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Research on carbon-based nanomaterials, such as carbon nanotubes and graphene and
its derivatives, has experienced exponential development in recent years. The unlimited
possibilities to adjust and tailor carbon nanomaterials are related to their nanometer size
and huge specific surface area, making them suitable for a wide range of applications. The
intention of this Special Issue is to provide an opportunity for the publication of articles
regarding carbon-based nanomaterials and their uses in different fields, such as electronics,
energy storage, biomedicine, and sensing.

Electrospinning is a technique widely used for processing carbon nanotubes and
their corresponding polymeric nanocomposites [1,2]. The main benefit of this approach
is the possibility to control the fiber diameter and pore size via modifying the setup
parameters [3]. However, this technique cannot be applied to some composites due to
their solution viscosity or low conductivity [4–6]. The incorporation of CNTs is an easy
way to control the rheological properties of polymer solutions, although the effects are
strongly dependent on the nanotube size, concentration and state of dispersion [7,8]. When
CNTs are mixed with an insulating matrix, they form a network that increases matrix
conductivity [9]. The electrical properties of CNTs also lead to their alignment within the
scaffold during electrospinning, unlike when they spread on polymer films, which builds a
different kind of network [10,11].

Graphene oxide (GO) is an oxidized form of graphene that can bring numerous
benefits, including functionalization capability, amphiphilicity, and biocompatibility [12],
and can be suitable as sensitive material for small-dimension dosimeters. These GO-
based dosimeters can deliver stable readings and the 3D spatial distribution of a dose,
information which is decisive in areas such as radiotherapy and radioactive contamination.
Several studies have reported the feasibility of GO as a dosimeter using different types of
ions [13,14], and it was found that without electronic power, GO reduction was proportional
to the absorbed dose, while after power was restored, the linearity vanished.

In addition, nanosized rGO spots can be produced via the swift heavy ion (SHI) bom-
bardment of GO films. These spots can be regarded as graphene quantum dots surrounded
by an insulating matrix at low doses of irradiation [15]. They comprise oxygenated groups
at the edges that can act as reaction sites and modify the photoluminescence emitted from
the dots by varying their electron density [16]. Their synthesis via radiation technology is
an effective, rapid, and scalable method for the preparation of graphene quantum dots that
enables one to adjust morphology and size [17]. Cutroneo et al. [18] recently reported the
synthesis of nanosized GO spots at low doses of ion irradiation in a regime of electronic
stopping power. These nanostructures show great potential to be used in applications
requiring huge area coverage like light-controlled conductive switching [19].

The use of renewable clean energies is a key way to globally attain net-zero emissions
in 2050 [20,21]. With the continuous progress of renewable energy sources, very stable
energy storage devices are needed for leveling the intermittent electricity output [22]. Most
operational projects use lithium- or sodium-ion batteries as substitutes for ESDs [23] due to
their rapid response time and tailorable output. Sodium-ion batteries seem to be preferable
since the element is cheaper and more abundant [24]. However, the execution of this
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technology has been delayed due to several issues, including the kinetic mismatch between
the anode and cathode. Carbon nanomaterials have emerged as potential anodes for this
type of battery owing to their improved electrical, thermal, and mechanical properties and
cost-effectiveness [25,26]. Among them, microporous carbon has been demonstrated to be a
good candidate [27]. In this regard, nitrogen-doped and zinc-confined microporous carbon
particles were recently prepared via thermally pyrolyzed polyhedral ZIF-8 nanoparticles
which were used as anodes in sodium-ion batteries/capacitors [28].

Depression is a common disorder that affects people all over the world [29]. Con-
sequently, many efforts are devoted to the design of novel drugs that aid patients in
overcoming this illness. Vortioxetine (VOR) is one of the most common drugs used for this
type of treatment [30,31]. It employs a multimodal means of action via changing the activity
of serotonergic receptors and inhibiting the activity of serotonin transporters [32]. Numer-
ous analytical approaches have been described to attain a sensitive determination of VOR
in different matrices, the most common being high-performance liquid chromatography
(HPLC) [33–36]. Nonetheless, despite their good sensitivity and selectivity, they require
expensive equipment and harmful organic solvents. Thus, voltametric methods may be
an alternate method for VOR determination. In this regard, Smajdor et al. [37] designed
a new approach based on square-wave voltammetry to detect this analyte, using glassy
carbon electrodes modified with electrospun carbon nanofibers and NiCo nanoparticles,
and applied it in several samples including urine and plasma.

Pathogens are key causes of infections all over the world that affect human health [38].
Usually, they are treated via radiation or chemical disinfectants [39] which are inexpensive
but require high doses and generate many byproducts [40,41]. The COVID-19 pandemic
has shown the necessity for antiviral nanomaterials which can be implanted in personal
protective equipment [42]. Metal nanoparticles and metal complexes are also useful as
antimicrobial agents due to their exceptional properties, including their nanoscale size
and large specific surface area for improved interaction [43,44]. Carbon nanomaterials
have also been demonstrated to be good antiviral agents. However, few works on the
antiviral properties of hybrid nanomaterials have been reported. Recently, the antibacterial
properties of CNTs using E. coli and G. stearothermophilus strains and the antiviral properties
of different functionalized CNTs, were reported [45]. The strong physical and chemical
interactions between CNTs and metal oxides can result in synergistic effects that improve
antiviral efficiency [46].
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