can either enhance or suppress gene expression, contingent upon the context and the
nature of the modifications implemented [20,23]. The synthesis of lncRNAs mirrors that of
mRNAs, encompassing transcription primarily by RNA polymerase II, capping, splicing,
and polyadenylation [24]. Nonetheless, lncRNAs generally exhibit reduced splicing effi-
ciency and a diminished rate of nuclear-to-cytoplasmic export relative to mRNAs. Their
genomic distribution is varied, including intergenic regions, areas overlapping with, or anti-
sense to, protein-coding genes [19]. This diversity implies a broad spectrum of mechanisms
through which lncRNAs can modulate gene expression and cellular functionality.
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Figure 1. General action mechanisms of lncRNA. LncRNAs interact with chromatin-remodeling
complexes or histone-modifying enzymes to facilitate epigenetic modifications. Their interaction with
transcription factors regulates the transcriptional activity of target genes. Interactions with mRNA
affect post-transcriptional regulations, including splicing and translation. LncRNAs can also serve
as scaffolds for interactions among signaling mediators and various RNAs, including small RNAs,
miRNAs and mRNAs. Finally, the miRNA sponging action of lncRNAs may regulate the stability of
target mRNAs.
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In their mechanisms of action, lncRNAs engage in various cellular processes. They
function as guides, recruiting chromatin-modifying enzymes to specific genomic loca-
tions, thereby reshaping the epigenetic landscape and directly influencing gene expression
at the DNA level [23,25]. As decoys, lncRNAs can attract and sequester transcription
factors or other proteins away from their DNA targets, indirectly impacting transcrip-
tion [21,22,26]. Moreover, serving as scaffolds, lncRNAs facilitate the assembly of multiple
proteins into ribonucleoprotein complexes, enabling the orchestration of intricate molecular
operations. Additionally, lncRNAs partake in post-transcriptional regulation by interacting
with signaling mediators and by absorbing microRNAs (miRNAs) [27]. Through miRNA
sequestration, lncRNAs obstruct miRNA attachment to target mRNAs, thereby moderating
post-transcriptional gene silencing and influencing mRNA stability and translation.

With the advancement of high-throughput sequencing and bioinformatics tools, a
growing number of lncRNAs have been identified as key regulators in macrophage activity,
particularly in the regulation of NF-κB signaling pathways. LncRNAs can modulate NF-κB
activity through direct interaction with NF-κB itself or its signaling components, or by
influencing the expression of genes that are part of the NF-κB signaling pathway. This regu-
lation can have profound effects on the inflammatory response of macrophages, impacting
the development and progression of a wide array of human diseases (Figure 2). This review
aims to comprehensively explore the multifaceted roles of lncRNAs in modulating NF-κB
activity within macrophages. By highlighting specific examples of lncRNAs that have been
implicated in this process, it underscores their potential as biomarkers for disease diagnosis
and prognosis, as well as targets for therapeutic intervention.
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Figure 2. Role of lncRNAs and macrophage NF-κB in the pathogenesis of human diseases. In
macrophages, lncRNAs regulate NF-κB activity either directly or indirectly, influencing various pro-
cesses that lead to inflammation, apoptosis, pyroptosis, and M1/M2 polarization. Additionally, the
activation of NF-κB in macrophages affects neighboring cells and the extracellular matrixes, regulat-
ing angiogenesis and metastasis in cancer development, as well as plaque rupture in atherosclerosis.
These macrophage-associated events are closely linked to chronic inflammation, which ultimately con-
tributes to the progression of various diseases, including sepsis, atherosclerosis, cancer, autoimmunity,
and hypersensitivity.
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2. LncRNAs That Modulate Macrophage NF-κB Activity in Sepsis

Sepsis is a life-threatening condition marked by a dysregulated immune response to
infection, leading to widespread inflammation, organ dysfunction, and potentially organ
failure and death [28]. Often caused by bacteria, viruses, fungi, or other pathogens, a
prime stimulant is LPS, an endotoxin found in the cell wall of Gram-negative bacteria [29].
The systemic inflammatory response, particularly post-bloodstream infection, triggers an
excessive release of pro-inflammatory cytokines and chemokines. These mediators damage
the endothelial cells lining the walls of blood vessels, resulting in increased permeability.
This, in turn, leads to fluid leakage, tissue swelling, and subsequently edema [30]. Persistent
inflammation can impact multiple organs and systems, with cytokines like TNF-α being
key mediators of sepsis [31]. Commonly affected organs include the lungs, heart, kidneys,
liver, and even the central nervous system.

NF-κB-mediated inflammation in macrophages, followed by M1 polarization, is piv-
otal in the pathogenesis of sepsis [32]. Pattern recognition receptors, including Toll-like
receptors (TLRs), allow macrophages to identify pathogen-associated molecular patterns
on invading microorganisms [29]. Activation of NF-κB, triggered by LPS interaction with
TLR4 via the canonical pathway, upregulates numerous pro-inflammatory genes, such
as cytokines, chemokines, adhesion molecules, and enzymes like inducible nitric oxide
synthase [33]. NF-κB serves as a primary target for immunomodulatory therapies aimed
at regulating inflammation and reestablishing immune equilibrium in many diseases, in-
cluding sepsis. Such strategies might involve inhibiting NF-κB activation or employing
targeted therapies to neutralize specific pro-inflammatory cytokines.

The lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1), confined to the nu-
cleus, is instrumental in forming paraspeckles, subnuclear structures involved in antiviral
responses [34]. The levels of NEAT1 are increased by more than two-fold in the sera of
sepsis patients [35–38]. Induced by LPS in the human monocytic leukemia cell line THP-
1, NEAT1 enhances inflammatory responses by sponging miR-17-5p, thereby stabilizing
TLR4 mRNA (the miR-17-5p/TLR4 axis) (Figure 3) [38]. In Kupffer cells and the murine
macrophages, LPS-induced NEAT1 promotes inflammatory activities via the Let-7q/TLR4
axis [35–37,39]. Additionally, NEAT1 also facilitates M1 polarization in macrophages
through the miR-125a-5p/TRAF6/TGF-β-activated kinase 1 (TAK1) axis [40], underscoring
its potential as a therapeutic target for sepsis.

Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), a multifunc-
tional lncRNAs in macrophages, is extensively studied. In late-onset sepsis patients,
increased blood MALAT1 levels correlate with disease severity [41]. The expression of
MALAT1 increases in activated macrophages, exhibiting an elevation greater than two-
fold in mouse peripheral blood mononuclear cells (PBMCs) and more than six-fold in
THP-1-derived macrophages, especially following LPS treatment [41,42]. Animal studies
show that MALAT1 expression surges with sepsis induction; reducing MALAT1 lessens
inflammation and mortality [41,43–45], possibly by suppressing M1 and enhancing M2
macrophage polarization [45]. In an LPS-induced septic lung injury model, intravenous
MALAT1-specific small interfering RNA (siRNA) decreases inflammatory cytokines and
immune cells in bronchoalveolar lavage fluid by inhibiting the p38 mitogen-activated
protein kinase (MAPK)/p65 pathway [44].

However, several reports have shown contradictory evidence, indicating a significant
decrease in MALAT1 expression accompanied by an increase in hsa-miR-346 levels in
patients with sepsis. Activated human and mouse macrophages downregulate MALAT1
expression in an NF-κB-dependent manner [42,46]. MALAT1 interacts with NF-κB, in-
hibiting its DNA-binding activity and, consequently, the expression of pro-inflammatory
cytokines [42]. Furthermore, MALAT1 modulates macrophage proliferation by sequester-
ing hsa-miR-346, thereby stabilizing the mRNA of small mothers against decapentaplegic
homolog 3 (SMAD3). SMAD3 is a receptor-regulated signaling adaptor that is activated
by serine kinases. These conflicting findings underscore the need for future research on
MALAT1’s role in sepsis.
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Various lncRNAs that regulate the NF-κB activation pathway are depicted. Activating effects are
represented by red arrows, while inhibiting effects are shown with blue arrows. LncRNAs that
enhance NF-κB activity are indicated in red, while those that suppress NF-κB activity are shown
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In sepsis patients, the levels of long noncoding RNA plasmacytoma variant translo-
cation 1 (PVT1) are elevated, showing an increase of more than two-fold compared to the
healthy control group. This elevation correlates with increased pro-inflammatory mediators
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and survival rates. [47,48]. LPS induces PVT1 expression in THP-1 cells, which in turn
amplifies NF-κB activity via p38 stimulation [49]. Elevated PVT1 expression, promoting M1
polarization through the miR-29a/high-mobility group box 1 (HMGB1) axis, is observed in
heart-infiltrating macrophages of septic mice [50]. HMGB1, released from the cells, can acti-
vate TLR4 in both autocrine and paracrine manners [51]. PVT1 is also highly expressed in
osteoarthritis patients’ serum and in the LPS-stimulated C28/12 chondrocyte cell line, acti-
vating the TLR4/NF-κB pathway via the miR-93-5p/HMGB1 axis [52]. Additionally, PVT1
levels rise in myocardial tissues and heart-infiltrating macrophages during sepsis-induced
myocardial injury [50].

The expression level of lncRNA MEG3 is significantly reduced in patients with sepsis,
and this reduction has prognostic significance [53]. In macrophages, MEG3 overexpression
inhibits LPS-induced apoptosis by downregulating BAX and upregulating Bcl-2. It also
suppresses inflammatory factor expression by inhibiting NF-κB signaling [53]. This sug-
gests that the reduced MEG3 expression may exacerbate sepsis by increasing inflammation
and inhibiting apoptosis in macrophages. Further research is needed to elucidate MEG3’s
role in sepsis.

In sepsis patients, the lncRNA colorectal neoplasia differentially expressed (CRNDE)
exhibits elevated expression in peripheral blood, with higher levels correlating to improved
survival rates [54]. CRNDE intensifies LPS-induced NF-κB activation and subsequent
pro-inflammatory cytokine release in THP-1 cells via the miR-181-5p/TLR4 axis [54].

These reports highlight the intricate relationship between lncRNAs and NF-κB in the
context of sepsis, impacting inflammatory activation and macrophage polarization. The
influence of these lncRNAs on cytokine release, cell polarization, and apoptosis is notable,
and their varied expression in sepsis patients suggests potential as biomarkers. Targeting
these lncRNAs to regulate NF-κB activation offers promising avenues for immunomodula-
tory therapies to manage inflammation and restore immune balance in sepsis. However,
the contrasting roles of specific lncRNAs, like MALAT1, necessitate further research. A
deeper understanding of these lncRNAs’ roles could lead to innovative diagnostic and
therapeutic strategies, improving management and outcomes in sepsis.

3. LncRNAs That Modulate Macrophage NF-κB Activity in Atherosclerosis

Macrophages are central in atherosclerosis development, marked by arterial plaque
build-up. The process initiates with low-density lipoprotein (LDL) cholesterol accumulation
in arterial walls, undergoing oxidation and eliciting inflammation [55,56]. Modified LDL
attracts monocytes from blood, transforming into macrophages in the arterial wall. These
macrophages consume oxidized LDL (oxLDL), forming lipid-laden foam cells and creating
fatty streaks, early atherosclerosis signs [57,58]. M1 macrophages exacerbate inflammation
by releasing cytokines, attracting more immune cells [59,60]. Chronic inflammation leads
to fibrous cap formation over plaques and extracellular matrix accumulation. Macrophages
also degrade this matrix, heightening plaque instability and increasing heart attack and
stroke risks [57,61]. Macrophages can also contribute to the resolution of inflammation and
healing processes [62]. In atherosclerosis, inflammation resolution is overshadowed by
ongoing inflammation and plaque growth.

NF-κB, activated by stimuli such as oxidative stress, cytokines, and oxLDL, exacerbate
atherosclerosis by promoting lipoprotein uptake, foam cell formation, and attracting more
immune cells [57,63]. This activation also destabilizes plaques by encouraging matrix
metalloproteinase (MMP) secretion, increasing plaque rupture risks [64]. Chronic NF-κB ac-
tivation sustains the inflammation characteristics of advanced atherosclerosis in conditions
like coronary artery diseases (CADs) and myocardial infarction (MI) [65]. Given its crucial
role in macrophage activation atherosclerosis progression, NF-κB presents a potential target
for therapies aimed at reducing inflammation and slowing atherosclerosis progression [66].

Increased NEAT1 expression levels in the PBMCs and sera of atherosclerosis patients
have been noted [67,68]. The expression level of NEAT1 was found to be increased by more
than two-fold in PBMCs of CAD patients [67]. NEAT1, induced by oxLDL in THP-1 cells,
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contributes to pro-inflammatory responses by enhancing p65 phosphorylation, followed
by paraspeckle formation [69,70]. It is also induced in bone marrow-derived macrophages
(BMDMs) treated with titanium particles and promotes NF-κB activation, NLRP3 inflam-
masome formation, and M1 polarization via the miR-188-5p/Bruton’s tyrosine kinase
(BTK) axis [71]. NEAT1 also stimulates pro-inflammatory cytokine and reactive oxygen
species (ROS) production and subsequent foam cell formation by sponging miR-342-3p
in THP-1 cells [70] or miR-128 in the murine macrophage-like cell line RAW264.7 [72].
These reports agree with NEAT1 being expressed in activated macrophages and enhanc-
ing pro-inflammatory changes. One contradicting study, however, reported decreased
NEAT1 in the PBMCs of post-MI patients and enhanced macrophage inflammation in
NEAT1-knockout mice (Table 1) [73].

Elevated lncRNA PVT1 levels have been detected in the serum of atherosclerosis pa-
tients [74]. Inhibiting PVT1 in animal models reduces atherosclerotic plaques by increasing
HDL levels and suppressing the MAPK/NF-κB pathway and pro-atherogenic factors [74].
In serum samples of atherosclerosis patients and during oxLDL-induced THP-1 cell foam
cell differentiation, there is a notable increase in lncRNA small nucleolar RNA host gene
(SNHG)16 and a decrease in miR-17-5p [75]. SNHG16 amplifies macrophage proliferation
and pro-inflammatory responses in atherosclerosis through the miR-17-5p/NF-κB axis [75].

LncRNA X-inactive specific transcript (XIST), known for its role in X-chromosome
inactivation, has been found to be elevated more than two-fold in the serum of atherosclero-
sis patients, oxLDL-treated vascular smooth muscle cells, and the U937 human monocytic
leukemia cell line [76]. XIST influences atherosclerosis by promoting proliferation and in-
hibiting apoptotic cell death through the miR-599/TLR4 axis [76]. This finding aligns with
other studies that show that apoptosis inhibition aggravates atherogenesis by increasing
macrophage proliferation and plaque formation [77,78].

LncRNA H19 is found at elevated levels in the serum of atherosclerosis patients [79–82].
OxLDL stimulates H19 expression in macrophages [83], aorta vascular smooth muscle
cells [79,80], and human umbilical vein endothelial cells (HUVECs) [84]. In macrophages,
H19 augments oxLDL-induced lipid accumulation, ROS generation, and NF-κB activa-
tion [83,85]. Similarly, in HUVECs, H19 heightens NF-κB activation by increasing p38 and
p65 activity [86]. These findings suggest that H19 could be a promising therapeutic target
for atherosclerosis treatment.

In atherosclerosis and CAD patients, MALAT1 levels rise more than two-fold and sub-
sequently fall after treatment [87–89]. MALAT1 impacts various macrophage processes like
foam cell formation, autophagy, and pyroptosis [90–92]. OxLDL prompts NF-κB-dependent
MALAT1 expression in THP-1 cells. MALAT1 then enhances lipid uptake and foam cell
formation by promoting scavenger receptor CD36 expression [88,90,91]. MALAT1 also
enhances NF-κB activation and subsequent inflammation by sponging miR-330-5p [91].
Further, oxLDL-induced autophagy in macrophage is mediated by MALAT1, which acti-
vates the MAPK/NF-κB pathway and inhibits sirtuin 1 (SIRT1), a key transcription factor
deacetylase [92,93]. NLRP3 inflammasome-mediated pyroptosis, a programmed cell death
as a defense mechanism against intracellular pathogens, is also influenced by MALAT1 [94].
In diabetic atherosclerosis models, a cinnamic acid derivative reduces inflammasome ac-
tivation and pyroptosis by suppressing MALAT1 [95]. Extracellular vesicles (EVs) such
as exosomes are crucial for cell-to-cell communication, transferring proteins and lncR-
NAs [96]. M1 macrophages have been found to release MALAT1-containing EVs, which
regulate myocyte proliferation and angiogenesis in MI models [97]. These findings under-
score MALAT1’s role in atherosclerosis: it is upregulated in activated macrophages and
influences various processes including lipid uptake, foam cell formation, and cell death.

However, contrary reports exist regarding the role of MALAT1 in atherosclerosis. It
was observed that in atherosclerosis patients and oxLDL-treated THP-1 cells, MALAT1 lev-
els decrease [88]. Reduced MALAT1 leads to increased lipid and total cholesterol accumula-
tion in THP-1 cells via the miR-17-5p/ATP-binding cassette subfamily A member 1 (ABCA1)
axis [88]. ABCA1 is known to facilitate cholesterol efflux, thereby reducing foam cell forma-
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tion [98]. Additionally, MALAT1 deficiency in certain mouse models has been linked to
accelerated macrophage inflammation and atherosclerosis [99]. Exosomal MALAT1 from
oxLDL-treated HUVECs promotes a transition from M1 to M2 macrophages [100]. These
findings suggest potential anti-atherogenic properties of MALAT1, highlighting the need
for further research to clarify its role in atherosclerosis.

Notably, the expression levels of lncRNA HOX transcript antisense intergenic RNA
(HOTAIR) are decreased in the peripheral blood lymphocytes of atherosclerosis patients and
oxLDL-treated RAW264.7 cells [101]. HOTAIR overexpression reduces pro-inflammatory
cytokine expression while boosting anti-inflammatory cytokines, achieved by inhibiting
NF-κB activity. This suppression occurs through HOTAIR’s enhancement of fragile X-
related protein 1 (FXR1) levels, a protein moving between the nucleus and cytoplasm and
associating with polyribosomes [101,102].

These reports underscore the complex relationship between various lncRNAs and
macrophage NF-κB in atherosclerosis. These lncRNAs impact crucial aspects such as
lipid uptake, foam cell formation, inflammation, and cell death in macrophages. Given
their link to NF-κB activation, targeting these lncRNAs for NF-κB modulation presents a
promising approach to managing atherosclerosis by restoring immune equilibrium and
curbing inflammatory activation. It is intriguing that certain lncRNAs, such as MALAT1
and HOTAIR, have been identified to play conflicting roles in atherosclerosis. Variations
in the stages of atherosclerosis or CAD examined, the measurement techniques utilized,
environmental factors, or the experimental model systems employed could account for
these discrepancies. Alternatively, the overall impact of these lncRNAs may differ based on
the dominant signaling pathways activated in particular contexts or disease states. Despite
the conflict, their significant influence on macrophage function and disease progression
is evident. Further research is essential to unravel the full potential of these lncRNAs in
atherosclerosis treatment.
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Table 1. LncRNAs regulating macrophage NF-κB activity in diseases. LncRNAs that enhance NF-κB activity are indicated in red, while those that suppress NF-κB
activity are shown in blue.

LncRNA Disease Target Function Refs.

Group 1. LncRNAs directly affecting NF-κB activity

CARLR Celiac disease p65 LPS-induced, regulates p65 translocation, promotes pro-inflammatory
cytokine production [103]

COX2 Neuroinflammation p65 LPS-induced, promotes p65 translocation, enhances inflammasome
formation, suppresses autophagy [104]

COX2 SLE SWI/SNF/NF-κB LPS-induced, enhances the expression of NF-κB-induced late
inflammatory genes [105]

MALAT1 Sepsis p65/p50 LPS-induced, retrains NF-κB from promoter, regulates pro-inflammatory
cytokine expression [42]

PACER Cancer p50 LPS-induced, sequesters p50 and promotes p300-mediated histone
acetylation, enhances COX2 expression [106]

PINT Cancer p65 and EZH2 LPS-induced, bridges p65 and EZH2, activates TNFα transcription [107]

Group 2. LncRNAs affecting pathways that regulate NF-κB activity

CHRF Cancer miR-489/MyD88 Silica-induced, promotes inflammatory responses and fibrosis [108]

CRNDE Cancer miR-181a-5p/TLR4 LPS-induced, promotes inflammatory responses. Also increased in AML and
IgA nephropathy [54,109]

MALAT1 Atherosclerosis SIRT1/MAPK ox-LDL-induced, promotes autophagy, reduces apoptosis [93]

MIR222HG Allergic rhinitis miR-146a-5p/TRAF6 Deceased in patients, causing the dominance of type 2 response. Promotes
M1 and suppresses M2 polarization [110]

NAIL Ulcerative colitis Wip1 LPS-induced, promotes p65 phosphorylation by blocking Wip1 action,
increases inflammatory response [111]

NEAT1 Osteolysis miR-188-5p/BTK
KLF/BTK

Induced by titanium particles, activates inflammasome and NF-κB, enhances
M1 polarization [71]

NEAT1 Sepsis miR-17-5p/TLR4 LPS-induced, promotes inflammatory response by stabilizing TLR4 mRNA [38]
NEAT1 Sepsis let-7a/TLR4 LPS-induced, promotes inflammatory response by stabilizing TLR4 mRNA [35]

NKILA Asthma IκB Anti-inflammation by inhibiting IκB phosphorylation, induces
M2 polarization [112,113]

PVT1 Sepsis miR-29a/HMGB1/TLR4 LPS-induced, promotes inflammation and M1 polarization. Also increased in
osteoarthritis patients [50,52]

SNHG1 Cancer/Sepsis HMGB1/TLR4 Enhances TLR4 signaling by interaction with HMGB1, promotes
M1 polarization [114]

XIST Atherosclerosis miR-599/TLR4 OxLDL-induced in macrophages/vascular smooth muscle cells, promotes
proliferation and suppresses apoptosis [76]
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Table 1. Cont.

LncRNA Disease Target Function Refs.

Group 3. LncRNAs affecting NF-κB activity with unknown mechanism of action

DCST1-AS1 Cancer p65 Activates NF-κB signaling pathway in both cancer cells and macrophages.
Promotes M2 polarization [115]

FTX Cirrhosis NF-κB Anti-inflammatory function. Decreased in patients, causing enhancement
in inflammation [116]

HOTAIR Cancer IκBα LPS-induced, activates NF-κB by degrading IκB, regulates metabolic
reprogramming by inducing GLUT1 [117]

HOTAIR Atherosclerosis FXR1 Anti-inflammation by inactivating NF-κB via FXR1. Decreased in
patients and oxLDL-treated macrophages. [101,102]

NEAT1 Atherosclerosis p65, ERK ox-LDL-induced, regulates p65 and ERK phosphorylation, promotes
TNF-α secretion. [34,69]

MEG3 Sepsis p65 Decreased in sepsis patients. LPS-induced, inhibits p65 phosphorylation.
Downregulates inflammation and apoptosis. [53]

SNHG16 Atherosclerosis miR-17-5p ox-LDL-induced, promotes proliferation and inflammatory response.
Also increased in cancer and diabetes [75,118,119]

Group 4. LncRNAs transferred to macrophages via exosomes or EVs

FGD5-AS1 Cancer P300/STAT3/NF-κB Contained in exosomes from pancreatic cancer cells, activates
STAT3/NF-κB, promotes M2 polarization [120]

AP000439.2 Cancer STAT3, P65 Contained in exosomes from cancer cells, promotes macrophage
M2 polarization [121]

GAS5 Allergic rhinitis mTORC1/ULK1/ATG13 Activates NF-κB and promotes M1 polarization by suppressing
autophagy-dependent degradation of IKKa/b [122]

HOTTIP Cancer - Contained in M1-derived exosomes. Suppresses cancer growth via TLR5
activation. Promotes M1 polarization [123]

MALAT1 Acute pancreatitis miR-181a-5p
/HNGB1/TLR4

Carried by EVs originating from pancreatic cancer cells, promotes
M1 polarization [124]
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4. LncRNAs That Modulate Macrophage NF-κB Activity in Cancer

The role of macrophage inflammation in cancer is multifaceted and contradictory. M1
macrophages, typically anti-tumorigenic, can attack tumor cells and stimulate immune
responses. Conversely, M2 macrophages often aid tumor growth by supporting angiogen-
esis, suppressing immune responses, and facilitating tissue remodeling [125]. Generally,
tumor-associated macrophages (TAMs) exhibit an M2 phenotype, supporting tumor growth
and metastasis and contributing to an immunosuppressive tumor environment [126,127].
Given their significant impact on cancer progression, TAMs are being investigated as thera-
peutic targets, with strategies focusing on inhibiting their tumor-promoting functions or
reprogramming them to combat tumors.

The activation of NF-κB in macrophages plays a crucial role in cancer development
and progression. In TAMs, NF-κB activation leads to the production of cytokines, growth
factors, and enzymes that promote tumor growth and suppress anti-tumor immune re-
sponses [128,129]. NF-κB can also alter the immune microenvironment, potentially induc-
ing immune checkpoint molecules that weaken the immune response against tumors [130].
Additionally, NF-κB-activated macrophages can produce angiogenic factors, aiding tumor
vascularization [131–133]. They can also stimulate matrix metalloproteinases (MMPs),
breaking down extracellular matrix barriers and facilitating cancer cell spread [134,135].
Thus, macrophage NF-κB is implicated in various aspects of cancer progression and
targeting macrophage NF-κB has emerged as a prominent focus in cancer treatment
strategies [18].

LncRNA DC-STAMP domain containing 1-antisense 1 (DCST1-AS1) has been in-
vestigated in various cancers, including gastric, colorectal, cervical, breast, glioblastoma,
endometrial, and HCC [136–142]. In these cancers, increased DCST1-AS1 expression corre-
lates with larger tumors and shorter survival and DCST1-AS1 promotes cancer cell prolif-
eration and metastasis, and inhibits apoptosis, by sponging miRNAs [136–142]. Notably,
in oral squamous cell carcinoma, DCST1-AS1 advances tumor progression by enhanc-
ing NF-κB activity in cancer cells and macrophages [115]. The expression of DCST1-AS1
showed a more than three-fold increase in oral squamous cell carcinoma cells compared to
normal cells [115]. Elevated DCST1-AS1 in cancer cells and M2 macrophages is linked to
tumor growth and cancer cell proliferation. NF-κB antagonists revealed that DCST1-AS1
enhances cancer progression and M2 macrophage polarization through NF-κB-mediated
mechanisms [115].

The lncRNA FGD5 antisense RNA 1 (FGD5-AS1) shows elevated levels in non-small-
cell lung cancer and pancreatic cancer, correlating with metastasis and poor progno-
sis [120,143]. FGD5-AS1-containing exosomes from these cancers induce M2 macrophage
polarization [120]. FGD5-AS1 links acetyltransferase p300, STAT3, and NF-κB, leading to
acetylated STAT3/p65 complex and transcriptional activation [120,144]. STATs are crucial
transcription factors in macrophage polarization, with STAT1 being integral to M1, and
STAT3/6 to M2 polarization. [145]. In cervical cancer, FGD5-AS1, via the miR-129-5p/bone
marrow stromal cell antigen 2 (BST2) axis, promotes tumor growth and M2 polariza-
tion [146]. BST2, a lipid raft-associated protein, is implicated in cell proliferation and
immune response [147,148]. Collectively, FGD5-AS1 augments tumor growth by enhancing
cancer progression and M2 macrophage polarization.

The lncRNA AP000439.2 has recently been identified as a prognostic marker for renal
cell carcinoma (RCC) patient survival [149,150]. Exosomes from human RCC cell lines
have been shown to induce M2 polarization in co-cultured THP-1 cells [121]. AP000439.2
promotes M2 polarization through the phosphorylation of STAT3 and the NF-κB p65
subunit, which, in turn, enhances the migration potential of cocultured cancer cell lines.
The impact of exosomal AP000439.2 on macrophage M2 polarization and RCC growth has
been confirmed in a xenograft tumor mouse model [121].

LncRNA Five Prime to Xist (FTX), an evolutionarily conserved regulator of XIST ex-
pression, is associated with various conditions including malignancies, endometriosis, and
stroke, functioning through miRNA sponging [151,152]. Liu et al. observed decreased FTX
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levels in cirrhosis patients, linking them to abnormal activation of CD14+ CD16+ mono-
cytes via the miR-545/T cell immunoglobulin and mucin domain 3 (Tim-3) axis [116,153].
Moreover, FTX suppression in THP-1 cells increases NF-κB activity and pro-inflammatory
cytokine expression, suggesting that a reduction in FTX might accelerate tumor progression
by enhancing inflammation in the tumor microenvironment (TME) [116].

LncRNA HOTAIR, known for its role in gene regulation and epigenetic modifications,
is implicated in various human diseases [154]. It is often overexpressed in cancer, con-
tributing to tumor progression, metastasis, and poor prognosis by altering gene expression
related to the cell cycle, apoptosis, and metastasis [154,155]. HOTAIR is also associated
with central nervous system disorders, fibrosis, and inflammatory conditions, impacting
cellular processes and immune responses [156–159]. It regulates glucose transporter iso-
form 1 (GLUT1) expression in human neuroblastoma cells and macrophages by stimulating
NF-κB activity, suggesting a role in metabolic reprogramming in cancer [117,160]. In addi-
tion, inflammatory activation of macrophages triggers HOTAIR expression, which then
promotes NF-κB activation and cytokine gene expression by aiding in the degradation of
IκBα [117]. HOTAIR’s expression pattern in cancer tissue macrophages remains unexplored
and warrants future investigation.

Elevated levels of lncRNA HOXA transcript at the distal tip (HOTTIP) have been
observed in AML patients and cell lines, such as U937 and THP-1 [161]. HOTTIP facilitates
cell proliferation via the miR-608/DET1- and DDB1-associated 1 (DDA1) axis, with DDA1
being a gene known for its oncogenic properties [161,162]. In squamous cell carcinoma,
M1-derived exosomes containing HOTTIP inhibit cancer cell proliferation and induce
apoptosis by activating the TLR5/NF-κB pathway [123]. Additionally, exosomal HOTTIP
influences the M1 polarization of circulating monocytes [123]. The comprehensive role of
HOTTIP in cancer progression remains an area for future exploration.

Cyclooxygenase (COX)2, linked with inflammation in immune cells, is implicated in
several cancers [163]. LncRNA p50-associated COX2 extragenic RNA (PACER), located
upstream of the COX2 promoter, regulates COX2 expression [106]. PACER, through its
association with p50, facilitates p65/p50 heterodimer binding to the COX2 promoter, re-
cruiting p300 histone acetyltransferase [106]. Its expression is upregulated in various cancer
tissues, influencing COX2 and PGE2 synthesis and cancer cell proliferation, migration, and
invasion [164–166].

LncRNA cardiac hypertrophy-related factor (CHRF) functions as an oncogene, pro-
moting migration and invasion in various tumor types [167]. In a silica-induced pul-
monary fibrosis mouse model, CHRF activates inflammatory and fibrotic pathways via the
miR-489/MyD88 and miR-489/SMAD3 axes, with SMAD3 being an adaptor in receptor-
regulated signaling [108,168]. CHRF’s pro-inflammatory effects are also observed in LPS-
induced acute lung injury [169]. However, its specific role in macrophage inflammation
within the TME remains unclear, necessitating further research.

LncRNA SNHG1, commonly overexpressed in various cancers as an oncogene, affects
cellular signaling via interactions with miRNAs and signaling regulators [170]. In cholan-
giocarcinoma cell lines, SNHG1 is associated with increased proliferation and invasion,
mediated by NF-κB activation through the miR-140/TLR4 axis, contributing to an inflam-
matory TME [171]. In an LPS-induced acute lung injury model, SNHG1 is upregulated in
M1 polarized THP-1 cells, enhancing NF-κB activation and inflammation through inter-
action with HMGB1 [114]. However, SNHG1’s specific role in macrophage-related TME
remains unexplored.

These findings highlight the intricate relationship between macrophages, lncRNAs,
and NF-κB in cancer, affecting cell proliferation, invasion, inflammation, and macrophage
polarization. The dichotomy of macrophages, especially TAMs, underscores their potential
as therapeutic targets. Their influence extends to inflammation, TME modulation, angio-
genesis, and immunosuppression, making them key in the interplay between cancer cells
and the immune system. Understanding lncRNA-driven macrophage NF-κB regulation
is essential for developing targeted cancer therapies. Despite advances, many aspects
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of lncRNA functions in cancer and inflammation require further exploration, presenting
exciting opportunities for future research and potential therapeutic interventions.

5. LncRNAs That Modulate Macrophage NF-κB Activity in Autoimmunity
and Hypersensitivity

NF-κB activation in macrophages plays a pivotal role in the pathogenesis of autoim-
munity and hypersensitivity by orchestrating a series of inflammatory responses that can
lead to tissue damage and disease progression [172]. In autoimmunity, aberrant NF-κB
activation in macrophages contributes to the production of pro-inflammatory cytokines
and chemokines, perpetuating a state of chronic inflammation and autoantibody produc-
tion [173]. This not only disrupts immune tolerance but also promotes the survival and
proliferation of autoreactive immune cells. In hypersensitivity reactions, NF-κB activation
is crucial for the amplification of immune responses to allergens, leading to exaggerated
inflammatory processes [174]. Such activation enhances the expression of molecules in-
volved in antigen presentation and co-stimulation, facilitating the development of Th2 cell
responses and the subsequent production of IgE [175]. By driving the inflammatory milieu
in both autoimmunity and hypersensitivity, NF-κB activation in macrophages is central to
the dysregulation of immune homeostasis and the pathophysiology of these conditions,
highlighting its potential as a therapeutic target to modulate immune responses.

A more than two-fold increase in GAS5 levels has been found in exosomes from the
nasal mucus of allergic rhinitis patients and a mouse model, promoting macrophage
NF-κB activation and M1 polarization [122,176]. GAS5 influences this by inhibiting
mTORC1/ULK1/ATG13-mediated autophagy, leading to NF-κB activation [122]. Specifi-
cally, GAS5’s activation of NF-κB signaling occurs through the suppression of autophagy-
dependent degradation of IKKα/β in macrophages [122]. GAS5 also enhances M1
macrophage polarization, observed in hyperglycemia-induced differentiation in diabet-
ics and in pneumonia-affected children’s macrophages [177,178]. It suppresses the Janus
kinase 2/STAT3 pathway, promoting M1 while inhibiting M2 polarization via the miR-
455-5p/SOCS3 axis [178]. In diabetes, hyperglycemia-induced GAS5 expression shifts
polarization from M2 to M1 by upregulating STAT1 [177]. This shift is significant since
M1 macrophage-driven inflammation worsens diabetic wounds, suggesting that reducing
GAS5 could facilitate wound healing by promoting an M1-to-M2 transition. On the other
hand, microglia exhibit increased GAS5 expression in multiple sclerosis and experimental
autoimmune encephalomyelitis (EAE) mouse models [179]. GAS5 hinders M2 polarization
by recruiting the polycomb repressive complex 2 (PRC2), suppressing topoisomerase-
related function 4 transcription, crucial for M2 polarization [179]. Ito et al. found that
reducing GAS5 expression leads to M2b polarization, while increasing it has the opposite
effect [180]. GAS5 also plays a role in regulating NLRP3 inflammasome formation in
cardiomyocytes [181]. In contrast, GAS5 expression levels are decreased in various cancer
tissues [182,183]. This decrease is attributed to GAS5’s ability to induce apoptosis and
inhibit tumor proliferation and metastasis through interactions with miRNAs and proteins.
The M1-enhancing property of GAS5 might contribute to its reduced expression in cancer
tissues, necessitating further investigation. Overall, research indicates that GAS5 boosts
NF-κB-mediated inflammation and shifts macrophage polarization towards M1, while
inhibiting GAS5 has the opposite effect in various diseases.

LncRNA-Cox2, located near the COX2 gene [184], is linked with chronic inflammatory
diseases and innate immune activation [185,186]. In systemic lupus erythematosus (SLE)
patients, serum lncRNA-Cox2 level was elevated more than three-fold and correlated with
neurological symptoms [187]. It is highly induced in an NF-κB-dependent manner in
activated macrophages and interacts with the switch/sucrose nonfermentable (SWI/SNF)
chromatin-remodeling complex [184,188]. This interaction enhances the expression of NF-
κB-induced late inflammatory genes [105]. In neuroinflammation, lncRNA-Cox2 promotes
NLRP3-inflammasome formation and hinders autophagy by binding and facilitating the
p65 subunit’s nuclear transport [104]. However, its role in inflammation is subject to debate,
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as it appears to suppress inflammation in M1 macrophages and BMDMs in septic mouse
models [188,189], indicating a complex influence in inflammatory contexts.

During allergic disease development, a type 2 immune response led by Th2 cells,
eosinophils, basophils, and M2 macrophages is predominant [190]. In allergic rhinitis
clinical samples and animal models, a downregulation of the lncRNA miR222 host gene
(MIR222HG) was observed, linking it to the type 2 response [110]. MIR222HG is upregu-
lated in M1 macrophages but downregulated in M2 macrophages, with its overexpression
reducing M2 polarization and allergic inflammation. MIR222HG activates the NF-κB path-
way via the miR-146a-5p/TRAF6 axis [110]. This suggests that MIR222HG downregulation
in allergic rhinitis contributes to pathogenesis by favoring M2 macrophage polarization,
and its overexpression might alleviate the condition.

In contrast to MIR222HG, NF-κB interacting lncRNA (NKILA) directly promotes M2
macrophage polarization by suppressing NF-κB activation in asthma [112]. NKILA has
been found to have anti-inflammatory effects and dysregulation of its expression has been
observed in cancers as well as immune-related disorders such as epilepsy, osteoarthritis,
periodontitis, coronary artery disease, and asthma [112,191]. Overexpression of NKILA
alleviated airway hyperresponsiveness and asthmatic mice and reduced macrophage
abundance through inhibition of the NF-κB pathway [112]. The inhibitory effect of NKILA
on the NF-κB pathway was reported to be through the inhibition of IκB phosphorylation in
laryngeal cancer cells.

Celiac disease, characterized by constant NF-κB activation, shows increased cardiac
and apoptosis-related lncRNA (CARLR) expression in patient samples [103,192]. CARLR
expression rises in THP-1 cells post-LPS stimulation. CARLR interacts with activated
NF-κB following IκB dissociation, boosting the expression of cytokines such as IL-1β and
COX2, also elevated in celiac disease samples [103]. This suggests a crucial role of CARLR
in the disease’s inflammatory response.

NAIL, an evolutionarily conserved lncRNA, exhibits approximately a three-fold in-
crease in expression in samples from patients with inflamed ulcerative colitis compared to
those from non-inflamed cases [111]. It activates NF-κB by binding to Wip1 phosphatase,
thereby removing Wip1 from its substrates, including p38 MAPK and p65, which play a
key role in the inflammatory process of ulcerative colitis.

LncRNA P53-induced transcript (PINT) is upregulated in the intestinal mucosa of
ulcerative colitis patients and in inflammatory bowel disease mouse models [107]. In
macrophages, LPS induces PINT expression in an NF-κB-dependent manner. Acting as
a scaffold, PINT enables the binding of p65 and EZH2, a histone methyltransferase and
epigenetic regulator, to NF-κB sites on target promoters [193]. This complex stimulates
TNF-α expression while inhibiting other pro-inflammatory mediators like CCL2/7 and
intercellular adhesion molecule-1.

MALAT1, with high expression in severe acute pancreatitis patients’ plasma and
corresponding mouse models, plays a critical role in this condition [124,194]. Its suppression
reduces tissue injury and inflammation. Additionally, MALAT1 is found in serum EVs of
acute pancreatitis patients, stimulating macrophages to activate TLR4/NF-κB signaling
and M1 polarization via the miR-181a-5p/HMGB1 axis [124,194]. In endothelial progenitor
cell-derived exosomes, MALAT1 triggers BMDM differentiation into osteoclasts, binding
to miR-124 [195]. High glucose levels in macrophages also prompt MALAT1-containing
exosome secretion [196], highlighting its role in cellular communication through EVs.

These studies underscore the pivotal roles of various lncRNAs in autoimmune, hyper-
sensitivity, and inflammatory conditions. These lncRNAs modulate NF-κB activity, either
directly or indirectly, impacting macrophage polarization and immune responses. The
intricate relationship between these lncRNAs and macrophage NF-κB dynamics opens
avenues for targeted therapies in such diseases. Given NF-κB’s association with inflamma-
tion, macrophage polarization, apoptosis, and pyroptosis, modulating lncRNA functions
could favorably alter disease progression by influencing NF-κB activity.
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6. Discussion

Research targeting lncRNAs in disease treatment shows promise, particularly through
suppression or overexpression in animal models. For instance, suppressing MALAT1 with
siRNA mitigates sepsis-related inflammation [43–45], while its overexpression exacerbates
atherosclerosis severity [91]. Similarly, altering the M1/M2 macrophage polarization bal-
ance can influence disease progression. Knockdown of GAS5 in diabetic wound healing
models encourages M1-to-M2 transition, enhancing wound healing [177], and its suppres-
sion reduces EAE progression by inhibiting M1 polarization [179]. Reducing lncRNA-Cox2
in HCC models strengthens M2 macrophage polarization, promoting tumor growth [197].

LncRNA-targeting therapies primarily use nucleic acid-based methods like antisense
oligonucleotides (ASOs), RNA interference with siRNA or shRNA, and innovative ap-
proaches like CRISPR/Cas and exosome-mediated transfer [198,199]. While clinical trials
have mainly focused on miRNAs, the exploration of lncRNAs as diagnostic markers and
therapeutic targets is growing. For example, MALAT1 and lncRNA prostate cancer antigen
3 are being studied as diagnostic markers for prostate cancer. Trials involving ASncmtRNA-
targeting ASOs, such as Andes-1537 [200], are assessing safety and efficacy in various
cancers, indicating a progressing field in lncRNA-based treatments.

Contrary to its well-documented role in promoting inflammation, emerging evi-
dence suggests that NF-κB may also be involved in anti-inflammatory responses within
macrophages, highlighting the complex role of NF-κB in immune regulation [201]. This
dual functionality depends on the context, including the specific cell type, the nature of the
stimuli, and the timing of NF-κB activation. For example, many negative regulators of TLR
signaling such as A20, IκB, and protein–tyrosine phosphatases are direct targets of NF-κB
signaling [201]. SREBP1, a transcription factor influenced by NF-κB, contributes to the
resolution of pro-inflammatory TLR4 signaling by reprogramming fatty acid metabolism in
macrophages. This reprogramming leads to the production of anti-inflammatory fatty acids,
further indicating a mechanism through which NF-κB may support anti-inflammatory
responses [202]. These anti-inflammatory actions of macrophage NF-κB may complicate
future efforts to manipulate its activity for disease treatment, necessitating careful design
in therapeutic approaches.

The expression of lncRNAs that regulate macrophage NF-κB activity is implicated in
various human diseases. Animal studies targeting these lncRNAs have yielded promising
results, positioning them as potential future therapeutic targets. The primary focus will be
on reducing macrophage inflammation in chronic inflammatory diseases, hypersensitivity,
autoimmune disorders, and cancer. A secondary objective will involve balancing M1
and M2 macrophage polarization in these conditions. While the use of NF-κB-targeting
lncRNAs as therapeutic agents is still in its early stages, the critical role of macrophage
NF-κB in disease pathogenesis makes these targets particularly promising.

7. Conclusions and Future Directions

This review has comprehensively explored the dynamic interplay among lncRNAs,
NF-κB activation, and macrophage function across various diseases. It elucidates how
lncRNAs and NF-κB are mutually regulatory within a complex network that is pivotal
for both genomic and epigenomic regulations. The regulation of NF-κB by lncRNAs,
achieved through both direct and indirect methods affecting NF-κB’s expression or activity,
is essential for cellular homeostasis and the response to environmental stimuli. However,
dysregulation in this system can lead to the development of various diseases. This review
underscores the significant roles of specific lncRNAs in modulating inflammatory responses
and macrophage polarization, positioning them as potential biomarkers and therapeutic
targets. The divergent roles of certain lncRNAs across different disease contexts underscore
the complexity of their functions, thereby emphasizing the need for further research to
enhance our understanding and facilitate their clinical application.

Future research should focus on unraveling the detailed mechanisms of how lncRNAs
influence NF-κB pathways and macrophage polarization in various diseases. The develop-
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ment of more specific and effective lncRNA-targeted therapies, possibly using advanced
techniques like CRISPR/Cas9 and exosome-mediated delivery, is another crucial direction.
Clinical trials focusing on the therapeutic potential of lncRNAs and their safety and efficacy
in human diseases will be vital. Additionally, exploring the role of lncRNAs in other
immune cells and their interaction with macrophages could provide a more comprehensive
understanding of immune regulation and disease pathogenesis.
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