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Abstract: Colorectal cancer (CRC), a prevalent malignant tumor of the digestive system, ranks as
the third and second in global incidence and mortality, respectively, in 2020, with 1.93 million new
cases (≈10% of all cancers). There are 940,000 deaths (≈9.4% of all cancers), and the incidence of CRC
in younger patients (under 50 years of age) has become a new trend. The pathogenesis of CRC is
primarily attributed to a series of genetic and epigenetic abnormalities within normal colonic epithelial
cells, coupled with the reshaping of the tumor microenvironment in the surrounding stroma. This
process leads to the transformation of colorectal adenomas into invasive adenocarcinomas. Although
genetic changes are known to be the primary driving force in the occurrence and progression of
CRC, recent research indicates that epigenetic regulation serves as a crucial molecular marker in
cancer, playing a significant role in the pathological and physiological control of interactions between
genetics and the environment. This review discusses the current global epidemiology of CRC, its risk
factors, and preventive treatment strategies. The current study explores the latest advancements in
the epigenetic regulation of CRC, including DNA methylation, histone modifications, and non-coding
RNAs (ncRNAs). These developments hold potential as screening tools, prognostic biomarkers, and
therapeutic targets for CRC.
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1. Introduction

Colorectal cancer (CRC) characterized by a high molecular heterogeneity, whose main
manifestation is a malignant tumor derived from the glandular epithelium of the colon and
rectum, poses a significant threat to human health [1]. In 2020, there were 19.29 million
new cancer cases and 9.96 million cancer-related deaths globally. Among males, CRC is the
third most common cancer following lung and prostate cancer, with 1.07 million new cases
(≈10.6% of all cancers) and approximately 520,000 deaths (≈9.3% of all cancers); among
females, CRC ranks as the second most common cancer after breast cancer, with 870,000 new
cases (≈9.4% of all cancers) and 420,000 deaths (≈9.5% of all cancers) [2]. Additionally, the
mortality rate of late-stage CRC patients under the age of 50 increases by 1.3% annually [3].
The incidence of colon cancer varies by up to 9-fold across different regions worldwide.
The highest incidence rates are observed in Europe, Australia/New Zealand, and North
America; especially, the highest incidence rates among men and women can be observed in
Hungary and Norway. However, in developing countries, such as most areas of Africa and
South Asia, the incidence rates of CRC tend to be lower [2]. Notably, China accounted for
24% of the global new cancer-related diagnoses and 30% of cancer-related deaths in 2020.
Gastrointestinal cancers occur in 45% of cancer-related deaths in China, a figure significantly
higher than in developed countries like the USA and UK. This discrepancy may relate
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to the more advanced prevalence of early screening and treatment options in developed
countries [4]. Despite there being significant advancements in radiotherapy, chemotherapy,
and surgical techniques for CRC, existing screening programs and medical technologies are
inadequate to curb the high-risk population and continue to expand in developing counties
with a vast population base. Multiple risk factors are related to the development of the
disease, such as poor lifestyle habits, the inheritance and epigenetic inheritance of related
genes, and the development of colorectal adenomas. Whether for individuals, health
organizations, or governments, CRC has posed a significant health threat and economic
burden challenge. The development of more widely accessible, effective, and non-invasive
early screening and diagnostic methods remains an urgent clinical need to detect and
remove colon polyps at an early stage.

Epigenetics encompasses the genetic architecture and biochemical modifications of
chromatin. In essence, it refers to DNA molecular modifications that can regulate gene
activity, leading to heritable phenotypic changes with no need to alter the DNA sequence
itself [5]. Compared to extensively researched genetics, the study of epigenetics is a rela-
tively new and emerging area. Nowadays, there are many common epigenetic regulatory
mechanisms, such as DNA methylation, chromatin conformational changes, histone modifi-
cations, and expression levels of non-coding RNA (ncRNA) alterations. These mechanisms
take responsibility for gene expression regulation and epigenetic silencing initiating and
maintaining, which are related to a series of intracellular processes, such as cell differen-
tiation, cell division, gene expression, X-chromosome inactivation, embryogenesis, and
genomic imprinting [6].

Previous research has shown that epigenetic regulation is one of the fundamental
processes for CRC to acquire underlying inherent drug resistance. For instance, aberrant
expression of the CRC epigenome may lead to resistance against conventional drugs,
such as 5-fluorouracil, oxaliplatin, and cetuximab. RNA sequencing analyses illustrate
that approximately 280 non-coding RNA (ncRNA) transcripts can be dysregulated in
cetuximab-resistant CRC cells (H508/CR) [7]. Given that epigenetic changes often occur in
the early progression of diseases and are involved in nearly all key cancer-related pathways,
epigenetic alterations are prime candidates for cancer detection, diagnosis, and prognostic
biomarkers. Classic CRC biomarkers, such as mutations in KRAS and BRAF, methylation
modifications of NDRG4, BMP3, and SEPT9, high expression of miR-92a and miR-144, and
the presence of F. nucleatum, are utilized in liquid biopsies for early CRC screening [8–12].

In contrast to irreversible genetic regulation, abnormal epigenetic regulation is re-
versible with pharmacological interventions. For example, a characteristic of CRC devel-
opment, EGFR gene amplification, leads to resistance against cetuximab, panitumumab,
and necitumumab. However, methylation of histone H3 lysine residues 9 and 27 inhibits
EGFR transcription, and treatment with inhibitors targeting KDM4 (a demethylase for
H3K9/36) can decrease EGFR amplification, consequently overcoming drug resistance to
cetuximab in advanced CRC patients to some extent [13,14]. Additionally, methylation and
deacetylation of histone H3 promote the expression of LncRNA-CCAL, which activates
the Wnt/β-catenin pathway and subsequently upregulates ABCB1 expression, leading to
multidrug resistance (MDR) in CRC [15]. Therefore, understanding the epigenetic drivers
associated with CRC pathogenesis and developing specific epigenetic-targeted drugs that
target ncRNAs or reverse histone modifications and DNA methylation holds significant
potential for precision medicine in CRC patients.

This review gives a concise overview of the current worldwide epidemiology of CRC,
with risk factors and strategies for prevention and treatment. It summarizes common
types of CRC epigenetic modifications, including DNA methylation, such as the regulation
of promoter regions by enhancer methylation, histone modifications, and the regulation
by ncRNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) as
epigenetic regulatory factors. This review screens for potential epigenetic biomarkers from
previous articles, aiming to improve early screening, diagnosis, prognosis, and targeted
drug treatment for CRC, and lay the foundation for future personalized medicine.
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2. Colorectal Cancer Risk Factors

Sporadic colorectal cancer (sCRC), which constitutes about 60–65% of CRC cases, lacks
a familial genetic history [16]. Adenomas are the typical precursors of CRC, with approxi-
mately 85–90% of sCRC developing through the adenoma–carcinoma sequence (ACS) [17].
The malignant transformation of normal colonic epithelial cells into metastatic cancer typi-
cally requires decades, providing a substantial period for clinical intervention [18,19]. The
accumulation of cancer-driving gene mutations, epigenetic alterations, and environmental
interactions are primary factors promoting the development of sCRC [18]. Increasingly,
studies have shown that DNA methylation, non-coding RNA regulation, and alterations
in apoptosis-regulating and DNA repair genes play crucial roles at different stages of
CRC development. Environmental factors such as aging, sedentary lifestyle, hypertension,
cirrhosis, family history of colon cancer or inflammatory bowel disease, daily alcohol
consumption exceeding one bottle (>600 mL), smoking, obesity, and gut microbiota dysbio-
sis are high-risk inducers of sCRC [19,20]. Notably, smoking-induced high microsatellite
instability, CpG methylation, and BRAF mutations in CRC patients are major preventable
causes of cancer deaths [21]. Calcium supplements and adequate consumption of whole
grains, fiber, and dairy products seemingly can reduce CRC risk [2].

If patients can be diagnosed in the early stages, their 5-year survival rate can be up
to 90% [22]. Although there are multiple treatment options for in situ CRC, aggressive
surgery remains the frontline method for curative treatment of CRC; for locally advanced
tumors, surgery can alleviate symptoms to some extent and improve prognosis. Clinical
surgical treatment is influenced by multiple factors, such as patient age, tumor location,
size, and depth of tissue involvement, leading to some patients being unsuitable for surgery
or facing the risk of recurrence post-surgery. With advancements in surgical techniques,
traditional open surgery has evolved into endoscopic treatments, laparoscopic surgery, and
robotic surgery, enhancing the safety and efficacy of surgery. Adjuvant radiotherapy or
chemotherapy can significantly reduce tumor volume and prolong survival time. However,
the side effects of chemotherapy drugs and patient resistance are pressing issues in clinical
treatment. Compared to traditional chemotherapy, targeted drug therapy is more selective
to specific tumor targets and can inhibit tumor growth and spread more effectively. For
example, drugs that target EGFR or VEGF (Table 1), such as cetuximab, bevacizumab,
and panitumumab, have achieved certain success in the treatment of metastatic CRC,
but targeted therapy is usually only applicable to specific subtypes of patients, making
the body more prone to develop drug resistance. Thus, the future research direction in
the development of prognosis-targeted drugs for CRC and the combined application of
different targeted drugs in individualized treatment is warranted. In addition, immunother-
apy has shown significant efficacy in some CRC patients in recent years. For example,
PD-1/PD-L1 antibodies like Pembrolizumab and Nivolumab have yielded notable results.
Nonetheless, not all CRC patients can activate their own immune system to attack tumor
cells, and individual immune-related side effects vary significantly. In fact, due to the
lack of significant symptoms in the early stages of primary local CRC, and the lack of
highly sensitive and specific early diagnostic biomarkers, there is a high rate of missed and
misdiagnoses. About 50–60% of diagnosed CRC patients eventually progress to late-stage
metastatic CRC (mCRC), with hematogenous or lymphatic spread to organs such as the
liver, lungs, and bones [23]. The mechanisms driving CRC resistance to various treatments
remain unclear, leading to varying degrees of treatment failure for common first-line drugs
for CRC (Table 1), with a 5-year survival rate of approximately 14–15% [24,25]. Therefore,
identifying reliable biomarkers for early detection of primary and recurrent CRC is crucial
for improving patient survival rates.
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Table 1. Common drugs and therapeutic targets for colorectal cancer.

Drug Name Target Gene Affected Colorectal Cancer Staging Reference

Pertuzumab HER2 Metastatic [26]
Encorafenib BRAF Metastatic [27]
Ipilimumab CTLA-4 Metastatic, MSI-H/dMMR [28]

5-FU DNA synthesis and repair Metastatic [29]
Cetuximab EGFR Metastatic [30,31]

Panitumumab EGFR Metastatic [32,33]
Trastuzumab HER2 Metastatic [26,34]
Trametinib MEK1, MEK2 RAS and RAF mutation [35]

Dostarlimab PD-1 Metastatic, MSI-H/dMMR [36]
Nivolumab PD-1 Metastatic, MSI-H/dMMR [37]

Pembrolizumab PD-1 Metastatic, MSI-H/dMMR [38,39]
Olaparib PARP1/2 BRCA mutation [40]

Bevacizumab VEGF-A Metastatic [41,42]
Ziv-aflibercept VEGF-A, VEGF-B, IGF-1 Metastatic [43]

Regorafenib VEGFR2, TIE2, PDGFR, FGFR,
KIT, RET, BRAF, BRAFV600E Metastatic [44]

MSI-H/dMMR: microsatellite instability-high/deficient mismatch repair.

3. Methylation
3.1. Mechanism of Methylation Modification

In recent years, increasing evidence has been reported indicating the crucial roles of
epigenetic regulatory mechanisms, including DNA methylation, histone modification, and
non-coding RNA, in the occurrence, development, and therapeutic processes of CRC.

DNA methylation acts as a kind of stable and inheritable epigenetic modification,
playing an important role in the regulation of gene expression in mammals [45]. Being the
most extensively studied epigenetic mechanism to date, DNA methylation exhibits various
patterns, such as 5-methyl cytosine (5mC), N6-methyladenine (6mA), and 4-methylcytosine
(4mC) [46,47]. 6mA and 4mC are predominantly found in the genomes of prokaryotes,
while 5mC is the most widespread type of DNA methylation in eukaryotes [48]. The
human genome contains approximately 1% of 5mC; at the same time, it is the most studied
and understood DNA modification pattern. The 5mC modification occurs within CpG
islands where the regions of DNA are rich in CpG dinucleotides. This process includes
the transfer of a methyl (CH3-) group from S-adenosyl methionine (SAM) to the fifth
carbon position of cytosine, catalyzed by the DNA methyltransferase (DNMT) family, thus
forming 5-methylcytosine (5mC). The cytosine-guanine dinucleotides are interconnected
by phosphodiester bonds P [49,50].

Approximately 60–70% of gene promoters contain CpG islands. In most normal cells,
CpG sites at expressed gene promoters are unmethylated. However, CpG dinucleotides
outside of the promoter region often exhibit tissue-specific methylation states, frequently
participating in gene transcription regulation [51]. Some studies have illustrated that CpG
islands exist in about 40–60% of tumor suppressor gene promoters, typically spanning
200–2000 base pairs (bps). Aberrant methylation of CpG islands in the promoter regions
of genes is associated with epigenetic transcriptional silencing of tumor suppressor genes,
playing a role in the early stages of CRC regulation [52–54]. Methyl-CpG binding domain
(MBD) proteins on gene promoters are a key factor in inducing transcriptional silencing
through epigenetic changes, impeding the entry of regulatory proteins necessary for active
gene transcription. This inhibition directly prevents the binding of transcription factors,
ultimately leading to gene transcriptional silencing, However, silenced genes can be reac-
tivated using DNA methylation inhibitors [52]. Additionally, DNA methylation in distal
regulatory elements, such as enhancers, is also associated with tissue-specific gene expres-
sion regulation [55,56]. However, the presence of 5mC in different types of enhancers is
association with promoter interactions, and the necessity for gene expression regulation
requires further study. Related studies indicate that enhancer regions exhibit the highest
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degree of differential methylation regions (eDMRs) during the progression from normal
to primary and then metastatic cancers. Abnormal methylation in these regions correlates
with gene expression changes in various diseases, including multiple cancers, with eDMRs
being most predictive of patient prognosis in metastatic tumors [57]. Hyper-methylation of
DNA in genes like IRAK3, CDO1, ADAM2, and SYCP3 is essential for cancer cell survival
and growth, while demethylation of these genes leads to cell death and apoptosis. Whole-
genome analysis indicates that epigenetic changes in CRC are more frequent than genetic
alterations [58]. Therefore, detecting the presence and quantity of CRC-related methylation
biomarkers serves as a viable strategy for early monitoring of CRC progression and in vitro
targeted therapy of CRC epigenetic regulation. For instance, the sensitivity and specificity
of methylated NDRG4 detection for CRC screening are 81% and 92%, respectively [9].

3.2. The Role of Methylation in CRC

High methylation of DNA in the promoter regions, which can be commonly observed
in CRC leading to gene transcriptional silencing, is considered to be a critical mechanism
for tumor suppressor gene inactivation during tumor progression. For example, as the
cancer suppressor gene Adenomatous Polyposis Coli (APC) exists in familial CRC and
sporadic CRC (sCRC), it plays a key role in regulating the transcriptional activity of β-
catenin [59]. The incidence of APC promoter hypermethylation, which is significantly
associated with CRC risk, is remarkably higher in colorectal adenomas than in normal
colorectal tissues [60]. Furthermore, hypermethylation in promoter regions leads to the
inactivation and dysfunction of multiple types of genes, including tumor suppressor
genes such as PTCH1 and E-cadherin; DNA repair genes such as MLH1 and MGMT; and
apoptosis-related genes such as Apaf1, Bcl2, and p53 [61–65]. Conversely, hypomethylation
of DNA may activate oncogene transcription, consequently promoting the development of
carcinogenesis and tumor. A potential mechanism is the activation of Long Interspersed
Nucleotide Element (LINE-1), which occupies about 18% of the human genome [66]. LINE-
1, a non-long terminal repeat retrotransposon, may cause transcriptional disruption and
genomic instability. In normal tissues, LINE-1 is typically found to be highly methylated
and inactive [67]. Previous research indicates that LINE-1 methylation in CRC adenomas
is associated with polyp size and dysplasia severity. Therefore, low methylation and
high expression of LINE-1 are conjectured to be associated with negative prognosis in
CRC patients, with almost no heterogeneity in LINE-1 methylation within tumors [68–70].
Consequently, the combination of the fecal immunochemical test (FIT) with methylation
biomarkers and low methylation of LINE-1 may enhance the sensitivity of screening and
prognosis in CRC patients.

S-adenosylmethionine (SAM) also exerts its major function as a methyl donor in bi-
ological transmethylation processes. The development that SAM can effectively inhibit
the hypomethylation of DNA promoters in gastric and CRC has been illustrated by pre-
vious studies. Thereby, it can reverse the expression of oncogenes like C-myc and H-ras.
This also leads to reduced levels of their mRNA and proteins, subsequently inhibiting the
growth of tumor cells [71]. The occurrence of chemotherapeutic resistance increases the
recurrence possibility of CRC. The methylation of the CpG island of the hMLH1 gene is
related to the resistance to 5-fluorouracil (5-FU). Previous studies have shown that the DNA
methyltransferase inhibitor 5-aza-deoxycytidine (5-aza-dC) in the SW480 cell line with high
methylation of the hMLH1 promoter induces demethylation of hMLH1. Consequently,
this restores the drug sensitivity of SW480 cells to 5-fluorouracil by altering the expression
state of the hMLH1 protein [72]. On the other hand, utilizing gene editing technology
to selectively reverse aberrant methylation of genes can restore the expression of tumor
suppressor genes suppressed by methylation, or selectively silence tumor-promoting genes.
For example, Tejedor JR et al. found that promoter methylation silencing of the tumor
suppressor gene RSPO2 is a late-stage event in the adenoma-CRC process. Epigenetic
reactivation of RSPO2 by dCas9-TET1 fusion protein was associated with significant impair-
ment in cell proliferation in p53−/− cancer cell lines [73]. Therefore, the use of gene editing
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technology to regulate DNA methylation status has a promising prospect for the treatment
of CRC. While still in the research phase, these methods are poised to become integral to
future CRC therapies, especially for patients insensitive to conventional treatments, or as
adjunctive therapeutic measures.

CRC is a high molecular heterogeneity disease [1]. The colon can be anatomically
divided into the left and right halves, which not only have distinct embryonic origins
but also differ in pathological types and molecular classifications. Consequently, this
results in varied manifestations and clinical responses in patients. For instance, right-sided
colon cancer has a higher sensitivity to Syndecan-2 (SDC2) methylation testing. A study
based on Chinese fecal samples showed that SDC2 methylation testing had a sensitivity
of 81.1% for CRC and a detection rate of 58% for advanced adenomas, leading to missed
diagnoses of left-sided colon cancer and adenomas [74]. Research indicates that Tissue
Factor Pathway Inhibitor 2 (TFPI2) demonstrates relatively higher sensitivity for left-sided
colon cancer. Thus, the newly developed combined methylation status testing of TFPI2 and
SDC2 achieves a sensitivity and specificity of 82% and 88.4% for CRC screening, respectively.
The sensitivity for advanced adenomas increased to 89.9% with a specificity of 71.6% [75].
Similarly, for the extensively studied blood methylation biomarker SEPT9 in CRC, related
studies show that methylated SEPT9 has limited capability in identifying precancerous
lesions. However, the positive proportion of SEPT9 is higher in advanced CRC (Stage
I: 45%, II: 70%, III: 76%, IV: 79%) and in less differentiated tissues (highly differentiated:
31%, moderately differentiated: 73%, poorly differentiated: 90%), presenting challenges
in its clinical applicability [76]. Using a combination of methylated ALX4, SEPT9, and
TMEFF2 as biomarkers, the sensitivity for detecting CRC in primary tissue and peripheral
blood samples was 84% and 81%, with 87% and 90% specificities, respectively [11]. Further
validation is required in larger-scale studies. Currently, many abnormal methylation
biomarkers for early CRC detection have been identified in tissue, blood, and fecal samples
(Table 2). Specifically, the methylation of vimentin (VIM) is highly expressed in CRC tissues.
Fecal DNA testing can identify nearly half (46%) of colon cancer patients with a specificity
of 90.0% [77].

Table 2. A catalogue of abnormal methylation biomarkers in colorectal cancer.

Diagnostic Markers Specimen CRC Staging
Epigenetic
Changes Sensibility (%) Specificity (%) Reference

(1)

ALX4 serum early-stage CRC methylation 46.6 (21/45) 66.3 (11/16) [78]
ALX4 plasma early-stage CRC methylation 47.8 (87/182) 93.5 (159/170) [11]
CDH1 serum early-stage CRC hypermethylation 18 (3/17) 100 (10/10) [79]

NEUROG1 serum early-stage CRC methylation 55.5 (25/45) 81.3 (13/16) [78]
P16 serum early-stage CRC hypermethylation 71 (12/17) 100 (10/10) [79]

RASSF1A serum early-stage CRC hypermethylation 24 (4/17) 100 (10/10) [79]
RASSF1A plasma early-stage CRC methylation 93 (28/30) 53 (16/30) [80]

RUNX3 serum early-stage CRC promoter hy-
permethylation 65 (11/17) 100 (10/10) [79]

TFPI2 serum early-stage CRC methylation 18 (39/215) 100 (20/20) [81]
TFPI2 stool early-stage CRC methylation 76 (50/66) 93 (28/30) [82]
TFPI2 tissue early-stage CRC methylation 99 (114/115) 94 (45/48) [82]

SDC2, TFPI2 stool early-stage CRC methylation 82 (237/289) 88.4 (192/217) [75]
SDC2 tissue early-stage CRC methylation 96.8 (120/124) ns [74]
SDC2 stool early-stage CRC methylation 81.1 (159/196) 93.3 (167/179) [74]

TMEFF2 plasma early-stage CRC methylation 70.9 (129/182) 95.2 (162/170) [11]
c9orf50, twist1,
kcnj12, znf132 plasma early-stage CRC methylation 80 (140/175) 97 (54/56) [83]

EFHD1 plasma early-stage CRC promoter
methylation 79 (19/24) 78 (75/96) [84]
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Table 2. Cont.

Diagnostic Markers Specimen CRC Staging
Epigenetic
Changes Sensibility (%) Specificity (%) Reference

BMP3 plasma early-stage CRC methylation 75 (44/59) 70 (26/37) [10]
BMP3 tissue early-stage CRC methylation 81 (24/30) ns [10]

C9orf50 tissue early-stage CRC methylation 60 80.6 [85]
SFMBT2 tissue early-stage CRC methylation 85.7 87 [85]
ITGA4 tissue early-stage CRC methylation 85.7 87 [85]
THBD tissue early-stage CRC methylation 84.1 87 [85]

ZNF304 tissue early-stage CRC methylation 70 100 [85]
SFMBT2, ITGA4,
THBD, ZNF304 tissue early-stage CRC methylation 96.1 87 [85]

RARB2, p16INK4a,
MGMT, APC tissue early-stage CRC promoter

methylation 77 (20/26) 100 (20/20) [86]

RARB2, p16INK4a,
MGMT, APC stool early-stage CRC promoter

methylation 62 (16/26) 100 (20/20) [86]

AGTR1, WNT2,
SLIT2 stool early-stage CRC methylation 78.1 (50/64) 89.5 (34/38) [87]

(2)

SDC2 serum TNM I-IV methylation 87.0 (114/131) 95.2 (119/125) [88]
SEPT9 plasma TNM I-IV methylation 61.8 (76/123) 89.6 (112/125) [89]
SEPT9 plasma TNM I-IV methylation 74.7 (136/182) 96.5 (164/170) [11]

SEPT9 plasma TNM I-IV methylation 50.9 (27/53) 91.4
(1331/1457) [90]

SEPT9 plasma TNM I-IV methylation 74.8 (101/135) 87.4 (298/341) [91]
SEPT9 tissue TNM I-IV methylation 78 (99/127) 97 (116/120) [11]

NDRG4 stool TNM I-IV promoter
methylation 61 (17/28) 93.3 (42/45) [92]

NDRG4 tissue TNM I-IV methylation 81 (68/84) 92 (77/84) [9]
NDRG4 blood TNM I-IV methylation 54.8 (46/84) 78.1 (66/84) [9]
NDRG4 urine TNM I-IV methylation 72.6 (61/84) 85 (71/84) [9]
NDRG4 stool TNM I-IV methylation 76.2 (64/84) 89.1 (75/84) [9]

OSMR tissue TNM I-IV promoter
methylation 80 (80/100) 4 (4/100) [93]

OSMR stool TNM I-IV promoter
methylation 38 (26/69) 95 (77/81) [93]

SFRP1 plasma TNM I-IV promoter
methylation 80 (20/25) 92 (33/36) [94]

PHACTR3 stool TNM I-IV methylation 66 (29/44) 100 (30/30) [95]
NEUROG1 serum UICC I-II methylation 61 (59/97) 91 [78]

SFRP2 serum TNM I-IV methylation 66.9 (113/169) 93.7 (59/63) [96]
SFRP2 stool TNM I-IV hypermethylation 94.2 (49/52) 95.2 (23/24) [97]
SFRP2 stool TNM I-IV methylation 84 (142/169) 54 (34/63) [96]
SFRP2 tissue TNM I-IV methylation 88.2 (149/169) 34.9 (22/63) [96]
SPG20 stool TNM I-IV hypermethylation 80.2 (77/96) 100 (30/30) [98]
HLTF serum TNM I-IV hypermethylation 32.7 (16/49) 92.7 (38/41) [99]

hMLH1 serum TNM I-IV hypermethylation 42.9 (21/49) 97.6 (40/41) [99]
MGMT stool TNM I-IV methylation 48.1 (25/52) 100 (24/24) [100]

vimentin serum TNM I-IV methylation 31.1 (14/45) 62.5 (10/16) [78]
vimentin stool TNM I-IV methylation 45.7 (43/94) 90.0 (178/198) [77]
vimentin stool TNM I-IV methylation 72.5 (29/40) 86.9 (106/122) [101]
vimentin urine TNM I-IV hypermethylation 75 (15/20) 90 (18/20) [102]

APC serum TNM I-IV hypermethylation 6.1 (3/49) 100 (41/41) [99]
Wif-1 plasma TNM I-II methylation 36.7 (89/243) 90.6 (250/276) [103]

APC, MLH1, HLTF serum TNM I-IV promoter hy-
permethylation 57.1 (28/49) 90.2 (37/41) [99]

APC, MGMT,
RASSF2A, Wif-1 plasma TNM I-II methylation 86.5 (210/243) 92.1 (253/276) [103]

RASSF1A, SFRP2 stool TNM I-IV promoter
methylation 75.0 (63/84) 89.4 (101/113) [104]
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Table 2. Cont.

Diagnostic Markers Specimen CRC Staging
Epigenetic
Changes Sensibility (%) Specificity (%) Reference

MGMT, MLH1, VIM stool TNM I-IV promoter
methylation 75.0 (45/60) 86.5 (32/37) [105]

ALX4, SEPT9,
TMEFF2 plasma TNM I-IV promoter

methylation 81 (147/182) 90 (153/170) [11]

ALX4, SEPT9,
TMEFF2 tissue TNM I-IV promoter

methylation 84 (107/127) 87 (105/120) [11]

Note: The above table is for the detection of colorectal cancer sensitivity and specificity data in healthy individuals.
ns: not specified.

4. Histone Modification

Histone modifications represent another crucial mechanism of epigenetic regulation.
Chromatin, the primary carrier of human genetic information DNA, consists of nucleo-
somes, the fundamental units made up of an octamer of core histones H2A, H2B, H3, and
H4, surrounded by 147 bp of DNA. Research has shown that histone modifications play
a significant role in life processes such as gene transcription and DNA damage repair,
while aberrant histone modifications are a key regulatory mechanism in many cancer pro-
cesses, including chemotherapy resistance. A minimum of eight different types of histone
modifications have been identified, with common modifications including ubiquitination,
phosphorylation, methylation, acetylation, and ADP-ribosylation [106]. Methylation typ-
ically occurs when histone methyltransferases (HMTs) catalyze the transfer of a methyl
group from S-adenosylmethionine (SAM) to the lysine (Lys) and arginine (Arg) residues
on the tails of histones H3 and H4. Histone complexes promote the condensation of ge-
nomic DNA, and these post-translational modifications directly influence the expression
of oncogenes or tumor suppressor genes by altering the electrostatic charge of the DNA-
binding histone tails, or indirectly promoting cancer onset or progression by changing
the recognition sites and structures of specific binding proteins [107]. Hence, targeted
therapeutic drugs directed at methyltransferases, deacetylases, and related enzymes may
become crucial components of future treatments.

Previous research has reported that the expression of H3K9me2 is significantly higher
in adenocarcinoma than in normal colonic mucosa. The global dysregulation of H3K9me2
levels is an important epigenetic event in the development and carcinogenesis of colorectal
tumors, participating in tumor cell gene regulation through chromatin remodeling [108].
Additionally, the methylation level of H3K27me2 might be an autonomous prognostic factor
for asynchronous liver metastasis in CRC [109]. Thus, diffuse H3K9me2 immunopositivity
can serve as a useful tool for differentiating tubular adenomas from adenocarcinomas
in pathological diagnoses. Furthermore, H3K9me2 could also be a potential therapeutic
target for CRC. Similarly, H3K9me3 is specifically elevated in aggressive CRC tissues,
with the presence of H3K9me3 positively correlating with lymph node metastasis in CRC
patients [110].

Research has identified RGC-32 as a T-lymphocyte cell cycle regulator [111]. In the
SW480 cell line, silencing of RGC-32 is related to a reduction in H3K27 trimethylation
(H3K27me3), while knockdown of RGC-32 induces an enhancement in acetylation of
histone H2B lysine 5 (H2BK5), H2BK15, H3K9, H3K18, and H4K8. Additionally, RGC-32
knockdown significantly increases the proportion of SW480 cells entering the S phase and
subsequently the G2/M phase [112]. These data suggest that RGC-32 may promote the
development of CRC by regulating the gathering of chromatin core histones.

Evidence suggests that compared to normal colonic tissues, HDAC2 expression is
upregulated in CRC tissues, while its expression decreases in metastatic CRC and is
associated with poor prognosis in CRC patients [113,114]. The dual role of HDAC2 in the
development of CRC may stem from the HDAC2 combination SP1 induction of histone
H3K27 deacetylation at the promoter of LncRNA H19, thereby suppressing LncRNA H19
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expression. Concurrently, the loss of HDAC2 expression promotes the EMT-mediated
CRC lung metastasis process through the LncRNA H19/miR-22-3P/MMP14 axis [114].
On the other hand, histone deacetylase (HDAC) inhibitors have been studied for the
treatment of colorectal cancer. These drugs can elevate histone acetylation levels, thereby
modulating gene expression. For example, the combination of the histone deacetylase
(HDAC) inhibitor vorinostat (VOR) and the autophagy inhibitor chloroquine significantly
inhibits the growth and metastasis of tumor cells, and promotes apoptosis in CRC cells
by promoting the accumulation of ubiquitinated proteins and the substantial increase in
superoxides required for cell death [115]. These findings further support the key role of
epigenetic effectors in the development of colorectal cancer.

In addition, technologies such as CRISPR-Cas9 are utilized to modulate DNA methyla-
tion status, which can also be applied to regulate histone modification states. By combining
editing tools with histone-modifying enzymes or inhibitors, precise control over specific
genomic regions can be achieved, thus impacting the survival and proliferation of cancer
cells [116]. Overall, histone modification holds significant potential in CRC therapy. With
further research in this field and advancements in technology, it is anticipated that more
targeted therapeutic strategies involving histone modification will be developed, offering
more effective treatment options for CRC patients.

5. Non-Coding RNAs

Recent advances in high-throughput sequencing technologies and bioinformatics
have revealed that 75% of the human genome is transcribed into RNA, of which only
about 2% of transcripts encode proteins. The remaining 98% are ncRNAs, which, until
recently, were considered transcriptional “noise” [117,118]. With an increasing number
of ncRNAs and their biological functions being identified, it has become evident that
ncRNAs play roles as significant as proteins in development, metabolism, and various
disease processes. ncRNAs regulate gene expression networks through interactions with
other coding or non-coding RNAs, proteins, and DNA. The most extensively studied
ncRNAs include small interfering RNAs (siRNAs), circular RNAs (circRNAs), lncRNAs,
miRNAs, and the competing endogenous RNA (ceRNA) regulatory networks they form
with mRNAs. Identifying specific ncRNAs or proteins bound at chromatin occupancy sites
using next-generation sequencing (NGS) and immunoprecipitation techniques has become
a crucial method in cancer research, further elucidating the diverse roles of ncRNAs in
cancer progression. We will primarily focus on the roles of miRNAs and lncRNAs in the
epigenetic regulation of CRC.

5.1. MicroRNAs

MicroRNAs, encoded by endogenous genes, contain 18–22 nucleotides as small non-
coding RNA molecules. They inhibit mRNA expression to regulate gene expression post-
transcriptionally, further modulating the translation level of target proteins which function
similarly to siRNAs, and are highly conserved across species. Thanks to the inherent stabil-
ity of miRNAs in clinical tumor tissue samples and the continuous development in miRNA
detection and sequencing technologies, miRNAs have been discovered in bodily fluids
such as plasma, saliva, urine, and feces [119]. Increasingly, research shows that genetic dele-
tions or amplifications at miRNA genomic loci, epigenetic methylation, and transcription
factor-mediated primary miRNA regulation always alter miRNA expression in cancer. This
alteration leads to overexpression, amplification, or loss of epigenetic silencing of miRNAs
targeting one or multiple tumor suppressor genes, inhibiting anti-tumor pathways. Even
miRNA mutations can lessen or eradicate binding to key targets, thereby generating new
mRNA sequences and modifying critical growth balance regulators [120,121]. Previous
research indicates that miRNAs control the expression of about 30% of essential human
genes vital for normal survival and development, hence dysregulated miRNA expression
is involved in the pathogenesis of many cancers [122].
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Particularly in the carcinogenic process of CRC, there are approximately 1900 miRNA
encoding genes in the human genome, with 250 miRNAs experiencing changes in the
richness of expressions or roles in CRC, covering different stages from initiation to pro-
gression and metastasis [123]. For instance, the downregulation of miR-143 activates the
RAS-RAF-MEK pathway, targeting the mRNA translation of the oncogene KRAS, and
inhibiting CRC growth [124]. miR-21, one of the most commonly upregulated miRNAs
in inflammation processes and CRC development, is also a genetic and pharmacological
regulatory target for multiple diseases. Studies have shown that a lack of miR-21 leads
to lowered Ki67 expression in CAC mouse tumors, weakened tumor cell proliferation,
increased epithelial marker E-cadherin, and decreased β-catenin and SOX9. Moreover, a
lack of miR-21 reduces STAT3 and Bcl-2 activation, leading to increased apoptosis in CAC
mouse tumor cells [125]. miR-21 can also cause CRC or colitis-associated cancer (CAC) by
the PI3K/AKT, PDCD4/TNF-α, and IL-6/STAT3 signaling networks, activating the tumor
cell invasion/metastasis process [126]. In addition, the high expression level of miR-21 in fe-
ces can significantly distinguish between CRC tumors, lymph nodes, and metastatic stages
III–IV and I–II, with a sensitivity and specificity of 88.1% and 81.6%, respectively [127]. The
APC gene, a tumor suppressor in CRC, with somatic mutations in 80% of sporadic CRC
presents adenomatous polyposis coli (APC) at an early stage of colorectal tumors [128].
miR-135 directly targets the 3′ untranslated region of APC, suppressing APC expression
and inducing downstream Wnt pathway activity [129]. Furthermore, fecal miR-135b-5p
serves as a non-invasive diagnostic biomarker for late-stage CRC, useful for diagnosing
patients with CRC at TNM stages III/IV. An increasing number of miRNAs are being used
as diagnostic (Table 3) and prognostic (Table 4) biomarkers for CRC.

Recent advancements highlight that within different cancer types, individual miRNAs
have a multitude of gene targets, acting as either tumor suppressors or oncogenes, depending
on their targets. This complexity underpins the intricate regulation of gene expression and
cancer progression. For instance, miR-429 acts as a tumor suppressor in renal cell carcinoma
(RCC), breast cancer (BC), gastric cancer (GC), glioblastoma (GBM), esophageal cancer (EC),
osteosarcoma oral squamous cell carcinoma (OSCC), cervical cancer (CC), pancreatic cancer,
tongue squamous cell carcinoma (TSCC), nephroblastoma, nasopharyngeal carcinoma (NPC),
and soft tissue sarcoma. Conversely, miR-429 promotes tumor progression in endometrial
cancer (EmCa), prostate cancer (CaP), and lung cancer (LC). However, miR-429 exhibits
contradictory roles in CRC, hepatocellular carcinoma (HCC), bladder cancer, and ovarian
cancer (OC), with its function varying along with the tumor’s developmental stages [130].
In CRC progression and metastasis, overexpression of miR-429 enhances proliferation and
migration in HT29 and HCT116 cells, while its downregulation inhibits proliferation and
migration in LOVO cells both in vitro and in vivo. Mechanistically, miR-429 promotes CRC
progression and metastasis by directly targeting HOXA5 [131]. In terms of drug treatment,
overexpression of miR-429 correlates positively with adverse reactions to 5-FU chemotherapy
in CRC patients [130]. Moreover, research by Hong Liu et al. suggests that berberine (BER)
and evodiamine (EVO) could become promising anti-tumor drugs for CRC treatment by
downregulating miR-429 expression [132].

Currently, the standard first-line chemotherapy for metastatic colorectal cancer (mCRC)
includes 5-FU combined with oxaliplatin or cetuximab. Most anti-cancer therapies intend
to induce apoptosis in cancer cells to improve survival rates for CRC patients. For example,
miR-129 promotes apoptosis in CRC cells and enhances sensitivity to 5-fluorouracil by
inhibiting Bcl-2 [133]. miR-34a inhibits macrophage activation by targeting the key effector
SMAD4 in the TGF-β signaling pathway, mediating resistance to oxaliplatin in CRC cells [134].
Studies have identified miR-106a as one of the miRNAs with the most significant expression
differences between 5-FU responsive and non-responsive CRC patient plasma samples [135].
The overexpression of miR-106a reduced sensitivity to 5-FU in HCT116 and SW620 cells,
whereas miR-106a antagonists enhanced their drug sensitivity. Mechanistically, miR-106a is
negatively correlated with DUSP2 in CRC tumor samples, and its elevation increases COX-2
and stem cell maintenance gene (SOX2 and OCT4) expression levels [136]. On the other hand,
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DUSP2 expression is significantly reduced in many human cancers, inversely correlating with
malignancy severity. The downregulation of DUSP2 induces carcinogenesis in CRC cells
and increases CRC resistance to cetuximab [137]. Thus, miR-106a and DUSP2 may serve as
potential targets in CRC patients’ response to 5-FU and cetuximab treatment.

Furthermore, miRNA expression in CRC is regulated by DNA methylation and his-
tone modifications. Nearly 10% of miRNAs in CRC cells are controlled by DNA methy-
lation [138]. MiR-34 members, acting as tumor suppressors, target TP53, LEF1, CDK4,
CCNE2, SMAD4, and MYC [139,140]. Compared to normal tissues, hypermethylation
of the miR-34 promoter leads to the downregulation of miR-34a and miR-34c in human
CRC tissues. Hence, methylation of miR-34b/c is associated with CRC metastasis and
invasion. Difluorinated curcumin (CDF) may act as a novel demethylating agent, reviv-
ing the expression of the miR-34 family, and thereby becoming a new drug for treating
CRC [141]. Similarly, hypermethylation of the tumor suppressor miR-133b promoter signif-
icantly downregulates its expression in human CRC tissues. miR-133b enhances CRC cells’
chemosensitivity to anti-tumor drugs 5-fluorouracil (5-FU) or vincristine (VCR) by directly
downregulating ABCC1 [142]. Therefore, miR-133b could serve as a prospective sensitizer
for drug-resistant CRC.

Table 3. A catalogue of abnormal miRNA diagnostic biomarkers.

Diagnostic Markers Specimens Epigenetic Changes Sensibility (%) Specificity (%) Reference

miR-92a-1 serum up-regulated miRNAs 81.8 95.6 [143]
miR-29a + miR-92a plasma up-regulated miRNAs 83 84.7 [144]

miR-92 plasma up-regulated miRNAs 89 70 [145]
miR-28-3p + miR-106a-5p +

miR-542-5p + let-7e-5p plasma up-regulated miRNAs 99.7 90.9 [146]

miR-135b-5p serum up-regulated miRNAs 93.1 72.7 [147]
miR-21 serum up-regulated miRNAs 86.05 72.97 [127]
miR-21 serum up-regulated miRNAs 82.8 90.6 [148]
miR-21 saliva up-regulated miRNAs 97 91 [149]

miR-1246+ miR-1268b +
miR-4648 serum up-regulated miRNAs 50.7 90.2 [150]

miR-106a tissue up-regulated miRNAs 53 85 [151]
miR-106b serum up-regulated miRNAs 85.2 78 [152]
miR-429 tissue up-regulated miRNAs 71.79 62.82 [153]

miR-200c + miR-18a plasma up-regulated miRNAs 84.6 75.6 [154]
miR-223 + miR-92a plasma up-regulated miRNAs 76.3 68.8 [155]

miR-424-5p serum up-regulated miRNAs 79 72.6 [156]
miR-375 plasma down-regulated miRNAs 76.92 64.63 [157]
miR-145 tissue down-regulated miRNAs 90 88 [158]
miR-23b tissue down-regulated miRNAs 78 70 [158]
miR-195 tissue down-regulated miRNAs 72 68 [158]
miR-24 plasma down-regulated miRNAs 78.38 83.85 [159]

miR-320a plasma down-regulated miRNAs 92.79 73.08 [159]
miR-423-5p plasma down-regulated miRNAs 91.89 70.77 [159]

mi-24 + mi-320a + mi-423-5p plasma down-regulated miRNAs 92.79 70.77 [159]
miR-143-3p serum down-regulated miRNAs 61.3 74.2 [156]

miR-135b-5p stool up-regulated miRNAs 96.5 74.1 [147]
miR-21 stool up-regulated miRNAs 86.05 81.08 [127]

miR-92a stool up-regulated miRNAs 89.7 51.7 [12]
miR-144 stool up-regulated miRNAs 78.6 66.7 [12]

miR-92a + miR-144 stool up-regulated miRNAs 96.6 37.9 [12]
miR-223 + miR-92a stool up-regulated miRNAs 73.9 82.2 [155]

miR-20a stool up-regulated miRNAs 55 82 [160]
miR-221 stool up-regulated miRNAs 62 74 [161]
miR-18a stool up-regulated miRNAs 61 69 [161]

miR-221 + miR-18a stool up-regulated miRNAs 66 75 [161]
miR-29a stool down-regulated miRNAs 85 61 [162]
miR-224 stool down-regulated miRNAs 75 63 [162]
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Table 4. A catalogue of abnormal miRNA prognostic biomarkers.

Prognostic Markers Specimen Epigenetic Changes CRC Staging Reference

miR-21 tissues up-regulated adenomas/carcinomas [163]
miR-92a tissues up-regulated adenomas/carcinomas [164]

miR-25 tissues up-regulated advanced (III-IV)/lymph node
metastasis/distant metastasis [165]

miR-1246, miR-1268b,
miR-4648 serum up-regulated stage II and III/recurrence [150]

miR-1260b tissues up-regulated lymph node metastasis and venous invasion [166]
miR-141 plasma up-regulated advanced colon cancer [167]
miR-429 tissues up-regulated 5-FU treatment [153]
miR-29a tissues up-regulated stage II CRC/recurrence [168]
miR-29a serum up-regulated liver metastatic [169]
miR-34a plasma up-regulated adenoma [170]

miR-106b serum up-regulated lymph node metastasis and distant
metastasis [152]

miR-135b-5p serum, stool up-regulated stage III and IV [147]
miR-126 serum down-regulated early-stage liver-metastatic [171]
miR-429 tissues down-regulated stage III and IV/lymphatic metastasis [172]

miR-24, miR-320a, and
miR-423-5p plasma down-regulated postoperative metastasis [159]

5.2. LncRNA

Non-coding RNAs longer than 200 nucleotides are categorized as long non-coding
RNAs (lncRNAs), functioning as signals, decoys, guides, and scaffolds [173]. The specific
functions of lncRNAs are closely related to their subcellular localization. In the nucleus,
lncRNAs regulate chromatin remodeling and transcription; in the cytoplasm, they act as
ceRNAs, regulating mRNA translation and degradation by targeting microRNA response
elements (MREs), and are involved in regulating gene expression and interfering with
post-translational modifications in various cancers, including CRC [174–176]. Dysregula-
tion of lncRNAs in CRC often results in oncogenic or tumor-suppressive functions. For
example, lncRNA DLEU1 promotes CRC cell proliferation and migration by recruiting the
NURF chromatin remodeling complex subunit SMARCA1 to the promoter of KPNA3 [177].
Similarly, high expression levels of LINC01094, H19, and MALAT1 are closely associated
with metastasis and poor prognosis in CRC patients [178–180]. Therefore, regulation of
lncRNA expression offers potential biomarkers and therapeutic targets for CRC treatment
(Table 5).

Research by Gao R et al. demonstrated that lncRNA CASC15 is upregulated in
oxaliplatin-resistant CRC tissues and cells, correlating with poor prognosis. Silencing the
competitive endogenous RNA CASC15 to regulate the miR-145/ABCC1 axis overcomes
resistance to oxaliplatin in CRC [181]. Moreover, long non-coding RNA CRART16, acting
as a ceRNA, confers 5-FU resistance to CRC cells by inhibiting miR-193b-5p and regu-
lating HMGA2 expression, activating the MAPK signaling pathway [182]. Additionally,
overexpression of CRART16 increases the proportion of CD44+/CD133+ cells and may
promote resistance to cetuximab in CRC cells through the miR-371a-5p/ERBB3/MAPK
pathway [183]. Furthermore, lncRNA LIFR-AS1, as a competitive endogenous RNA for
miR-29a, inhibits its expression, upregulates downstream target TNFAIP3, and regulates
resistance to PDT in CRC [184]. Consistently, downregulated lncRNA CBR3-AS1 poten-
tially phagocytose mature miR-29a in the cytoplasm of CRC cells, consequently inhibiting
miR-29a-mediated cell migration and invasion [185]. Meanwhile, increased expression of
miR-29a, by directly targeting KLF4, regulates E-cadherin and matrix metalloproteinase 2,
promoting CRC metastasis [186]. This suggests the potential of CBR3-AS1 and miR-29a
inhibitors as novel anti-metastatic drugs for CRC.

FGD5-AS1, a newly discovered lncRNA with a length of 3772 nucleotides, is abnor-
mally overexpressed in various cancer tissues and closely associated with lymph node
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metastasis, tumor invasion, survival time, and recurrence rate [187]. In the progression
of CRC, lncRNA FGD5-AS1 upregulates CDCA7 expression by competitively inhibiting
miR-302e, promoting the proliferation, migration, and invasion capabilities of CRC cells [188].
Therefore, FGD5-AS1 serves as a potential diagnostic or prognostic marker for various cancers.

Moreover, lncRNAs are significant regulators of DNA methylation, especially in can-
cer. During rapid tumor growth, hypoxia stimulates neovascularization through vascular
endothelial growth factor (VEGF), essential for tumor survival. Studies have shown that
promoter methylation of EGFL7 induces a silencing of miR-126; treatment with 5-aza-
CdR restores miR-126 expression, with VEGF as a direct target of miR-126, leading to
decreased VEGF expression and inhibiting CRC tumor invasion and angiogenesis to some
extent [189]. Similarly, hypomethylation of the oncogene LINC00460 promotes metastasis
in CRC cells [190]. Thus, miR-126 and LINC00460 may serve as potential therapeutic targets
in CRC. Additionally, recent studies have indicated that lncRNA HOTAIR mediates the
mutual regulation between histone-lysine N-methyltransferase (EZH2) and DNA methyl-
transferase (DNMT1) [191]. Some small molecules, like AC1Q3QWB (AQB), can selectively
block the HOTAIR-EZH2 interaction, offering a novel approach to cancer treatment [192].
LncRNAs can also regulate genomic DNA methylation through DNMT. For example, as a
competitive endogenous RNA, lncRNA HIF1A-AS2 target adsorbs miR-129-5p, indirectly
promoting the expression of DNA methyltransferase 3 alpha (DNMT3A), finally facilitating
EMT and CRC progression [193].

Recent studies have shown that the dysregulation of intestinal flora is associated with
incidence of CRC. Hong J et al. found that high glycolysis of gut microbes is associated
with poor prognosis in patients with colorectal cancer. F. nucleatum activates transcription
of lncRNA ENO1-IT1 by raising transcription factor SP1 binding efficiency to the ENO1-IT1
promoter region. Elevated ENO1-IT1, serving as a KAT7 histone acetyltransferase instruc-
tional module, alters histone modifications on the target gene ENO1, promoting glycolysis
and tumorigenesis in CRC [194]. In addition to this, gut microbial metabolites such as short
chain fatty acids (SCFAs) also have an important impact on the occurrence and progression
of CRC. Alvandi et al. found that 70.4% of high-risk CRC individuals exhibited significantly
decreased concentrations of acetate, propionate, butyrate, or total SCFAs in their feces,
while 66.7% of CRC patients had significantly lower concentrations of acetate and butyrate
in their feces compared to healthy controls [195]. Mowat C et al. further found that gut
microbial SCFA or compounds mimicking their effects could serve as a promising thera-
peutic avenue for CRC by enhancing anti-tumor immune function in CRC patients [196].
The potential mechanism is that SCFAs function as histone deacetylase (HDAC) inhibitors,
modulating the intestinal inflammatory response by blocking cell cycle progression and pro-
moting the induction of apoptosis, which ultimately reduces the proliferation of tumor cells,
thus exerting a positive effect on colorectal cancer treatment [197]. Besides directly acting
on intestinal epithelial cells, SCFAs also play critical anti-inflammatory roles in regulating
local and systemic immune cells by promoting the production of antimicrobial compounds,
inhibiting neutrophils and macrophages, activating regulatory T cells, and inducing den-
dritic cell tolerance [198,199]. Thus, the antitumor effects of SCFAs may involve more
complex mechanisms beyond the tumor cells themselves. Therefore, screening or targeting
the modulation of intestinal microbiota metabolites and specific epigenetic mechanisms
also represents emerging therapeutic strategies for diagnosing and treating CRC.

Table 5. A catalogue of abnormal lncRNAs biomarkers.

LncRNAs Diagnostic Role LncRNAs Prognostic Role References

H19, MALAT1, CCAT1,
LEF1-AS1, PVT1, LINC01410,

RP11-296E3.2, HIF1A-AS1, NRIR

LINC01094, MALAT1, CACS15,
CRART16, CBR3-AS1, FGD5-AS1,

LEF1-AS1, LINC00460, HIF1A-AS2,
LINC00114, HOTAIR, LINC00261,
PVT1, LINC01410, RP11-296E3.2

[178–182,185,187,
190,193,200–206]
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6. Summary and Future Perspective

Colonoscopy is still the most reliable method for CRC screening and diagnosis. Previ-
ous studies show that colonoscopy can reduce the incidence of CRC by 69% and mortality
by 68% [207]. However, due to its invasive nature, which can cause discomfort to patients,
along with being expensive, time-consuming, and potentially leading to complications
such as infections, especially in elderly patients, its acceptability and widespread adop-
tion, particularly in developing countries, is limited. CT colonography, a non-invasive
imaging method using computed tomography (CT) and specialized software to generate
high-resolution images of the colon, is more convenient than colonoscopy but cannot obtain
tissue samples, thus necessitating colonoscopy upon finding abnormalities. Common
blood biomarkers like carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9
(CA19-9), though non-invasive, have good specificity for detecting occult CRC but due to
other conditions that can also elevate their expression, their sensitivity is only about 40%
to 60%. Therefore, more than half of CRC patients could be misdiagnosed based on CEA
or CA19-9 alone, limiting their clinical screening utility [208,209]. Cheng H et al. found
that combining miR-141 with CEA could further improve the accuracy of detecting distant
metastasis in colon cancer [167].

Although the fecal occult blood test (FOBT), the first step in CRC screening programs,
cannot directly diagnose CRC, it can help screen for potential issues, reducing mortality
in 15% to 33% of CRC patients [210]. Despite possible false positives due to exercise, diet,
and medication factors, FOBT remains an effective, widely applicable method for screening
high-risk CRC populations due to its simplicity and low cost. Fecal immunochemical tests
(FITs) are more effective than traditional FOBT for large-scale CRC screening, detecting
minor bleeding from abnormalities like polyps or tumors in the colorectal or rectal regions,
thus can identify twice as many CRC patients as FOBT, and are particularly effective for
early-stage CRC screening [211]. However, an FIT has limited sensitivity for CRC stage
I and matured adenomas, and the instability of specific antibodies used in FITs during
transport and storage can lead to false-negative results, posing challenges for widespread
screening [212].

Furthermore, DNA in fecal samples can be tested to detect genetic and epigenetic
DNA changes in tumor cells shed into feces. As a relatively new screening method, it
offers non-invasive and convenient advantages. Therefore, real-time monitoring of the
disease status of patients can be achieved, so as to adjust the treatment plan individually.
Ahlquist et al. conducted CRC screening using combined target genes in fecal samples,
such as APC, K-ras, p53, and vimentin, achieving a positive detection rate of up to 46% for
adenomas ≥ 1 cm, significantly higher than FOBT [213]. Multi-target fecal DNA testing also
shows higher detection rates for advanced adenomas and serrated polyps larger than 1cm
compared to an FIT [214]. While fecal DNA testing can study cfDNA from colon tumors,
it may yield higher false-positive rates due to free DNA from other gastrointestinal parts,
and a mixture of heterogeneous DNA from various fungi, bacteria, and gut microbiota
diversity; moreover, miRNA levels in fecal samples are lower than in tumor tissues or
blood, posing potential limitations in sensitivity and specificity compared to other CRC
screening methods, hence being still under research and development.

In summary, all conventional screening methods have limitations. Blood biomarkers,
easily obtained non-invasively and stored, represent a promising approach for early CRC
diagnosis. Integrating other high-sensitivity complementary markers into a multi-omics
approach could further improve the diagnostic efficacy for advanced polyps, precancerous
lesions, and early CRC.

This review summarizes common epigenetic biomarkers for CRC (see Figure 1), in-
cluding the methylation of VIM, NDRG4, BMP3, SDC2, SEPT2, SEPT9 genes, and the
high expression of miR-21, miR-135b-5p, miR-92a-1, ANRIL [215]. However, their clinical
diagnostic results for early CRC screening and prognosis still show individual variabil-
ity. This variability might be due to CRC’s inherent heterogeneity, different diets and
lifestyles, and various molecular tumor subtypes leading to significant specificity and
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sensitivity differences in the same epigenetic marker; moreover, limited sample sizes in
most biomarker screenings and the lack of validation in large, independent patient cohorts
with unclear control group definitions and detailed CRC population information like age,
gender, tumor stage, and location necessitate further large-scale clinical data support before
the widespread application of hypermethylated DNA and miRNA as clinical biomarkers
for CRC detection and prognosis. Therefore, comparing and conclusively interpreting
different study outcomes for the same molecular marker remain challenging.
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Moreover, epigenetic changes offer potential reversibility through drug treatment, with
the types and numbers of available epigenetic modifications steadily increasing. However,
clinical safety evidence for epigenetic modification drugs and significant survival benefits
for CRC patients treated with such drugs remain scarce. Overall, epigenetic biomarkers
hold strong potential for CRC screening, diagnosis, and drug treatment targets, but their
sensitivity, specificity, and security still require further exploration.
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