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Abstract: In this study, we utilized an in vitro model consisting of human malignant melanoma as
well as non-tumorigenic immortalized keratinocyte cells with the aim of characterizing the therapeu-
tic effectiveness of the clinical epigenetic drug Tazemetostat alone or in combination with various
isothiocyanates. In doing so, we assessed markers of cell viability, apoptotic induction, and expression
levels of key proteins capable of mediating the therapeutic response. Our data indicated, for the
first time, that Tazemetostat caused a significant decrease in viability levels of malignant melanoma
cells in a dose- and time-dependent manner via the induction of apoptosis, while non-malignant
keratinocytes were more resistant. Moreover, combinatorial treatment protocols caused a further
decrease in cell viability, together with higher apoptotic rates. In addition, a significant reduction in
the Polycomb Repressive Complex 2 (PRC2) members [e.g., Enhancer of Zeste Homologue 2 (EZH2),
Embryonic Ectoderm Development (EED), and suppressor of zeste 12 (SUZ12)] and tri-methylating
lysine 27 at Histone 3 (H3K27me3) protein expression levels was observed, at least partially, un-
der specific combinatorial exposure conditions. Reactivation of major apoptotic gene targets was
determined at much higher levels in combinatorial treatment protocols than Tazemetostat alone,
known to be involved in the induction of intrinsic and extrinsic apoptosis. Overall, we developed
an optimized experimental therapeutic platform aiming to ensure the therapeutic effectiveness of
Tazemetostat in malignant melanoma while at the same time minimizing toxicity against neighboring
non-tumorigenic keratinocyte cells.

Keywords: melanoma; Tazemetostat; isothiocyanates; epigenetics; therapeutics; apoptosis

1. Introduction

Malignant melanoma is characterized by high incidence rates and is the deadliest type
among all types of skin cancer, especially in its metastatic form [1–3]. Although, in recent
years, a number of therapeutic agents have been developed, the overall 5-year survival rates
are still considered low, especially in patients with advanced and/or metastatic types of the
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disease. This, in turn, highlights the urgent need for the development of more efficient and
safer therapeutic options [4]. On the other hand, there is increasing evidence that melanoma
pathogenesis is also associated with specific aberrant epigenetic modifications, leading
to drug-acquired resistance, evasion of the immune system, apoptosis, and increased
metastatic potential. Thus, the reversal of an abnormal epigenetic landscape appears to be a
promising therapeutic approach, such as in the case of EZH2 (Enhancer of Zeste Homologue
2; a histone methyltransferase) over-expression and its role in melanoma development and
progression [5–9].

EZH2 is a member of the Polycomb Group (PcG) of proteins that form two major Poly-
comb Repressive Complexes, namely PRC1 (Polycomb Repressive Complex 1) and PRC2
(Polycomb Repressive Complex 2). Moreover, EZH2 serves as the catalytic component of the
PRC2 complex, which modulates gene expression via its intrinsic histone methyltransferase
activity, ability to recruit DNA methyltransferases (DNMTs), and interaction with histone
deacetylases (HDACs). Consequently, EZH2 is responsible for tri-methylating lysine (K)-27
residues at histone H3 (H3K27me3) known to be associated with gene repression. How-
ever, EZH2 can also interact with the other two members of the PRC2 complex [Embryonic
Ectoderm Development (EED) and suppressor of zeste 12 (SUZ12)] in order to be fully func-
tional [10]. As a result, EZH2 has been shown to regulate the progression of melanoma
by negatively regulating a number of tumor suppressor genes (TSGs) implicated in cell
transformation and proliferation, evasion of senescence and apoptosis, as well as increased
invasiveness and metastasis. In this context, EZH2 has emerged as an important target for
the development of various inhibitors, including Tazemetostat (TAZ; Tazveric, EPZ-6438), a
first-in-class potent and selective EZH2 inhibitor used in the treatment of advanced epithelioid
sarcoma [11].

Isothiocyanates (ITCs) are the bioactive components of cruciferous vegetables obtained
via hydrolysis of their biologically inert precursors known as glucosinolates (GLs). There are
different major types, including sulforaphane (SFN), iberin (IBN), allyl (AITC), benzyl (BITC),
and phenethyl (PEITC) isothiocyanates, all of which have been reported to exert considerable
anti-cancer activity via the induction of cell cycle arrest and apoptosis as well as inhibition of
angiogenesis and metastasis, etc. [12–14]. In addition, BITC, PEITC, SFN, IBN, and AITC have
been shown to induce significant cytotoxicity in malignant melanoma cells by modulating
distinct aberrant epigenetic pathways, including, at least in part, methylation and acetylation
marks of specific lysine residues at histones H3 and H4 via the modulation of various histone
acetyltransferases (HATs), deacetylases (HDACs) and methyltransferases (HMTs) [15–17].

In the current study, our aim was to investigate the underlying mechanism(s) by which
the therapeutic effectiveness of Tazemetostat in malignant melanoma cells is induced while,
at the same time, minimal cytotoxicity against neighboring non-tumorigenic keratinocyte cells
is ensured in combinatorial treatment protocols utilizing various ITCs (Figure 1). Specifically,
our objective was two-fold: (i) to characterize the anticancer effect of the epigenetic drug
TAZ as a single agent and (ii) to evaluate its anticancer potency in combinatorial treatment
protocols with SFN, IBN, PEITC, and BITC against an experimental model of human malignant
melanoma. In this context, we aimed to characterize the underlying molecular mechanism(s)
of enhanced apoptotic induction and the overall involvement of the main members of the
PRC2 complex in this model of malignant melanoma.
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2. Results
2.1. Optimization of the Experimental Exposure Model

All cell lines were exposed to a range of TAZ concentrations (0–40 µM) over 24–72 h
of exposure. TAZ induced a cytotoxicity as early as 48 h of exposure in A375 cells, an
effect observed at the highest range of concentrations (35–40 µM). Indeed, a 50–75% decline
in A375 cell viability levels was observed, which was further substantiated over 72 h of
exposure, reaching an overall viability of about 10% (Figure 2A). On the other hand, Colo-
679 cells appeared to be more resistant when compared to A375, as a slight decline in cell
viability levels was observed (10–15%) at 24–48 h of exposure at all TAZ concentrations.
However, a more profound cytotoxic effect was observed at 72 h of exposure, causing a
reduction in cell viability to about 60–65% (Figure 2B). Finally, TAZ was shown to exert
a safe cytotoxic profile against HaCaT cells, as viability levels were either unaffected or
minimally reduced (10–15%) after 24–48 h, while cytotoxicity was observed only at 72 h of
exposure (Figure 2C). Overall, EC50 values of TAZ were determined to be 35.0 and 37.5 µM
in A375 and Colo-679 melanoma cells for 48 h of exposure, respectively, while no EC50
values were determined for any other time point of exposure. Next, we determined the
combinational cytotoxic effect of TAZ together with each of SFN, IBN, PEITC, and BITC.
Based on our previous works, exposure to 10 µM of any of these ITCs exhibited significant
cytotoxicity at 48 h against various melanoma cell lines [15,16]. Consequently, we developed
an optimized protocol of combinatorial exposures consisting of the following conditions:
(i) TAZ (35 µM)/SFN (10 µM); (ii) TAZ (15 µM)/IBN (7.5 µM); (iii) TAZ (35 µM)/PEITC
(10 µM); and (iv) TAZ (15 µM)/BITC (7.5 µM).

In our next series of experiments, in A375 cells, combined exposure of TAZ with each
ITC resulted in the potentiation of cytotoxicity as opposed to exposure with each agent
alone. Specifically, the co-exposure of TAZ (35 µM) with either SFN or PEITC slightly
enhanced cytotoxicity, while the co-exposure of TAZ (15 µM) with either IBN or BITC
potentiated cytotoxicity by about 35% and 50%, respectively (Figure 3A). On the other
hand, a similar cytotoxic effect was observed in Colo-679 cells, where the co-exposure
of TAZ (35 µM) with each ITC enhanced cytotoxicity to a variable degree. In particular,
co-exposure with either SFN or PEITC enhanced cytotoxicity by about 15% in both cases,
whereas the co-exposure of TAZ (15 µM) with either IBN or BITC further potentiated
cytotoxicity by about 35% and 55%, respectively (Figure 3B). Finally, the co-exposure of
any TAZ concentration with each ITC exerted limited cytotoxicity against HaCaT cells,
indicating their resistance to co-exposures (Figure 3C).
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Figure 2. Cytotoxic profile of TAZ against malignant melanoma and non-tumorigenic immortal-
ized keratinocyte cells. A375 (A), Colo-679 (B), and HaCaT (C) cells were subjected to increasing
concentrations of TAZ for 24–72 h. Cell viability levels were determined by using the Alamar Blue
assay. All data are expressed as means of five replicates ± standard error of the mean (SEM) and are
representative of three independent experiments. Statistical significance is indicated by * p < 0.05,
** p < 0.01, *** p < 0.001 relative to corresponding 0.1% DMSO controls.

2.2. Combination Index Analyses for Profiling Co-Exposure Interactions

Next, we sought to determine the nature of interaction between TAZ with each ITC
in A375 cells by means of combination index (CI) analysis (Table 1). The isobolographic
analysis indicated that the interactions between each ITC and TAZ were either synergistic
(CI < 1) or additive (CI = 1) according to different experimental conditions. Specifically, the
co-exposure of TAZ with SFN or PEITC exerted a synergistic action since CIs were 0.89 and
0.79, respectively, whereas when TAZ was combined with either IBN or BITC, an additive
action was observed (CIs: 1.02 and 1.09, respectively) (Figures S3 and S4).
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Figure 3. Cytotoxic profile of either single or combinatorial exposures of TAZ with each ITC against
malignant melanoma and non-tumorigenic immortalized keratinocyte cells. A375 (A), Colo-679 (B),
and HaCaT (C) cells were subjected to TAZ and/or each ITC alone or combined. Cell viability levels
were determined using the Alamar Blue assay. All data are expressed as means of five replicates ±
SEM and are representative of three independent experiments. Statistical significance is indicated by
* p < 0.05, and *** p < 0.001 relative to corresponding 0.1% DMSO controls and # p < 0.05, ## p < 0.01,
and ### p < 0.001 relative to the corresponding combinatorial exposure.
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Table 1. Interaction analysis between TAZ and each of the ITCs in A375 cells. Analysis was performed
by the Chou–Talalay technique, and all potential interactions were determined by calculating the
Combination Index. The CompuSyn software, V.20 (Biosoft, Cambridge, UK), was utilized where
CI < 1 indicates a synergistic, CI = 1 an additive, and CI > 1 an antagonistic interaction.

Combinatorial Exposure Combination Index
(CI) Agent Interaction

TAZ (35.0 µM) + SFN (10.0 µM) 0.89 Synergistic

TAZ (15.0 µM) + IBN (7.5 µM) 1.02 Additive

TAZ (35.0 µM) + PEITC (10.0 µM) 0.79 Synergistic

TAZ (15.0 µM) + BITC (7.5 µM) 1.09 Additive

2.3. Caspase-3 Activity Levels as an Index of Apoptotic Induction

Overall, caspase-3 activity was significantly increased in both A375 and Colo-679 cells
exposed to the highest (35 µM) as opposed to the lower (15 µM) TAZ concentration when
compared to non-exposed (control) cells. Moreover, a significant induction in caspase-3
activity was also observed in all exposures to each ITC as single agents. However, co-
exposures of TAZ with each ITC further potentiated apoptotic induction in A375 cells
(Figure 4A). A similar pattern was also observed in Colo-679 cells as, once again, the
co-exposures of TAZ with each ITC potentiated apoptosis to levels comparable to those
observed in A375 cells (Figure 4B).
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as means of five replicates ±SEM and are representative of three independent experiments. Statistical
significance is indicated by ** p < 0.01, and *** p < 0.001 relative to corresponding 0.1% DMSO controls
and ## p < 0.01, and ### p < 0.001 relative to the corresponding combinatorial exposure.

2.4. Differential Gene Expression Response of Major Apoptotic Pathways

Next, we evaluated, by RT-PCR, the effect of TAZ in regulating the expression of
genes implicated in intrinsic and extrinsic apoptotic as well as anti-apoptotic pathways.
Selection criteria included a higher than 2-fold regulation (up or down) in the majority of
co-exposure conditions in both A375 and Colo-679 cells (Figures 5 and 6).

Overall, a number of intrinsic (BAD, BAK1, and APAF1), extrinsic (TNF, TNFRSF1A,
TRADD, and TRAF5), and other (CASP2) apoptotic genes were found to be upregulated
following different co-exposure conditions in both cell lines (Tables S2 and S3). In addition,
CASP6 was upregulated, while c-FLAIR and BIRC3 were downregulated but only in A375
cells. Interestingly, in the cases of BAD, APAF1, TNF, TNFRSF1A, TRADD, and TRAF5, the
majority of co-exposures potentiated TAZ alone expression levels to a variable degree in
both cell lines (Tables S2 and S3).
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(B) in A375 cells exposed to TAZ as a single agent and/or in combined exposures with each ITC. Fold
changes in gene expression levels were determined by real-time PCR (RT-PCR) and are representative
of three independent experiments. Gene expression data were normalized to β-actin, using the 2−∆∆Ct

method, and were expressed as fold change compared to untreated (control) samples. Different
exposure conditions are represented in the x-axis, while genes are represented in the y-axis. Color
saturation represents the magnitude of gene expression.
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(B) in Colo-679 cells exposed to TAZ as a single agent and/or in combined exposures with each
ITC. Fold changes in gene expression levels were determined by real-time PCR (RT-PCR) and are
representative of three independent experiments. Gene expression data were normalized to β-actin,
using the 2−∆∆Ct method, and were expressed as fold change compared to untreated (control) samples.
Different exposure conditions are represented in the x-axis, while genes are represented in the y-axis.
Color saturation represents the magnitude of gene expression.
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2.5. Effect of Single and/or Co-Exposures on PRC2 and H3K27me3 Protein Expression Levels

Finally, we evaluated the effect of TAZ as either a single agent or in co-exposures
with each ITC on EZH2, EED, and SUZ12, as well as H3K27me3 protein expression levels.
Western blot analyses revealed no significant changes in the expression levels of EZH2
and EED but a much more significant reduction in the case of SUZ12 when exposed to
either TAZ or each ITC alone. In addition, TAZ was capable of reducing H3K27me3
expression levels, while surprisingly exposures to each class of ITCs resulted in increased
protein expression levels of H3K27me3 (Figure 7A). However, in the case of co-exposures,
the levels of EED and SUZ12 remained unchanged, but those of EZH2 appeared to be
reduced. Finally, a further increase in H3K27me3 expression levels was noted in the case of
co-exposures with SFN and BITC, when compared to co-exposures of TAZ with IBN and
PEITC (Figure 7B).
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3. Discussion

The importance of epigenetic alterations not only allows us to identify the underlying
mechanisms involved in melanoma pathophysiology but also enables us to develop more
efficient therapeutic strategies based on their reversible nature via the use of epi-drugs [5,18].
Although in recent years, an increased number of epi-drugs has been developed, only a
limited number has been introduced to the clinical practice, providing a significant therapeutic
potential mainly against hematological malignancies [19,20]. As such, there has been an
increasing interest in the use of phytochemicals as novel therapeutic agents [21,22]. In this
context, several studies have demonstrated a variety of natural bioactive compounds capable
of targeting the epigenome thereby altering gene expression and thus providing a therapeutic
benefit in cancer treatment. To this end, combinational treatments of synthetic epigenetic
inhibitors with bioactive phytochemicals appear as a promising “alternative approach” in
cancer management and treatment, as opposed to monotherapy [18,23]. Among different
phytochemicals, various types of ITCs have been shown to exhibit considerable activity
against various epigenetic processes by restoring a normal epigenetic landscape and ultimately
preventing tumor progression, including melanoma [12,24]. Based on the above characteristics,
our initial aim was to evaluate the anti-cancer effect of TAZ as a single agent, as well as in
co-exposures with various ITCs, against an in vitro model of human malignant melanoma.
Although the cytotoxic action of TAZ has been previously studied in several types of solid
tumors [25,26], limited studies have indicated its cytotoxic effect against melanoma [9]. On the
other hand, the anti-melanoma effect of TAZ, as a single agent, was potentiated in co-exposure
protocols with various ITCs (e.g., BITC, SFN, PEITC, and IBN) where the type of interaction
varied according to the type of ITC used. Our data revealed that co-exposures between TAZ
and SFN or PEITC induced a synergistic effect, whereas co-exposures between TAZ and
IBN or BITC induced an additive interaction. Moreover, our data revealed TAZ-induced
apoptosis to be at least 2-fold potentiated during co-exposures with each ITC, together with
significant alterations in the expression of genes involved in the intrinsic and/or extrinsic
apoptotic pathways. To this end, the role of both TAZ and ITCs in apoptotic induction has
been previously reported in various studies utilizing different cancer models. For instance,
TAZ-induced inhibition of EZH2 was shown to cause apoptotic activation in non-Hodgkin
lymphoma cells [27]. On the other hand, the dual inhibition of EZH2 and Bcl-2 (by TAZ and
Venetoclax, respectively) exerted a synergistic effect in mediating the apoptotic response in
diffuse large B-cell lymphoma, while in the same context, TAZ was shown to induce cell
cycle arrest and apoptosis against lymphoma cells in preclinical models [28,29]. In addition,
ITC-induced apoptosis has been linked with altered expression patterns of various pro- and
anti-apoptotic molecules. For example, exposure to PEITC inhibited the expression levels
of Bcl-2 and Bcl-XL, while Bak was increased in human pancreatic cancer cells. Moreover,
exposures to SFN and PEITC induced protein expression levels of p53, Bax, and caspase-
3, leading to apoptotic induction in Jurkat T-leukemia cells, while apoptosis activation via
increased ROS production was observed in cervical cancer cells [30–32]. Finally, SFN-mediated
apoptosis involved upregulation of Bax and decreased expression of Bim in non-small cell
lung cancer cells [33], while the activation of caspases-8, 9, 4, 3, 7, 6 was observed in melanoma
cells exposed to SFN, PEITC, and BITC [34].

One important target in the epigenetic therapy of melanoma is EZH2. For example,
EZH2 overexpression was shown to repress E-cadherin expression, ultimately leading to
Epithelial-Mesenchymal Transition (EMT), which, together with the repression of AMD1,
negatively regulates EMT and consequently metastasis [10]. Moreover, in an in vitro
model of mouse cutaneous melanoma, pharmacological inhibition of EZH2 significantly
reduced melanoma progression and decreased invasiveness, thereby leading to increased
survival [35]. Our results revealed that exposure to TAZ or each of the ITCs alone slightly
reduced the protein expression levels of SUZ12 only, while those of H3K27me3 were
significantly reduced when exposed to only TAZ. However, co-exposure of TAZ with
each ITC did not significantly alter the protein expression levels of any of the PRC2
family members, although H3K27me3 levels were further increased when co-exposed
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to TAZ with all tested ITCs. Although SFN, PEITC, and BITC were previously shown to
target the aberrant epigenetic landscape of several types of cancer, including melanoma,
the literature relevant to IBN’s involvement is rather limited [12]. For instance, in a
recent study, IBN (as well as SFN) were shown to possess anti-melanoma activity via the
reduction in histone deacetylase activity, modulation of various HDACs, methyl-, and
acetyl-transferases, thereby altering the methylation and acetylation status of distinct lysine
residues on H3 and H4 histones [16]. Given that gene silencing is a rather complex process
that involves not only the deposition of H3K27me3 but also the recruitment of various other
key epigenetic players (such as HDACs and DNMTs), it becomes apparent that any potential
role of ITCs in inducing the re-expression of previously repressed apoptotic genes needs to
be further investigated. Finally, it is also intriguing as to how significantly increased levels
of H3K27me3 levels occur in the presence of changes in the protein expression levels of the
PRC2 family members and especially that of EZH2, at conditions where TAZ is co-exposed
to ITCs, particularly SFN or BITC. To these ends, a better understanding of how SFN and
BITC induce TAZ’s potentiation of apoptosis is of paramount importance.

4. Materials and Methods
4.1. Cell Lines and Culture Conditions

A375 cells (non-metastatic melanoma) were purchased from the American Type Cul-
ture Collection (ATCC—Manassas, VA, USA), while Colo-679 (metastatic melanoma) cells
were purchased from DeutchSammlung von Mikroorganismen und Zellkultuten (DSMZ—
Braunscgweig, Germany). HaCaT (immortalized non-tumorigenic keratinocytes) cells were
kindly provided by Dr. Sharon Broby (Dermal Toxicology & Effects Group; Centre for
Radiation, Chemical and Environmental Hazards; Public Health England, London, UK).
All cell lines were tested for mycoplasma contamination and authenticated using the STR
method. A375 and HaCaT cells were maintained in DMEM high glucose media, while
Colo-679 was maintained in RPMI-1640 media (Biosera, Kansas City, MO, USA). Cells
were supplemented with 10% FBS, 1% pen/strep (100 U/mL penicillin and 100 µg/mL
streptomycin), and 2 mM L-glutamine (Biosera, Kansas City, MO, USA) and maintained
in a humidified incubator at 37 ◦C and 5% CO2. Cells were grown as monolayers and
subcultured when they reached 80–90% confluence. A375 and Colo-679 were utilized for
the purpose of demonstrating the therapeutic efficacy of TAZ, while HaCaT were utilized
as melanoma-neighboring keratinocyte cells to demonstrate the lack of TAZ-induced side
toxicity (often associated with many treatment protocols) in our experiments. In all experi-
mental procedures, 0.1% of DMSO was utilized (as the organic solvent used for diluting
TAZ and each of the ITCs) in order to demonstrate a lack of toxicity due to non-specific
DMSO-induced toxicity.

4.2. Determination of Cell Viability

At the end of all exposure conditions, cell viability was determined by the Alamar
Blue assay and expressed as a percentage of untreated (control) cells, while 0.1% DMSO
was used as a negative control in our experiments.

4.3. Exposure Protocols

A375 cells were subjected to increasing concentrations (30–40 µM) of TAZ as a sin-
gle agent (24–72 h of exposure) while respective EC50 values were calculated using the
CompuSyn software, V.20 (Biosoft, Cambridge, UK).

In another set of experiments, A375 cells were exposed to various combinational
conditions of TAZ with each of the ITCs over 48 h of exposure. Specifically, a range of
different EC50 values of TAZ (Selleckchem, Houston, TX, USA) were combined with pre-
determined EC50 values of SFN, IBN (Abcam, Cambridge, UK), PEITC and BITC (Sigma-
Aldrich, St. Louis, MO, USA) as previously described [15,16]. Consequently, combinatorial
treatments of TAZ with each of the ITCs were evaluated as follows: (i) 100% of the EC50 of
TAZ with 100% of the EC50 of each ITC; (ii) 75% of the EC50 of TAZ with 75% of the EC50 of
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each ITC; (iii) 50% of the EC50 of TAZ with 50% of the EC50 of each ITC; and (iv) 25% of the
EC50 of TAZ with 25% of the EC50 of each ITC (Exposure Protocol 1) (Figure S1).

Next, new EC50 values for both TAZ and different ITCs were selected by means of
maintaining a 50% reduction in viability levels of A375 cells. Consequently, A375 cells were
subjected to combined exposures consisting of (i) gradually decreasing concentrations of
the selected EC50 of TAZ together with (ii) gradually increasing concentrations of the EC50
of each ITC (Exposure Protocol 2) (Figure S2). Combined concentrations of TAZ with each
ITC (capable of causing a reduction in cell viability levels between 45 and 65%) were also
used for exposing HaCaT cells (Table S1). Finally, combinational conditions (that caused
a 50% decrease in cell viability in A375 and Colo-679 while maintaining it at over 80% in
HaCaT cells) were selected as optimized exposure conditions in all subsequent experiments
described thereafter. Specifically, our optimized combinational protocol consisted of the
following experimental conditions: (i) 35 µM of TAZ + 10 µM SFN; (ii) 15 µM TAZ + 7.5
µM IBN; (iii) 35 µM TAZ + 10 µM PEITC; and (iv) 15 µM TAZ + 7.5 µM BITC.

4.4. Combination Index Analyses

Combination index analyses were performed using the CompuSyn software, V.20
(Biosoft, Cambridge, UK) (Figure S3). According to the Chou–Talalay method, the inter-
actions between TAZ and each ITC were identified by calculating the Combination Index
(CI), which is considered the standard measure of combinatorial effect(s) [36–38].

4.5. Determination of Caspase-3 Activity Levels

Measurements were performed by utilizing the fluorometric caspase-3, -8, and -9 Mul-
tiplex Activity Assay Kit (Abcam, Cambridge, UK) as per the manufacturer’s instructions.
The activity of caspase-3 was monitored in a fluorescence microplate reader (Synergy H1,
Bio-Tek, Agilent, Santa Clara, CA, USA) at 535/620 nm.

4.6. Real-Time Polymerase Chain Reaction (RT-PCR) Protocol

Extraction of RNA was performed with the use of a NucleoZOL reagent (Macherey-
Nagel, Duren, Germany). RNA quality was determined with NanoDrop One/OneC
(Thermo Scientific, Waltham, MA, USA), whereas PrimeScript™ First Strand cDNA Syn-
thesis kit (TaKaRa, Dalian, China) was used for the synthesis of the complementary DNA
(cDNA). RT-PCR experiments were performed with the StepOne Plus RT-PCR system
(Applied Biosystems, Carlsbad, CA, USA) using SYBR Green qPCR mastermix (MedChem
Tronica, Sollentura, Sweeden). The sequences of forward and reverse primers were pur-
chased from Invitrogen, Thermo-Fischer Scientific (Waltham, MA, USA), and are listed
in Table S4. Finally, gene expression levels were normalized to β-actin and expressed as
fold-change compared to control (untreated) samples, using the 2−∆∆Ct method.

4.7. Western Immunoblotting Protocol

PBS-washed cells were lysed and then incubated for 30 min at 4 ◦C for preparation of
whole cell extracts. Determination of protein concentration was performed by utilizing the
Pierce™ BCA Protein Assay kit (Thermo Scientific, Rockford, IL, USA). Whole-cell extracts
were subjected to SDS-PAGE and then transferred on PVDF membranes (Millipore, Bedford,
MA, USA), which were incubated overnight at 4 ◦C with primary antibodies against anti-
EZH2 (1/1000), anti-EED (1/1000), anti-SUZ12 (1/2000), anti-tri-methyl Histone H3 (Lys
27) (1/1000) (Cell Signaling Technology, Boston, MA, USA) and anti-β-actin (1/20,000)
(Sigma-Aldrich, Taufkirchen, Germany). The next day, membranes were incubated with
the appropriate secondary antibody (Millipore, Bedford, MA, USA). Protein bands were
developed using a chemiluminescent substrate (Thermo Scientific, Rockford, IL, USA), and
images were obtained with a Vilber FUSION Solo 6X imager (Vilber Lourmat, Collégien,
France). Blots were stripped and re-probed with an appropriate antibody. Stripping and re-
probing of membranes with anti-β-actin antibody was used to ensure equal protein loading.
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4.8. Statistical Analyses

Data were expressed as mean values ± standard error of the mean (SEM), and compar-
isons were performed between untreated (control) and treated samples. Statistical analyses
were performed by one-way ANOVA with Tukey’s test for multiple comparisons, with the
use of Graph Pad Prism 5.0 (GraphPad Software, San Diego, CA, USA). Values of p < 0.05,
p < 0.01, and p < 0.001 were considered statistically significant.

5. Conclusions

We developed an experimental protocol based on novel combinational conditions,
providing evidence of its therapeutic efficacy. Specifically, via the use of different types
of ITCs, we were able to enhance the anti-melanoma activity of the clinical epigenetic
drug TAZ by maintaining its specificity and therapeutic efficacy against human malignant
melanoma cells while at the same time maintaining minimal toxicity in neighboring non-
tumorigenic keratinocyte cells. Furthermore, we documented the effect of our combined
experimental protocols in altering the expression levels of some of the PRC2 complex
members, as well as the expression levels of H3K27me3.
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