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Abstract: For much of human evolution, the average lifespan was <40 years, due in part to dis-
ease, infant mortality, predators, food insecurity, and, for females, complications of childbirth.
Thus, for much of evolution, many females did not reach the age of menopause (45–50 years of
age) and it is mainly in the past several hundred years that the lifespan has been extended to
>75 years, primarily due to public health advances, medical interventions, antibiotics, and nutrition.
Therefore, the underlying biological mechanisms responsible for disease risk following menopause
must have evolved during the complex processes leading to Homo sapiens to serve functions in the
pre-menopausal state. Furthermore, as a primary function for the survival of the species is effective
reproduction, it is likely that most of the advantages of having such post-menopausal risks relate
to reproduction and the ability to address environmental stresses. This opinion/perspective will
be discussed in the context of how such post-menopausal risks could enhance reproduction, with
improved survival of offspring, and perhaps why such risks are preserved. Not all post-menopausal
females exhibit risk for this set of diseases, and those who do develop such diseases do not have all
of the conditions. The diseases of the post-menopausal state do not operate as a unified complex, but
as independent variables, with the potential for some overlap. The how and why there would be
such heterogeneity if the risk factors serve essential functions during the reproductive years is also
discussed and the concept of sets of reversible epigenetic changes associated with puberty, pregnancy,
and lactation is offered to explain the observations regarding the distribution of post-menopausal
conditions and their potential roles in reproduction. While the involvement of an epigenetic system
with a dynamic “modification-demodification-remodification” paradigm contributing to disease risk
is a hypothesis at this point, validation of it could lead to a better understanding of post-menopausal
disease risk in the context of reproduction with commonalities may also lead to future improved
interventions to control such risk after menopause.

Keywords: menopause; post-menopausal diseases; disease risk; reproduction; species survival

1. Purpose: Discuss the Potential Role of Variables Leading to Disease Risk in the
Post-Menopausal State Having Important Roles during the Reproductive Stage of the
Life Cycle, and Then Focus on Potential Mechanisms That Are Involved

Most articles regarding diseases arising in the post-menopausal phase of a female’s
life cycle focus on individual diseases (i.e., osteoporosis, cardiovascular disease, obesity,
dementia, osteoarthritis). They usually do not view them in an integrated manner, nor
do they ask the questions “why these conditions?”, “why only a subset of females?”, or
“why do individual females not have all of these conditions?”. This review article attempts
to take the position that these are not just diseases, but the underlying mechanisms are
advantageous to the reproduction and survival of the species down through evolution
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during the critical reproductive phase of the life cycle. A potential mechanism that attempts
to explain commonalities in post-menopausal disease risk is also advanced. This review
searched primarily PubMed (1966–17 March 2024) and Google for relevant peer-reviewed
literature using >25 terms associated with menopause, post-menopausal diseases, epi-
genetics and menopause, epigenetics and post-menopausal diseases, reproduction and
epigenetics, sex hormones and lifespan and epigenetics, endothelial cells and biological
regulation, and diet and menopause and post-menopausal conditions. References included
primary publications and recent reviews where appropriate.

2. Background/Introduction

Menopause, with the loss of menstrual cycles and systemic hormonal fluctuations,
and cessation of the reproduction stage of the life cycle for females, can have profound
effects on the quality of life and the increased risk for the development of diseases and
conditions in subsets of females. This transition and the associated changes have been the
focus of considerable attention both from the health professional community, researchers,
and those focused on societal aspects of aging and healthy aging. With the extension of the
lifespan to ~80 years, many females can live a significant percentage of their lives in the
post-menopausal state, and, thus, complications and disease risk in the post-menopausal
state can greatly impact their lives.

This was not always the case throughout evolution to Homo sapiens, as the average
lifespan was likely much less (~40–45 years of age), although certainly some lived longer
(discussed in [1,2]). This shortened lifespan through much of evolutionary history was likely
influenced by infant mortality, mortality in childbirth, disease, food insecurity/nutrition,
accidents, and predators. The extensions to the lifespan over the past few hundred to
thousand years can likely be attributed to public health initiatives, medical interventions,
antibiotics, food quality and security, improved infant survival, and decreased mortality in
childbirth. Thus, for much of evolutionary history, the risk for post-menopausal diseases
was either mostly non-existent or only a few individuals were affected. Furthermore,
some conditions, such as dementia, often occur later in life, so even fewer individuals
would be overtly affected. As the post-menopausal state is superimposed on the aging
background, in the past, one would potentially be unable to segregate aging effects from
the post-menopausal risk factors, and while they are integrated, epidemiologically they
can be somewhat segregated.

Of note, of the several conditions or diseases associated with the post-menopausal
state (i.e., osteoporosis, osteoarthritis, cardiovascular disease, obesity, dementia) [3–9],
reviewed in [10,11], most women do not have all of the indicated conditions or the majority
of them. However, there can be overlap between some of these conditions where some
of the disease risks appear to be interdependent [7,12]. In addition, for conditions such
as osteoporosis, there is extensive heterogeneity in the rate of bone loss and where the
bone is lost, so not only are only a subset of women affected, but details regarding how
they are affected vary (discussed in [1]). For some of these conditions (i.e., cardiovascular
diseases, osteoarthritis) females appear to be somewhat protected from such conditions
prior to menopause and then lose this “protection” following menopause [13]. In contrast,
loss of bone and development of osteoporosis (OP) may result from a loss of regulation of a
system that is used during reproduction to access calcium stores for fetal growth (discussed
in [1]). This regulatory system regarding calcium mobilization can result in OP during
pregnancy and lactation [14]; discussed in [1]. The links to obesity associated with the
post-menopausal state may relate to the regulation of metabolism and the efficiency of
energy storage to survive food insecurity, particularly when pregnant over winter with
food insecurity is more prevalent. Dementia can be either vascular or non-vascular, so
there could also be an overlap between post-menopausal risk for cardiovascular disease
and some forms of dementia [9]. Prior to menopause, the incidence of osteoarthritis (OA)
in men and women is ~1/1, while after menopause, the incidence of OA in women exceeds
that of men (~3/1) (discussed in [1,10]). What the molecular basis is for this increase is
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unknown, but it could relate in part, to the development of obesity as individuals with
obesity can develop metabolic OA (discussed in [10]). While there may be overlap between
the various conditions associated with disease risk in the post-menopausal state, only
subsets of post-menopausal females are clinically affected. That is, only ~30% of females
exhibit OP [15], and in that subset, the extent or progression of the condition is quite
variable (discussed in [1]). Thus, females with diagnosed OP may lose bone rapidly or
slowly. Therefore, even those with OP are quite heterogenous and the progression of OP
is complex, likely involving a set of genes, with some involved in the initiation of the
condition and others involved in the rate of disease progression. The genes involved in
the latter may not be directly related to the post-menopausal state, as astronauts, mostly
males thus far, also lose bone in a heterogenous manner while in microgravity (discussed
in [11,16]).

3. Variables and Factors Influencing Post-Menopause Diseases and Conditions

A number of variables such as early menopause [17] and reproductive parity [18–20]
have been reported to influence some post-menopausal conditions such as OP, but not all
studies are in agreement [21]. Early menopause can lead to OP and a high parity num-
ber can also lead to OP. The latter may be the result of repeated pregnancy and lactation
bone loss without ample time to recover. However, the studies by Seo et al. [19] and
Yang et al. [20] were performed with Asian populations while that of de Bakker et al. [21]
was with a Canadian population that was likely mainly Caucasian, so there could poten-
tially be racial/ethnic differences in this regard. Early menopause, defined as menopause
onset < 40 years of age, has been reported to increase the risk of developing dementia and
cognitive decline (reviewed in [22–24]).

Co-morbidities such as HIV [25] and rheumatoid arthritis [26] have been reported
to lead to higher incidence of OP or fragility fractures, respectively. Other co-morbidities
such as COPD [27], kidney disease [28], and periodontitis [29] have also been reported to
influence OP. While not apparently influencing the incidence of OP but aggravating the
condition, the basis may be related to the inflammation associated with such conditions, as
inflammation can also affect bone (reviewed [30]). Some of these inflammatory influences
may be associated with an age-related low level of chronic inflammation (inflammag-
ing) [31].

Other factors that may also contribute to OP risk and progression include periostin
levels associated with endocrine disease [32], the gut microbiota [33,34], anti-Mullerian
hormone [35,36], and genetic factors [37], reviewed in [38,39], and mediators such as
irisin [40]. Vascular dysfunctions such as varicose veins have also been implicated in the
development of OP [41]. Therefore, there are numerous risk factors for the elaboration of
OP and its progression, but the basis for why a specific subset of women (~30%) develops
clinically defined OP remains unknown.

Osteoporosis after menopause onset is not the only condition that appears to be influ-
enced by inflammatory processes. Dementia, including Alzheimer’s disease (AD), is also more
common in post-menopausal women than in men (discussed in [42]). Similar to OP, AD also
appears to be influenced by inflammatory processes [42–44]. Some of this influence may be at
the level of the vascular component of the system as sex hormones contribute to cerebrovas-
cular function [9,45]. In support of this concept, it has been reported that adiponectin, an
anti-inflammatory cytokine produced mainly by adipose tissue may contribute to a positive ef-
fect on post-menopausal cognitive decline [46]. However, it remains to be determined whether
inflammatory processes primarily influence disease progression rather than trigger the disease
itself. Interestingly, in mouse models, vitamin D deficiency can exacerbate AD-like disease by
reducing antioxidant capacity in the brain [47], again supporting a role for inflammation-like
processes in disease progression but not initiation.

As some people have elevated tangles and tau protein levels but no loss of cognition,
and others have cognitive decline but without elevated tau [48], there may be multiple steps
in the loss of cognition and disease development, one based on some primary initiating step
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followed by a secondary step, potentially involving inflammation. As there also appears
to be a subset of post-menopausal patients who have a vascular form of the disease, the
first step(s) in disease induction may involve different components and there are multiple
ways to develop the condition. However, much of mainstream research has focused on
amyloid dysfunction in AD, with recent drugs designed to assist in the removal of such
proteins [49], but the effects of the drugs are quite modest. Therefore, the molecular basis
for the development of dementia in a subset of the post-menopausal population remains
largely unknown.

Prior to menopause, women and men appear to be equally affected by OA, but after
menopause, the incidence in women exceeds that in men (discussed in [1,2,10,50]). Whether
the development of OA, particularly in the knee, in the post-menopausal state is a unique
subset of OA patients is unknown, but the possibility has been raised [10]. However, it is clear
that OA is an inflammatory disease (discussed in [51–54]) and in early post-traumatic knee
injuries leading to OA in preclinical models, treatment to inhibit inflammation ameliorates
the development of the condition [55–57]. Furthermore, metabolic osteoarthritis has an
inflammatory component [58–60] and this may relate to post-menopausal women with obesity.

Before menopause, women are reported to be somewhat protected from cardiovascular
diseases (CVD), but after menopause, there is an increased risk for such conditions (dis-
cussed in [61–64]). Some of this increase may be linked to the co-development of increases
in body fat (discussed in [64]). As with some of the conditions discussed above, aspects of
the CVD risk after menopause may be again linked to inflammatory processes [65]. This
may be related to calcium levels [66], as calcium is a key regulator and may be a link be-
tween OP and heart disease. Interestingly, genes involved in some inflammatory pathways
have been reported to be biomarkers for coronary heart disease in post-menopausal Thai
women [67]. This may relate to the development of hypertension in the post-menopausal
state for some women [68,69].

A subset of women with rheumatoid arthritis (RA), an autoimmune inflammatory
disease, are also prone to developing cardiovascular disease [70–73]. Of interest is the fact
that ~70% of female RA patients undergo a remission of their disease when pregnant and
disease activity is also influenced by the menstrual cycle (reviewed in [74]). Why only ~70%
of female RA patients undergo remission is unknown, but certainly, pregnancy is known to
lead to a downregulation of inflammatory responses, possibly to better carry an allogeneic
fetus. Whatever the mechanism(s) that are involved, such findings do indicate that the
regulation of inflammatory processes is different in males and females, and inflammatory
processes developing in the post-menopausal state may be indirectly related to reproductive
functions [75,76]. Thus, future considerations should investigate the potential efficacy of
anti-inflammatory therapies in the onset and progression of several of the post-menopausal
onset conditions and diseases.

4. Summary of Points Potentially Relevant to Post-Menopausal Conditions

From the above discussion, a number of salient points regarding post-menopausal
conditions and diseases have to be reconciled in order to understand how they arise,
and their potential role after puberty and prior to menopause. These points include
the following:

A. Not all women experience these conditions (i.e., osteoporosis, osteoarthritis, demen-
tia, obesity, cardiovascular disease) after menopause, and those that do usually only
experience a subset of them.

B. For some of the conditions, such as OP and others, there appears to be a genetic
component to disease risk, as it “runs in families”.

C. Most if not all of the post-menopausal conditions can be linked directly or indirectly
to reproductive activities such as pregnancy and lactation.

D. Early menopause and elevated parity contribute to OP risk and low bone density, re-
spectively. Early menopause is also linked to other post-menopausal conditions [77].
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E. Inflammation appears to be a “catalyst” for post-menopausal disease progression
but possibly not an inducer of the conditions.

Additional potentially relevant points include the following:

AA. Epigenetic modifications of the genome via direct methylation or indirectly via mod-
ification of histones, as well as modification of RNA can occur under a variety of
circumstances (discussed in [78–82]). Many of these alterations are reversible modi-
fications that allow for modulation and regulation of gene expression and function.
Several of such alterations have been implicated in diseases or conditions relevant
to menopause, such as osteoporosis and calcium signaling [83–85], cardiovascular
disease [86,87], osteoarthritis [88–90], the nervous system and the brain [91–94], obe-
sity [95,96], and vascular inflammation [97].

BB. The onset of puberty is associated with epigenetic alterations to a variety of genes (dis-
cussed in [1,2]). Epigenetic modifications also occur in the brain during development
and aging [98,99].

CC. Epigenetic modifications occur with the onset of menopause [1,100] and in those with
post-menopausal conditions such as OP (discussed in [1,11]), cardiovascular condi-
tions [101], and others [98,102]. However, in many of these conditions, their relation-
ship to disease induction versus arising as a consequence of the diseases/conditions
is not known.

DD. Treatment of individuals undergoing gender transitioning with hormones such as
estrogen leads to epigenetic modification of the genome of blood cells [103].

EE. Hormonal changes associated with pregnancy involve several molecules in addition
to estrogen (discussed in [104–108]).

FF. Epigenetic modifications occurring in the white blood cells of astronauts while in
space are reversible following a return to Earth [109], as discussed in [16].

GG. Young women are heterogeneous with regard to menstrual cycle-associated alter-
ations. Approximately 20% do not exhibit alterations to knee joint laxity across the
menstrual cycle in spite of similar changes in estrogen levels to the 80% that do exhibit
changes [110,111].

HH. Pregnancy is associated with a downregulation of inflammation in a majority (~70%)
of those with inflammatory autoimmune diseases such as rheumatoid arthritis, and
disease activity is influenced by menstrual cycle variations in hormone levels [74].

II. Pregnancy is associated with cognitive changes [104].
JJ. Endothelial cells of the vasculature can differentiate to form paracrine systems with

other cells in a local environment and thus form unique paracrine systems with
distinctive characteristics (reviewed in [112]; discussed in [113,114]).

5. Involvement of Epigenetic Modification across the Lifespan of Females

Epigenetics, the modification of DNA and DNA activity, can occur across the lifes-
pan [115,116] and can occur during aging [117], often in response to environmental stres-
sors [118]. Such changes can be reversible [16,109,119], and thus, such a system is dynamic
and not unidirectional. Some of the complexity of epigenetic modifications occurring in
females across the lifespan are detailed below.

5.1. During Puberty and Gender Transitioning

After a period of growth and maturation, females undergo puberty at ~11–13 years of
age. Puberty is accompanied by a number of epigenetic modifications in a variety of tissues
in preparation for reproduction. The affected tissues can be in the brain [120], specifically
the hypothalamus [121–123], peripheral blood leukocytes [124], adipocytes [102], and
mammary glands [125], to name several. Additional genetic and epigenetic factors have
been associated with precocious puberty [126–128]. Using saliva, Stueve et al. [126] reported
that epigenetic modification of specific genes such as CYP19A1 may be a biomarker for
pubertal timing. Thus, a variety of tissues are affected primarily and secondarily during
puberty onset. Interestingly, using hormonal therapy for gender transitioning can also
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lead to epigenetic modifications of a variety of cells [103] and is being investigated in
tissues [129]. Therefore, the onset of puberty leads to a variety of epigenetic modifications
to both prepare for reproductive activities and also the growth and maturation that occurs
during the post-puberty adolescent period.

5.2. During Pregnancy and Lactation

A large number of adaptations occur in a female when she becomes pregnant. Not
only is she carrying a fetus that is a histoincompatible allograft (e.g., a “foreign graft”) that
must be implanted, but also requires adaptations that assist in nurturing its growth and
maturation, as well as accommodating stresses on a variety of the mother’s organs [130,131].
Some of these adaptations appear to be manifested by epigenetic modifications [130–135].
However, some long-term epigenetic modifications may also contribute to adverse risks of
pregnancy leading to pathological responses [136,137], but others appear to be transient
and reversed during the postpartum period [131].

Subsequently, post-birth, the induction of lactation appears to be associated with
epigenetic modifications to cells in the mammary glands, leading to the generation of
milk [125,138–140]. Evolutionarily, this of course also required the release of calcium from
bones to contribute to milk formation [141–143]. In a subset of women, this can lead to
overt OP [143].

Many of the studies reported above for humans used white blood cells to assess the
epigenetic changes, so it remains to be largely determined as to whether there are unique
epigenetic modifications that are tissue-specific and which ones may be transient and
reversible after pregnancy and lactation, and which may be more permanent. In addition,
the influence of parity on the extent and permanence of epigenetic modifications occurring
during pregnancy and lactation has not been well studied.

5.3. During Menopause and during Post-Menopausal Interventions

Aging in females can lead to DNA methylation alterations at the level of the ovaries,
impacting fertility [100,144]. The relationship of such changes to menopause onset remains
undefined. However, with the advent of menopause, a variety of conditions/diseases
can arise that impact a diverse set of tissues (e.g., bone, brain, heart, adipose, muscles,
and tissues of the musculoskeletal system). Accompanying some of these diseases or
risk for diseases are epigenetic modifications, usually detected with white blood cells in
human females. For example, hypomethylation of Alu elements in the DNA has been
reported for females with osteoporosis [145], DNA methylation alterations were reported
for post-menopausal females associated with metabolic and immunological systems [146],
and identification of an epigenetic “signature” for CVD in post-menopausal females has
been reported [147]. Whether similar epigenetic modifications are also evident in specific
target tissues remains largely unknown.

However, efforts to overcome the loss of sex hormones at menopause with hormone
replacement therapy (HRT) have had a “checkered” history, with the pros and cons debated
regarding the risk factors (discussed in [148–151]), including cancer risk [149,152,153]. Over
the ensuing years, lessons have been learned regarding dosage, composition, when to
initiate HRT, and for how long to mitigate some of the risks in these subsets of females, and
this has led to more females taking HRT for treatment of post-menopausal conditions.

In menopausal females, HRT is reported to inhibit/prevent OP [154,155], metabolic
syndromes [156], and loss of intervertebral disc height [157], as well as not posing a
risk for breast cancer [158], but evidence for a role in protection at the level of OA [159],
CVD [160,161] and dementia/Alzheimer’s disease [162] is still controversial via mixed
results of studies over the past 25 years.

Using nucleated blood cells, a few reports have indicated that HRT use can lead to
epigenetic modifications such as DNA methylation [163,164]. While interesting, these
studies do not address the issue of tissue-specific epigenetic modifications.
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Finally, non-drug protocols that instead use exercise protocols, which have been shown
to decrease risk for a variety of post-menopausal diseases (reviewed in [1,2,11]), have been
reported to lead to alterations in epigenetic modifications in blood cells of post-menopausal
females with risk for diabetes [165] or in a population of older females without Alzheimer’s
disease [166]. In the latter report, some specific genes became hypomethylated while others
became hypermethylated, so the changes were not unidirectional.

Based on the above discussion, females undergo a series of epigenetic modifications
at distinct times during their lifespan. However, the inter-relationships between those
modifications (e.g., those occurring at puberty impacting those during pregnancy, those
occurring during pregnancy impacting those occurring at menopause) remain to be de-
termined. Furthermore, in human populations, much of the literature has focused on
epigenetic changes associated with white blood cells, so tissue-specific effects regarding
the genes and molecules affected largely remain to be elucidated.

6. The Epigenetic Modification/Demodification/Remodification Hypothesis to Address
the Development of Post-Menopausal Diseases and Disease Risk

From the above discussion, females undergo a number of epigenetic modifications
during their life span, with many associated with events related to sex hormones and
reproductive functions (e.g., puberty, pregnancy, lactation, and menopause). Furthermore,
some of these event-dependent modifications appear to be transient and reversible, such as
those following pregnancy and lactation [131]. Such reversals of epigenetic modifications
can also occur in other circumstances so are not unique to pregnancy.

Following menopause, subsets of women develop an increased risk of developing
unique diseases or conditions that relate directly or indirectly to reproductive functioning
(e.g., osteoporosis, dementia, obesity, and cardiovascular disease). Not all females are
affected, and some females may have more than one condition, but evidence that a subset
has all of the conditions could not be found. Nearly all of the conditions/diseases are
usually treated as independent conditions, in part because of the way medicine is organized
and specialties are focused. Therefore, these conditions are studied and treated as if they do
not have any common mechanisms or underlying basis. However, that may not be the case
and the concept that the various post-menopausal conditions are all related to reproductive
functioning and thus may have commonalities in mechanisms has been advanced [1].

Building on that commonality concept and the discussion contained earlier in this
review, the hypothesis that the commonality [1] for post-menopausal conditions/diseases
may be based on a system of reversible epigenetic signatures that are influenced by sex
hormones at puberty and then during pregnancy and lactation, and, finally, by menopause
is advanced. As outlined in Figure 1, during the early pre-puberty years, many genes
associated with the relevant tissues are either not epigenetically modified to accommodate
initial growth and maturation or are modified in a specific manner. However, at puberty,
many of them are now epigenetically modified to be in a suppressed or quiescent state in
preparation for reproductive functioning, and potentially some of them being active may
not be compatible with the adolescent growth and maturation sequences. In this scenario,
the targeted genes are maintained in an epigenetically impacted state by the recurrent
monthly menstrual cycles until skeletal maturity is obtained and thereafter.
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However, at the time of pregnancy, these epigenetically repressed genes are likely 
required for a successful pregnancy and, thus, the epigenetic repression is reversed by 
mechanisms and enzymes that override the influence of estrogen/progesterone, leading 
to the involvement of systems (e.g., calcium mobilization from bone, adapting to stresses 
on the cardiovascular system, metabolic needs for nutrition, and brain center involve-
ment) that benefit fetal growth and the health of the mother. This hypothetical process is 
outlined in Figure 2 (Panel A). In this scheme, epigenetically repressed genes required for 
a successful pregnancy that were epigenetically modified as a result of puberty become 
reactivated for pregnancy, with additional changes potentially reversed for lactation. 
Once pregnancy and lactation are completed, the re-institution of menstrual cycles leads 
to epigenetic re-repression of the involved genes. Such cycles of epigenetic repression and 
then de-repression would occur with each pregnancy, creating an equilibrium between 
the two scenarios (Figure 2, Panel B). Multiple pregnancies without sufficient time be-
tween cycles may lead to incomplete re-repression resulting in risks elaborated following 
early menopause. Some reports have indicated that parity is associated with increased 
risk for CVD [167–169], dementia [170], metabolic disease [171], and knee OA [172,173], 
but not fracture risk due to OP [21]. Therefore, with increased parity, there may be incom-
plete re-establishment of a repressed state by menstrual cycles. 

Figure 1. Sequence of epigenetic modifications associated with onset of puberty and progression to
skeletal and physiological maturity without intervening pregnancy. Epigenetic modifications repress
genes that are associated with pregnancy and lactation which allows for post-puberty growth and
maturation. Epigenetic repression maintained by menstrual cycles.

However, at the time of pregnancy, these epigenetically repressed genes are likely
required for a successful pregnancy and, thus, the epigenetic repression is reversed by
mechanisms and enzymes that override the influence of estrogen/progesterone, leading to
the involvement of systems (e.g., calcium mobilization from bone, adapting to stresses on
the cardiovascular system, metabolic needs for nutrition, and brain center involvement)
that benefit fetal growth and the health of the mother. This hypothetical process is out-
lined in Figure 2 (Panel A). In this scheme, epigenetically repressed genes required for
a successful pregnancy that were epigenetically modified as a result of puberty become
reactivated for pregnancy, with additional changes potentially reversed for lactation. Once
pregnancy and lactation are completed, the re-institution of menstrual cycles leads to
epigenetic re-repression of the involved genes. Such cycles of epigenetic repression and
then de-repression would occur with each pregnancy, creating an equilibrium between the
two scenarios (Figure 2, Panel B). Multiple pregnancies without sufficient time between
cycles may lead to incomplete re-repression resulting in risks elaborated following early
menopause. Some reports have indicated that parity is associated with increased risk for
CVD [167–169], dementia [170], metabolic disease [171], and knee OA [172,173], but not
fracture risk due to OP [21]. Therefore, with increased parity, there may be incomplete
re-establishment of a repressed state by menstrual cycles.
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cessation of pregnancy and lactation, menstrual cycles re-establish the epigenetic modifications that 
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in the absence of pregnancy due to genetic factors or environmental factors [Figure 3]. In 
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Figure 2. Pregnancy leads to the re-activation of genes influenced by puberty-associated epigenetic
modifications allowing for essential activities leading to a successful pregnancy followed by lactation.
(A) Pregnancy-related factors either negate the effects of estrogen (and potentially other sex hormones
like progesterone) to maintain the epigenetic modifications, or pregnancy-related factors override the
effects of estrogen via enzymes that impact the epigenetic modifications. (B) Following cessation of
pregnancy and lactation, menstrual cycles re-establish the epigenetic modifications that again lead to
repression of the pregnancy-associated genes until the next pregnancy. With frequent pregnancies,
the ability of menstrual cycles to re-establish a homeostatic state with regard to these affected genes
may be compromised.

Following menopause, which is a process that can take years to complete and is not
an acute event, some tissues may de-repress the estrogen-driven epigenetic modifications
in the absence of pregnancy due to genetic factors or environmental factors [Figure 3]. In
this scenario, different tissues involved in the pregnancy/lactation-associated processes
may become active by removing some of the epigenetic modifications, leading to chronic
and unregulated expression of genes and gene products contributing to post-menopausal
diseases and disease risks. Not all females would be at equal risk for such conditions, and
not all affected females would have all of the conditions/diseases, as the modifications
would be tissue-specific and not general in this construct [Figure 3].

The investigation of this construct to explain the spectrum of post-menopausal diseases
and conditions could remove it from the study of each condition/disease individually,
focus research on the commonalities of the mechanisms involved, and address the spectrum
of conditions as components of a system rather than a collection of disparate diseases.
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Figure 3. Possible role of tissue-specific reversal of puberty-associated genes to become re-activated
following menopause. Following menopause and the loss of estrogen to maintain the epigeneti-
cally repressed genes, through either genetic variables or other unknown factors, the pregnancy-
associated genes become re-activated by tissue-specific endogenous enzymes leading to the spectrum
of menopause-associated conditions/diseases. Not all females would have all of the disease risks.
Once initiated, the impact of the de-repression could be aggravated by ongoing inflammatory pro-
cesses. The cells central to this proposed scheme may be the endothelial cells of the microvasculature
in a tissue-specific manner (discussed in more detail in Section 7 of this review).

7. What Cells May Be Involved in the Relevant Epigenetic Modifications Outlined in
Section 6?

The conditions/diseases associated with the post-menopausal state involve a variety
of tissues ranging from the brain (dementia), bone (osteoporosis), adipose tissue (obesity),
the cardiovascular system (heart and vascular disease risk), and joint tissues (osteoarthritis).
Thus, there is a spectrum of mechanisms that could be involved, and these include the
following: (1) the cells unique to each tissue are the primary target for the epigenetic
modifications; (2) as all of the tissues involved are vascularized, the primary target could
be the endothelial cells in the microvasculature of each tissue; and (3) as all of the tissues
involved are also innervated (or are brain centers), the primary effectors relate to the
neuronal cells that then either regulate the endothelial cells (neurovascular regulation) or
the target cells directly. For the latter, this may involve the brain centers affecting each tissue.
The first option, that tissue-specific target cells are the targets of the epigenetically modified
gene expression profile, is the most difficult to envision, as bone is widely distributed in
the body and exists in a variety of mechanical and biological environments, conditions
that may make it hard to target all of the cells equally or completely. Adipose tissue is
also widely distributed, but some tissues could be affected more than others leading to a
selective influence on specific adipose tissues. Regarding dementia, specific areas of the
brain could be involved, and this post-menopausal condition could result from epigenetic
modification of cells localized to that specific type of tissue. Thus, “option 1” could be in
play regarding the post-menopausal conditions that are epigenetically dependent, but if
this option were the dominant mechanism, there may be challenges to implementing this
mechanism given the diversity of some of the tissues.
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All of the tissues involved in the post-menopausal conditions/diseases are vascu-
larized except articular cartilage in OA and that condition is likely due to alterations in
the other tissues that are involved in joint functioning and the cartilage is only the “weak
link” in the disease process (discussed in [10]). While all of the relevant tissues are vas-
cularized, it is likely that the endothelial cells in the different tissues have differentiated
to effectively function in those tissues in a paracrine manner (reviewed in [112,174–176];
discussed in [113,114]). Such tissue-specific characteristics appear to be lost when en-
dothelial cells are cultured in vitro [177] but also appear to utilize epigenetic modifications
in the regulation of their function in specific environments [178]. Thus, a commonality
in post-menopausal conditions could be the targeting of endothelial cells in the differ-
ent relevant tissue environments to alter their functioning via epigenetic modification,
leading to tissue-specific disease risk after menopause by disrupting the integrity of the
paracrine system involving the endothelial cells and their target cells. As it is known that
microvascular endothelial cells in some tissues are functionally altered during pregnancy
in preclinical models [179,180], there is precedent for endothelial cells to be altered by this
condition. However, as rabbits are induced ovulators, they do not have menstrual cycles as
do humans, so the models have some limitations regarding the further exploration of the
concept discussed.

Further evidence for the potential role of endothelial cells of the microvasculature in post-
menopausal conditions can be derived from studies indicating that exercise can prevent or
alleviate the progression of bone loss and conditions such as osteoporosis [181–184], can prevent
the loss of cardiovascular integrity [185–188], osteoarthritis [189], and dementia [190–193], as well
as the prevention of aging-related endothelial cell senescence [194–197]. In contrast, physical
inactivity can contribute to brain-associated changes and such changes are mediated in
part by epigenetic alterations [198]. Physical activity has also been reported to potentially
prevent loss of cognition and function via enhanced hippocampus neurogenesis in a variety
of species [199]. Furthermore, some of the age-related risk for diseases is mediated by
epigenetic modifications [200], and these can be influenced by exercise in systems such as
the cardiovascular system [185,201]. Also of relevance to this discussion are reviews that
address the issue of endothelial cell senescence on the development and progression of
dementias such as Alzheimer’s disease [202]. Finally, and relevant to the present discussion,
are reports that exercise can impact the cognitive function of older females more than males,
and this appears to be related to parity in females [203,204].

Based on the above discussion, the question then arises as to how exercise (e.g., me-
chanical loading) could influence endothelial cell epigenetics directly. Endothelial cells
express the sensor of mechanical loading piezo1 [205] and this senses fluid flow [206].
Piezo1-dependent regulation of brain vascular development has been reported [207,208].
Relevant to the current discussion of the role of endothelial cells and epigenetics in post-
menopausal conditions/diseases, mechanical stimulation of endothelial cells leads to
epigenetic modifications [209], changes that could influence the interaction of the endothe-
lial cells in specific tissues. However, it has not yet been reported as to whether mechanical
loading of endothelial cells from different vascular and tissue environments responds
similarly or differently.

Alternatively, some vascular functioning can be mediated by the associated neuro-
elements that often parallel the endothelial cells in the microcirculation. As mentioned
previously, aspects of this relationship appear to be modified during pregnancy in the rabbit
model [179,180]. Thus, neuro-regulation of differentiated endothelial cells in specific tissues
could exert tissue-specific responses and potentially contribute to endothelial responses
occurring after the decline in sex hormone expression following menopause. Thus, both
neuro-regulation and exercise appear to impact vaso-regulation, likely in part through
the regulation of endothelial cells. Quite possibly this is not an “either or” situation and
mechanical modulation of endothelial cells and neuro-regulation of the cells could work
together or exert different levels of influence in different tissues. Some of these possibilities
will need to be addressed by future research.
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8. Conclusions and the Way Forward

While the rationale for the bone-associated variables being linked to pregnancy and
lactation and then the development of osteoporosis is fairly well developed, how the
dementia risk in the post-menopausal state relates to involvement in reproductive activities
still remains to be developed. Why only a subset of post-menopausal females develop
dementia and why specific areas of the brain may be affected versus others, also remains to
be determined. However, in both OP and dementia, inflammatory processes appear to be
involved in exacerbating the disease progression.

Given the influence of parity and early menopause on development of post-menopausal
diseases and conditions, one could postulate that epigenetic processes are involved and the
reason that only a subset of post-menopausal females are affected by conditions such as OP
and AD is due to a combination of genetic and epigenetic variables, with the epigenetic
modifications requiring longer exposure to menstrual cycles following pregnancy/lactation-
associated intervals to maintain the relevant cells in a repressed state via those genes
activated during pregnancy and lactation. As Alzheimer’s disease usually develops long
after the menopause transition in most individuals (i.e., >20 years), it is challenging to
comprehend how such a time course after menopause could translate to an impact on the
at-risk females during a 9-month pregnancy and perhaps a 1-year lactation.

While it is still not yet clear how the various conditions, disease risks, and diseases
arising after menopause occur at the mechanistic level, the concept that it involves the mi-
crovasculature and tissue-specific endothelial cells was advanced and should be the focus
of future investigations. The possible use in the future of drugs or interventions capable
of modifying epigenetic alterations contributing to post-menopausal conditions/diseases
in a controlled manner (e.g., removal, addition) may be a feasible avenue for research
going forward. Such drugs have been proposed to be applied in conditions affecting
bone [210], cancer [211,212], neurodegenerative disorders [213,214], cardiovascular con-
ditions [215,216], and healthy aging [217]. The development of such “epi-drugs” is not
without challenges [218], particularly since such interventions will have to be personalized
for post-menopausal conditions that arise in different tissues, may not result from a single
phenotypic pattern, and may occur in conjunction with multiple co-morbidities as the
individual ages.

As the epi-drug approach may involve tissue-specific epigenetic modifications and
their reversal/addition via a variety of mechanisms (e.g., DNA modification, histone modi-
fication, and others), this will be challenging to perform with heterogeneous human/patient
populations. In the meantime, perhaps one of the most effective non-drug interventions
that are beneficial for human functioning across the lifespan is exercise protocols [219].
While likely effective across the lifespan, they may be particularly effective in mid-life and
beyond when mobility issues and co-morbidities may inhibit motivation for exercise in
post-menopausal females.

Finally, another non-drug approach could be the use of specific diets to interfere with
or deter the development of post-menopausal conditions. Of particular interest has been
the study of Mediterranean diets or diets rich in soy isoflavonoids/flavones [220–223]
and their effects on CVD, dementia, and metabolic disease in post-menopausal females.
One component of such diets is genistein, a soybean isoflavone [224], and a molecule that
can exert its influence via ER-beta, as well as has effects on endothelial cells [225–229].
A clinical trial of genistein alone has been reported to have a beneficial effect on post-
menopausal females with metabolic syndrome [230]. Relevant to the present discussion
are also reports that flavonoids, including genistein, can exert epigenetic effects [231–235].
Therefore, several aspects of these diets and natural products are very compatible with the
proposed epigenetic-based mechanism for post-menopausal conditions.

While many of the diet-related benefits in post-menopausal females are modest [221,222],
going forward, a focus of research should be the combination of diets such as the Mediter-
ranean diet or those containing soy-derived flavonoids and related molecules with validated
exercise programs. The combination of these two “natural” interventions could lead to addi-
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tive or synergistic effects on the development and progression of post-menopausal conditions
without the need for synthetic pharmaceuticals. Such a combination of interventions could also
be initiated prior to the onset of menopause in a proactive manner and thus be preventative.
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