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Abstract: A new ibuprofen derivative, (E)-2-(4-isobutylphenyl)-N′-(4-oxopentan-2-ylidene) propane
hydrazide (IA), was synthesized, along with its metal complexes with Co, Cu, Ni, Gd, and Sm, to
investigate their anti-inflammatory efficacy and COX-2 inhibition potential. Comprehensive charac-
terization, including 1H NMR, MS, FTIR, UV–vis spectroscopy, and DFT analysis, were employed to
determine the structural configurations, revealing unique motifs for Gd/Sm (capped square antipris-
matic/tricapped trigonal prismatic) and Cu/Ni/Co (octahedral) complexes. Molecular docking with
the COX-2 enzyme (PDB code: 5IKT) and pharmacokinetic assessments through SwissADME indi-
cated that these compounds have superior binding energies and pharmacokinetic profiles, including
BBB permeability and gastrointestinal absorption, compared to the traditional ibuprofen standalone.
Their significantly lower IC50 values further suggest a higher efficacy as anti-inflammatory agents
and COX-2 inhibitors. These research findings not only introduce promising ibuprofen derivatives
for therapeutic applications but also set the stage for future validation and exploration of this new
generation of ibuprofen compounds.
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1. Introduction

Some biological features of ibuprofen, an anti-inflammatory, antipyretic, and anal-
gesic compound, have proven helpful in the treatment of rheumatoid arthritis and other
rheumatic disorders [1].

Ibuprofen and hydrazides of various carboxylic acids (both aliphatic and aromatic)
reacted to produce oxadiazoles in the presence of phosphorousoxy chloride [2]. The
condensation of 2-(4-isobutylphenyl)propane hydrazide (ibuprofen-hydrazide) with N,N-
dimethylaminobenzaldehyde produced N′-(4-(dimethylamino)benzylidene)-2-(4-isobutylp-
henyl)propane hydrazide, which was utilized to create seven-membered ring compounds,
and the condensation of ibuprofen-hydrazide with 4-chlorosalicylaldehyde yielded N′-
(5-chloro-2-hydroxybenzylidene)-2-(4-isobutylphenyl)propane hydrazide. Different spec-
troscopy methods were employed to confirm all of these produced compound structures [3].

The acyl hydrazones were created using a conventional approach. Aromatic aldehydes
were added to the ibuprofen hydrazide solution in dry ethanol. The reaction mixtures were
refluxed until the reaction was complete. Using a rotary evaporator, after the solution had
cooled to ambient temperature, the solvent was removed. The residue was purified using
dichloromethane-methanol as the eluent on a silica gel column. For acyl hydrazones, FT-IR
and physical data have been calculated [4,5].
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An Au(I)–ibuprofen complex [Au(ibup)(CN)] has been synthesized and characterized.
The complex’s antibacterial action against Gram-negative and Gram-positive microorgan-
isms was discovered in vitro using an antibiotic-sensitive profile [6].

Complexes of the vanadyl ion (VO2+) with tolmetin, naproxen, and ibuprofen were ac-
quired from methanolic solutions under nitrogen, and have the general formulas [VO(Tol)2],
[VO(Nap)2]·5CH3OH, and [VO(Ibu)2]·5CH3OH. The biological activities of the complexes
were compared with those of the vanadyl cation after culturing two types of osteoblast-like
cells. The activity of the complexes varied depending on the cell type and concentration,
whereas their parent drugs had no effect [7].

According to Raman’s study of ibuprofen–metal complexes, Co(II) produces mon-
odentate complexes, whereas Zn(II) adopts bidentate coordination. The synthesis of a
stable 2:1 ligand/metal complex appears difficult at ppm concentration, on the basis of
spectra of metal complexes using surface-enhanced Raman spectroscopy (SERS), but more
plausible is the creation of a 1:1 adduct on the carboxylic group through bidentate bind-
ing. Water molecule complexation is linked to the total coordination shell of a metal [8].
The silver–ibuprofen complex (Ag–ibu) was formed at a 1:1 ratio. The Ag–ibu complex
minimum inhibitory concentration (MIC) values vary from 6.25 to 12.5 L g/mL and have
antimicrobial effects against both Gram-positive and Gram-negative bacteria [9].

Our main objective is to produce several new derivatives from ibuprofen according to
prior research demonstrating the biological activity of such derivatives, predicated on the
premise that specific modifications could result in compounds with therapeutic promise that
have improved anti-inflammatory action and lower negative effects. First, acetylacetone
and ibuprofen hydrazide were combined to form a novel molecule that was then combined
with different metal ions. The ligands and their compounds were characterized using
several approaches. Experiments and in silico analyses were performed to determine
the physicochemical properties. To estimate the biological behavior of the compounds
theoretically, docking studies were performed on the COX-2 protein. The pharmacokinetics
of IA and its cobalt complex were modeled using the SwissADME online web tool. To
investigate the derivatives and their complexes in vitro, Western blot and ELISA analyses
against COX-2 were performed. Theoretical and experimental data suggest that these new
compounds may have potential as drugs. In vivo experiments with an animal model will
be part of further studies.

2. Results and Discussion
2.1. IA Description

The purity and reaction efficacy of the new compounds were evaluated using TLC us-
ing the suitable elution mixture solution (90%:10% chloroform/ethanol). The experimental
section describes how ibuprofen ester (EI) and its hydrazide (HI) were prepared. Ibuprofen
hydrazide and acetylacetone were condensed to form the ligand IA (C18H26N2O2), which
was produced with a yield of 75%.

IA is a crystalline substance with a canary-yellow color and melting point of 159 ◦C.
The solubility of IA in different solvents was investigated, and it was found to be soluble in
alcohols, DMSO, and DMF. The actual chemical structure was confirmed by the elemental
analysis of IA, which yielded the following results: calculated (found): H% = 7.46 (7.51),
N% = 8.63 (8.55), and C% = 74.05 (74.10) (Table 1).

The IA 1HNMR spectra indicated an associated singlet peak for the (N-N-H) proton at
9.95 ppm and the aromatic protons showed at 7.24–7.05 (4H, m, ArH). The number of pro-
tons in each group corresponded to all the obtained peaks and integration. Table S1 shows
the 1HNMR spectral information for HI and IA. Technically, the research on ibuprofen’s con-
formational behavior in different solvents using NMR techniques illustrates the molecule’s
structural adaptability. In chloroform, 2D NOE spectroscopy identified ibuprofen’s pre-
ferred conformations, offering insights into how these structures influence crystallization
processes [10]. High-pressure NMR spectroscopy revealed ibuprofen’s dominant conform-
ers in supercritical carbon dioxide, aligning with molecular dynamics simulations [11].
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These studies underscore NMR’s potency in unraveling molecular conformations, critical
for drug formulation and understanding pharmaceutical compounds’ physicochemical
properties [10,11]. However, our study has primarily employed NMR spectroscopy to
confirm the structural integrity of the new ibuprofen derivative without deeply exploring
the range of potential conformations. Our results corroborate the efficacy of NMR confirm-
ing the successful synthesis of our new ibuprofen derivative, IA, aligning with the direct
approach of using NMR to understand molecular configurations (Figure S1).

Table 1. Data analysis and measurement of conductivity for IA and its complexes.

Compound Molecular
Weight Color

Melting
Point
(◦C)

Ω * (µS)

CHNM%

C% H% N% M% **

Calc. Calc. Calc.
A B Calc.

Found Found Found

IA (C18H26N2O2) 302.5 Canary-
yellow 135 --- 71.42

71.33
8.59
8.55

10.58
10.61 --- --- ---

[Cu(IA)·(H2O)·Cl2]6H2O 562.97 Dirty green >280 13 47.53
47.44

6.20
6.22

6.16
6.20 12.16 11.59 11.29

[Ni(IA)·(H2O)2·Cl]Cl·H2O 486.06 Violet >280 100 49.98
49.88

6.99
6.88

6.48
6.51 12.28 12.08 12.08

[Co(IA)·(H2O)·Cl2]2H2O 468.29 Brick
brown >280 15 44.46

44.55
6.63
6.71

5.76
5.66 12.25 12.19 12.12

[Gd(IA)2·(NO3)2·(H2O)]NO3·2H2O 1002.25 Yellowish
white >280 10 47.23

47.22
5.89
5.92

9.44
9.50 --- 15.75 15.69

[Sm(IA)2·(NO3)2]NO3·3H2O 995.15 Yellowish
white >280 100 48.59

48.61
5.83
5.91

9.71
9.80 --- 15.09 15.15

* 10−3 M in DMSO, conductivity (ohm−1 cm2 mol−1). ** A is the metal percentage determined by EDTA titration
and B is determined by thermal analysis.

The chromatogram (Figure S2) with a single peak demonstrated the purity of the IA
and HI ligands, and the ligand formula was supported by the mass spectrum. The molecular
ion peak for HI and IA was determined using the molecular weights at m/z = 221.11
(11.02%) and 302.51 (24.02%). The stepwise fragmentation of the ligands was established
and confirmed (Schemes S1 and S2). The collected fragments and the presented results
demonstrate the accuracy of molecular formula of IA and HI.

The stretching vibration of the hydroxyl group is responsible for the large, broad band
at 3416 cm−1 observed in the FT-IR spectrum of ibuprofen, and the band’s broadness can
be ascribed to intramolecular hydrogen bonding. C=O stretching is associated with the
band at 1709 cm−l. Figures S3 and S4 depict the FT-IR spectra of the IA. The stretching
vibration of the O-H group was associated with a strong broadband at 3419 cm−1. These
bands’ broadening could be due to an intramolecular hydrogen bond [12].

A sharp and strong band at 3413 cm−1 was observed, corresponding to the stretching
vibration of the NH group (υNH) [13]. The bands at 1725 and 1660 cm-1 can be designated
as (υC=O) from the C=O group’s stretching vibration [14], and the occurrence of the
band at 1611 cm−1 is proposed to result from the azomethine group stretching vibration
(υC=N) [15]. The NH2 vibration band is absent, and the occurrence of a C=N band serves
as confirmation of the formation of IA (Table 2).

The UV–vis spectrum of IA exhibited three bands at 257, 264, and 272 nm (ε = 10.34,
11.27, 10.59 × 104 M−1 cm−1), as shown in Figure S5. In methanol solvent, these bands
displayed a blue shift, showing the n→π* and π→π* electronic transitions.

The thermal decomposition of the ligand was investigated using TG and DTA. The
temperature range covered by the thermal evaluation was 200–600 ◦C, which occurred in a
N2 environment with a heating rate of 10 ◦C/min. The thermal decomposition of IA shows
that mass reduction occurs gradually. DTA data and TGA from the IA are displayed in
Figure S6.
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Table 2. IR data for IA and the complexes (cm−1).

Compound υ (NH, H2O, OH) υ(C=O) υ(C=N) υ(NO3−) υ (M-O) υ(M-N)

IA(C18H26N2O2) 3720–3000 m, br 1725 s
1660 w 1611 s --- --- ---

[Cu(IA)Cl2·(H2O)]6H2O 3780–3000 m, br 1641w 1528 sh --- 636 w 540 w
[Ni(IA)·(H2O)3]Cl2·H2O 3760–3070 m, br 1608 w 1510 sh --- 622 w 521 w

[Co(IA)·(H2O)·Cl]Cl·H2O 3760–3070 m, br 1612 w 1508 sh --- 617 w 526 w
[Gd(IA)2·(H2O)·(NO3)]2H2O 3790–3070 m, br 1612 w 1528 sh 1384 651 w 531 w

[Sm(IA)2·(H2O)·NO3](NO3)2·2H2O 3760–3080 m, br 1617 w 1518 sh 1384 680 w 516 w

m: medium, w: weak, s: strong, br: broad, and sh: shoulder.

Two decomposition phases are present in the IA thermogram at 261–321 ◦C and
443–473 ◦C, with midpoints of 306 and 458 ◦C and mass losses of 95% and 5%, respectively,
without any residue (650 ◦C). ∆H values of −0.401 and −0.0147 kJ/g, respectively, indicate
that all steps exhibit exothermic behavior at 355 and 460 ◦C [16]. The endothermic peak in
the DTA data confirms the melting point of IA at 130 ◦C (∆H = 0.017 kJ/g), with no weight
loss (Table S2). The purity and efficacy of the IA as a coordination complex synthon for
metals in the d- and f -blocks have also been demonstrated by extensive spectroscopic and
thermal studies.

2.2. Complex Characterization

The new complexes [Cu(IA)(H2O)Cl2]·6H2O, [Ni(IA)(H2O)2Cl]Cl·H2O, [Co(IA)(H2O)-
Cl2]·2H2O, [Gd(IA)2(NO3)2(H2O)]NO3·2H2O and [Sm(IA)2(NO3)2]NO3·3H2O were formed
as a result of the interaction between IA with Cu(II), Ni(II), Co(II), Gd(III), and Sm(III)
ions. Each complex is crystalline and soluble in DMF or DMSO, excluding the Cu, Ni, and
Co complexes, which are soluble in DMF solvent after heating and have melting points
above 280 ◦C. The electrical conductivity of complexes was measured in DMSO (0.001 M),
indicating the electrolytic feature of the compounds, with conduct similar to that of the 1:1
electrolyte, except for Cu and Co complexes being non-electrolytes. Table 1 displays the
physical properties of the IA and its metal complexes as well as the conductivity, CHN,
and M% values. The M% content was determined using two analytical procedures: EDTA
titration and thermogravimetry. These results match those of previous formulas [17,18].

2.2.1. FTIR Spectra

By comparing the IR spectra of the IA with its complexes, the coordination sites
expected to be important to complexation were identified. Peak positions and/or intensities
will likely shift as a result of chelation, as explained in Table 2, Figures 1 and S7–S11.

The strong, broad band at 3800–2900 cm−1 could be attributed to the stretching
vibrations of H2O, O-H, and N-H. This band was present in every complex, confirming that
the water was crystalline or coordinated, due to the υ(OH) and υ(NH) of IA [19,20]. The
C=O group showed two peaks for IA at 1725 and 1660 and one peak of complexes at 1641,
1608, 1612, 1612, and 1617 cm−1, showing that this group is ligated during the chelation of
Cu(II), Ni(II), Co(II), Gd(III), and Sm(III) [21–23]. The bands shown for IA, Co–IA, Cu–IA,
Ni–IA, Gd–IA, and Sm–IA complexes at 1611, 1508, 1528, 1510, 1528, and 1518 cm−1 could
be represented by the azomethine group stretching vibration, where the changes in the
frequencies confirm the complexation. In Gd(III) and Sm(III) complexes, the sharp band
at 1384 cm−1 is characterized as υ(NO3) and either reflects the nitrate group’s ionization
activities or acts as a monodentate binding site [24,25].

The M-O stretching band appeared at 636, 622, 617, 651, and 680 cm−1, while the M-N
band appeared at 526, 540, 521, 531, and 516 cm−1 for Co–IA, Cu–IA, Ni–IA, Gd–IA, and
Sm–IA, respectively.
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2.2.2. Thermal Analysis

Thermal analysis (TG/DTG) and differential thermal analysis (DTA) were used to ex-
amine the thermal stability of the complexes. Table 3 and Figures 2 and S12–S15 display the
decomposition products, temperature ranges, stages of decomposition, and the estimated
and actual weight loss of complexes formed through IA.

The first decomposition step involves the loss of water of crystallization. [Cu(IA)Cl2-
(H2O)]·6H2O, [Ni(IA)(H2O)2Cl]Cl·H2O, [Co(IA)(H2O)Cl2]·2H2O, [Gd(IA)2(NO3)2(H2O)]-
NO3·2H2O and [Sm(IA)2(NO3)2]NO3·3H2O underwent dehydration at 49, 49, 53, 38 and
98 ◦C, respectively. This process resulted in mass losses of 19.70, 3.65, 7.35, 4.21, and 5.45
(calcd. 19.20, 3.71, 7.41, 3.59, and 5.34), concurrent with endothermic DTA peaks at 56, 86,
46, 48, and 97 ◦C, respectively.

In addition to IA decomposition, the second phase of decomposition shows coordi-
nated loss of water and/or HCl and a broad DTG band at 304, 341, 271, 280, and 279 ◦C for
Cu–IA, Ni–IA, Co–IA, Gd–IA, and Sm–IA complexes. The measured mass loss through
this step was (found/calculated %) 15.14/15.16, 50.46/50.01, 46.62/46.56, 33.64/33.65 and
53.06/53.11, respectively. DTA thermogram appeared as exothermic DTA bands with
maxima at 308, 352, 273, 352, and 340 ◦C, for Cu–IA, Ni–IA, Co–IA, Gd–IA, and Sm–IA.

The remaining ligand decomposition and/or HNO3 are indicated in the third de-
composition stage, which was initiated at 338, 420, and 460 ◦C for Cu–IA, Gd–IA, and
Sm–IA. The lost mass was (found/computed %) 30.84/30.81, 15.82/15.92 and 6.62/6.63,
respectively. Cu, Gd, and Sm DTA thermograms revealed this step as an exothermic DTA
band at 350, 424, and 466 ◦C.

The final decomposition occurred at 423, 353, 393, 497, 548, 590, and 660 ◦C for Cu, Co
Ni, and Sm complexes. The lost mass was (found/computed %) 20.75/20.56, 30.62/30.61,
30.50/30.52, 9.97/9.98 and 0.39/0.38. Cu, Ni, Co, Gd, and Sm DTA thermograms showed
exothermic DTA bands at 423, 434, 400, 403, 351, 499, and 512 ◦C. The computed data
and suggested formulas of CuO, NiO, CoO, Gd2O3, and Sm2O3 agree with the residue
%, with lost mass (found/computed %) 14.50/14.15, 12.41/15.37, 18.99/15.40, 33.25/36.17
and 30.01/35.03. For each step that displayed exothermic behavior, Table S3 displays the
enthalpy change and peak temperature.
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Table 3. TGA and DTG of the complexes of IA ligand.

Compound Molecular
Weight

Temp.
Range

◦C

DTG Temp.
◦C

Mass Loss %
Process Expected

Products

Residue
M%

Found Calcd. (Calcd.) Found

[Cu(IA)·(H2O)·Cl2]6H2O 562.97

36–64 49 19.70 19.20 Dehydration 6H2O

CuO
(14.15)
14.50

11.59

180–310 304 15.14 15.16
Coordination

sphere + ligand
decomposition

2HCl+
H2O+

0.15 IA

330–348 338 30.84 30.81 ligand
decomposition 0.43 IA

395–460 423 20.75 20.56 Complete
decomposition 0.37 IA

[Ni(IA)·(H2O)2·Cl]Cl·H2O 486.06

38–58 49 3.65 3.71 Dehydration H2O

NiO
(15.37)
12.41

12.08
289–347 341 50.46 50.01

Coordination
sphere + ligand
decomposition

2HCl +
2H2O +
0.51 IA

385–401 393 30.62 30.61 Complete
decomposition 0.49 IA

[Co(IA)·(H2O)·Cl2]2H2O 486.29

28–199 53 7.35 7.41 Dehydration 2H2O

CoO
(15.40)
18.99

12.12
263–321 271 46.62 46.56

Coordination
sphere + ligand
decomposition

2HCl+
H2O

0.49 IA

296–356 353 30.50 30.52 Complete
decomposition 0.51 IA

[Gd(IA)2·(NO3)2·(H2O)]
NO3·2H2O 1002.25

24–35 38 4.21 3.59 Dehydration 2H2O

Gd2O3
(36.17)
33.25

15.75

253–317 280 33.64 33.65
Coordination

sphere + Ligand
decomposition

H2O+
2HNO3
0.55 IA

398–434 420 15.82 15.92
Coordination

sphere + ligand
decomposition

HNO3 +
0.30 IA

481–607
497
548
590

9.97 9.98 Complete
decomposition 0.17 IA

[Sm(IA)2·(NO3)2]NO3·3H2O 995.25

69–134 98 5.45 5.34 Dehydration 2H2O

Sm2O3
(35.03)
30.01

15.09

260–299 279 53.06 53.11
Coordination

sphere + ligand
decomposition

2HNO3
0.80 IA

453–476 460 6.62 6.63
NO3 liberation +

ligand
decomposition

HNO3+
0.16 IA

651–670 660 0.39 0.38 Complete
decomposition 0.092 IA
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2.2.3. Kinetics and Thermodynamic Parameters

The TGA and DTG thermograms were employed to compute the activation energy
(Ea), pre-exponential factor (Z) and order (n) of the various decomposition processes to
investigate the influence of ligand structural characteristics on complex thermal anal-
ysis [26,27]. Figures S16–S20 and Table 4 illustrate some complex linearization curves
that can be produced with the Coats–Redfern equation. The intensity and appearance of
the degradation were taken into consideration when choosing the breakdown processes.
Analysis of the kinetic parameters (∆G*, ∆H*, and ∆S*) for the degradation stage gives
interesting results.

Among other factors, the reaction’s temperature affects the collision frequency. The
particles’ average speed and kinetic energy also increases as the temperature does. Ac-
tivation energy is necessary for reactant molecules to get close to each other, overcome
repulsion forces, and initiate bond breaking. We can summarize our results using the
collision theory as a foundation:

1. The variations in ∆S* caused by the thermal degradation reactions indicated the
disorder’s decreases, except the final stage of the complex [Cu(IA)(H2O)Cl2]6H2O. Negative
values signify slower than usual reactions because the structure of the activated complexes
is more ordered than that of the reactants.

2. The Cu complex has the largest activation energy (231.38 J/mol) and the largest Z
for the IA decomposition (2.87 × 1017 s−1).

3. The selected decomposition steps show exothermic behavior, indicated by negative ∆H*.
4. In all complexes, ∆G‡ has a positive value and has demonstrated non-spontaneous

behavior, except for Cu and Gd, which have negative values and displayed in Table 4.
5. The reactivity of complexes in thermal decomposition processes is represented by

the activation energy value.

Table 4. The metal complex degradation steps’ chosen kinetic parameters.

Complex Step R2 Order
(n) Ts (K) Ea

(J/mol)
Z

(s−1)
∆S‡

(J/K·mol)
∆H‡

(kJ/mol)
∆G‡

(kJ/mol)

[Cu(IA)(H2O)Cl2]6H2O Complete ligand
decomposition 0.97 2.00 696 231.38 2.87 × 1017 +82.26 −5.555 −62.81

[Ni(IA)(H2O)2Cl]Cl·H2O
Coordination

sphere+ ligand
decomposition

0.99 2.00 614 32.69 212.24 −206.41 −5.072 121.05

[Co(IA)(H2O)Cl2]2H2O Complete ligand
decomposition 0.99 2.00 626 45.83 1.37 × 104 −172.10 −5.0159 102.58

[Gd(IA)2(NO3)2(H2O)]NO3·2H2O
NO3 liberation and

ligand
decomposition

0.98 2.00 693 172.49 1.02 × 1013 −2.88 −5.589 −3.59

[Sm(IA)2(NO3)2]NO3·3H2O
NO3 liberation and

ligand
decomposition

0.99 2.00 552 115.17 1.19 × 1010 −57.16 −4.474 27.08

2.2.4. Magnetic Moments and UV–Vis Spectroscopy

The complexes’ spectral studies (in DMSO solution and Nujol mull suspension), also
with their assignments, are shown in Figures 3 and S21–S24 and collected in Table S4. The
electronic transitions of IA shown at 257, 264, and 272 nm are due to π→π* and n→π*
transitions, which submit a blue shift (hypochromic) accompanied by hyperchromic or
hypochromic shifts after complexation, indicating complex formation [28].

The Cu–IA and Ni–IA magnetic moment values (µeff) were 2.07 and 2.46 µB, respec-
tively, which indicate a distorted octahedral structure and could be linked to the outer
complex formation (sp3d2 configuration). The electronic transition bands of Cu–IA appear
at 267, 280, 351, 385, and 580, assigned for (n→π* and t2g→eg); meanwhile, in the electronic
spectra of Ni–IA, bands appear at 276, 290, 402, and 620, assigned for (n→π*, 3A2g→3T1g(P)
and 3A2g→1Eg), and are tabulated in Table S4.

The Co–IA magnetic moment was 4.86 µB, which was indicative of octahedral geome-
try with a high-spin ground state [29]. The electronic spectrum displays bands at 298 and
347 assigned for n→π* and 4T1g(F)→4T2g(P) while the broad band with three maxima at
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520, 558, and 603 can be assigned for 4T1g(F)→4A2g(F) transitions, with the fine splitting
possibly due to Jahn–Teller distortion effects [30].

The magnetic moment estimated for Sm–IA was 2.29 µB, indicating the formation of a
low-spin complex. Finally, the Gd–IA magnetic moment was 8.89 µB, showing a greater
contribution from f -electron spin and identifying the complex as highly paramagnetic (f 7).
Results are in agreement with earlier work [31]. Capped square antiprismatic/tricapped
trigonal prismatic or bicapped trigonal prismatic/square antiprismatic geometries are the
most likely structures for these lanthanide complexes.

The Gd–IA and Sm–IA compounds’ UV–visible spectra showed absorption bands at
275, 295, 311, and 273, 293, 310 nm as n→π* and CT transition [31,32].

The complexes were demonstrated by the difference in through bands between the
ligand and the complexes. The metal bands are covered by high-intensity ligand or charge
transfer bands. 10Dq values for Co, Cu, and Ni complexes are shown in Table S4 [33,34].
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The structure and spatial arrangement of the complexes could be suggested based on
molar conductivity, elemental analysis, magnetic properties, thermal analysis, FTIR and
UV–visible spectra, as depicted in Scheme 1.

2.3. Computational Chemistry

The biological availability of drug candidates can be predicted via computational
modeling of electron density and hydrophilicity vs. lipophilicity. The docking studies,
which estimate the energies of interaction between target biomolecules like proteins and
therapeutic potential chemicals, can help to explain a biological process. Docking studies
were utilized in this section to investigate the interactions of ibuprofen, IA, and its metal
complexes with the COX-2 enzyme. DFT calculations were used to determine the surface
properties, electron density, and frontier molecular orbitals of these compounds (Section 2.4).
The ideal target for the compound can also be predicted using the Swiss Target Prediction
online tool. It was found that the ligand and Co–IA complex had a high rate of absorption
by the GIT and passive GI tract permeability, when the potential of ibuprofen was calculated
using the BOILED-Egg model (Section 2.5).

2.3.1. The IA Ligand Surface Properties

The most advantageous properties essential for pharmaceutical manufacturing are
related to the surface characteristics of IA. The interaction between living cells and the
drug demonstrated the presence of a lipophilic property and an active lone pair. The active
lone pair map was displayed in three colors: violet for H-bonding, green for hydrophobic,
and blue for mild polarity. For IA, the H-bonding capacity was centered in three locations.
Different colors were used to display the lipophilic map, with violet indicating hydrophilia,
white showing neutrality, and green indicating lipophilia [35,36]. The lipophilic maps of IA
are shown in Figure 4.
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2.3.2. The DFT Calculation for Ibuprofen and IA

Investigations into the MM2, DFT calculations, HOMO, and LUMO energies were
performed on IA and ibuprofen. By using the MMFF94x force field parameter, each
molecule undergoes energy minimization. Self-consistent field (SCF) calculations, also
known as the Hartree–Fock method, were employed to run the simulation. Hamiltonians
PM3 and RHF were used along with MOPAC (limited Hartree–Fock technique).

The HOMO and LUMO orbitals provide information about the target orbitals, which
are a part of the excitation–relaxation path of electronic transition. It was demonstrated
that moving an electron from one level to another requires less energy due to the significant
difference in the number of occupied and unoccupied orbitals. The drug behavior is
determined by the polarity of ibuprofen (1.94 D).

The dipole moment value (2.71 D) of IA is consistent with the requirements for the
novel drug. The various molecular orbitals suggest the possibility of a large number of
conformations that may have an interaction with the receptor, increasing the efficacy of the
drug [36–38]. The results are shown in Figure 5 and Figure S25 and Table S5. The frontier
molecular orbitals of IA (HOMO and LUMO) provide insight into the ability of IA to bind
to transition metals and lanthanides as a ligand. In the HOMO, the high π-type electron
density at the hydrazido oxygen and nitrogen suggest that IA can serve as a π-donor ligand,
while the fact that the isolated carbonyl oxygen is not part of the HOMO suggests that
this oxygen will more likely bind to a metal in a σ-donor fashion. In contrast, the LUMO
of IA has considerable contribution from a C–O π-antibonding interaction. This suggests
that IA may be able to exhibit some π-acceptor behavior in its bonding to metals, at least
to Co(II), Ni(II), and Cu(II); such bonding is unlikely, however, in Sm(III) and Gd(III),
which lack valence d electrons and whose valence 4f orbitals will not engage in strong
covalent bonding.
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Figure 5. DFT modeling of the IA ligand. (A) 3D view, (B) HOMO, and (C) LUMO.

We used DFT to determine the hardness and softness of the compounds. As a result, it
was determined that:

1. The key equations describing the transition between ground states provide a robust
framework for defining local, global, and non-local hardness and softness functions.

2. Under chemical potential, it has been shown that interactions between two systems
evolve towards a state of maximum hardness. Additionally, both soft–soft and hard–
hard interactions are observed to be preferentially established.

3. Lastly, it has been demonstrated that a system’s ground-state energy tends to decrease
as its hardness increases, at least to a significant extent. These general principles
could be instrumental in understanding the behavior of molecules in general and in
discerning their reactions with various chemical types.

2.4. Molecular Docking Analyses
2.4.1. Ibuprofen Docking with COX2 (PDB Code: 5IKT)

Ibuprofen binds to the target protein via O(14) with the amino acid THR212. Hy-
drophobic interactions and hydrogen bonds were the most typical forms of binding bonds.
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The binding energy of the drug was found to be −5.33 kcal/mol, as showed in Table 5 and
Figure 6.

Table 5. The interaction parameters of ibuprofen and their derivatives IA with COX-2.

Compound Ligand Sites Receptor Sites Type of
Interaction

Bond Distance
(Å)

Binding Energy
(kcal/mol)

(S)
(kcal/mol)

Ibuprofen O(14) THR 212 H-donor 2.85 −2.9 −5.33

IA N(14) TYR 385 H-
donor 3.05 −0.7 −6.48

Co–IA

C(1) HIS214 H-
acceptor 3.19 −5.2

−6.65Ph HIS207 H-pi 3.78 −0.6

Ph HIS388 H-pi 3.70 0

Cu–IA
Cl SER 451 H-

acceptor 3.47 −0.9
−7.45

Ph TYR385 H-pi 4.6 −0.6

Ni–IA

O(21) PHE 210 H-
donor 2.73 −2.2

−8.16O(22) ASN382 H-
donor 3.19 −1.3

Ph HIS 386 H-pi 4.69 −0.6

Gd–IA Ph HIS 386 H-pi 4.42 −0.9 −7.41

Sm–IA
Ph HIS 386 H-pi 4.33 −1

−9.14
Ph HIS 207 H-pi 4.86 −0.7

The obtained model suggests that ibuprofen forms a single bond with the 5IKT protein
via a hydrogen bond with THR 212 (H-donor, 2.85 Å) and demonstrates a binding energy
of −2.9 kcal/mol. Similarly, the IA ligand forms a hydrogen bond with TYR 385 (H-donor,
3.05 Å), resulting in a binding energy of −0.7 kcal/mol. The preferred pose of the Co–
IA complex interacts with 5IKT through three bonds with HIS214, HIS207, and HIS388,
characterized by a hydrogen acceptor (HAc) interaction (3.19 Å, −5.2 kcal/mol), and
two pi-cation interactions (3.78 Å, −0.6 kcal/mol; 3.70 Å, 0 kcal/mol), respectively. The
Cu–IA complex forms two bonds with the 5IKT protein involving SER 451 and TYR385,
marked by an HAc interaction (3.47 Å, −0.9 kcal/mol) and a pi-cation interaction (4.6 Å,
−0.6 kcal/mol). The Ni–IA complex establishes three bonds with PHE 210, ASN382, and
HIS 386 (H-donor, 2.73 Å, −2.2 kcal/mol; H-donor, 3.19 Å, −1.3 kcal/mol; pi-cation
interaction, 4.6 Å, −0.6 kcal/mol). For the Gd–IA and Sm–IA complexes, interactions with
5IKT are mediated by HIS 386 (pi-cation interaction, 4.42 Å, −0.9 kcal/mol) for Gd–IA and
by HIS 386 and HIS 207 (pi-cation interaction, 4.33 Å, −1 kcal/mol; pi-cation interaction,
4.86 Å, −0.7 kcal/mol) for Sm–IA. Overall, the total binding energy is influenced not
only by its magnitude but also by the nature of the interactions, as observed in IA and
its complexes.

2.4.2. IA Docking of with COX2

The obtained result (Table 5 and Figure 7) showed the docking between IA [N(14)
of amide group(N-H)] and the COX2 protein [TYR 385] by H-bond. The binding energy
(−6.48 kcal/mol) of the binding conformation was found to be superior to that of ibuprofen.
The docking results revealed that the hydrazide group of IA binds to COX-2 in a manner
analogous to the carboxylic group in ibuprofen. However, the distinctive nature of the
hydrazide interaction contributes significantly to the enhanced anti-inflammatory activity.
The complexes, comprising hydrazide, nitrate groups, chlorine atoms, and metal ions,
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exhibited improved connectivity with COX-2 compared to both the IA ligand and ibupro-
fen. Generally, the augmentation in receptor affinity observed in ibuprofen derivatives is
attributed to alterations in their molecular composition, thereby elevating their potential for
protein binding. These modifications have led to the development of more potent COX-2
inhibitors with significantly enhanced in vitro activity.
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Figure 6. Ibuprofen’s docking with Cox2: (A) 3D view; (B) the surface characteristics (hydrophilic
(violet-colored), lipophilic (green-colored), and neutral (white-colored) sites, and neutral sites (white
color)); (C) 2D diagram.
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2.4.3. Molecular Docking of the Complexes

The interaction sites of all complexes are greater than IA and ibuprofen, except for
Gd–IA, which is similar to the free IA but has more interaction sites than ibuprofen. The
total binding energies for Co–IA, Cu–IA, Ni–IA, Gd–IA, and Sm–IA were −6.65, −7.45,
−8.16, −7.41, and −9.14 kcal/mol, respectively, which are all more negative than both
ibuprofen (−5.33 kcal/mol) and IA (−6.48 kcal/mol). The results are shown in Table 5 and
Figures 8 and S25–S29.

The complexes contained more interaction sites and more negative binding energies
with COX2 than ibuprofen and IA, with the exception of Gd–IA, which has one site
(Figure 9). These theoretical predictions for the new compounds are promising, and we
therefore expect them to have a biological effect in cell studies.
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2.5. In Silico Studies
2.5.1. Prediction of Target–Ligand Interactions

Using the Swiss Target Prediction website tool, we can predict the compound’s best
target, and the model suggests, as shown in Figure 10, that ibuprofen may have an oxidore-
ductase receptor as a target, with a prospect of 20%, a family A G protein-coupled receptor,
electrochemical transporter, and protease, with a probability of 13.3%. Other receptors were
enzymes, families of fatty acid-binding proteins and alpha2delta calcium channel auxiliary
subunits, hydrolase, secreted protein, and transferase, each with a probability of 6.7%.

IA was found to display inhibitory action to a kinase and family A G protein-coupled
receptor, with a probability of 20%, while the voltage-gated ion channel, protease, and
other cytosolic protein inhibition each have a probability of 13.3%. Other receptors were
enzymes, electrochemical transporters, and family C G protein-coupled receptors, each
with a prospect of 6.7%. Co–IA may possess inhibitory action for a family A G protein-
coupled receptor with a prospect of 26.7%, while kinase, protease, nuclear receptor, and
transcription factor inhibitory action each have a prospect of 13.3%. Other possible receptors
were enzymes, oxidoreductase, and primary active transporters, each with a probability
of 6.7%.

From the expected process, there is an increase in A G protein-coupled receptor for IA
and Co–IA (20 and 26.7%), as contrasted with ibuprofen (13.3%) and appearance kinase
receptor, with prospects of 20 and 13.3% for IA and Co–IA.

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 15 of 23 
 

 

Ligand

Ibuprofen IA ligand Co-IA Cu-IA Ni-IA Gd-IA Sm-IA

B
in

d
in

g
 e

n
e
rg

y
 (

K
c
a
l/
m

o
le

)

0

2

4

6

8

10

 

Figure 9. The binding energies of ibuprofen, IA, and its complexes. 

2.5. In Silico Studies 

2.5.1. Prediction of Target–Ligand Interactions 

Using the Swiss Target Prediction website tool, we can predict the compound’s best 

target, and the model suggests, as shown in Figure 10, that ibuprofen may have an oxi-

doreductase receptor as a target, with a prospect of 20%, a family A G protein-coupled 

receptor, electrochemical transporter, and protease, with a probability of 13.3%. Other re-

ceptors were enzymes, families of fatty acid-binding proteins and alpha2delta calcium 

channel auxiliary subunits, hydrolase, secreted protein, and transferase, each with a prob-

ability of 6.7%. 

IA was found to display inhibitory action to a kinase and family A G protein-coupled 

receptor, with a probability of 20%, while the voltage-gated ion channel, protease, and 

other cytosolic protein inhibition each have a probability of 13.3%. Other receptors were 

enzymes, electrochemical transporters, and family C G protein-coupled receptors, each 

with a prospect of 6.7%. Co–IA may possess inhibitory action for a family A G protein-

coupled receptor with a prospect of 26.7%, while kinase, protease, nuclear receptor, and 

transcription factor inhibitory action each have a prospect of 13.3%. Other possible recep-

tors were enzymes, oxidoreductase, and primary active transporters, each with a proba-

bility of 6.7%. 

From the expected process, there is an increase in A G protein-coupled receptor for 

IA and Co–IA (20 and 26.7%), as contrasted with ibuprofen (13.3%) and appearance kinase 

receptor, with prospects of 20 and 13.3% for IA and Co–IA. 

   

Figure 10. Target prediction of the proposed compounds using the Swiss Target Prediction Webtool. 

(A) Ibuprofen drug; (B) ligand IA; (C) Co–IA complex. 

2.5.2. Bioavailability Prediction 

Figure 10. Target prediction of the proposed compounds using the Swiss Target Prediction Webtool.
(A) Ibuprofen drug; (B) ligand IA; (C) Co–IA complex.

2.5.2. Bioavailability Prediction

A molecule’s behavior in a living organism is affected by many factors, including
bioactivity, transport properties, protein interactions, and other forms of reactivity. The
SwissADME online web tool was modified to incorporate the physicochemical characteris-
tics of the ibuprofen, IA, and Co–IA complex [38,39].

Physicochemical parameters such as the number and position of heavy atoms, topo-
logical polar surface area (TPSA), molar refractivity, water solubility (S), and lipophilicity
parameter were assessed [40]. The pharmacokinetic parameters, including skin penetration
(Log Kp), brain penetration, P-glycoprotein substrate ability (P-gp substrate), and gastroin-
testinal absorption (GI), were computed for ibuprofen, IA and Co–IA using the Brain or
Intestinal Estimated Permeation approach (BOILED-Egg model) [41,42] (Table 6).

In the BOILED-Egg model, the yellow zone has a high chance of brain penetration,
and the white zone has a substantial probability with GI absorption. The yolk and white
areas do not have to be opposite each other. Additionally, the dots are colored blue when
P-glycoprotein is predicted to be actively effluxed (PGP+) and red when P-glycoprotein
is expected not to be a substrate. Ibuprofen, IA, and the Co–IA were demonstrated to
be passively permeable through the BBB and to have high absorption through the GIT
(Figure 11).

The new compounds were evaluated using Veber’s rule-based approach (10 or fewer
rotatable bonds and TPSA of 140 Å2 or less are associated with a high probability of good
bioavailability) [43–45]. Table 6 indicates that compounds IA and Co–IA did not exhibit
any violations and are therefore suitable therapeutic candidates for bioactivity research.
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Table 6. Predicted physicochemical variables for ibuprofen, IA, and Co–IA.

Compound Ibuprofen IA Co–IA

Heavy atoms 15 22 26
Rotatable bonds 4 8 4
H-bond donor 1 1 1

H-bond acceptor 2 3 4
Fraction Csp3 0.46 0.50 0.39

LogS −3.44 −5.27 −6.13
XLogP3 3.50 3.35 6.82

Molar refractivity 62.18 91.33 111.07
TPSA (Å2) 37.30 58.53 43.29

Log Kp (skin permeation) (cm/s) −5.07 −5.77 −4.19
GI absorption High High High
P-gp substrate No No Yes
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Figure 11. Ibuprofen, IA, and Co–IA BOILED-Egg model.

2.6. In Vitro: Anti-Inflammatory Action
2.6.1. IA and Its Complexes: Cyclooxygenase Inhibition

The compounds’ abilities were evaluated in vitro to inhibit ovine COX-1 and hu-
man recombinant COX-2 isozymes using ELISA [46]. Selectivity indexes for COX-2 (S.I.
values = IC50 (COX-1)/IC50 (COX-2)) were also calculated and compared with the common
drugs ibuprofen, diclofenac sodium and indomethacin. The data indicated that the IA
blocked COX-1 (IC50 = 10.2 µM) and COX-2 (IC50 = 3.6 µM) more than ibuprofen (COX-1
(IC50 = 12.9 µM) and COX-2 (IC50 = 31.4 µM). IA had a higher S.I. (2.5) than ibuprofen
(0.4) and was shown to become more efficient than ibuprofen at inhibiting COX-1/COX-2
(Table 7). The IC50 values of Cu, Ni, Co, Gd and Sm complexes were 3.4, 2.5, 2.4, and
1.9 µM, respectively, which indicates that they act as more potent COX-2 inhibitors than IA
and ibuprofen (3.6, 31.4 µM), as shown in Table S6 and Figure 12.

Table 7. Inhibition of cyclooxygenase by IA and standard drugs.

Compound IC50
(a) (µM)

COX-1 COX-2 COX-2 (b) S.I.

Ibuprofen 12.9 31.4 0.4
Indomethacin 0.4 0.1 5.0

Diclofenac sodium 3.8 0.8 4.5
IA 10.2 3.6 2.8

(a) IC50 The value represents the compound concentration required to inhibit COX-1 or COX-2 by 50%, which
is the average of three determinations with a 10% deviation from the mean value. (b) Selectivity index (COX-1
IC50/COX-2 IC50).
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2.6.2. Western Blotting Assay

Western blotting of COX-1/COX-2 verified IA’s anti-inflammatory activity [47,48].
The data showed that the IA had high potential as an inhibitor of COX-1 (IC50 = 0.946 µM),
and COX-2 (IC50 = 0.894 µM (Figures 13 and 14). The COX-2 selectivity index of IA was
greater (1.058) than that of ibuprofen (0.895), which indicates that it is a more selective COX
inhibitor than ibuprofen, as shown in Table 8.
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Table 8. IA and ibuprofen inhibit cyclooxygenase through Western blotting.

Compound
IC50 (µM)

COX-1 COX-2 COX-2 S.I.

Ibuprofen 2.975 3.325 0.895

IA 0.946 0.894 1.058

2.6.3. The MTT Test

The cytotoxicity of the IA was investigated during 24 h at various concentrations
against fibroblast cell lines using the MTT test [49]. IA showed higher inhibitory action of
COX-2 (IC50 = 3.43 µM) than ibuprofen (IC50 = 31.4 µM) (Table 9).

Table 9. The IC50 (µM) of IA against fibroblast cells.

Compound Fibroblast Cells

Ibuprofen 31.4
IA 3.43

3. Materials and Methods
3.1. Materials

All chemicals and ibuprofen were obtained in their pure state (Sigma Aldrich, Schnell-
dorf, Germany), acetylacetone, nickel (II) chloride, copper (II) chloride, cobalt (II) chloride
hexahydrate, gadolinium (III) nitrate hexahydrate, and samarium (III) nitrate hexahydrate.
Highly polymerized fish-milt DNA (FM-DNA), Tris-HCl buffer, and pure HPLC-grade
solvents were purchased from Sigma-Aldrich. All glassware and other items were dried
after cleaning with distilled water before use.

3.2. Instrumentation

An electrical melting point apparatus was used to determine the melting points. A
Xylem Analytics’ WTW digital conductivity meter (Weilheim, Germany) was employed on
10−3 M DMSO solutions to evaluate the electrical conductivity of the complexes at ambient
temperature. The CHNS-932 (LECO) elemental analyzer was used to conduct microanalyses
of C, H, and N. The complexes were digested with concentrated HNO3/H2O2 for metal
analysis, and the remaining material was subsequently dissolved in distilled water. The
metal ratio was determined by thermogravimetric analysis or EDTA titration. Using
a Varian spectrometer and the DMSO-d6 solvent as a reference, the 1H NMR spectra
were acquired, and the chemical shifts were quantified in ppm. Electronic spectra of
the metal complexes were obtained using a quartz cuvette and a UV-1800 Shimadzu
spectrophotometer (200–800 nm; 1 cm path length), and in a Nujol mull, following the
method described by Lee et al. [50]. The 400–4000 cm−1 range was used to acquire the FTIR
spectra of the ligand and its complexes using a Bruker Tensor 27 spectrophotometer (KBr
disc). A Shimadzu Qp-2010 plus mass analyzer was used for mass spectrometry. The Gouy
method was using mercury (II) tetrathiocyanatocobaltate (II) as the reference to evaluate the
magnetic susceptibility using an MSB-MK1 balance at the ambient temperature. Thermal
analysis (TGA, DTG, and DTA) was performed using a Shimadzu 60H thermal analyzer
with a nitrogen flow of 20 mL/min and heating rate of 10 ◦C/min in the range of 40–800 ◦C.
Chem Office (Version 16.0) was used to model the molecules of the novel compounds in
order to use the MM2 calculation to carry out an energy optimization operation.

3.3. General Synthesis

We used a conventional approach that was employed frequently in the literature [5,51–53],
with some variety in the time of reflux, to synthesize the ester ethyl 2-(4-isobutyl pheny-
lopanoate (IE) and the hydrazine [2-(4-isobutylphenyl)propane hydrazide (HI)].
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3.3.1. Synthesis of IA

Ethanolic solutions of ibuprofen hydrazide (C13H20N2O) and acetylacetone were
added dropwise, followed by heating of the mixture at reflux for three hours. The solution
was allowed to evaporate completely, and only a trace of its original volume remained,
which was then allowed to cool to room temperature. After filtration, washing with
methanol, and drying, the canary-yellow precipitate was desiccated using anhydrous
CaCl2 (Scheme 2).
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Scheme 2. Synthesis of IA.

3.3.2. Synthesis of Metal Complexes

In a hot ethanolic solution, 0.1 mmol of CuCl2 (0.067 g), NiCl2 (0.0648 g), CoCl2·6H2O
(0.1189 g), Sm(NO3)3·6H2O (0.222 g), or Gd (NO3)3·6H2O (0.225 g) was added dropwise
to 0.2 mmol of ligand IA. After 2–3 h of vigorous stirring under reflux, the solution was
allowed to cool to 25 ◦C. Co, Ni, and Cu complexes changed the final pH of the solution
to 7–8, while Sm and Gd complexes changed it to 4–5.5. After heating, the solutions were
allowed to evaporate slightly and then left to reach room temperature, and the complexes
were formed. Filtration, washing with methanol, and drying with a desiccator were
performed on the precipitate (solid crystals).

3.4. Anti-Inflammatory Action
3.4.1. ELISA Test

In accordance with Cayman Chemical protocols, an ELISA test kit was used (Item
No. 560131, Ann Arbor, MI, USA) [54,55]. The inhibition of bovine COX-1 and human
recombinant COX-2 using hydrazide, IA, and certain complexes was shown.

3.4.2. Western Blot Analysis

By using immunoblotting, we were able to successfully confirm the anti-inflammatory
mechanism of the pattern of protein expression [47,48,56].

3.4.3. The MTT Assay

The MTT Reagent was purchased from Biospes (Biospes, China, Cat n#BAR1005-
1), and used according to the manufacturer’s instructions [49,57,58]. Twenty-four hours
prior to the MTT experiment, breast cancer cell lines (MCF-7 Cell Line) were seeded at
a concentration of 5 × 104 cells per well in 96-well microplates to facilitate microplate
adherence. Various agent concentrations were administered to the cultured cells. The cells
were treated with 10 µL of MTT solution, and 100 µL of serum-free medium was added
to every well. The plate was kept at 37 ◦C for 4 h in a CO2 incubator. Then, each well
received 100 µL of formazan diluent buffer. The plate was incubated at 37 ◦C for the entire
night after being wrapped in foil and given a 15-min orbital shake. An ELISA plate reader
(Stat Fax 2200, Awareness Technologies, Palm City, FL, USA) was used to measure color
absorbance in the OD range of 450–630 nm [59].

For every sample, the mean of the three readings was computed. Cell survival was
calculated at the very end using the following equation:

% of cell viability =
Asample
Acontrol

× 100 (1)

Acontrol is the absorbance of the cell culture after treatment with formazan buffer and
MTT without added any drug. Asample is the equivalent absorption for samples that were
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treated concurrently with active substances. IC50 nonlinear regression and curve fitting
were then used to determine the values [60].

4. Conclusions and Future Perspectives

IA, a new ibuprofen derivative, was prepared as a pure compound. The complexes
formed by the reaction of the IA with Ni(II), Co(II), Cu(II), Sm(III), and Gd(III) were
synthesized and characterized. The IA and the complexes often showed more bioactivity
than the widely used drug ibuprofen. An octahedral structure is formed by Cu, Co, and Ni,
whereas a capped square antiprismatic or tricapped trigonal prismatic structure is formed
by Gd and Sm. The IA and its complexes had greater inhibitory ability towards COX-
1/COX-2 than ibuprofen. The IA and complexes were docked with the COX-2 protein. The
binding energy obtained for the in vitro investigations was compared and evaluated. The
in silico tools produced promising results that were comparable to in vitro data, indicating
that they can be employed to forecast the bioactivity of novel drugs. In vitro studies were
performed on the novel compounds’ anti-inflammatory properties. The new compounds
were found to have more potent action as inhibitors of inflammatory enzymes, suggesting
that they could be introduced as a new drug following further experiments, including
in vivo studies.

However, to fully establish the therapeutic viability and safety profile of IA and its
complexes, future research is proposed to further enhance the bioactivity and reduce the
potential side effects of IA. Therefore, the synthesis and evaluation of additional derivatives
should be continued. Variations in the molecular structure might lead to compounds with
even greater efficacy or specificity toward inflammatory pathways. Although in vitro and
in silico analyses have shown promising results, in vivo studies are crucial to understanding
the pharmacokinetics, pharmacodynamics, and toxicity profiles of these compounds in
a living organism. Such studies will provide essential data on the efficacy, safety, and
potential side effects of IA and its complexes. In addition to COX-1/COX-2 inhibition,
exploring the effect of IA and its complexes on other biological pathways involved in
inflammation could uncover additional mechanisms of action. This might include pathways
like NF-κB, TNF-α, and various cytokines, which play significant roles in the inflammatory
process. Further comparative studies with other NSAIDs and COX-2 inhibitors are needed
to position IA and its complexes within the broader spectrum of anti-inflammatory drugs.
This will help in identifying any unique advantages or disadvantages they may have over
existing treatments.
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