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Abstract: The identification of pathological links among metabolic disorders, kidney ailments, and
cardiovascular conditions has given rise to the concept of cardiovascular–kidney–metabolic (CKM)
syndrome. Emerging prenatal risk factors seem to increase the likelihood of CKM syndrome across
an individual’s lifespan. The renin–angiotensin system (RAS) plays a crucial role in maternal–fetal
health and maintaining homeostasis in cardiovascular, metabolic, and kidney functions. This review
consolidates current preclinical evidence detailing how dysregulation of the RAS during pregnancy
and lactation leads to CKM characteristics in offspring, elucidating the underlying mechanisms. The
multi-organ effects of RAS, influencing fetal programming and triggering CKM traits in offspring,
suggest it as a promising reprogramming strategy. Additionally, we present an overview of interven-
tions targeting the RAS to prevent CKM traits. This comprehensive review of the potential role of
the RAS in the early-life programming of CKM syndrome aims to expedite the clinical translation
process, ultimately enhancing outcomes in cardiovascular–kidney–metabolic health.

Keywords: cardiovascular disease; chronic kidney disease; metabolic syndrome; renin–angiotensin
system; obesity; hypertension; developmental origins of health and disease (DOHaD); angiotensin-
converting enzyme

1. Introduction

The growing recognition of pathological links among metabolic risk factors such as
obesity and diabetes, cardiovascular disease (CVD), and chronic kidney disease (CKD)
has given rise to the conceptualization of cardiovascular–kidney–metabolic (CKM) syn-
drome [1]. In its 2023 Scientific Statement, the American Heart Association, for the first time,
defined CKM syndrome as a systemic disorder characterized by intricate pathophysiologi-
cal interactions among metabolic risk factors, CKD, and the cardiovascular system. These
interactions give rise to multiorgan dysfunction and elevate the risk of adverse cardiovascu-
lar and renal outcomes [1]. CKM syndrome has been categorized into four separate stages,
ranging from stage 0 to stage 4. These stages are believed to encompass varying degrees of
advancement and intensity within the complex spectrum of this disorder. Different critical
elements emerge at various stages, playing a role in the nuanced development and severity
observed across the intricate spectrum of CKM syndrome.

An estimated 40% of adults in the United States are thought to be impacted by CKM
syndrome [2]. Given it results in multi-organ dysfunction, there is a significant global
burden on compromised cardiovascular–kidney–metabolic health. While managing this
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syndrome is recommended through a holistic approach that addresses the entire syndrome
rather than individual diseases [2], there is still a lack of therapeutic guidelines. It is
important to highlight that prioritizing early prevention has the potential to mitigate the
burdens linked with CKM syndrome. Acknowledging the interconnections among CKM
diseases is vital for embracing a more comprehensive approach to CKM care, surpassing
the isolated treatment of individual conditions. This broader perspective shows promise in
improving global health outcomes in the future.

It is now widely accepted that the risks of many chronic diseases in adulthood may
have their origins in early life [3,4]. Experiencing a suboptimal intrauterine environment
during development leads to enduring adverse effects on both structure and function, as
well as on compensatory mechanisms, a phenomenon referred to as developmental pro-
gramming or the “developmental origins of health and disease” (DOHaD) [5]. The DOHaD
theory proposes a link between early life programming and several recognized compo-
nents of CKM syndrome, covering metabolic disease [6], chronic kidney disease (CKD) [7],
CVD [8], hypertension [9], and obesity [10]. Conversely, this theory prompts a theoretical
transition in therapeutic strategies, shifting the focus from addressing diseases in adulthood
to intervening at an earlier stage—specifically, engaging in reprogramming efforts with the
aim of potentially reversing disease processes before they manifest clinically [11,12].

Various molecular mechanisms associated with the developmental programming of
CKM syndrome have been explored. These encompass renin–angiotensin system (RAS)
dysgenesis, nitric oxide (NO) deficiency, epigenetic regulation, oxidative stress, disruptions
in nutrient-sensing signals, a low nephron number, and gut microbiota dysbiosis [11–17].
Among these suggested mechanisms, the RAS serves as a central hub intricately linked
with other factors in influencing the adverse programming processes.

The RAS operates as a hormonal cascade, commencing with the expression of an-
giotensinogen (AGT), which is converted into angiotensin (Ang) I by the renin enzyme.
Subsequently, Ang I is cleaved into Ang II by angiotensin-converting enzyme (ACE) [18].
The RAS plays a pivotal role in orchestrating various physiological functions within the
cardiovascular system, kidneys, and metabolic homeostasis [19,20]. Conversely, several
pathological effects, such as vasoconstriction and cell proliferation, are frequently induced
by Ang II through the activation of the classical RAS pathway, comprising ACE, Ang II, and
the Ang II type 1 receptor (AT1R) in CKM syndrome. These effects contribute to conditions
such as hypertension, CKD, obesity, liver steatosis, and diabetes [20–24]. On the flip side,
the non-classical RAS pathway, involving the ACE2-ANG-(1-7)-MAS receptor axis, serves
to counterbalance the detrimental effects of Ang II signaling [25].

Within this framework, the RAS has surfaced as a pivotal focal point for comprehend-
ing and averting CKM syndrome with developmental origins. Inhibition of the classical
RAS or stimulation of the non-classical RAS serves as the rationale for existing cardio-
protective, antihypertensive, renoprotective, and anti-obesity therapies [18,25–28]. While
limited data are available on whether early targeting of the RAS can prevent offspring’s
CKM syndrome, the objective of this review is to investigate the mechanistic link between
the RAS and the developmental programming of CKM syndrome. Utilizing scientific
databases such as SCOPUS, Embase, MEDLINE, and the Cochrane Library, we sought
to summarize the relationship among the RAS, developmental programming, and CKM
syndrome. This involved addressing the molecular mechanisms and identifying potential
RAS-targeted reprogramming interventions for the prevention of CKM syndrome. The
search encompassed keywords and their combinations such as “hypertension”, “chronic
kidney disease”, “obesity”, “metabolic syndrome”, “diabetes”, “hyperlipidemia”, “car-
diovascular disease”, “developmental programming”, “DOHaD”, “offspring”, “mother”,
“nephron”, “pregnancy”, “gestation”, “lactation”, “progeny”, “reprogramming”, “prorenin
receptor”, “aldosterone”, “mineralocorticoid receptor”, “angiotensinogen”, “angiotensin-
converting enzyme”, “renin”, and “angiotensin”. Supplementary investigations were
chosen and assessed utilizing pertinent references found in eligible papers, with the final
search conducted on 30 January 2024.
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2. Systemic and Local RAS

Initiating the RAS cascade is renin, with its precursor, prorenin (406 amino acids) [29],
undergoing proteolytic cleavage exclusively in the kidney, where both renin and prorenin
are secreted into the circulation [30]. Renin (340 amino acids), acting as a hormone [31],
binds to (pro)renin receptor (PRR), encoded by Atp6ap2 in three forms [32]. The interaction
of circulating renin and prorenin with PRR triggers Ang II-independent signaling cascades,
initiating local Ang II generation.

The RAS substrate AGT, released from the liver, is cleaved by renin to produce Ang I.
ACE further cleaves Ang I, leading to Ang II formation in various tissues [33]. While
AT1R stimulation by Ang II increases sodium reabsorption and raises BP, AT2R mediates
vasodilation and lowers BP [34]. Ang II also promotes lipogenesis [35], increases adipose
tissue mass, and stimulates the adrenal gland cortex to secrete aldosterone, maintaining
sodium–potassium homeostasis. The renal RAS, with the highest tissue concentrations of
ANG II, involves the metabolism of Ang II to Ang III and Ang IV [36].

ACE2 converts Ang II to Ang-(1-7) or Ang I to Ang-(1-9). Ang-(1-7), mediated by
the MAS receptor, induces natriuretic and diuretic effects, promoting vasodilation [37].
Neprilysin (NEP) facilitates the conversion of Ang I to Ang-(1-7), with subsequent metabolic
processing generating Ang-(2-7) and Ang-(3-7).

Distinguishing between the local and systemic RAS poses challenges due to extensive
overlap [38]. The local adipose RAS, expressed in adipose tissues, modulates processes
such as adipogenesis, lipogenesis, lipolysis, and inflammation [39]. The kidney houses a
potent local vascular RAS for independent renal vascularization. A distinct urinary RAS in
the kidney coordinates sodium reabsorption [40].

A comprehensive understanding of the RAS peptide network’s influence on fetal
programming requires recognizing the collaborative or opposing nature of different pep-
tides. Pharmacological modifications induce compensatory adjustments in RAS enzymes,
necessitating further research to unravel the complexities of this network and its impact on
fetal programming, as illustrated in Figure 1.
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3. CKM Syndrome Is Causal of RAS Perturbation
3.1. Cardiovascular Disease and Hypertension

For a long time, the endothelium was considered involved in the regulation of vascular
homeostasis [41]. Vascular endothelial function is primarily maintained by the balanced
production of endothelial relaxing factors, namely, nitric oxide (NO), as well as endothelial
contractile factors such as Ang II or superoxide anion [42]. Endothelial dysfunction is
characterized by a vasoconstrictive, proadherent, prothrombotic, proliferative, and proin-
flammatory environment that leads to atherosclerosis, which is the initial event in the
development of CVD [42]. Specifically, in hypertension, endothelial dysfunction leading to
decreased NO availability impairs endothelium-dependent vasodilation [43].

Endothelial dysfunction can occur by the activation of PRR and resultant high Ang II
activity [44]. Renin may interact with PRR to be of relevance in CVD in many ways [45],
covering the enhancement of the RAS by catalyzing Ang I production [46], activation of
mitogen-activated protein kinase (MAPK) signaling pathways [47], association with V-
ATPase implicating a non-RAS-related function [48], and regulation of the Wnt/β-catenin
pathway [49]. As reviewed elsewhere, activation of PRR in cardiomyocytes may contribute
to myocardial ischemia/reperfusion injury, cardiac hypertrophy, diabetic cardiomyopathy,
salt-induced cardiac damage, and heart failure [49].

Recognized as a significant signaling constituent of the classical effects of Ang II is Ang
II-derived superoxide [50]. The major source of superoxide that impacts the cardiovascular
system is reduced nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase. The
resulting NADPH oxidase-derived superoxide mediates many of the actions of Ang II,
including constriction of vascular smooth muscles, endothelial dysfunction, increased BP,
vascular remodeling, and sodium retention [50]. In addition, the activation of AT1R via Ang
II induces vasoconstriction and increases the activity of the sympathetic nervous system.
These increase the BP and aldosterone secretion, and generate cardiac hypertrophy and
fibrosis [51].

3.2. Kidney Disease

During nephrogenesis, components of the RAS exhibit high expression and have
crucial roles in orchestrating proper renal structure and physiological function [52]. In the
case of rats, all RAS components are detectable in embryonic kidneys from gestational days
12 to 17, with higher levels observed in fetuses and newborn rats compared to adults [53].
In human studies, drugs that interfere with the RAS, such as ACE inhibitors (ACEIs) or
angiotensin receptor blockers (ARBs), have been intentionally steered clear of in pregnant
women. This cautious approach stems from the perceived risk of renal malformations and
ACEI/ARB fetopathy [54]. Animals lacking RAS genes exhibit significant renal maldevel-
opment [55,56]. Blockade of the RAS during the nephrogenesis stage leads to a reduced
number of nephrons and hypertension in adulthood [57].

Correlating with the presence and severity of the underlying kidney disease is the
expression of RAS components in human kidney biopsies [58,59]. Likewise, a rise in clas-
sical RAS components within the renal system has been noted in several animal models
of CKD, including streptozotocin (STZ)-induced diabetic nephropathy [60], five/six abla-
tion/infarction [61], and adenine-induced CKD [62]. In the kidneys, Ang II is generated
in notably high concentrations within the interstitial space. Local production of Ang II
can profoundly impact renal function by modifying glomerular hemodynamics, reducing
sodium excretion, and constricting small arterioles [63]. Furthermore, excessive activity of
the RAS directs proinflammatory and profibrotic factors to harm the kidneys [64], while
the inhibition of the RAS has demonstrated efficacy in ameliorating renal fibrosis [65].

3.3. Obesity

Most constituents of the RAS have been observed to be expressed in adipose tissue [66].
This localized adipose RAS plays crucial autocrine/paracrine roles in regulating processes
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such as lipogenesis, adipogenesis, lipolysis, and inflammation in both systemic and adipose
tissue contexts [66].

In cases of obesity, the classical RAS is activated, leading to increased lipogenesis,
decreased lipolysis, and the promotion of adipocyte growth and differentiation. These
processes are closely linked to obesity, insulin resistance, and inflammation. The elevated
adipose mass subsequently contributes to further disruptions in BP, glucose, and lipid
levels. Consequently, obesity becomes a risk factor for the development of type 2 diabetes
mellitus, CVD, and kidney disease, creating a cycle of pathological interconnections in
CKM syndrome [67]. Conversely, heightened activation of the non-classical RAS axis has
the potential to improve lipid profiles and insulin resistance, mitigate inflammation, and
reduce obesity [68].

3.4. Diabetes

Ang II-induced increments in oxidative stress, inflammation, and free fatty acid levels
contribute to beta-cell dysfunction in diabetes [69]. Various organs play a role in the
regulation of glucose homeostasis, including the pancreas, adipose tissue, skeletal muscle,
and liver. Significantly, a local RAS has been identified in these organs, and its activation
has been implicated in the pathology of diabetes [70].

Moreover, RAS activation appears to enhance the effects of other pathogenic pathways,
including glucotoxicity, lipotoxicity, and advanced glycation, leading to hyperglycemia
and insulin resistance [70]. In experimental models of type 2 diabetes, the inhibition of the
classical RAS or the activation of the non-classical RAS demonstrates improvements in islet
structure and function [71–73].

3.5. Dyslipidemia and Fatty Liver

Non-alcoholic fatty liver disease (NAFLD) is a consequence of metabolic disorders,
including obesity, insulin resistance, and metabolic syndrome. Dyslipidemia plays a
crucial role in the development of NAFLD. The presence of free fatty acids and lipid
metabolites within hepatocytes disrupts insulin-triggered cell signaling, leading to the
onset of NAFLD [74].

Hyperglycemia, hypercholesterolemia, and insulin resistance can upregulate compo-
nents of the RAS [75,76]. RAS activation and the expression of its elements in liver tissues
are drivers of hepatic fatty acid metabolism, inflammation, and fibrosis [77]. Conversely,
several studies indicate that ARBs exert beneficial effects on dyslipidemia [74] as well as
NAFLD [78].

As outlined above in this review, intricate associations between the RAS and CVD,
kidney disease, and metabolic disorders are evident. Early-life exposure to unfavorable
environmental factors may trigger abnormal RAS activation, culminating in the onset of
CKM syndrome in later stages of life (Figure 2).
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4. The RAS in Pregnancy

Significantly influencing cardiovascular and kidney development in pregnant women
and the fetus is the RAS. Throughout a healthy pregnancy, blood pressure tends to stay
lower, while plasma renin activity and aldosterone levels remain elevated until late in
pregnancy, at which point BP increases [79]. Elevated aldosterone concentrations, induced
by Ang II, directly stimulate renal sodium and fluid retention, thereby enhancing the
blood volume. Predominantly present in the fetal circulation during pregnancy is ACE,
originating from endothelial cells. Its primary functions in this context include supporting
angiogenesis and ensuring the maintenance of fetal perfusion [80]. Pregnancy also triggers
the activation of the non-classical RAS pathway to counterbalance the heightened Ang II
signaling pathway. This adaptation contributes to maternal hemodynamic adjustments, pla-
cental functions, and vascular remodeling [81]. In the fetal kidney, the RAS plays a crucial
role in ensuring proper kidney structure formation and physiological function [52,53].

In pregnancies facing challenges, the RAS has the potential to negatively impact the
cardiovascular and kidney health of both the fetus and the mother. Elevated plasma levels
of PRR during pregnancy complications such as intrauterine growth restriction (IUGR),
preeclampsia, and gestational diabetes mellitus have been observed [82]. In a rat model of
placental insufficiency leading to IUGR, there is a correlation with reduced intrarenal RAS
activity in neonatal rats [83].

Preeclampsia in women is associated with increased circulating levels of autoanti-
bodies targeting AT1R, contributing to vasoconstriction, hypertension, and heightened
coagulation [84]. RAS activation is also linked to adverse outcomes such as preterm
birth [85], gestational diabetes [86], and pregnancy-induced hypertension [87]. Conversely,
reduced levels of angiotensin-(1-7) in pregnant women have been observed in conditions
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like preeclampsia [88], preterm birth [89], and gestational diabetes [90]. Consequently, these
RAS components may instigate secondary alterations in the neurohormonal regulation
of cardiovascular and kidney function, potentially programming hypertension, kidney
disease, and cardiovascular disease (CVD) [91]. Nevertheless, the specific timing of these
RAS changes and their significance in the later development of CKM syndrome remain
largely unclear.

5. RAS-Related Programming in Animal Models

Table 1 provides an overview of animal models that manifest at least two compo-
nents of CKM syndrome in their offspring, particularly those linked to aberrant RAS
alterations [92–133]. Various animal models employing diverse environmental stressors
have been developed to investigate specific aspects of CKM syndrome, including hyperten-
sion [12,134], metabolic syndrome [135], kidney disease [13], and CVD [15], as discussed in
previous reviews. Despite the focus on inducing distinct components of CKM syndrome in
these models, none of them successfully replicate the complete set of features associated
with CKM syndrome.

Table 1. Overview of rat animal models of programmed CKM syndrome related to the aberrant RAS.

Experimental Model Early-Life Exposure CKM Phenotype References

Maternal nutritional
imbalance Caloric restriction Hypertension, insulin resistance, and

kidney disease [92–94]

Protein restriction Hypertension, insulin resistance, and
kidney disease [95–98]

High-fructose diet Hypertension, insulin resistance,
obesity, and dyslipidemia [99–103]

High-fat diet
Hypertension, insulin resistance,

obesity, dyslipidemia, and kidney
disease

[104–107]

Maternal illnesses and
conditions Maternal diabetes

Hypertension, insulin resistance,
obesity, dyslipidemia, and kidney

disease
[108–110]

Maternal chronic kidney
disease Hypertension and kidney disease [111,112]

Uteroplacental insufficiency Hypertension, dyslipidemia, insulin
resistance, and kidney disease [83,113–115]

Maternal hypoxia Obesity and hypertension [116,117]

Drug and chemical exposures Prenatal glucocorticoid
exposure

Hypertension, obesity, insulin
resistance, and kidney disease [92,118–121]

Prenatal nicotine exposure Hypertension, hyperlipidemia,
steatosis, and kidney disease [122–125]

Prenatal ethanol exposure Hypertension, insulin resistance, and
kidney disease [126,127]

Maternal TCDD exposure Hypertension, cardiac hypertrophy,
and kidney disease [128,129]

Maternal DEHP exposure Hypertension, insulin resistance, and
kidney disease [130–133]

5.1. Maternal Nutritional Imbalance

Highlighted among the most commonly established are models of maternal nutri-
tional imbalance (Table 1). These models involve specific nutritional manipulations during
pregnancy and/or lactation, including caloric restriction, protein restriction, high-fructose
consumption, and high-fat intake. Because human nephrogenesis is complete at term birth,
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most preclinical models target equivalent windows in animals in which kidney devel-
opment continues after birth. For example, in rodents, kidney development persists for
1–2 weeks after birth. This approach allows researchers to explore the impact of exposures
during organogenesis on the long-term health of the kidneys and cardiovascular system.

Protein restriction during pregnancy leads to hypertension, insulin resistance, and
kidney disease in adult offspring, which are related to RAS programming effects. Increased
renal AT1R expression and decreased AT2R expression were found in 4-week-old progeny
born to dams that received a low-protein diet [96].

Maternal high-fructose diet programs increased BP and increased renal renin and
brain AT1R expression in male rat offspring [101–103]. In a particular investigation, it was
observed that a maternal high-fructose diet could lead to the multigenerational activation
of the RAS [102]. The study revealed a significant elevation in BP among first- and second-
generation offspring compared to the control group, although this effect was not observed
in the third and fourth generations. The third-generation offspring exhibited the highest
increases in serum renin, Ang II, and aldosterone levels. Additionally, this dietary pattern
resulted in heightened mRNA expression of RAS-related genes in the kidneys from the first
to third generations of rat offspring [102].

High-fat diets have consistently been shown in animal models to be linked to the emer-
gence of obesity and related diseases [136,137]. From animal models, current evidence has
emerged indicating that progeny exposed to a maternal high-fat diet manifest various char-
acteristics of CKM syndrome [104–107], including obesity, hypertension, insulin resistance,
dyslipidemia, and kidney disease. Offspring hypertension, primed by a maternal high-fat
diet, is associated with the aberrant activation of the classical RAS. This is manifested
by elevated renal mRNA expression of AGT and ACE, along with an increased protein
level of AT1R [104]. Another study demonstrated that in 16-week-old male offspring born
to dams exposed to a high-fat diet a notable decrease in the renal level of Ang-(1-7) was
observed [105].

5.2. Maternal Illnesses and Conditions

During gestation, maternal illnesses and conditions can have significant implications
for fetal programming, elevating the risk of offspring developing CKM syndrome. Conse-
quently, animal models replicating maternal illnesses and conditions have been established
to investigate different facets of CKM syndrome, including hypertension, obesity, insulin
resistance, dyslipidemia, and kidney disease (refer to Table 1). The spectrum of maternal
illnesses and conditions encompass maternal diabetes [108–110], CKD [111,112], uteropla-
cental insufficiency [113–115], and maternal hypoxia [116,117].

Offspring born to streptozotocin (STZ)-treated diabetic mother rats displayed hyper-
tension, obesity, insulin resistance, dyslipidemia, and kidney disease [108–110]. Maternal
diabetes led to an upregulation of ACE and AT1R, coupled with a downregulation of ACE2
expression in the kidneys of the offspring [108]. Furthermore, maternal diabetes resulted in
hypertension in the offspring, accompanied by an elevation in ACE activity [109].

The adult offspring of mothers with adenine-induced CKD exhibited hypertension
and renal hypertrophy. These effects were correlated with an upregulation of the renal gene
expression of AGT, renin, PRR, ACE, and AT1R, along with the downregulation of AT2R
and MAS [111,112]. Uteroplacental insufficiency in rats serves as a model of IUGR and
subsequent developmental programming of hypertension, dyslipidemia, insulin resistance,
and kidney disease in the offspring [83,113–115]. Offspring hypertension in this model is
linked to Ang II-dependent hypertension, with augmented renal ACE activity and AGT and
ACE mRNA expression in adult progeny [83]. Maternal hypoxia is another model causing
offspring CKM, which is linked to the programming of BP responses to Ang II [116,117].

5.3. Drug and Chemical Exposures

Various drug and chemical exposures can induce offspring CMK phenotypes mediated
by the RAS. Prenatal dexamethasone exposure upregulates RAS components and results in
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obesity, hypertension, insulin resistance, and kidney disease in adult rat progeny [92,118–121].
Antenatal glucocorticoid exposure causes offspring hypertension, coinciding with the
upregulation of renin, PRR, ACE, and AT1R expression [92,118]. Another investigation
revealed that prenatal exposure to dexamethasone leads to dysfunction of β-cells and
glucose intolerance attributed to the suppression of ACE2 expression [119].

In addition, prenatal exposure to nicotine results in hypertension, hyperlipidemia,
steatosis, and kidney disease, all of which are traits associated with CKM in adult off-
spring [122–125]. The sensitization of male rat offspring to the hypertensive effects of Ang
II due to antenatal nicotine exposure is reported. Another example is ethanol exposure.
Prenatal ethanol exposure can induce kidney disease in adult rat offspring, coinciding
with the aberrant RAS [126]. Increased gene expression of ACE and AT1R was noted with
prenatal ethanol exposure, whereas it led to a reduction in the expression of AT2R, ACE2,
and MAS [126].

Moreover, Table 1 illustrates that prenatal exposure to 2,3,7,8-tetrachlorodibenzo-p-
dioxin (TCDD) or di(2-ethylhexyl) phthalate (DEHP) induces CKM phenotypes in adult
rat offspring [128–133]. In the maternal TCDD exposure model, offspring hypertension is
associated with increased renal AT1R expression [128]. In the maternal DEHP exposure
model, impaired kidney development and adult kidney disease have been attributed to the
inhibition of the RAS [130].

In summary, a diverse range of maternal insults is employed in animal models to
investigate the programming of the RAS and its subsequent impact on the cardiovascular,
kidney, and metabolic health of offspring. Collectively, these studies underscore the
various mechanisms that can modify the RAS. Importantly, they emphasize the need to
target the RAS for reprogramming interventions, a crucial step in the early prevention of
CKM syndrome.

6. Targeting the RAS as a Reprogramming Strategy

To date, strategies for early-life interventions aimed at mitigating the mechanisms as-
sociated with DOHaD range from avoiding risk factors, implementing nutritional interven-
tions, and employing pharmacological therapies to making lifestyle modifications [138–140].
Given the substantial progress in our comprehension of the mechanisms governing RAS
programming in offspring in recent years, there is an imperative to devise innovative re-
programming strategies targeting the RAS for the prevention of CKM syndrome. Indicated
currently for the treatment of hypertension, CVD, and CKD are ACEIs and ARBs. Their
use has been associated with improved survival and significant cardiovascular and kidney
benefits in high-risk patients [18]. Nevertheless, limited information is available regarding
their reprogramming effects on CKM syndrome. Table 2 compiles the literature detailing
the utilization of RAS-targeted interventions for CKM phenotypes, specifically focusing on
interventions initiated before the clinical phenotype manifests.

Table 2. Interventions targeting the RAS to prevent CKM phenotypes.

Intervention Experimental
Model Species Age at Evaluation

(Weeks) Protective Effects Ref.

Renin inhibitor

Administration of
aliskiren at doses of 10 or
30 mg/kg/day between

the ages of 4 and 10 weeks

Genetic
hypertension

model
SHR/M 10 Hypertension was

prevented [141]

Administration of
aliskiren at a dosage of

10 mg/kg/day between
the ages of 2 and 4 weeks

Maternal caloric
restriction SD rat/M 12 Hypertension was

prevented [142]
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Table 2. Cont.

Intervention Experimental
Model Species Age at Evaluation

(Weeks) Protective Effects Ref.

Administration of
aliskiren at a dosage of

10 mg/kg/day between
the ages of 2 and 4 weeks

Maternal
high-fructose diet SD rat/M & F 12 Hypertension was

prevented [101]

Aliskiren was
administered at a dosage
of 10 mg/kg/day using a
pump from postnatal days

12 to 18

STZ-induced
diabetes

TGR (mREN)27
rat/M 16

Diabetic
retinopathy was
prevented and

hypertension was
attenuated

[143]

ACEI

Administration of
captopril at a dosage of

100 mg/kg/day between
the ages of 2 and 4 weeks

Maternal protein
restriction Wistar rat/M 12 Hypertension was

prevented [144]

Administration of
captopril at a dosage of

100 mg/kg/day between
the ages of 4 and 10 weeks

Genetic
hypertension

model
SHR/M 30 Hypertension was

attenuated [145]

Enalapril was
administered at a

concentration of 100 mg/L
in the drinking water

between the ages of 3 and
6 weeks

Maternal protein
restriction SD rat/M 16 Hypertension was

prevented [146]

Enalapril was
administered at a

concentration of 100 mg/L
in the drinking water

between the ages of 3 and
6 weeks

Maternal protein
restriction SD rat/M 24

Hypertension and
albuminuria were

prevented
[147]

Lisinopril was
administered at a dosage

of 10 mg/kg/day through
the drinking water from
postnatal days 12 to 18

STZ-induced
diabetes

TGR (mREN)27
rat/M 16

Hypertension was
prevented and

diabetic
retinopathy was

attenuated

[143]

Perindopril was
administered at a dosage
of 3 mg/kg/day between
the ages of 4 and 16 weeks

Genetic
hypertension

model
SHR/M 28

Hypertension and
renal dysfunction
were attenuated

[148]

ARB

Losartan was
administered at a

concentration of 100 mg/L
in the drinking water

between the ages of 2 and
4 weeks

Maternal protein
restriction Wistar rat/M 12 Hypertension was

prevented [149]

Losartan was
administered at a dosage

of 20 mg/kg/day between
the ages of 2 and 4 weeks

Maternal caloric
restriction SD rat/M 12 Hypertension was

prevented [150]
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Table 2. Cont.

Intervention Experimental
Model Species Age at Evaluation

(Weeks) Protective Effects Ref.

Losartan was
administered at a dosage

of 20 mg/kg/day between
the ages of 4 and 9 weeks

Genetic
hypertension

model
SHR/M 10 Hypertension was

prevented [141]

Losartan was
administered at a

concentration of 30 mg/L
in the drinking water

between the ages of 5 and
8 weeks

Uteroplacental
insufficiency WKY rat/M 26

Hypertension,
vascular

dysfunction, and
kidney disease
were prevented

[151]

AT1R antisense

AT1R antisense was
delivered at 5 days of age

Genetic
hypertension

model
SHR/M 12 Hypertension was

prevented [152]

ACE2 activator

Diminazene aceturate was
administered in

pregnancy

Maternal
hypertension SHR/M 16

Hypertension and
kidney fibrosis

were attenuated
[153]

ANG-(1-7) was
administered in

pregnancy

Maternal
hypertension SHR/M 16

Hypertension and
kidney fibrosis

were attenuated
[153]

Presently, several RAS-targeted interventions have been examined in animal models of
CKM syndrome, including renin inhibitors [101,141–143], ACEIs [143–148], ARBs [141,149–151],
AT1R antisense [152], and ACE2 activators [153]. The predominant protective effects of
a variety of RAS-targeted interventions against CKM traits primarily encompass hyper-
tension, succeeded by concerns such as kidney disease [148,151,153] and CVD [143,151].
While the inhibition of the RAS has demonstrated advantages in addressing other aspects
of CKM syndrome, including obesity, liver steatosis, and diabetes [21–24], its impact on the
reprogramming of these phenotypes remains uncertain.

Investigations into the reprogramming effects of RAS-based treatments have been
conducted in rats aged between 10 and 30 weeks, approximately aligning with human ages
from childhood to young adulthood [154]. However, the majority of these studies have
predominantly concentrated on male subjects and have not delved into the exploration
of different dosage levels. Further research is essential to clarify whether these observed
effects manifest in a dose- or sex-dependent manner.

The proposition of early inhibition of the classical RAS axis aims to reprogram the aber-
rant activated RAS, thereby preventing CKM syndrome. In rodents, kidney development is
entirely completed by postnatal weeks 1–2, and cardiomyocytes seldom reenter or advance
through the cell cycle after postnatal day 9. Consequently, suitable therapeutic windows
entail the initiation of treatments in juvenile offspring, commencing as early as postnatal
2 weeks in most rodent models. As listed in Table 2, typical therapeutic periods involve
treating juvenile offspring with aliskiren [101,142], captopril [144], or losartan [149,150]
between the ages of 2 and 4 weeks. This aims to mitigate adverse programming processes
without compromising kidney development.

Currently, aliskiren holds the distinction of being the inaugural renin inhibitor sanc-
tioned for the treatment of hypertension. Two studies indicate that when administered
to offspring aged 2–4 weeks, aliskiren can prevent hypertension in adults whose mothers
were fed a high-fructose diet [101] or subjected to caloric restriction [142]. Another study
investigated the potential of aliskiren and lisinopril, administered between postnatal days
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12 and 18, to thwart hypertension and diabetic retinopathy in a diabetic (mRen-2)27 rat
model [143]. Aliskiren demonstrated superior retinal protection compared to lisinopril,
although lisinopril exhibited better normalization of BP than aliskiren [143]. However,
aliskiren falls short in impeding the interaction between the PRR and its ligand. Despite
the reported positive effects of PRR inhibitory peptides such as the handle region peptide
and PRO20 [155,156] in animal models, questions persist regarding their specificity and ef-
ficacy [157]. There is optimism that the development of a specific non-peptide inhibitor for
PRR could yield favorable outcomes in (pro)renin–PRR inhibition in the imminent future.

As the predominant animal model for essential hypertension and its associated
metabolic disturbances, the spontaneously hypertensive rat (SHR) is utilized [158]. The
early post-weaning administration of ACE inhibitors, such as captopril [145] or perindo-
pril [148], for a duration of 3 weeks has demonstrated efficacy in preventing the onset of
hypertension in adult SHRs. Similarly, the early use of captopril [144] or enalapril [146]
has exhibited beneficial effects on countering hypertension in offspring programmed by
maternal protein restriction.

Losartan stands out as the sole ARB investigated in programmed CKM syndrome
(Table 2). In a rat model of uteroplacental insufficiency, administering losartan between 5
and 8 weeks of age has been found to protect adult offspring from hypertension, vascular
dysfunction, and kidney disease [151]. Another study highlighted the preventive potential
of early treatment with AT1R antisense against hypertension in SHRs [152]. It is noteworthy
that the initiation of AT1R antisense delivery occurred at postnatal day 5 [152], and its
impact on the nephron number remains unexplored.

Pharmacological interventions have traditionally focused on inhibiting the classi-
cal RAS. However, with the identification of the alternative RAS, researchers have ex-
plored alternative strategies to activate this non-classical RAS with limited success until
recently [159]. Surprisingly, little attention has been directed toward applying this approach
to programmed CKM syndrome. Highlighted in Table 2 is the finding that only two studies
have documented the administration of diminazene aceturate (DIZE), a potential ACE2
activator, or ANG-(1-7) during pregnancy. This administration was shown to alleviate
hypertension and renal fibrosis in adult SHR offspring [153].

Despite the therapeutic potential of activating the non-classical RAS axis in various
diseases, further investigations are warranted to delineate its reprogramming effects on
CKM programming. A significant gap in the literature lies in gaining a deeper understand-
ing of the pivotal components of the RAS for a targeted approach and determining the
optimal therapeutic window to prevent CKM syndrome with developmental origins.

7. Conclusions and Future Directions

While the dysregulation of the RAS is recognized as one of the factors contributing to
the programming of components within CKM syndrome, significant gaps persist in the
field, primarily due to methodological constraints and a lack of consensus that has impeded
translation into clinical practice.

A major unresolved issue is the scarcity of studies undertaking a comprehensive
analysis simultaneously quantifying the expression and activity of the entire spectrum of
RAS components in experimental settings. Given the intricate nature of RAS signaling,
relying on the analysis of isolated components may lead to a misinterpretation of the
system’s functional status.

The utilization of drugs to modulate the RAS is well-established in clinical practice,
although it is still emerging in the field of fetal programming. This review presents data
from animal models showcasing various RAS-based therapies that demonstrate positive
effects on CKM programming, including renin inhibitors, ACEIs, ARBs, AT1R antisense,
and ACE2 activators. However, the reprogramming effects in response to early-life RAS-
based interventions, whether applied individually or in combination, remain incomplete
and challenging to predict. Consequently, future efforts should focus on developing optimal
methodologies to gain a more holistic understanding of the RAS, ensuring that RAS-based
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therapy is directed appropriately. Moreover, attention must be given to determining the
optimal dosage in a sex-dependent manner to maximize benefits without increasing toxicity
before clinical translation.

Even with substantial progress in the accessibility of various RAS-based drugs, there
remains a lack of in-depth explorations into their reprogramming effects on each com-
ponent of CKM syndrome. Another challenge lies in identifying specific developmental
windows for different RAS-based therapies to reprogram the processes driving distinct
CKM phenotypes, which still await further clarification. Nonetheless, this review marks
progress by establishing a connection between the RAS and the developmental origins
of CKM syndrome. It provides valuable insights that could pave the way for potential
RAS-based interventions aimed at mitigating the global burden of CKM syndrome in
the future.
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