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Abstract: The troponin complex—consisting of three subunits: troponin C (TnC), cardiac troponin I
(cTnI) and cardiac troponin T (cTnT)—plays a key role in the regulation of myocardial contraction.
Troponins are preferentially localized in the cytoplasm and bind to myofibrils. However, numerous,
albeit scattered, studies have shown the presence of troponins in the nuclei of muscle cells. There
is increasing evidence that the nuclear localization of troponins may be functionally important,
making troponins an important nuclear player in the pathogenesis of various diseases including
cancer and myopathies. Further studies in this area could potentially lead to the development of
treatments for certain pathologies. In this review, we collected and discussed recent data on the
properties of non-canonically localized cardiac troponins, the molecular mechanisms leading to this
non-canonical localization, and the possible functions or pathological effects of these non-canonically
localized troponins.

Keywords: cardiac troponin; nuclear localization; importin; transcription; NLS; NoLS; mitochondrial
localization; extracellular troponins

1. Introduction

A canonical muscle cell contractile unit—the sarcomere—contains bundles of properly
arranged actin and myosin filaments, whose interactions are regulated by accessory pro-
teins, troponins (Tns), and tropomyosin (Tm). The troponin-tropomyosin complex utilizes
changes in intracellular Ca2+ concentration to generate muscle contraction [1]. The troponin
complex consists of the Ca2+-binding subunit—troponin C (TnC), tropomyosin-binding
subunit—troponin T (TnT), and inhibitory subunit—troponin I (TnI). Each Tn subunit
has several forms that are specific to skeletal muscle, cardiac muscle, or different muscle
variants [2]. TnC has two known forms: a slow TnC isoform (TnC, gene TNNC1) that is
specific for both skeletal and cardiac muscles and a fast skeletal TnC isoform (fsTnC, gene
TNNC2). TnT has three forms: slow skeletal (ssTnT, gene TNNT1), fast skeletal (fsTnT, gene
TNNT3), and cardiac (cTnT, gene TNNT2). TnI also exists in three different forms: slow
skeletal (ssTnI, gene TNNI1), fast skeletal (fsTnI, gene TNNI2), and cardiac (cTnI, gene
TNNI3).

The study of cardiac Tns (cTns) is important, not only for identifying the molecular
mechanisms of muscle contraction. After myocardial infarction, intracellular proteins from
dying cardiomyocytes are released into the bloodstream, and several proteins (e.g., myosin
light chains [3] and cTns [4]) can be identified in the blood of patients with myocardial
infarction. TnI and TnT are exclusively present as specific cardiac isoforms (cTnI and
cTnT, respectively) in cardiomyocytes, which allows the use of Tn-based assays for acute
myocardial injury in routine clinical practice [5].

For many years, Tns have been considered to be “typical” cytoplasmic proteins as-
sociated with the myofibrils of differentiated muscle cells and specialized to perform a
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unique function. Back in 2001 Kheyat et al. demonstrated that embryonic stem cells can
differentiate into cardiomyocytes which provided a suitable model for in vitro studying of
heart development [6]. Numerous studies in recent decades have shown that Tns are at
least partially localized in the nuclei of muscle cells [7–12]. The first published observation
of intranuclear cTn was described in 2009 by Bergman et al., who used this protein as
a marker to isolate cardiomyocyte nuclei by fluorescent sorting [7,9]. Around the same
time, Sahota et al. found Tn in the nuclei of Drosophila S2 cells, suggesting that it plays
an important role in maintaining nuclear integrity [8]. A detailed study of nuclear cTn
and other motor proteins was performed in 2012, when Asumda et al. established their
role in Ca2+ level modulation [10]. The authors proposed that these proteins could form
a complex structure inside the nucleus and retain Ca2+ ions, as they do in the cytoplasm.
Two years later, Chen et al. described the presence of cTn in non-muscle cells such as non-
small cell lung cancer tissue and cancer cell lines, suggesting its role as a cancer diagnostic
marker [11]. In 2019, Kharitonov et al. discovered potential nuclear localization signals
(NLSs) and nucleolar localization signals (NoLSs) in the primary sequence of cTnI and
proposed the mechanism of its nuclear accumulation [12]. Thus, some authors speculate
that this protein may have specific regulatory functions in addition to its canonical role
as a regulator of actin-myosin interactions (for review see the work presented in [13]). In
this review, we discuss recent new data on the possible nuclear functions of Tns, possible
mechanisms of their nuclear localization (with special attention to cTns), and the possible
impact of such localization. Available data suggests that the nuclear localization of Tns
may be both a part of the normal functional mechanisms of the cell and an element in the
development of pathological processes.

2. Role of Cardiac Troponins in the Epigenetic Regulation of Gene Expression

Over the past decade, several studies revealed that cTn subunits are implicated in epi-
genetic regulation through their interactions with histone-modifying enzymes. Therefore,
some pathogenic cTn mutations previously thought to impair sarcomeric contractility may
also affect their nuclear function.

For example, cTnI is likely to be involved in epigenetic regulation, because it interacts
with histone deacetylase 1 (HDAC1) and SET and MYND domain containing 1 (SMYD1), as
shown by co-immunoprecipitation [14]. Overexpression of mutant cTnI193His in transgenic
mice results in decreased expression of phosphodiesterase 4D (PDE4D), which is regulated
by HDAC1 and SMYD1 [14]. In a subsequent study, Zhao et al. (2021) confirmed these
results by overexpressing HDAC1 in cultured primary cardiomyocytes, which led to
a reduction in PDE4D. The same reduction in PDE4D mRNA and protein levels was
achieved by the overexpression of cTnI193His in cultured primary cardiomyocytes. The
authors suggested that cTnIR193His may downregulate PDE4D via HDAC1-induced
deacetylation of H3K4 and H3K9 in PDE4D promoter regions [15] It is not completely clear
how cTnIR193His affects HDAC1 binding to the PDE4D promoter region, but the mutant
version of cTnI shows a stronger affinity for HDAC1 than the wild-type cTnI. The authors
showed that epigallocatechin gallate (EGCG) alleviated the reduction in PDE4D induced
by the cTnIR193H mutant but had no effect on HDAC1 expression and activity. In contrast,
the strength of the interaction between cTnIR193H and HDAC1 decreases after EGCG
treatment [15].

Similar to cTnI, the cTnT subunit was also found to interact with histone-modifying
enzymes, such as lysine (K)-specific demethylase 1A (KDM1A) and lysine-specific demethy-
lase 5A (KDM5A). Wu et al. used induced pluripotent stem cells (iPSCs) from patients with
dilated cardiomyopathy (DCM) to study the cellular mechanisms of DCM pathogenesis [16].
Mutated cTnT is more likely to be located in the nuclei of DCM iPSC cardiomyocytes (iPSC-
CMs) than in nuclei of control iPSC-CMs. The cTnTR173W mutation, which is associated
with DCM, appeared to increase the nuclear accumulation of cTnT and enhance its interac-
tion with KDM1A and KDM5A. The authors suggested that in DCM cardiomyocytes, such
interactions may affect the distribution and activity of histone demethylases, resulting in the
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increased expression of active epigenetic markers in PDE2A and PDE3A genes [16]. Impor-
tantly, according to these data, TnT is involved in the epigenetic control of PDE expression
in the nucleus; thus, the mutation affects cTnT function not only in the myofilament lattice,
but also in the nucleus.

3. Cardiac Troponins and Ca2+-Regulation

cTnI dysfunction can lead to various heart diseases, such as DCM, hypertrophic car-
diomyopathy (HCM), and restrictive cardiomyopathy (RCM) in humans [17–23]. It has
been suggested that these disorders may be caused by loss of cTn intranuclear activity
rather than its canonical cytoplasmic function [24]. According to published data, an impor-
tant aspect of the effect of cTn on nuclear processes is the modulation of Ca2+ level [10].
Recent studies have shown that cTnI may regulate the Atp2a2 gene, which encodes sar-
coplasmic/endoplasmic reticulum Ca2+ ATPase 2a (SERCA2a) [25]. Experiments in a
knockout mouse model have shown that cTnI and SERCA2a have a linear correlation of
their expression. The chromatin immunoprecipitation sequencing (ChIP-Seq) revealed a
cTnI binding target motif “CCAT” enriched in the promoter of the Atp2a2 gene. This motif
is also a binding target for the Yin Yang 1 (YY1) regulatory protein [26,27], which has been
shown to interact with cTnI. Summarizing these data, authors suppose that cTnI regulates
Atp2a2 gene activity by interacting with YY1 [25]. It should be noted that, although YY1
suppresses transcription of fetal mouse ssTnI, it has no significant effect on cTnI expression
in postnatal hearts [27].

Five proteins involved in muscle contractility are present in the nuclei of differentiating
cardiomyocytes: all subunits of cardiac troponin (cTn), cardiac tropomyosin (cTm) and
actin [10]. Only actin was found in the nuclei of undifferentiated multipotent rat cells,
whereas other proteins were observed as early as five days after differentiation induction.
The authors suggested that these components could potentially assemble into a structure
similar to the cytoplasmic actin-cTn–cTm complex and participate in Ca2+ regulation [10].

4. Mechanism of Nuclear Accumulation of Cardiac Troponins

Most Tn localization studies have focused on embryonic stem cells or mature my-
ocytes [6,8,10]; however, these models are not perfectly suited for studying the molecular
mechanisms of protein trafficking between the nucleus and cytoplasm. However, we know,
that exogenously expressed cTnI fused to EGFP is partially localized in the nuclei of several
non-muscle cell types [12]. This localization is not an artifact, as similar localization has
been observed for endogenous cTns. Indeed, they were expressed in several human can-
cer cell lines, and immunocytochemistry images obtained from the Human Protein Atlas
database showed that cTnC was localized in the nucleoplasm of cervical carcinoma (HeLa),
hepatocellular carcinoma (HepG2), and osteosarcoma (U2OS) cells [13]. Similarly, cTnT ac-
cumulated in the nuclei and nucleoli of epidermoid carcinoma (A-431), rhabdomyosarcoma
(RH-30) and U2OS cell lines [13]. Thus, EGFP-fused cTn is a suitable model for studying
the nuclear import of cTn.

According to bioinformatics analysis, cTnI contains NLSs and can potentially be
transported through the nuclear envelope via the classical importin-α/β-dependent path-
way [7,12]. Although it may seem illogical at first, there are many cytosolic proteins in
which NLSs can be predicted [12]. Six “classical” NLSs were also predicted for cTnI, some
of which overlapped. Importantly, all the predicted NLSs were located within the con-
served protein regions. According to site-directed mutagenesis data, all the predicted NLSs
affected the nuclear accumulation of cTnI, demonstrating their common effect. Further-
more, cTnI was partially localized to the cytoplasm in the presence of a peptide inhibitor
of importin-α (Bimax2). Simultaneously, cTnI was shown to shuttle freely throughout the
nuclear envelope, as expected, because it is a relatively small protein (human cTnI-24kDa).
It appears that an importin-α-dependent mechanism led to the nuclear accumulation of
cTnI, but free diffusion through nuclear pore complexes limited this accumulation.
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After myoblasts differentiate into mature muscle cells, cTnI re-localizes into the cyto-
plasm [12]. This process appears to be driven solely by myofibril formation, which serves
as a retention depot for cTnI molecules and leads to a decrease in the nuclear cTnI fraction.

Importantly, nuclear cTnI also accumulates in the nucleoli. Nucleolar accumulation
of some proteins depends on the presence of short motifs called NoLSs [28]. It has been
shown that NoLS are enriched in positively charged amino acids and accumulate in the
nucleoli due to electrostatic interactions with nucleolar components [29–32]. Unfortunately,
the consequences of nucleolar accumulation remain unclear.

Finally, the question of whether Tns can be found in the nuclei of normally differenti-
ated cardiomyocytes should be discussed. Using both paraffin sections and flow cytometry,
it has been demonstrated that cTn subunits persist in all cardiomyocyte nuclei in the
heart [9]. This is possible if not all Tns are bound to myofibrils. Although both cTnI
and cTnT are predominantly bound to myofibrils of cardiomyocytes, significant amounts
(5–10%) of both cTnI and cTnT are also found in the unbound cytosolic form [33,34]. Ap-
parently, three fractions coexist in cardiomyocytes: one bound to myofibrils (predominant
in differentiated cells) and two unbound fractions (nuclear and cytosolic) that are most
likely to be in constant exchange with each other (Figure 1).
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Figure 1. Cardiac troponin I (cTnI) distribution in undifferentiated (a) and muscle (b) cells. (a) cTnI
enters the nucleus via importin-dependent import and partially accumulates in the nucleoli via
electrostatic interaction with RNA. Diffusion through the nuclear pore complex leads to decreased
nuclear accumulation. As a result, cTnI is distributed throughout the cell. (b) Concentration of
unbound cTnI decreases in all compartments since it binds to myofilaments with high affinity.

5. Skeletal Troponins Can Also Modify Nuclear Processes

The main difference between the cardiac and nuclear isoforms lies in the TnC subunit,
as the cardiac isoform binds one Ca2+ ion, whereas the skeletal isoform binds two. As a
result cTn shows lower Ca2+ sensitivity than sTn. In addition, cTnC binds with a lower
affinity to cTnI than the skeletal isoform. Although the kinetics of Tn interaction with
common partners differ between isoforms, the general mechanism remains the same.
Since different variants of Tns are quite similar to each other [2], it is logical to expect
that skeletal Tns will behave similarly to cardiac Tn. Indeed, fsTnT has been shown to
accumulate in the nucleus and be involved in transcriptional regulation [35]. The authors
demonstrated that fsTnT, as well as its C- and N-terminal regions, are localized in the
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nuclei of myoblasts (C2C12), fibroblasts (NIH3T3), and differentiated myofibers. The
C-terminal region of fsTnT accumulated in the nucleoli and colocalized with fibrillarin,
whereas the N-terminal region tended to localize in the cytoplasm. Overexpression of
full-length fsTnT in C2C12 cells resulted in translocation of fibrillarin to the nucleolar
periphery. The authors suggested that the expression of fsTnT and its C-terminal region in
C2C12 cells caused abnormal cell morphology, similar to fibrillarin depletion. Importantly,
both fsTnT and its C-terminal region attracted polymerase I to the nucleoli, whereas only
the full-length protein attracted polymerase II. Although the authors used engineered
fragments of fsTnT in their study, they found endogenous C- and N-terminal regions in the
lysed nuclear fraction of old (26–28 months) mice. This was accompanied by an overall
decrease in fsTnT nuclear fraction with age. These data suggest that fsTnT is likely involved
in transcriptional regulation, whereas its components appear in old cells and can disrupt
their morphology and function [35]. Another study showed that fsTn directly regulates the
expression of calcium channel, voltage-dependent, L type, alpha 1S subunit (CACNA1S,
Cav1.1) [36]. While investigating how fsTn accumulates and functions in the nucleus,
the authors identified an NLS/NoLS sequence at its C-terminus. They also identified a
leucine zipper domain in the C-terminal region, which is known to regulate transcription
factor binding to DNA. Excision of this motif had no effect on nuclear accumulation but
significantly reduced the cytotoxic effect of fsTn overexpression [37]. This result agrees well
with previous studies demonstrating high cytotoxicity of the C-terminal and mid-regions
of fsTn [38]. The medical significance of these studies is that the cytotoxic effects of free
fsTn and/or its components are a probable cause of age-related sarcopenia. [35,37].

Important results have been obtained in Drosophila, where the troponin-tropomyosin
complex contains TnI and two tropomyosins (Tm1 and Tm2) that are thought to form
heterodimers. In S2 cell line cultures, native TnI was found in the nucleus and immunopre-
cipitated from nuclear extracts [8]. The TnI protein sequence revealed no obvious nuclear
localization signal, and SUMOylation of a sequence in exon 10 of TnI is required for nuclear
translocation. The authors proposed that the troponin–tropomyosin complex functions
as a regulator of the motor systems required to maintain nuclear integrity and apicobasal
polarity during early Drosophila embryogenesis [8].

Using co-immunoprecipitation, fsTnI was shown to interact with estrogen receptors
in the human mammary gland. It increases the transactivity of estrogen-related receptor
alpha (ERRα) and, subsequently, ERRα-mediated transcription [39].

The examples presented here show that skeletal Tns can influence different nuclear
processes, suggesting that all Tns may be involved in non-canonical functions.

6. Other Cytoskeleton Proteins Also Localize and Function in the Nucleus

Nuclear localization of proteins that are traditionally considered to be cytoplasmic is
not a rare event, and it is not surprising that several cytoskeletal proteins are not exclusively
but partially nuclear-localized and that their nuclear presence is essential for the cell [40–42].
The nuclear localization and functions of actin have been extensively studied. Actin is an
important cytoskeletal protein that, together with the motor proteins myosins, plays a key
role in cell motility, including muscle contraction.

Actins and myosins are involved in various nuclear processes. In particular, actin
has been linked to many processes that regulate gene expression [43–46]. Actin interacts
with essentially all transcribed genes in Drosophila ovaries [47], copurifies with all three
eukaryotic RNA polymerases [44,45,48], and regulates the activity of specific transcription
factors [49]. In addition to gene expression, actin is linked to DNA replication [50], DNA
damage response [51–55], and long-range chromatin motion [56–58].

As well as actin, nuclear myosins are also required for transcription [45,59,60]. Partic-
ularly, it was directly shown that myosin VI in the nucleus acts as the molecular anchor
that holds RNA polymerase II (RNAPII) in high density clusters, and inactivation or sup-
pression of myosin VI expression leads to changes in RNAPII localization and general
chromatin rearrangement [61].
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Monomeric G-actin constantly shuttles between the cytoplasm and nucleus [62]. Nu-
clear export depends on binding to exportin 6 [62–64]. According to several reports, the
nuclear import of actin depends on importin 9 [47,62,65]; however, a recent study indicated
that multiple importins can transport actin into the nucleus in Drosophila [66]. Interestingly,
actin, which has no NLS, is imported into the nucleus in complex with cofilin [67], which
contains NLS [68,69].

Several myosins have been found to accumulate inside nucleoli [70,71]. The mecha-
nisms of nuclear-cytoplasmic transport have been the best studied for myosin IC. Myosin
IC has an NLS sequence in the neck region, and importin β, importin 5 and importin 7
were identified as putative nuclear transport receptors which are necessary for nuclear
import [72]. Calcium ions play the most important role in regulating the intracellular
localization of myosin IC, the elevation of which leads to the activation of myosin IC
import into the nucleus [73]. Simultaneously, calmodulin, which binds to the neck region of
myosin IC [74], inhibits nuclear transport of the protein [72]. It appears that the elevation
in intracellular calcium concentration causes the dissociation of calmodulin from myosin
IC and stimulates the transport of this protein into the nucleus, probably because of the ex-
posure of the NLS necessary for binding to importins [73]. Importantly, some data indicate
that myosin IC can use a principally different phosphoinositide-dependent pathway for
nuclear localization [75]. Myosins VI and XVI appear to be transported to the nucleus via a
canonical mechanism involving the NLS [48,61]. However, the exact molecular mechanisms
of cytoskeletal protein nuclear-cytoplasmic trafficking require further study.

Thus, the data obtained suggests that nuclear localization is common for cytoskeletal
proteins. Interestingly, the mechanisms of accumulation may be different: either the
presence of intrinsic NLS or interaction with proteins possessing intrinsic NLS. We analyzed
the presence of NLS among cytoplasmic proteins and showed that the proportion of
cytosolic proteins with predicted NLS is relatively high (about 50% of all proteins), and
these cytoplasmic proteins can potentially accumulate in nuclei [12].

7. Mitochondrial Localization of cTnI

Numerous studies have provided evidence that cTnI mutations such as cTnI R193H
or cTnI G203S affect mitochondrial structure and activity [76–78]. In a recent preprint,
Elezaby et al. [79] reported that cTnI localizes in the mitochondrial matrix of the rat
heart, rat cardiac myoblasts, and HEK cells. Expression of cTnI in non-cardiac HEK cells
results in the suppression of mitochondrial activity, as manifested by impaired oxidative
phosphorylation, a 30% decrease in ATP levels, a decrease in mitochondrial membrane
potential, and increased sensitivity to oxidative stress induced by H2O2 treatment. Using
a proximity ligation assay, the authors demonstrated that cTnI interacts with the F1F0
ATP synthase subunit D. The F1F0 ATP synthase complex catalyzes both ATP synthesis
under normal conditions and ATP hydrolysis during hypoxia. This complex is also a key
component of the mitochondrial permeability transition pore (mPTP) opening during cell
stress. A protein–protein interaction between cTnI and ATP synthase subunit α (ATP5f1a)
has been previously observed in a cross-linked mouse heart proteomics dataset [80]. In vitro
experiments showed that the cTnI-ATP synthase interaction resulted in decreased ATP
synthesis and increased mPTP opening in response to H2O2 treatment. Apparently, the
N-terminus of cTnI plays a key role in this interaction, since mutant proteins, as well
as ssTnI, which lacks the N-terminus, did not affect ATP synthase activity. The authors
suggested that cTnI may inhibit ATP synthase and mitochondrial functions in respiring
mitochondria (under basal conditions), increase ATP hydrolysis under hypoxic conditions,
and affect the stability of the ATP synthase complex under stress conditions [79]. It should
be noted that so far, the authors have only published a preprint version of their work, so
further investigations and revisions in this area are needed.
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8. Extracellular Cardiac Troponins

It has long been known that in certain diseases (e.g., myocardial infarction), significant
concentrations of Tns can be detected in the blood serum; clinical measurement of cTn
levels began in the 1990s. Currently, cTnI and cTnT are the preferred biomarkers for
both ruling in and ruling out myocardial injury, and thus, for the detection of myocardial
infarction [5,81,82]. Various factors have been suggested for the release of Tns from the
myocardium, including normal turnover of cardiomyocytes, release from cardiomyocytes
via vesicular transport, cellular release of cTn degradation products, increased cellular
membrane permeability, cardiomyocyte necrosis, and/or apoptosis [83]. The introduction
of extremely sensitive cTn assays (“high sensitivity cardiac troponins”-hs-cTnI and hs-cTnT)
has led to increased recognition of myocardial injury in different illnesses. Moreover, cTn
molecules were detected in the blood serum of almost all cardio-healthy people [84,85].

The normal presence in serum raises the question of the possible effects of extracel-
lular Tns, and some experimental data indicate that serum Tns could influence various
processes. For example, immunization of mice with recombinant murine cardiac troponin
I (mc-TnI) resulted in severe myocardial inflammation with increased expression of in-
flammatory chemokines and chemokine receptors [86]. This inflammation is followed by
fibrosis and heart failure, resulting in increased mortality in mice. In contrast, mice immu-
nized with murine cardiac troponin T (mc-TnT) showed little to no inflammation and no
death. Myocarditis can result from various infectious and noninfectious causes, including
autoimmune responses to cardiac antigens. Various intracellular cardiac antigens, such as
cardiac myosin heavy chain α [87–89], cTnI [86,90], and adenine nucleotide translocator 1
(ANT1) [91], have been identified as autoantigens in cardiac autoimmunity. It is possible
that cTnT-mediated autoimmune response may lead to age-related loss of muscle mass and
strength (sarcopenia) [92].

9. Cardiac Troponins Inside Non-Cardiac Cells

The examples of Tn localization in the nucleus of undifferentiated cells described
above may be a special case if they are expressed not only in cardiomyocytes [10]. Several
independent research groups have used polymerase chain reaction and Western blotting
to detect cTnT and cTnT in the skeletal muscles of patients with end-stage chronic kidney
failure [93]. It has been suggested that an increase in cTn may be due to reduced renal cTn
clearance [94]. cTnT expression has been observed in the skeletal muscles of patients with
various hereditary myopathies, with no evidence of cardiac disease [95,96]. Importantly,
elevated serum levels of cTns were detected in these patients, although there was no
clear evidence of cardiovascular disease. However, these data were not confirmed in an
independent study [97]. The authors of the latter study found that the cross-reactivity of
the cTnT immunoassay with skeletal muscle Tn isoforms may be the cause of this effect.
Therefore, the possibility that cTn is expressed in some non-cardiomyocytes cannot be
excluded at this time, but should be considered with caution. This problem can most likely
be solved by reanalyzing accumulated high-throughput RNA sequencing data.

However, there is no doubt that various Tns, including cTns, can be expressed in
nonmuscle cells. The expression of some Tn genes has also been observed in different
non-muscle cells, including the human corneal epithelium [98], brain [99–101], lung [102],
liver [100], and endothelial cells of the rat brain after stereotactic radiosurgery [103]. In
addition, Tns are expressed in different cancers [11,13,104]. In particular, cTnI protein has
been found in human non-small cell lung cancer tissue and cancer cell lines [11], cTnT in
colorectal cancer [105,106]. Interestingly, cTnT promotes the proliferation, invasion, and
metastasis of colorectal cancer cells [105]; however, analysis of cTnT localization in this
study was not performed. In lung adenocarcinoma, the expression of TnC is strongly
downregulated compared to that in normal lung tissues, and downregulation of TnC is
strongly correlated with increased mortality [102].
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10. Conclusions

In recent years, new evidence has emerged demonstrating that the nuclear localization
of Tns is not an exceptional event. Even in differentiated cells, some Tns were found in the
fraction not bound to myofibrils; this protein can diffuse into the nuclei. The possibility
of active transport into the nucleus, previously assumed based only on NLS predictions,
has now been experimentally demonstrated in detail, at least for cTnI [12]. Thus, there
is increasing evidence that Tn plays an important role in cell function. At the same time,
nuclear localization can also lead to the development of pathological processes, either as a
disease-causing factor or as a disease-promoting factor. Nuclear Tns may both extend the
normal functions of Tns and contribute to the development of various pathologies.

cTn is a well-known clinical biomarker of cardiac injury. However, its involvement in
the development of age-related sarcopenia has only been established in the last decade, and
further studies in this area could potentially lead to treatments that would slow this process
and prolong the life of the heart. Another promising observation is the expression of cTn in
nonmuscle cells. This could serve as a potent biomarker of cancerous tissue and a tool for
targeted therapy. Some Tn mutations could potentially alter its binding affinity to actin and
Tm resulting in increased level of unbound protein affecting its intranuclear concentration.
However, we have not found any publications establishing such interconnections. It
should be noted that the data describing Tn localization and non-canonical function is
rather scarce. Tns are well-studied proteins with respect to muscle contraction and clinical
aspects. Numerous studies describe the Tn mutations that cause various muscle pathologies.
However, only a few publications provide reliable data on the nuclear functions of Tn.
Although the existence of an intranuclear Tn fraction is known, the current picture is
still incomplete and further research may lead to the discovery of new Tn functions and
interactions in other cellular compartments as well as outside of the cell.
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