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Abstract: PRPH2, one of the most frequently inherited retinal dystrophy (IRD)-causing genes, implies
a high phenotypic variability. This study aims to analyze the PRPH2 mutational spectrum in one of
the largest cohorts worldwide, and to describe novel pathogenic variants and genotype–phenotype
correlations. A study of 220 patients from 103 families recruited from a database of 5000 families.
A molecular diagnosis was performed using classical molecular approaches and next-generation
sequencing. Common haplotypes were ascertained by analyzing single-nucleotide polymorphisms.
We identified 56 variants, including 11 novel variants. Most of them were missense variants (64%)
and were located in the D2-loop protein domain (77%). The most frequently occurring variants were
p.Gly167Ser, p.Gly208Asp and p.Pro221_Cys222del. Haplotype analysis revealed a shared region in
families carrying p.Leu41Pro or p.Pro221_Cys222del. Patients with retinitis pigmentosa presented
an earlier disease onset. We describe the largest cohort of IRD families associated with PRPH2 from
a single center. Most variants were located in the D2-loop domain, highlighting its importance in
interacting with other proteins. Our work suggests a likely founder effect for the variants p.Leu41Pro
and p.Pro221_Cys222del in our Spanish cohort. Phenotypes with a primary rod alteration presented
more severe affectation. Finally, the high phenotypic variability in PRPH2 hinders the possibility of
drawing genotype–phenotype correlations.

Keywords: retinitis pigmentosa; cone/cone–rod dystrophy; macular dystrophy; PRPH2;
genotype–phenotype correlation
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1. Introduction

Inherited retinal dystrophies (IRDs) are a group of rare diseases with a prevalence
of 1:3000–4000 individuals worldwide [1,2]. These conditions arise due to a genetic etiol-
ogy, leading to dysfunction of photoreceptor and retinal pigment epithelium (RPE) cells,
resulting in severe visual impairment or blindness. IRDs account for 5% of blindness in the
Western world, being the major cause of vision loss in children and young adults [3].

There are more than 300 genes and loci associated with these pathologies (RetNet,
https://web.sph.uth.edu/RetNet/, accessed on 29 December 2023). PRPH2 (MIM *179605)
is one of the most frequent non-syndromic IRD (NS-IRD) disease-causing genes, accounting
for 3.4% of individuals with the disease in Japan [4], 3% in the USA and Canada [5] and 4.6%
of families in the UK [6]. In Spain, pathogenic variants in PRPH2 are found in approximately
4% of families [7]. Currently, 318 pathogenic variants in PRPH2 have been described accord-
ing to the Human Gene Mutation Database (HGMD® 2023.4, https://digitalinsights.qiagen.
com/products-overview/clinical-insights-portfolio/human-gene-mutation-database/, ac-
cessed on 29 December 2023).

PRPH2, also called retinal degeneration slow (RDS), is located on chromosome
6p21.1. It encodes for peripherin-2 (PRPH2), a member of the tetraspanin family of
proteins, which contains four transmembrane domains, a cytoplasmatic loop (C-loop)
and two intradiscal loops (D1-loop and D2-loop) [8]. PRPH2 is expressed primarily
in the rim regions of rod and cone outer-segment discs and lamellae, being essential
for their proper formation [9–11]. Pathogenic mutations in PRPH2 can lead to a wide
spectrum of IRD presentations, including retinitis pigmentosa (RP), cone/cone–rod
dystrophy (CD/CRD), and macular dystrophy (MD), as previously reported [12,13].
PRPH2 is associated with high phenotypic variability even in patients belonging to the
same family [14–16].

The aim of this work is to analyze the PRPH2-associated mutational and clinical
spectrum in one of the largest cohorts recruited worldwide, and to describe genotype–
phenotype correlations and novel pathogenic variants.

2. Results

We collected genetic data on 220 patients carrying disease-causing variants of PRPH2
from 103 unrelated families with IRD. In addition, we gathered ophthalmic histories from
129 individuals, fundus image description from 100 patients and/or the electrophysiological
examination from 83 of the 220 patients.

2.1. Ophthalmic Characteristics of PRPH2 Patients

Table 1 summarizes the clinical features of 91 of the 220 individuals carrying pathogenic
PRPH2 variants for whom age at onset (AAO) of subjective symptoms data were available,
and we performed their phenotypic classification into two clinical groups: non-RP and
RP. A total of 38 of the 220 patients included in this study were referred to in our center
as “IRD affected”, lacking specific phenotype information. Consequently, they were not
included in the “RP” or “non-RP” groups. Out of 182 patients, there were 16 that were
asymptomatic at the age of the last examination (16, 9%) and who were ascertained during
family segregation after identifying a pathogenic PRPH2 variant in a close relative. Despite
the high phenotypic variability of our cohort, with an ample range of disease onset from
the 1st to the 7th decade (Table 1), clinical data among symptomatic cases showed a lower
number of patients with RP (35, 19%) compared to non-RP presentations (131, 72%).

2.2. Mutational Spectrum of PRPH2 Variants in Our Spanish Cohort

We identified 56 different variants in PRPH2, being heterozygous in 102 of the families,
showing autosomal dominant inheritance, and homozygous in 1 family. Twelve variants
were first reported by our team in previous studies [17–20]. The variants identified in our
cohort included 34 missense, 11 frameshift indels, 7 nonsense, 2 in-frame indels, 1 splicing
and 1 copy number variant (CNV) (Table 2). Missense variants were the most frequent

https://web.sph.uth.edu/RetNet/
https://digitalinsights.qiagen.com/products-overview/clinical-insights-portfolio/human-gene-mutation-database/
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in our cohort, accounting for 64% (67/104) of probands alleles (Figure 1A), followed by
truncating variants (28%, 29/104).

Table 1. Clinical characteristics of patients in our PRPH2-associated cohort. MD: macular dystrophy;
CR/CRD: cone dystrophy/cone–rod dystrophy; RP: retinitis pigmentosa; A: asymptomatic; AAO:
age at onset; VAL: visual acuity loss; VFL: visual field loss; NB: night blindness.

Patients’ Characteristics
Non-RP

RP A
MD CD/CRD

TOTAL (%) 103 (57) 28 (15) 35 (19) 16 (9)
Male (no. total) 43 14 11 6
Female (no. total)c 60 14 24 9
AAO (no. patients with data/total) 51/103 16/28 24/35 -
Median 40 41 24.5 -
Range 8–65 5–62 8–74 -
VAL, no. patients with data 41 13 16 -
Median 40 42 36.5 -
Range, years 8–65 5–62 12–74 -
VFL, no. patients with data 13 10 19 -
Median 45 46.5 35 -
Range, years. 25–60 5–65 12–74 -
NB, no. patients with data 16 11 19 -
Median 40.5 35 24 -
Range, years. 20–65 25–62 8–51 -
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Figure 1. Variant distribution in the PRPH2 Spanish cohort. (A) Distribution of alleles by type of 
variant, considering 103 probands. (B) Location of disease-causing coding variants in the protein 
structure and associated phenotypes. (C) Distribution of proband alleles by protein domain location. 
(D) Distribution of non-truncating and truncating alleles found in probands inside and outside the 
D2-loop domain (p-value = 0.0003). CNV: copy number variant; C: cytoplasmatic loop; D1: intra-
discal loop D1 (D1-loop); D2: intradiscal loop D2 (D2-loop); RP: retinitis pigmentosa. 

In our cohort, we identified several recurrent variants (Table 2), accounting for 64% 
of the families. The most recurrent variant was the previously reported p.Gly167Ser that 
is present in seven unrelated families with autosomal dominant CD/CRD and/or MD. The 
next two most frequent variants were p.Gly208Asp and p.Pro221_Cys222del, and each 
were carried by six unrelated families. Interestingly, this latter variant had only been de-
scribed to date in Spanish patients without any specific regional preference [19,50]. Addi-
tionally, the variant p.Leu41Pro which accounted for 4.8% of the total alleles, was identi-
fied in five unrelated families from the Basque Country, a region in northern Spain. 

To analyze a possible founder effect for these two recurrent variants, 
p.Pro221_Cys222del and p.Leu41Pro, we performed haplotype analysis using 10 SNPs. 
Remarkably, a common haplotype for each variant was shared exclusively among the 
PRPH2 mutation carriers (Table S1). These two haplotypes were formed using a different 
combination of genotypes for these 10 SNPs and both spanned a minimum of 0.3 Mb (chr6: 
42929839-42665888, hg37) between rs835 and rs7760250. Table S2 shows that r2 values fit 
the SNPs involved in these two common haplotypes, indicating that these loci are in link-
age equilibrium and are not coinherited. These results indicated the presence of a shared 
haplotype for p.Pro221_Cys222del and for p.Leu41Pro, suggesting that these mutations 
have a very likely ancestral origin in the carried families. 

Novel Disease-Causing Variants and PRPH2-VUS Identified in Our Cohort 
In this work, we identified 11 novel variants that were considered to be associated 

with the phenotype according to ACMG guidelines, in silico predictions and, when avail-
able, family segregation (Table S3). 

Figure 1. Variant distribution in the PRPH2 Spanish cohort. (A) Distribution of alleles by type of
variant, considering 103 probands. (B) Location of disease-causing coding variants in the protein
structure and associated phenotypes. (C) Distribution of proband alleles by protein domain location.
(D) Distribution of non-truncating and truncating alleles found in probands inside and outside the
D2-loop domain (p-value = 0.0003). CNV: copy number variant; C: cytoplasmatic loop; D1: intradiscal
loop D1 (D1-loop); D2: intradiscal loop D2 (D2-loop); RP: retinitis pigmentosa.
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Table 2. PRPH2 disease-causing variants identified in FJD-cohort. TMD: transmembrane domain; ACMG: American College of Medical Genetics; P: pathogenic; LP:
likely pathogenic; VUS: variants of uncertain significance; Het.: heterozygous state; Homo.: homozygous state.

Exon Nucleotide Change Protein Change Protein Domain ACMG Classification Type of Variant Allele Count (%) Het. Homo. Double Diagnosis References

1 c.52C>T p.Gln18* N-terminus LP (PVS1, PM2) nonsense 4 (3.85) 4 0 0 Del Pozo-Valero,
2022 [20]

1 c.112G>A p.Gly38Arg 1st TMD LP (PM2, PP1, PP2, PP3) missense 1 (0.96) 1 0 0 This study

1 c.113G>A p.Gly38Glu 1st TMD LP (PM2, PP2, PP3) missense 2 (1.92) 2 0 0 This study

1 c.122T>C p.Leu41Pro 1st TMD LP (PM2, PP3, PP2) missense 5 (4.81) 5 0 0 Peeters, 2021 [16];
Bianco, 2023 [21]

1 c.136C>T p.Arg46* D1-loop P (PVS1, PM2, PP5) nonsense 2 (1.92) 2 0 0 Meins, 1993 [22]

1 c.205del p.Val69Cysfs*30 2nd TMD P (PVS1, PM2, PP5) frameshift 1 (0.96) 1 0 0 Manes, 2015 [23]

1 c.290G>A p.Trp97* C-loop P (PVS1, PM2, PP5) nonsense 1 (0.96) 1 0 0 Antonelli, 2022 [24]

1 c.421T>C p.Tyr141His D2-loop P (PM1, PM2, PM5,
PP2, PP3, PP5) missense 1 (0.96) 1 0 0 Trujillo, 2001 [25]

1 c.424C>T p.Arg142Trp D2-loop LP (PM1, PM2, PM5,
PP2, PP5) missense 4 (3.85) 4 0 0 Hoyng, 1996 [26]

1 c.441del p.Gly148Alafs*5 D2-loop P (PVS1, PM2, PP5) frameshift 1 (0.96) 1 0 0 Trujillo, 1998 [27]

1 c.469G>A p.Asp157Asn D2-loop P (PM1, PM2, PM5,
PP2, PP3, PP5) missense 1 (0.96) 1 0 0 Jacobson, 1996 [28]

1 c.493T>C p.Cys165Arg D2-loop P (PM1, PM2, PM5,
PP2, PP3, PP5) missense 1 (0.96) 1 0 0 Simonelli, 2007 [29]

1 c.499G>A p.Gly167Ser D2-loop P (PM1, PM2, PM5,
PP2, PP3, PP5) missense 7 (6.73) 7 0 0 Testa, 2005 [30]

1 c.514C>T p.Arg172Trp D2-loop P (PM2, PM5,
PP3, PP2, PP5) missense 2 (1.92) 2 0 0 Wells, 1993 [31]

1 c.515G>A p.Arg172Gln D2-loop LP (PM1, PM2,
PM5, PP2, PP5) missense 2 (1.92) 2 0 0 Wells, 1993 [31]

1 c.520T>A p.Trp174Arg D2-loop P (PM1, PM2, PM5,
PP2, PP3, PP5) missense 1 (0.96) 1 0 0 Peeters, 2021 [16]

1 c.533A>G p.Gln178Arg D2-loop LP (PM1, PM2,
PP2, PP3, PP5) missense 1 (0.96) 1 0 0 Sohocki, 2001 [32]

1 c.536G>T p.Trp179Leu D2-loop P (PM1, PM2,
PM5, PP2, PP3, PP5) missense 1 (0.96) 1 0 0 Fernandez-San Jose,

2015 [18]
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Table 2. Cont.

Exon Nucleotide Change Protein Change Protein Domain ACMG Classification Type of Variant Allele Count (%) Het. Homo. Double Diagnosis References

1 c.556G>A p.Asp186Asn D2-loop LP (PM1, PM2,
PM5, PP2, PP5) missense 1 (0.96) 1 0 0 Kitiratschky,

2011 [33]

1 c.562del p.Ser188Profs*68 D2-loop LP (PVS1, PM2) frameshift 4 (3.85) 4 0 0 This study

1 c.567dupC p.Lys190Glnfs*28 D2-loop LP (PVS1, PM2) frameshift 1 (0.96) 1 0 0 This study

1 c.568A>G p.Lys190Glu D2-loop LP (PM1, PM2, PP2) missense 1 (0.96) 1 0 0 Falsini, 2022 [34]

IVS1 c.582-1G>A p.? - P (PVS1, PM2, PP5) splicing 2 (1.92) 2 0 0 Fernandez-San Jose,
2015 [18]

2 c.(581+1_582-1)_
(828+1_829-1)del p.? D2-loop to

4th TMD LP (PVS1, PM2) CNV 1 (0.96) 1 0 0 Weisschuh, 2020 [35]

2 c.584G>A p.Arg195Gln D2-loop P (PM1, PM2, PM5,
PP2, PP3, PP5) missense 1 (0.96) 1 0 0 Alapati, 2014 [36]

2 c.584G>T p.Arg195Leu D2-loop P (PM1, PM2, PM5,
PP1, PP2, PP5) missense 4 (3.85) 4 0 0 Yanagihashi,

2003 [37]

2 c.605G>A p.Gly202Glu D2-loop LP (PM1, PM2, PP2, PP5) missense 1 (0.96) 1 0 0 Maggi, 2021 [38]

2 c.609_625del p.Tyr204Profs*8 D2-loop P (PVS1, PM2, PP5) frameshift 1 (0.96) 1 0 0 Trujillo, 1998 [27]

2 c.623del p.Gly208Alafs*48 D2-loop LP (PVS1, PM2) frameshift 1 (0.96) 1 0 0 This study

2 c.623G>A p.Gly208Asp D2-loop P (PM1, PM2, PM5,
PP2, PP3, PP5, PS4) missense 7 (6.73) 4 2 1 Kohl, 1997 [39]

2 c.625G>A p.Val209Ile D2-loop LP (PM1, PM2,
PM5, PP2, PP5) missense 1 (0.96) 1 0 0 Coco, 2010 [40]

2 c.626del p.Val209Alafs*47 D2-loop P (PVS1, PM2, PP5) frameshift 1 (0.96) 1 0 0 Martin-Merida,
2019 [19]

2 c.628C>T p.Pro210Ser D2-loop P (PM1, PM2, PM5,
PP2, PP3, PP5) missense 1 (0.96) 1 0 0 Kemp, 1994 [41]

2 c.631T>C p.Phe211Leu D2-loop LP (PM1, PM2, PP2,
PP3, PP5, PS1) missense 1 (0.96) 1 0 0 Manes, 2015 [23]

2 c.633_656del p.Phe211_
Pro219delinsLeu D2-loop LP (PM1, PM2, PM4) inframe 1 (0.96) 1 0 0 This study

2 c.634A>G p.Ser212Gly D2-loop P (PM1, PM2, PM5,
PP2, PP3, PP5, PS4) missense 4 (3.85) 4 0 0 Farrar, 1992 [42]

2 c.637T>C p.Cys213Arg D2-loop P (PM1, PM2, PM5,
PP2, PP3, PP5) missense 1 (0.96) 1 0 0 Payne, 1998 [43]
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Table 2. Cont.

Exon Nucleotide Change Protein Change Protein Domain ACMG Classification Type of Variant Allele Count (%) Het. Homo. Double Diagnosis References

2 c.637T>G p.Cys213Gly D2-loop LP (PM1, PM2,
PM5, PP2, PP3) missense 1 (0.96) 1 0 0 This study

2 c.638G>T p.Cys213Phe D2-loop P (PM1, PM2, PM5,
PP2, PP3, PP5) missense 2 (1.92) 2 0 0 Villaverde, 2007 [44]

2 c.641G>A p.Cys214Tyr D2-loop P (PM1, PM2, PM5,
PP2, PP3, PP5) missense 2 (1.92) 2 0 0 Trujillo, 2001 [25]

2 c.643A>T p.Asn215Tyr D2-loop P (PM1, PM2, PM5,
PP2, PP3, PP5) missense 1 (0.96) 1 0 0 Martin-Merida,

2018 [17]

2 c.646C>T p.Pro216Ser D2-loop P (PM1, PM2, PM5,
PP2, PP3, PP5) missense 1 (0.96) 1 0 0 Fishman, 1994 [45]

2 c.649_650insTAGC
TGCTGCAATCCTA p.Ser217Ilefs*45 D2-loop LP (PVS1, PM2) frameshift 3 (2.91) 3 0 0 This study

2 c.653C>A p.Ser218* D2-loop P (PVS1, PM2, PP5) nonsense 1 (0.96) 1 0 0 Reeves, 2020 [46]

2 c.658C>G p.Arg220Gly D2-loop P (PM1, PM2, PM5,
PP2, PP3, PP5) missense 1 (0.96) 1 0 0 ClinVar

2 c.658C>T p.Arg220Trp D2-loop P (PM1, PM2, PM5,
PP2, PP3, PP5) missense 3 (2.91) 3 0 0 Payne, 1998 [43]

2 c.658del p.Arg220Glyfs36* D2-loop P (PVS1, PM2, PP5) frameshift 1 (0.96) 1 0 0 Boon, 2007 [47]

2 c.660_665del p.Pro221_Cys222del D2-loop LP (PM1, PM2, PM4, PP5) inframe 6 (5.77) 6 0 0 Martin-Merida,
2019 [19]

2 c.708C>A p.Tyr236* D2-loop LP (PVS1, PM2) nonsense 1 (0.96) 1 0 0 LOVD

2 c.708C>G p.Tyr236* D2-loop P (PVS1, PM2, PP5) nonsense 1 (0.96) 1 0 0 Strom, 2012 [48]

2 c.734_737dupTGTG p.Trp246Cysfs*56 D2-loop LP (PVS1, PM2) frameshift 1 (0.96) 1 0 0 Del Pozo-Valero,
2022 [20]

2 c.745G>C p.Gly249Arg D2-loop LP (PM1, PM2, PM5,
PP1, PP2, PP3) missense 1 (0.96) 1 0 0 This study

2 c.809_817delinsCC
TTCGAGGTA p.Leu270Profs*9 4th TMD LP (PVS1, PM2) frameshift 1 (0.96) 1 0 0 This study

2 c.818G>A p.Trp273* 4th TMD LP (PVS1, PM2, PP1) nonsense 1 (0.96) 1 0 0 This study

3 c.904G>A p.Glu302Lys C-terminus VUS (PM2, PP2, BP4) missense 1 (0.96) 1 0 0 ClinVar

3 c.914G>A p.Gly305Asp C-terminus LP (PM2, PP2, PP5) missense 2 (1.92) 2 0 0 Felbor, 1997 [49]
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The location of PRPH2-variants in the protein domains and associated phenotypes
observed in our cohort are represented in Figure 1B. There was a clear enrichment of
disease-causing PRPH2 variants in the D2-loop domain, which harbors 77% of the disease-
causing coding SNVs found in our cohort total (Figure 1C). As shown in Figure 1D, this
domain was significantly enriched in non-truncating alleles (86%) versus truncating alleles
(63%) (p-value = 0.0003). Specifically, there are several variants close to crucial cysteine
residues involved in forming disulfide bounds between Cys165, Cys213, Cys214 and Cys222
(Figure 1B). Additionally, it is observed that there is an enrichment of the RP phenotype in
this region, although it was not statistically significant.

In our cohort, we identified several recurrent variants (Table 2), accounting for 64% of
the families. The most recurrent variant was the previously reported p.Gly167Ser that is
present in seven unrelated families with autosomal dominant CD/CRD and/or MD. The
next two most frequent variants were p.Gly208Asp and p.Pro221_Cys222del, and each were
carried by six unrelated families. Interestingly, this latter variant had only been described
to date in Spanish patients without any specific regional preference [19,50]. Additionally,
the variant p.Leu41Pro which accounted for 4.8% of the total alleles, was identified in five
unrelated families from the Basque Country, a region in northern Spain.

To analyze a possible founder effect for these two recurrent variants, p.Pro221_Cys222del
and p.Leu41Pro, we performed haplotype analysis using 10 SNPs. Remarkably, a common
haplotype for each variant was shared exclusively among the PRPH2 mutation carriers
(Table S1). These two haplotypes were formed using a different combination of genotypes
for these 10 SNPs and both spanned a minimum of 0.3 Mb (chr6: 42929839-42665888,
hg37) between rs835 and rs7760250. Table S2 shows that r2 values fit the SNPs involved
in these two common haplotypes, indicating that these loci are in linkage equilibrium
and are not coinherited. These results indicated the presence of a shared haplotype for
p.Pro221_Cys222del and for p.Leu41Pro, suggesting that these mutations have a very likely
ancestral origin in the carried families.

Novel Disease-Causing Variants and PRPH2-VUS Identified in Our Cohort

In this work, we identified 11 novel variants that were considered to be associated with
the phenotype according to ACMG guidelines, in silico predictions and, when available,
family segregation (Table S3).

First, we identified six novel variants, four of them in the D2-loop domain and two
in the 4th transmembrane domain, which are expected to lead to a truncated protein. The
novel frameshift variants c.562del, c.567dup, c.623del, c.649_650insTAGCTGCTGCAATCCTA,
c.809_817delinsCCTTCGAGGTA and the novel nonsense p.Trp273* variant were not identified
in population databases. Additionally, p.Trp273* was segregated in an affected relative.

In addition, we found five novel non-truncating variants that are predicted to cause a
deleterious effect by destabilizing protein structure. All these variants had not previously
been reported in population databases, and in silico predictors classified them as damaging
(Table S3). First, we identified two novel missense variants affecting p.Gly38, a highly
conserved residue on the first transmembrane domain of PRPH2. The variant c.112G>A,
which substitutes the uncharged Gly38 to the bigger polar-positive-charged Arginine
(p.Gly38Arg) in the protein core, was found in a proband with RP, and her two affected
siblings referred to our service with initial diagnoses of RP and MD, respectively. A
second variant c.113G>A, which changes this non-polar Gly38 to a polar-negative-charged
Glutamic acid (p.Gly38Glu), was carried by two unrelated probands referred with MD.

Additionally, we have found two unreported non-synonymous aspects variants in the
hotspot D2-loop domain. The novel missense c.637T>G introduces a non-polar Glycine
in place of the highly conserved Cys213, which is involved in forming a crucial disulfide
bridge with Cys166 for keeping the proper protein structure. The variant c.637T>G was
segregated in the affected son. The missense variant c.745G>C replaces the uncharged
Gly249 with a polar Arginine that would lead to a steric clash in the protein core of
PRPH2. This residue is also involved in the likely pathogenic variant Gly249Ser reported
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previously [51]. The novel variant Gly249Arg was carried by two affected relatives from
the same family with MD. Finally, the in-frame variant c.633_656del, which leads to the
loss of nine highly conserved residues p.(Phe211_Pro219delinsLeu) in the hot-spot D2-loop
region, including Cys213 and Cys214, was not present in population databases.

Moreover, the variant c.904G>A (p.Glu302Lys) in the C-terminal domain was identified
in two affected individuals of the family PRPH2-099. This variant was previously reported
in ClinVar as a VUS and not found in gnomAD population databases. Although it changes a
negatively charged Glutamic acid residue using a positively charged Lysine, computational
prediction tools unanimously supported a benign effect of this variant. Both the proband
and her daughter presented with RP, but it was not possible to perform a segregation
analysis on other non-affected relatives. Finally, we have considered that this variant
remains a VUS because there is insufficient evidence to reliably support its implication as
the cause of RP in this family (Table S3).

2.3. Genotype–Phenotype Correlations

Due to the high phenotypic variability observed in our cohort, we performed a
genotype–phenotype analysis to identify possible correlations between the type (truncating/
non-truncating) and protein location (inside/outside D2-loop) of the variant and the
AAO of the first symptom. Figure 2A shows statistically significant differences between
patients with RP and patients with non-RP in relation to the AAO (p-value < 0.005).
Figure 2B shows a trend between the protein consequence related to disease onset, with
patients with non-truncating SNVs presenting earlier onset (p-value < 0.1). Regarding
protein location, there were no statistically significant differences, but a trend was
observed for patients with variants located inside the D2-loop to have an earlier AAO
(Figure 2C).

Phenotypic variability was observed for carriers of the same variant. As shown in
Figure 1B, eight variants have been associated in our cohort with different diagnoses
of IRD (RP and non-RP). In this sense, we evaluated the high phenotypic variability
associated with the recurrent variant p.Gly208Asp in our cohort that was carried by
11 patients from six unrelated families who were referred for genetic testing with dif-
ferent diagnoses (Table S4). Interestingly, for two unrelated patients (PRPH2-057 and
PRPH2-058), the AAO of first symptoms was earlier than in five carriers with available
clinical data, whose first symptoms were developed during their third–sixth decade.

First, the patient PRPH2-057 was a sporadic case born into an endogamic family with
no relevant history of ocular disease that carried homozygously p.Gly208Asp. The disease
onset in this patient was in the second decade. No ophthalmic data was available from
relatives; therefore, incomplete penetrance cannot be excluded for this variant, which is
similar to what has been previously reported [52] (Figure 3A).

The patient PRPH2-058-1 showed their first symptom in their first decade. As shown
in Figure 3A, the patient at 56 years old showed typical retinal features of RP, with no
macular involvement. In addition to the heterozygous PRPH2 variant, IRD genetic testing
identified two additional pathogenic variants IMPG2, c.513T>G; p.Tyr171* and c.2322G>A;
p.Trp774 (NM_016247.4). The family-segregation analysis for IMPG2 showed that both
variants were compound heterozygous (Figure 3B). The proband’s mother, who also carried
the variant p.Gly208Asp in PRPH2, was diagnosed with macular degeneration at 60 years
old. The diagnosis of early-onset retinitis pigmentosa in this patient was even earlier than
observed in the PRPH2-related patients with RP of our cohort (Table 1), which seems to be
a compatible phenotype with IMPG2 causative variants (Figure 4A).

The PRPH2-related different severity was also observed even in the same patient. As
shown in Figure 4B, the patient PRPH2-018-5, who carried the variant p.Arg142Trp, pre-
sented with macular dystrophy with different severities between both eyes on funduscopy
and OCT. This patient had suffered with night blindness and photophobia since her youth,
and dyschromatopsia only in RE. The patient reported visual acuity loss (VAL) at 53 years
old, with 1.7 in the RE and 0.8 in the LE (logMAR).
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3. Discussion 

Figure 4. Retinal imaging of patients carrying PRPH2. Tomographic, fundoscopic and fundus autoflu-
orescence (FAF) of right eye (RE) and left eye (LE) for 2 patients with disease-causing PRPH2 variants.
(A) Patient PRPH2-058 is a 56-year-old female, with a diagnosis of early-onset retinitis pigmentosa,
carrying the prevalent variant p.Gly208Asp in PRPH2, and biallelic variants in IMPG2 ((A1–A3):
RE; (A4–A6): LE). OCT depicted the absence of extensive outer layers in both eyes affecting the
fovea without cystic macular oedema. Fundoscopy revealed pale papilla with vascular attenuation,
macula without pigmentary alterations, and absence of bone spicules but scattered pigmentary
alterations in the periphery of both eyes. FAF images showed peripapillary atrophy with mottled
hypoautofluorescence of the posterior pole, which was more evident in arcades, patches of atrophy
in the extreme temporal periphery in RE and some small patches of atrophy in the extreme temporal
periphery in LE. (B) Patient PRPH2-018-5 is a 61-year-old female, carrying the variant p.Arg142Trp,
with a diagnosis of MD, for which clinical imaging shows a different severity in RE (B1–B2) and LE
(B3–B4). OCT depicted well-delimited macular atrophy with the disappearance of outer retinal layers
in RE and detachment of subfoveal neuroepithelium with thickening of the ellipsoid layer at this
level in LE. FAF images showed well-demarcated hypoautofluorescence plaque affecting fovea with
surrounding hyperaurofluorescence at its nasal rim and mottled hypo/hyperautofluorescence at its
temporal rim in RE and central hypoautofluorescence with areas of reticular hyperautofluorescence
within it in LE.
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3. Discussion

In this work, we describe the largest cohort of unrelated IRD families carrying disease-
causing variants in PRPH2 recruited from a single center. According to Wang Y. et al. around
1000 families have been described worldwide with PRPH2-associated retinopathy [53];
therefore, the current Fundación Jiménez Díaz (FJD) cohort, composed of 103 families,
accounts for about 10% of the total number of IRD-described families.

We identified 56 different variants in the FJD-cohort, of which 41% (23/56) were
first identified in this cohort, 11 in this current work and 12 in previous studies [17–20].
Additionally, this work supports the pathogenicity for the variants p.Arg220Gly first
reported in ClinVar as likely pathogenic, and c.708C>A;p.Tyr236* first reported in LOVD
(VKGL data sharing initiative Nederland) as pathogenic, but they have not been reported
in the literature previously. The variant p.Arg220Gly affects the same residue as other
pathogenic variants previously described [43,54,55]. The variant c.708C>A has the same
consequence (p.Tyr236*) as the previously described variant c.708C>G [4,36]. Currently,
there are 318 PRPH2 variants associated with IRD (Human Gene Mutation Database,
HGMD® 2023.4, last access December 2023), so we identified in our cohort almost 1/5 of
the variants previously described. Furthermore, 19 of the 56 variants in our cohort are
recurrent, i.e., identified in two or more families, accounting for 63% of allele frequency;
thus, these variants are responsible for more than half of our Spanish cohort.

As in other reported studies [4–6], PRPH2 is one of the most frequent genes in our cur-
rent cohort of 5124 families with IRD, accounting for 4% of non-syndromic IRD families [7].
However, there are mutational differences between the different cohorts studied according
to ethnicity (Table 3). In our Spanish cohort, the most frequent variants were p.Gly167Ser,
p.Gly208Asp and p.Pro221_Cys222del, whereas in Chinese, Japanese and USA cohorts,
the variants p.Gly305Alafs*19, p.Arg142Trp and c.828+3A>T, accounted for 33.3%, 13.3%
and 17.4% of alleles, respectively [46,53,56]. By contrast, these frequent variants were a
minority in our cohort at 1.9%, 3.9% and 0%, respectively. Similarly, the common variant
p.Arg172Trp reported in several cohorts worldwide [39,43,46,53,56–58], only accounted for
1.9% of alleles in ours.

Table 3. Comparison of the frequency of recurrent variants in different cohorts from China, Japan
and the USA. n: number of studied families.

Variant
Chinese Cohort

(Wang, 2023) [53]
(n = 15)

Japanese Cohort
(Oishi, 2021) [56]

(n = 30)

USA Cohort
(Reeves, 2020) [46]

(n = 161)

Spanish Cohort
(This Study)

(n = 103)

c.122T>C
(p.Leu41Pro) Not reported Not reported Not reported 4.8%

c.424C>T
(p.Arg142Trp) Not reported 13.3% 3.1% 3.9%

c.499G>A
(p.Gly167Ser) Not reported 6.7% 0.6% 6.7%

c.514C>T
(p.Arg172Trp) 6.7% 13.3% 5.6% 1.9%

c.599T>A
(p.Val200Glu) Not reported 10.0% Not reported Not found

c.623G>A
(p.Gly208Asp) Not reported Not reported 0.6% 6.7%

c.660_665del
(p.Pro221_Cys222del) Not reported Not reported Not reported 5.8%

c.828+3A>T (p.?) Not reported Not reported 17.4% Not found

c.914G>A
(p.Gly305Alafs*19) 33.3% Not reported Not reported 1.9%
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In this work, we identified some variants that appear to be unique to the Spanish
population. First, a novel in-frame variant p.Pro221_Cys222del was recurrently present in
our cohort in six unrelated families, accounting for 5.8% of total alleles. To our knowledge,
this variant has been only reported in Spanish patients [19,50]. Additionally, the variant
p.Leu41Pro was present in five unrelated families (4.8% allele frequency), all of them from
the Basque Country. For both variants, haplotyping analysis indicated the presence of
a shared haplotype in carriers associated with each pathogenic variant, suggesting that
they arose from, very likely, a founder effect. Concerning the variant p.Leu41Pro and its
identification in five unrelated families from the Basque Country, the geographical isolation
that has historically occurred in this region of Northern Spain supports its likely founder
effect. Based on the work of Irene Perea-Romero et al., 2021, it is known that 5% (285/6,089)
of the families in our IRD-cohort are referred from the Basque Country (see Figure 1 in that
article). Therefore, these data add further credibility to the results.

The prevalence of missense PRPH2-variants in our cohort (64% of the total) is close
to those of previous reports, 47% to 63% [16,46]. Similarly to the reported data [16,46],
most of the pathogenic variants, including the vast majority of missense, were located in
the D2-loop protein domain (77%), which mediates the crucial interaction with ROM1 for
proper formation of the photoreceptor outer segment [59,60]. Specifically, most variants
are located near four cysteine residues, Cys165, Cys213, Cys214 and Cys222, crucial for
forming disulfide bounds for proper folding and subunit assembly [61], highlighting their
importance in protein function.

Our findings also show a significantly earlier AAO in patients with RP than in the
subgroup of non-RP. Interestingly, it is also observed that there is an enrichment of RP
phenotypes in the cysteine residues region, although this is not statistically significant,
supporting the important role of this region. However, due to the fewer cases presenting
with RP in the PRPH2-cohort (19%) and the presence of the non-RP phenotype also in this
region, a larger sample size would be necessary. A study published by Ikelle et al. revealed
that the toxicity of the mutant protein and reduced protein levels affects more rods than
cones [62], which could be associated with an earlier onset in the RP-related patients from
our cohort. However, our results show high phenotypic variability among patients, even
those belonging to the same family or in the same individual, as reflected by the different
severity between RE and LE. Consequently, the phenotypic variability associated with
PRPH2 variants makes it difficult to draw more extensive genotype–phenotype correlations.

Furthermore, we identified two different genotypes for the variant p.Gly208Asp that
modulated disease onset in two patients from unrelated families. In our cohort, patients
who only carry this pathogenic variant in the heterozygous state had an AAO of first
symptoms between their third and sixth decade, whereas one homozygous patient from
our cohort, with no family history, debuted symptoms in their second decade. This variant
has recently been reported in a CRD family with incomplete penetrance [52]. Similarly,
Wang et al. also reported two homozygous patients for the PRPH2 variants Cys213Arg
and p.Leu185Pro, with Leber congenital amaurosis or juvenile RP [63]. Our findings also
support that biallelic PRPH2 variants are responsible for more severe early-onset retinal
dystrophy. Moreover, another patient in our cohort with the same variant p.Gly208Asp
also had an earlier onset of the first symptoms in their first decade. However, this patient
also carried biallelic pathogenic variants in IMPG2. Recessive variants in this gene are
associated with the presentation of early-onset RP [64]. Further investigation is needed in
order to clarify the effect of the PRPH2 variant in this particular case. The identification
of disease-causing variants in more than one IRD-associated gene poses an additional
challenge to determine the exact pathogenic progression of the disease due to possible
modifying effects with one another. For this reason, we believe more research in this
direction will help to further elucidate these phenomena.

In conclusion, here, we describe the largest cohort of patients with PRPH2-associated
IRD from a single center, in which we have found a very likely founder effect for
two recurrent variants, and we describe genotype–phenotype correlations. These find-
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ings expand our understanding about the mutational and phenotypic spectrum of
PRPH2, relevant not only to the Spanish population but also on a global scale, consider-
ing the extensive Spanish diaspora, especially in Latin America.

Study Limitations

This PRPH2-cohort is part of our IRD-cohort, recruited by FJD [7], which exhibits
a skewed recruitment pattern, with more individuals from Madrid and its surrounding
areas (such as Castile and Leon, Castile-La Mancha, and Extremadura). This bias likely
stems from our hospital and has been the reference center for these regions. Despite these
limitations, our IRD-cohort, and, therefore, also our PRPH2-cohort, present a sizable sample
size and a comprehensive molecular analysis performed over the years, making our study
representative of the Spanish population.

Additionally, ophthalmic examinations of the patients were performed at different
Spanish centers. Therefore, the classification of patients without examination data accessible
in FJD was based on the reason for referral.

4. Materials and Methods
4.1. Subjects

A total of 220 patients from 103 unrelated families carrying disease-causing vari-
ants in PRPH2 were included in our study. These families were identified from a
cohort of 5124 unrelated families with IRD referred for genetic testing to the Genetics
Service of the Fundación Jiménez Díaz University Hospital (FJD, Madrid, Spain) from
different hospitals throughout Spain from 1990 to December 2023. Patients carrying
disease-causing variants in PRPH2 were selected from the local clinical database. Avail-
able genetic and ophthalmological data were obtained from a retrospective review of
electronic medical records.

All subjects signed informed consent before participating. The study project was ap-
proved by the FJD Research Ethics Committee (Approval No.: PIC172-20_FJD, 16 September
2020) and fulfills the tenets of the Declaration of Helsinki and its further reviews.

4.2. Clinical Classification

For 129 of the 220 patients with molecular diagnoses, clinical data were collected
from a self-reported ophthalmic history recorded from questionnaires. Ophthalmic
exam data, such as electrophysiology and/or description of fundus images were also
collected from 83 and 100 patients, respectively. A detailed examination of 57 patients
was performed at the Department of Ophthalmology of the FJD, including best-corrected
visual acuity, Humphrey visual field testing, electroretinography testing, and clinical
imaging, including fundus color imaging, fundus autofluorescence, and spectral-domain
optical coherence tomography.

Patients were classified using the available ophthalmic data and/or the “reason of
referral” with functional or morphological criteria into two subgroups: (i) RP, which
included patients with signs of peripheral rod dysfunction, and (ii) non-RP, which included
patients with CD/CRD and/or MD. Several patients subjectively reported having no
symptoms at the age they were examined, but those carrying pathogenic PRPH2 variants
previously identified in their affected relatives were referred to as asymptomatic (A) in
Table S4. Functional criteria were based on ERG recordings or, when unavailable, on
reported clinical manifestations, and morphological criteria were based on the description
of fundus images.

4.3. Molecular Diagnosis and Analysis of Variants

PRPH2 variants were identified using different molecular approaches: (a) commercial
genotyping arrays (Asper Biotech, Tartu, Estonia), (b) direct Sanger sequencing of coding
regions of PRPH2, (c) multiplex ligation-dependent probe amplification (MLPA) kits for
PRPH2 (MRC-Holland, Amsterdam, the Netherlands), and (d) next-generation sequencing
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(NGS), including custom IRD gene panels, clinical exome sequencing (CES) and whole-
exome sequencing (WES), as previously described [17,18,54]. In addition, screening for
known family pathogenic variants and segregation studies, when possible, was performed
using Sanger sequencing.

The variant interpretation was based on the American College of Medical Genetics
and Genomics (ACMG) guidelines [65], in silico predictions and family segregation. The
variants found in PRPH2 were explored in different databases: (i) Human Gene Muta-
tion Database, HGMD® 2023.4, (https://digitalinsights.qiagen.com/products-overview/
clinical-insights-portfolio/human-gene-mutation-database/, accessed on 29 December
2023), (ii) ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/, accessed on 29 December 2023)
and (iii) Leiden Open Variation Database v.3.0, LOVD, (https://www.lovd.nl/, accessed
on 29 December 2023).

The potential effect of variants of uncertain significance (VUS) and novel missense
variants was assessed in silico using functional pathogenicity, conservation, and protein
stability predictors including the Ensembl Variant Effect Predictor [66] and DynaMut2 [67].

4.4. Haplotype Analysis

To identify common ancestral haplotypes, genotypes of 10 informative single-nucleotide
polymorphisms (SNPs) markers (Table S1) for a region 0.3 Mb surrounding PRPH2 (rs835,
rs434102, rs425876, rs3818086, rs6928781, rs7764439, rs3763236, rs9471969, rs10948059 and
rs7760250) were ascertained using the available CES data from four patients carrying the
variant p.Leu41Pro and four carrying the variant p.Pro221_Cys222del. Haplotypes were
compared with four unrelated patients carrying other PRPH2 pathogenic variants. The
pairwise linkage disequilibrium (LD) data of these SNPs in the Iberian population were
explored using the Ensembl Linkage Disequilibrium Calculator [68] (Table S2).

4.5. Statistical Analysis

Phenotypic features considered for statistical analysis were the self-reported AAO of
the first symptom, including visual acuity (VA) and visual field (VF) loss, metamorphopsia,
photophobia and night blindness (NB). Categorical and continuous data were expressed
as proportions and the median, respectively. Genotypes were stratified according to
(a) variant type, considering truncating (frameshift indels, splicing, and nonsense changes)
versus non-truncating variants (missense and in-frame indels), and (b) protein location, as
inside versus outside the D2-loop domain. Statistical analysis was assessed using Kaplan–
Meier analysis of ophthalmological symptoms event-free survival and compared using
a log-rank test. Comparisons of the distribution of non-truncating and truncating alleles
inside and outside the D2-loop found in probands were assessed by applying Fisher’s
exact test. p-values < 0.05 were considered statistically significant. Statistical analyses were
performed using R version 4.2.2, including the library of survival for survival analyses.
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