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Abstract: 3-methyl-4-nitrophenol (PNMC), a well-known constituent of diesel exhaust particles and
degradation products of insecticide fenitrothion, is a widely distributed environmental contaminant.
PNMC is toxic to the female reproductive system; however, how it affects meiosis progression in
oocytes is unknown. In this study, in vitro maturation of mouse oocytes was applied to investigate
the deleterious effects of PNMC. We found that exposure to PNMC significantly compromised oocyte
maturation. PNMC disturbed the spindle stability; specifically, it decreased the spindle density and
increased the spindle length. The weakened spindle pole location of microtubule-severing enzyme
Fignl1 may result in a defective spindle apparatus in PNMC-exposed oocytes. PNMC exposure
induced significant mitochondrial dysfunction, including mitochondria distribution, ATP production,
mitochondrial membrane potential, and ROS accumulation. The mRNA levels of the mitochondria-
related genes were also significantly impaired. Finally, the above-mentioned alterations triggered
early apoptosis in the oocytes. In conclusion, PNMC exposure affected oocyte maturation and quality
through the regulation of spindle stability and mitochondrial function.

Keywords: oocyte maturation; PNMC; spindle stability; Fignl1; mitochondria

1. Introduction

Owing to multiple factors, including environmental pollution, mental stress, and
delayed child-bearing age, female infertility has emerged as a global problem, affecting
nearly 15% of couples worldwide [1]. The quality of the oocyte is a decisive factor for
female fertility, as it subsequently affects fertilization, embryonic development, and implan-
tation [2]. Unlike somatic cells, mammalian oocytes are dormant at the meiotic diplotene
stage of prophase before birth, lasting for months in animals and decades in humans. Until
each menstrual or estrus cycle, stimulated by follicle-stimulating and luteinizing hormones,
oocytes resume meiosis and successively undergo landmark events, including germinal
vesicle breakdown (GVBD), spindle organization, homologous chromosomes alignment
and segregation [3]. Oocytes are more sensitive to external toxic insults owing to these long
periods of meiotic dormancy [4].

3-methyl-4-nitrophenol (4-nitro-m-cresol, PNMC), a well-known component of diesel
exhaust particles, causes serious air pollution [5]. PNMC is also the main degradation
product of fenitrothion, a commonly used pesticide in agriculture [6]. Moreover, PNMC is
widely used in the production of fungicides, drugs, dyes, and rubber materials [7]. Owing
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to its widespread use, PNMC has emerged as a common contaminant worldwide and is
ubiquitous in the air, food, soil, and water. Humans are prone to PNMC exposure through
inhalation, orally, or through the skin [8]. As its degradation is difficult, PNMC persistently
remains in the environment. The United States Environmental Protection Agency has listed
PNMC under “Priority control pollutants” [9].

PNMC exerts adverse effects on human and animal health. It induces the development
of airway diseases, breast adenocarcinoma, and immune disease [10–13]. As a nitrophenol
derivative, PNMC is an endocrine-disrupting chemical and shows estrogenic and antian-
drogenic activity [14–16]. PNMC exposure causes serious reproductive damage in animals
by disrupting the endocrine function and increasing the number of apoptotic testicular
cells in male quails, rats, chickens, and mice [17,18]. Recently published data suggest that
PNMC is a negative modulator of steroidogenesis in chicken preovulatory follicles [19,20].
PNMC treatment impairs oocyte meiotic progression and follicle development in murine
models [21].

PNMC exposure can hinder meiotic maturation in oocytes; however, subsequent
effects and the underlying mechanism by which PNMC affects the oocyte quality remain
unknown [21]. This study attempted to elaborate on the mechanism underlying the effects
of PNMC on the maturation of murine oocytes. Taking advantage of an oocyte in vitro
culture system, we showed that a low-dose PNMC treatment (50 nM) seriously perturbed
oocyte maturation and quality. Our results directly validated that PNMC exposure broke
spindle stability and mitochondrial function, finally triggered early apoptosis in oocytes.

2. Results
2.1. PNMC Exposure Compromises the Meiotic Maturation

The first polar body extrusion (PBE) at meiosis I marks the meiotic maturation of
oocytes. Therefore, germinal vesicle (GV) oocytes were grown in a medium supplemented
with 0, 25, 50, and 100 nM of PNMC to observe PBE in vitro. As shown in Figure 1A,B,
PNMC treatment significantly diminishes the PBE rate of oocytes in a dose-dependent
manner. The result validated that the rate of PBE was not significantly affected in the 25 nM
PNMC group (p > 0.05). Remarkably, a significant decrease was observed in the 50 and
100 nM PNMC groups (p < 0.001). After 24 h exposure to 50 nM PNMC, cell death increased
significantly (p < 0.001; Figure 1C,D) compared with control oocytes. Subsequently, 50 nM
PNMC was chosen to explore the toxic mechanisms in this study, as it could significantly
inhibit PBE but allow a few oocytes to normally attain maturation.
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to accomplish PBE after treatment with 50 and 100 nM PNMC. Scale Bar = 100 µm. (B) The percent-
ages of PBE in control (n = 206) and PNMC-exposed groups (25 nM, n = 255; 50 nM, n = 281; 100 nM, 
n = 196) are shown. (C) The oocytes were cultured for 24 h to investigate the effects of PNMC expo-
sure on oocyte mortality. Cell death was prominent in the 50 nM PNMC-exposed oocytes, unlike in 
the control group. Scale Bar = 100 µm. (D) The proportion of cell death was analyzed in control (n = 
195) and 50 nM PNMC-exposed (n = 188) oocytes. ns (not significant) means p ≥ 0.05; *** p < 0.001. 
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sure (Figure 2F). 

Given the spindle defects after PNMC exposure, we used nocodazole, a reversible 
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stage oocytes in the PNMC-exposed group was significantly smaller than in controls 
(237.20 ± 23.75 µm2 vs. 148.71 ± 16.65 µm2; p < 0.05; Figure 2G,H), along with reduced 
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25 nM PNMC-treated groups normally attained meiotic maturation; however, most oocytes failed to
accomplish PBE after treatment with 50 and 100 nM PNMC. Scale Bar = 100 µm. (B) The percentages
of PBE in control (n = 206) and PNMC-exposed groups (25 nM, n = 255; 50 nM, n = 281; 100 nM,
n = 196) are shown. (C) The oocytes were cultured for 24 h to investigate the effects of PNMC
exposure on oocyte mortality. Cell death was prominent in the 50 nM PNMC-exposed oocytes, unlike
in the control group. Scale Bar = 100 µm. (D) The proportion of cell death was analyzed in control
(n = 195) and 50 nM PNMC-exposed (n = 188) oocytes. ns (not significant) means p ≥ 0.05; *** p < 0.001.

2.2. PNMC Exposure Impairs Spindle Stability

We evaluated the spindle architecture and chromosome alignment at metaphase I
(MI) oocytes to determine how PNMC exposure disrupted the meiotic progression. In-
terestingly, homologous chromosomes were well-aligned at the metaphase plate in the
PNMC-exposed oocytes but the spindle apparatus showed moderate defects, confirming a
diminished spindle microtubule integrity in the vicinity of chromosomes (Figure 2A,B). The
lengths of the spindles increased significantly in PNMC-exposed groups (30.85 ± 0.99 µm
vs. 25.93 ± 0.82 µm; p < 0.01; Figure 2C,D); however, the spindle width was uniformly
consistent in control oocytes (20.43 ± 0.83 µm vs. 19.84 ± 0.60 µm; p > 0.05; Figure 2E).
Consistently, the ratio of spindle length/width increased significantly after PNMC exposure
(Figure 2F).
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excluding the oocytes that did not accomplish GVBD at 2 h, the remaining control and PNMC-
treated oocytes were immune-stained with α-tubulin after another 6 h culture (MI oocytes). α-tubu-
lin, green; DNA, blue. Scale Bar = 20 µm. (B) The fluorescence intensity of spindle α-tubulin was 
quantified in control (n = 26) and PNMC-exposed (n = 29) oocytes. (C–F) Spindle length, width, and 
length/width ratio were quantified in control (n = 36) and PNMC-exposed (n = 38) groups. (G) Im-
ages delineating spindle morphology in control and PNMC-exposed MI oocytes after nocodazole 
treatment. α-tubulin, green; DNA, blue. Scale Bar = 20 µm. (H,I) The spindle fluorescence intensity 
and area were quantified in control (n = 28) and PNMC-exposed (n = 31) groups. * p < 0.05, ** p < 
0.01. 
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the oocytes that did not accomplish GVBD at 2 h, the remaining control and PNMC-treated oocytes
were immune-stained with α-tubulin after another 6 h culture (MI oocytes). α-tubulin, green; DNA,
blue. Scale Bar = 20 µm. (B) The fluorescence intensity of spindle α-tubulin was quantified in control
(n = 26) and PNMC-exposed (n = 29) oocytes. (C–F) Spindle length, width, and length/width ratio
were quantified in control (n = 36) and PNMC-exposed (n = 38) groups. (G) Images delineating
spindle morphology in control and PNMC-exposed MI oocytes after nocodazole treatment. α-tubulin,
green; DNA, blue. Scale Bar = 20 µm. (H,I) The spindle fluorescence intensity and area were
quantified in control (n = 28) and PNMC-exposed (n = 31) groups. * p < 0.05, ** p < 0.01.

Given the spindle defects after PNMC exposure, we used nocodazole, a reversible
microtubule depolymerized agent, to confirm the effects of PNMC on spindle stability.
After 10 min of nocodazole depolymerization, the area of spindle microtubules in MI-
stage oocytes in the PNMC-exposed group was significantly smaller than in controls
(237.20 ± 23.75 µm2 vs. 148.71 ± 16.65 µm2; p < 0.05; Figure 2G,H), along with reduced
fluorescence intensity (Figure 2I). Therefore, 50 nM PNMC treatment disrupted spindle
stability but not the chromosomal alignment.

2.3. PNMC Exposure Diminishes the Localization Signal of Fignl1 at the Spindle Poles

Ablation of microtubule-severing proteins (MTSPs) induces defects in the spindle ap-
paratus in oocytes, consistent with the aberrant phenotype observed after PNMC exposure.
Therefore, the effect of PNMC treatment on the expression of MTSP marker genes (SPAST,
KATNAL1, and FIGNL1) was evaluated by qRT-PCR. The mRNA levels of SPAST and
KATNAL1 exhibited no significant difference in the MI stage between control and PNMC-
exposed groups (Figure 3A,B); however, the mRNA levels of FIGNL1 were significantly
lower after PNMC exposure (Figure 3C).
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KATNAL1 were unaffected at the MI stage between control and PNMC-exposed groups; however,
the level of FIGNL1 was significantly inhibited after PNMC exposure. (D) Images illustrating the
localization pattern of Fignl1 in control and PNMC-exposed MI oocytes. α-tubulin, green; Fignl1, red;
DNA, blue. Scale Bar = 20 µm. (E) Quantitative analysis of the fluorescence intensity of Fignl1 in
control (n = 28) and PNMC-exposed (n = 30) groups. * p < 0.05, ** p < 0.01.

We investigated if the normal localization of the Fignl1 to the spindle pole was affected
at the MI stage after PNMC exposure. As shown in Figure 3D, strong fluorescence signals
of Fignl1 are found at the spindle poles in control oocytes. In contrast, the sharply weak
signal of Fignl1 at spindle poles is found in PNMC-treated oocytes. Quantitative analysis
confirmed that the fluorescent intensity of Fignl1 decreased significantly in the PNMC-
exposed oocytes compared to the control oocytes (Figure 3E). Taken together, PNMC
exposure damaged localization pattern of Fignl1 at spindle poles, possibly resulting in the
defective assembly of the spindle apparatus after PNMC exposure.

2.4. PNMC Exposure Disrupts Mitochondrial Function

Given the crosstalk between spindle and mitochondria, we examined if the mitochon-
drial function was impaired after PNMC exposure. Mitochondrial accumulation at both
cytoplasm and spindle peripheries decreased in most PNMC-exposed oocytes (Figure 4A),
indicating that PNMC disrupted the mitochondrial distribution during oocyte maturation.
Next, we examined ATP production. ATP levels in the PNMC-exposed oocytes were signif-
icantly lower than those in the control oocytes (Figure 4B). Consistently, the mitochondrial
membrane potential (MMP), which drives ATP synthesis, was significantly reduced in
PNMC-treated oocytes (Figure 4C,D). Therefore, PNMC exposure impaired mitochondrial
function, including mitochondria distribution, ATP production, and MMP.
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Figure 4. PNMC exposure disrupts the mitochondrial function in oocytes. (A) Control and PNMC-
treated MI oocytes were labeled with MitoTracker Red to visualize mitochondrial distribution. Scale
Bar = 5 µm. (B) ATP levels were determined in the control (n = 43) and PNMC-exposed (n = 39)
groups. (C) MMP in the control and PNMC-exposed MI oocytes by JC-1 staining. The green signal
represents inactive mitochondria and the red signal represents active mitochondria in oocytes. Scale
Bar = 100 µm. (D) MMP was quantified in control (n = 30) and PNMC-exposed (n = 28) groups.
** p < 0.01.



Int. J. Mol. Sci. 2024, 25, 3572 6 of 15

2.5. PNMC Exposure Elevated the ROS Level

Mitochondria are the center of oxidative metabolism and the principal site of reac-
tive oxygen species (ROS) production. ROS levels increased if mitochondrial dynamics
and function were disrupted. The ROS levels increased in the PNMC-exposed groups
(Figure 5A,B). Consistent with the elevated ROS levels, decreased expression of antioxidant
genes (GPX4, GPX6 and SOD2) was confirmed in the PNMC-exposed oocytes (Figure 5C–F).
So, PNMC exposure leads to the accumulation of ROS.
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Figure 5. PNMC treatment induced the increased ROS levels in mouse oocytes. (A) ROS levels were
assessed by DCFH-DA (green) staining. Representative images of ROS production in the control and
PNMC-exposed MI oocytes. Scale Bar = 50 µm. (B) ROS levels were quantified in the control (n = 46)
and PNMC-exposed (n = 38) groups. (C–F) The mRNA levels of antioxidant genes were evaluated by
qRT-PCR. * p < 0.05, ** p < 0.01 and *** p < 0.001.

2.6. PNMC Exposure Decreases the Expression of Mitochondria-Related Genes

Given mitochondrial dysfunction upon exposure to PNMC, we examined the expres-
sion levels of mitochondria-related genes. First, we determined the mRNA levels of the
mitochondrial respiratory complexes. As shown in Figure 6A–D, the transcriptional profiles
of SDHA (Complex II), UQCRC2 (Complex III), and ATP5A1 (Complex V) were significantly
decreased, explaining the reduced ATP levels in PNMC-exposed oocytes. We assessed
the transcriptional profiles of mitochondria fission genes, FIS1 and DRP1, and fusion
genes, MFN1 and OPA1. The mRNA levels of these genes were all significantly diminished
(Figure 6E–H). The aberrant mitochondrial dynamic (fission and fusion) may have been
partially caused by the defective mitochondrial distribution in PNMC oocytes. PNMC
exposure significantly downregulated the mRNA levels of mitochondrial DNA (mtDNA),
ATP6 and CYTB (Figure 6I–L). Taken together, PNMC may directly target the mitochondria.
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Figure 6. PNMC exposure blocks the expression of mitochondrial-related genes. (A–D) The relative
mRNA levels of mitochondrial respiratory complexes, including SDHA, UQCRC2, and ATP5A1, were
significantly decreased in PNMC-exposed oocytes. (E–H) The relative mRNA levels of genes related
to mitochondrial dynamics, DRP1, FIS1, MFN1, and OPA1, were sharply reduced in PNMC-exposed
oocytes. (I–L) The mtDNA, ATP6 and CYTB, were significantly down-regulated after PNMC exposure.
* p < 0.05, ** p < 0.01 and *** p < 0.001.

2.7. PNMC Exposure Triggers Early Apoptosis

Owing to the aberrant mitochondrial function following PNMC exposure, we specu-
lated that the apoptotic level of oocytes may also be elevated. Therefore, we performed
Annexin-V-FITC staining analysis to examine the apoptosis level. In the control groups,
there were almost no apoptotic oocytes. However, the number of Annexin-V-positive
oocytes increased significantly in the PNMC-exposed group (p < 0.05; Figure 7A,B). The
mRNA levels of the apoptotic genes, BAX and CASPASE3, were significantly up-regulated.
The mRNA level of the anti-apoptotic gene, BCL-2, was remarkably down-regulated in the
PNMC-exposed oocytes (Figure 7C–E). We inferred that PNMC treatment triggered early
apoptosis in mouse oocytes.
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after PNMC exposure are consistent with MTSP ablation in oocytes, we checked the 
mRNA expression of SPAST, KATNAL1, and FIGNL1. The mRNA levels of FIGNL1 were 

Figure 7. PNMC treatment triggers early apoptosis in oocytes. (A) Early apoptosis in the control and
PNMC-exposed MI oocytes was evaluated by Annexin-V assay. Annexin-V, green; Scale Bar = 100 µm.
(B) The proportion of the oocytes with Annexin-V positive signal was quantified in the control
(n = 187) and PNMC-exposed (n = 194) oocytes. (C–E) qRT-PCR for the mRNA levels of BAX, BCL-2,
and CASPASE3 in the control and PNMC-exposed oocytes. ** p < 0.01 and *** p < 0.001.

3. Discussion

In female reproduction, the quality of the oocyte is the key determinant of fertilization
and embryo developmental competence; however, it is vulnerable to environmental factors.
As an endocrine-disrupting chemical, PNMC is a global cause of concern owing to its
adverse effects on human and animal health, especially reproductive toxicity [18,19]. PNMC
exposure impairs the meiotic maturation of oocytes; however, the specific effect and
underlying mechanism are not elusive. In this study, we sought to elaborate on the
mechanisms underlying the effects of PNMC on the maturation of murine oocytes. Our
findings suggest that PNMC exposure disturbs spindle organization and mitochondrial
function, ultimately disrupting the first PBE and triggering early apoptosis in oocytes.

PNMC exposure caused spindle defects in oocytes, which were evident through de-
creased spindle density and increased spindle length. Nocodazole treatment confirmed that
aberrant spindle architecture impaired spindle microtubule stability after PNMC exposure.
The precise spindle microtubule organization is important for meiosis progression. It is
regulated by various microtubule-associated proteins (MAPs) [22]. MTSPs are important
MAPs and belong to the AAA-ATPases enzyme family, which uses the chemical energy
of ATP-hydrolysis to sever microtubules [23,24]. MTSPs are important in spindle forma-
tion during mitosis and meiosis as they regulate the length, mass, and density of spindle
microtubules, including Katanin, Spastin, and Fidgetin [25,26]. As spindle defects after
PNMC exposure are consistent with MTSP ablation in oocytes, we checked the mRNA ex-
pression of SPAST, KATNAL1, and FIGNL1. The mRNA levels of FIGNL1 were significantly
diminished but not those of SPAST and KATNAL1. A typical weak signal of Fignl1 at the
spindle pole was found in PNMC-exposed oocytes. This finding is consistent with that
of a previous study, whereby Fignl1 knockdown caused spindle defects characterized by
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an abnormal length/width ratio and decreased microtubule density [27]. Therefore, we
speculate that the defective spindle after PNMC exposure is partially due to the abnormal
localization of Fignl1.

Previously published data validated that irregular spindle organization induced by
MTSP ablation causes abnormal mitochondrial distribution [28]. As a ubiquitously dy-
namic organelle, the movement of mitochondria is dependent on the microtubules during
the cell cycle [29]. Disassembly of the microtubules totally disrupts mitochondrial fusion
and fission, and bioenergetics [30]. As PNMC exposure induced the aberrant organization
of spindle and mis-localization of MTSPs, we investigated the mitochondrial function in
control and PNMC-exposed groups. PNMC treatment led to abnormal mitochondrial
distribution. The spindle defects likely disrupt mitochondrial fusion and fission, thereby
affecting mitochondrial distribution [31]. Accordingly, the significantly diminished mRNA
levels of the fission genes, FIS1 and DRP1, and fusion genes, MFN1 and OPA1, confirm this
hypothesis. MMP, another important indicator of mitochondrial function, also decreases
sharply in PNMC-exposed oocytes. As MMP drives ATP synthesis, we observed decreased
ATP levels following PNMC exposure in coordination with the decline in MMP. Mito-
chondria provide ATP through the coupling of the electron transport chain to OXPHOS,
including enzyme Complex I to V [32]. The mRNA levels of SDHA (Complex II), UQCRC2
(Complex III), and ATP5A1 (Complex V) were significantly decreased. PNMC exposure
caused severely abnormal mitochondrial function, which may be attributed to the defective
spindle architecture.

Oocytes extensively depend on optimal mitochondrial functions for their matura-
tion [33]. In mammals, there are more than 100,000 mitochondria per healthy oocyte but
in somatic cells, mitochondrial numbers range from a few hundred to thousands [34].
Mitochondria undergo dynamic redistribution during meiotic maturation and are concen-
trated around the spindle during the metaphase of the first meiosis [35]. Mitochondrial
distribution is intimately associated with the meiotic spindle, and scarce ATP produc-
tion results in abnormalities in the meiotic spindle, indicating the necessity of ATP for
spindle organization [36]. Experimental data have directly confirmed that the ablation
of mitochondrial-associated genes seriously damages spindle architecture and meiosis
progression [37,38]. Therefore, the close crosstalk between the spindle and mitochondria is
vital for the maturation and development of oocytes. Furthermore, mitochondria have long
been considered sensitive targets of several environmental toxicants, such as pesticides,
plasticizers and fungicide [39,40]. Upon uptake into a eukaryotic cell, most toxicants are
oxidized, leading to serious ROS accumulation and oxidative stress [41]. Moreover, the
mtDNA is devoid of histones, so it is more sensitive to oxidative damage than nuclear
DNA [42]. When stress response mechanisms are overloaded by toxicant exposure, cells
trigger mitochondria-mediated apoptosis [43]. PNMC exposure can induce apoptosis in
various cells and tissues [44]. These findings are consistent with our results. The mRNA
levels of the pro-apoptotic genes, BAX and CASPASE3, were significantly up-regulated;
however, that of the anti-apoptotic gene, BCL-2, was remarkably down-regulated in the
PNMC-exposed oocytes. Annexin-V staining directly confirmed that the number of apop-
totic oocytes was significantly elevated in the PNMC-exposed group. We inferred that
PNMC exposure induced oocyte apoptosis, likely due to mitochondrial dysfunction.

In brief, PNMC exposure caused defective spindle stability and mitochondrial func-
tion. Given the close crosstalk between the spindle apparatus and mitochondria during
meiotic maturation, we could not definitively conclude if the abnormal spindle insta-
bility resulted in mitochondrial dysfunction, or vice versa [45,46]. However, our find-
ings directly validated that PNMC triggered early apoptosis in oocytes, likely due to
mitochondrial dysfunction.
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4. Materials and Methods
4.1. Animal Statement

All experimentation in this study conferred the guidelines set by the Animal Care
and Use Committee of Hubei Academy of Agricultural Sciences (HBAAS-2023-014). The
3–4 weeks old female Kunming mice were obtained locally and bred at the experimental
center of Hubei Academy of Agricultural Sciences. The animals had access to water and
food ad libitum and were reared under a 12 h light/dark cycle at 15–20 ◦C.

4.2. Antibodies and Reagents

Rabbit anti-Fignl1 polyclonal antibody (Cat# NBP2-47456) was procured from Novus
Biologicals (Centennial, CO, USA); mouse anti-α-tubulin-FITC antibody (Cat# F2168)
was purchased from Sigma Chemical Company (St. Louis, MO, USA); DyLight 549-
conjugated goat anti-rabbit IgG (H + L) from Abbkine Biotechnology (San Diego, CA,
USA), and IBMX (Cat# HY-12318) was obtained from MedChemExpress Company (Mon-
mouth Junction, NJ, USA).

4.3. In Vitro Maturation of Murine Oocyte

Specifically, 3–4 weeks old female Kunming mice were treated with 8 IU of pregnant
mare serum gonadotropin and sacrificed by cervical dislocation after 44–48 h of injec-
tion. For GV oocyte collection, cumulus-oocyte complexes were isolated from ovarian by
mechanically puncturing with an insulin needle, followed by repeated mouth-controlled
pipetting to strip off the cumulus cells. GV oocytes were harvested in a M2 medium
supplemented with 50 µM IBMX. During in vitro maturation, nearly 30 GV oocytes were
grown in a 50 µL M2 drop covered with 2.5 mL mineral oil at 37 ◦C in an incubator with
5% CO2. The oocytes were incubated for 0, 2, 8, and 14 h, corresponding to the GV, GVBD,
MI, and MII stages, respectively [47].

4.4. Drug Treatment

After dissolving in dimethyl sulfoxide (DMSO), the PNMC (Cat# 2042-14-0, Sigma)
stock solution (1 mM) was diluted in the M2 medium to obtain working concentrations,
adhering to a DMSO concentration of <0.1%. For the nocodazole (Cat# 31430-18-9, Sigma)
treatment, the nocodazole stock solution prepared in DMSO (6 mg/mL, Sigma) was diluted
in the M2 medium to obtain a working concentration of 6 µg/mL. For treatment, MI oocytes
were incubated with 6 µg/mL nocodazole for 10 min to deploy the spindle apparatus.

4.5. RNA Isolation and Real-Time PCR

Total RNA was obtained from 50 oocytes using the RNAqueous Microkit (AM1931,
Thermo Fisher Scientific, Waltham, MA, USA) and DNase I (18047019, Thermo Fisher
Scientific) was used to inhibit contamination from genomic DNA. Reverse transcription
was conducted using the SuperScript IV kit (12594100, Thermo Fisher Scientific). The RNA
levels of target genes were quantified using the SsoFast EvaGreen Supermix (172-5200,
Bio-Rad, Hercules, CA, USA). Real-time PCR was performed on QuantStudio 3 system
(Thermo Fisher Scientific). The 2−∆∆CT method was used to calculate relative expression.
The primers used for Real-time PCR are listed in Table 1.

Table 1. Primer sequences used for real time.

Gene Gene ID Primer Sequences (5′ to 3′) Product (bp)

ATP5A1 NM_007505.2 F: AATCTCCATGCCTCTAACACTCGAC
R: GCAATACCATCACCAATGCTTAAC 143

ATP6 NP_904333.1 F: TCCCAATCGTTGTAGCCATC
R: TGTTGGAAAGAATGGAGTCGG 91
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Table 1. Cont.

Gene Gene ID Primer Sequences (5′ to 3′) Product (bp)

BAX NM_007527.3 F: ATGCGTCCACCAAGAAGCTGAG
R: CCCCAGTTGAAGTTGCCATCAG 166

BCL2 NM_009741.5 F: ATGATAACCGGGAGATCGTG
R: GACGGTAGCGACGAGAGAAG 294

CASPASE3 NM_001284409.1 F: GACTGGGATGAACCACGACCC
R: TCTGACTGGAAAGCCGAAAC 205

COX1 YP_001686700.1 F: TTTTCAGGCTTCACCCTAGATGA
R: CCTACGAATATGATGGCGAAGTG 62

CYTB YP_220562.1 F: ATTCCTTCATGTCGGACGAG
R: ACTGAGAAGCCCCCTCAAAT 228

DRP1 NM_152816.4 F: TCCCAATTCCATTATCCTCGC
R: CATCAGTACCCGCATCCATG 149

FIS1 NM_001347504.1 F:CAAAGAGGAACAGCGGGACT
R:ACAGCCCTCGCACATACTTT 95

GAPDH NM_001289726.2 F:TCGGAGTGAACGGATTTGGC
R:TGACAAGCTTCCCGTTCTCC 189

GPX4 NM_001367995.1 F: AAATCAAGGAGTTTGCAGCCGG
R: TTCTCTATCACCTGGGGCTCCT 229

GPX6 NM_145451.3 F: GCCCAGAAGTTGTGGGGTTC
R: TCCATACTCATAGACGGTGCC 129

MFN1 NM_024200.5 F: TATTGGCGAGGTGCTGTCTC
R: TCTGCAGTGAACTGGCAATG 71

ND1 YP_220550.1 F: TGCACCTACCCTATCACTCA
R: GGCTCATCCTGATCATAGAATGG 148

NDUFV1 NM_133666.3 F: GCGGGTATCTGTGCGTTTCA
R: GCGCCCATACAGGTTGGTAAAG 103

OPA1 NM_001199177.2 F:ACCTTGCCAGTTTAGCTCCC
R: TTGGGACCTGCAGTGAAGAA 82

SDHA NM_023281.1 F: GCGTATGTGCTGGCTAGCTT
R: AAGCCAATCCCTCAGAGACA 121

SOD1 NM_011434.2 F: GAGAGCATTCCATCATTGGCCG
R: CGCAATCCCAATCACTCCACAG 134

SOD2 NM_013671.3 F: CAGACCTGCCTTACGACTATGG
R: CTCGGTGGCGTTGAGATTGTT 113

UQCRC2 NM_025899.2 F: AACCCGTGGGATTGAAGCAG
R: CTGTGGTGACATTGAGCAGGAAC 131

4.6. Immunofluorescent Staining

GV oocytes grown in the M2 medium for 8 h (MI stage) were fixed with 4% paraformalde-
hyde and permeabilized with 0.5% Triton X-100 in PBS for 50 min. Oocytes were blocked
with 1% BSA in the washing solution (0.1% Tween-20 and 0.01% Triton X-100 in PBS) at
15–20 ◦C for 1 h. Subsequently, the oocytes were directly incubated overnight at 4 ◦C with
the Fignl1 primary antibody (1:100) or with α-tubulin-FITC antibody (1:200) for 1 h at 37 ◦C.
After thorough washing, oocytes were incubated at 37 ◦C for 1 h with the corresponding
secondary antibody. Subsequently, oocytes were stained with DAPI (1 µg/mL) at 15–20 ◦C
for 5 min to visualize nuclear DNA. The images were captured using a confocal laser
microscope (Zeiss LSM 810 META, Carl Zeiss Imaging, Jena, Germany).

4.7. Detection of ROS in Oocytes

The levels of intracellular ROS in oocytes were examined using the ROS assay kit
(S0033S, Beyotime, Shanghai, China). Control and PNMC-exposed oocytes were grown for
8 h at 37 ◦C in an incubator with 5% CO2. PNMC was removed by thorough washing using
the M2 media. Next, oocytes were transferred to the M2 media supplemented with 5 µM
DCFH-DA and incubated for 30 min. Oocytes were washed three times in PBS-PVA media
and placed on confocal coverglass-bottom Petri dishes for immediate observation. All
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oocytes were scanned using the same parameters by confocal microscopy. The fluorescence
intensity was quantified using the LSM Image Browser software (ZEN 2011).

4.8. Determination of ATP Levels

The relative concentrations of ATP were measured using an ATP assay kit (S0026,
Beyotime, Shanghai, China) following the manufacturer’s instructions. Briefly, control
and PNMC-exposed oocytes were grown for 8 h at 37 ◦C in an incubator with 5% CO2.
Subsequently, 10 oocytes were lysed in 4 µL lysis buffer by rapid freeze–thaw cycles in
liquid nitrogen twice, and 16 µL of the ATP checking solution (1:4 ratio with the lysis buffer)
was added. The volumes of lysis buffer and checking solution were calculated depending on
the number of oocytes. After 3–5 min of incubation at 15–20 ◦C, samples were immediately
transferred into a 96-well plate in the dark and assessed by an automatic multifunction
chemiluminescent analysis system (Varioskan LUX, Thermo Fisher Scientific).

4.9. MMP Assay

MMP was determined using a JC-1 kit (Shanghai, C2006, Beyotime, Shanghai, China).
Briefly, control and PNMC-exposed oocytes were grown for 8 h at 37 ◦C in an incubator
with 5% CO2. PNMC was removed by a thorough washing of the oocytes in the M2 media.
Oocytes were incubated with 5 µM JC-1 (diluted in M2) for 30 min at 37 ◦C. After washing in
PBS-PVA thrice, oocytes were scanned by confocal microscopy using the same parameters.

4.10. Mitochondrial Distribution

Mito-Tracker Red (C1035, Beyotime, Shanghai, China) was used to determine the
mitochondrial distribution in the oocytes. After 8 h of culture in vitro, control and PNMC-
exposed MI oocytes were stained with 200 nM Mito-Tracker Red in the M2 medium at
37 ◦C and 5% CO2. After 30 min of incubation, oocytes were washed thrice in PBS-PVA.
Subsequently, control and PNMC-exposed oocytes were immediately scanned using the
same parameters by confocal microscopy.

4.11. Apoptotic Staining

The Annexin V-FITC kit (C1062S, Beyotime, Shanghai, China) was applied to detect
the oocytes undergoing early apoptosis. After M2 washes, a mixture of 90 µL binding
buffer and 10 µL of Annexin-V-FITC was used to stain the control and PNMC-exposed MI
oocyte at 15–20 ◦C for 20 min. Oocytes were then washed thrice with PBS-PVA and the
number of apoptotic oocytes was assessed immediately using a confocal laser scanning
microscope.

4.12. Statistical Analysis

For the rates of PBE, cell death, oocytes with Annexin V, the significant difference
between PNMC treatment and the control were evaluated by Fisher’s exact test using
the GraphPad Prism software (version 8.0, San Diego, CA, USA). Data are presented as
boxplot of at least three biological experiments. p-value < 0.05 was considered statistically
significant. For spindle intensity, length, width and area, mRNA level, ATP, JC-1 and
ROS, the significant difference between PNMC treatment and the control were examined
by independent sample t-tests using GraphPad Prism software. Data are presented as
the mean ± SEM of at least three biological experiments. p-value < 0.05 was considered
statistically significant.

5. Conclusions

In this study, we investigated the toxic mechanisms of PNMC on mouse oocyte
maturation. Our results indicates that a low-dose PNMC exposure could disrupt oocyte
meiotic maturation and quality, by disturbing spindle architecture and mitochondrial
function, which could finally induce early apoptosis.
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