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Abstract: Methylmercury is a known environmental pollutant that exhibits severe neurotoxic effects.
However, the mechanism by which methylmercury causes neurotoxicity remains unclear. To date, we
have found that oxidative stress-induced growth inhibitor 1 (OSGIN1), which is induced by oxidative
stress and DNA damage, is also induced by methylmercury. Therefore, in this study, we investigated
the relationship between methylmercury toxicity and the induction of OSGIN1 expression using C17.2
cells, which are mouse brain neural stem cells. Methylmercury increased both OSGIN1 mRNA and
protein levels in a time- and concentration-dependent manner. Moreover, these increases were almost
entirely canceled out by pretreatment with actinomycin D, a transcription inhibitor. Furthermore,
similar results were obtained from cells in which expression of the transcription factor nuclear factor
erythroid 2-related factor 2 (NRF2) was suppressed, indicating that methylmercury induces OSGIN1
expression via NRF2. Methylmercury causes neuronal cell death by inducing apoptosis. Therefore,
we next investigated the role of OSGIN1 in methylmercury-induced neuronal cell death using the
activation of caspase-3, which is involved in apoptosis induction, as an indicator. As a result, the
increase in cleaved caspase-3 (activated form) induced by methylmercury exposure was decreased by
suppressing OSGIN1, and the overexpression of OSGIN]1 further promoted the increase in cleaved
caspase-3 caused by methylmercury. These results suggest, for the first time, that OSGIN1 is a
novel factor involved in methylmercury toxicity, and methylmercury induces apoptosis in C17.2 cells
through the induction of OSGIN1 expression by NRF2.
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1. Introduction

Methylmercury is a type of organic alkylmercury compound known to exhibit se-
rious neurotoxic effects as an environmental pollutant [1-4]. The global circulation of
mercury is well known; mercury vapor released into the environment through volcanic
activity becomes inorganic mercury, which accumulates in soil and aquatic environments
through rainfall [5]. The chemical conversion of inorganic mercury to methylmercury is
the first step in the accumulation process in the hydrosphere, and the reaction involves
either non-enzymatic methylation or biological methylation by microorganisms. Therefore,
methylmercury ubiquitously exists in the environment, regardless of environmental pollu-
tion. In recent years, large amounts of mercury have been released into the environment
due to gold mining and other activities around the Amazon in Brazil, and high concen-
trations of methylmercury have accumulated in the bodies of populations living in these
areas, raising concerns about the health effects [6-8]. In addition, it has been suggested that
children born from pregnancies during which relatively large amounts of methylmercury
were ingested through seafood may develop intellectual developmental disorders [9-11].
Thus, the effects of methylmercury exposure on fetal neurodevelopment are considered to
be a problem around the world. However, the detailed mechanisms involved in toxicity of
methylmercury remain unclear.
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We comprehensively searched for intracellular factors involved in methylmercury
toxicity using various search tools, and identified tumor necrosis factor « [12], homeobox
B13 [13], and other factors involved in enhancing methylmercury toxicity. In contrast,
we also reported that chemokine ligand 3 [14], ornithine decarboxylase 1 (ODC1) [15,16],
transcription factor 3 [17], and other factors are involved in reducing methylmercury toxicity.
However, because methylmercury is expected to exert its own toxicity by affecting various
intracellular factors, the mechanisms involved in methylmercury toxicity have not yet been
completely elucidated. To simulate such a situation, we exposed C17.2 cells derived from
mouse brain neural stem cells to methylmercury and analyzed gene expression changes
using RNA sequencing (RNA-seq). As a result, we found that methylmercury induces the
expression of oxidative stress-induced growth inhibitor 1 (OSGIN1; also known as OKL38),
a gene whose expression is induced by oxidative stress and DNA damage (unpublished
data). Other research groups have also previously found that methylmercury induces
OSGINT1 expression [18-20], but the relationship between methylmercury toxicity and
OSGINT1 has not been investigated.

It is well known that apoptosis is involved in methylmercury-induced neurotoxic-
ity [3,21,22]. We and other researchers have shown that apoptosis via caspase-3 activation
is involved in methylmercury-induced neuronal cell death [14,15,17,23-25]. We have
also revealed that methylmercury induces apoptosis in C17.2 cells by activating the cy-
tochrome c/caspase-9/caspase-3 pathway through mitochondrial damage and reactive
oxygen species (ROS) production [15]. In this study, we aimed to clarify the role of OS-
GIN1 in methylmercury toxicity and investigated the mechanism by which methylmercury
induces OSGIN1 expression and the involvement of OSGIN1 in methylmercury-induced
apoptosis as an indicator of caspase-3 activation.

2. Results
2.1. Methylmercury Induces OSGIN1 Expression in C17.2 Cells

We first examined OSGIN1 gene expression under conditions of exposure to methylmer-
cury at a concentration that is minimally cytotoxic to C17.2 cells. Further, the concentra-
tions and times of methylmercury exposure were based on the results of previous stud-
ies [13,15,16] and preliminary experiments to evaluate methylmercury-induced apoptosis
(Figure S1). As a result, exposure to methylmercury at a final concentration of 6 uM in-
creased OSGIN1 mRNA levels, with the maximum peak in particular being observed after
8 h of exposure (Figure 1A). Methylmercury also increased OSGIN1 mRNA levels in a
concentration-dependent manner (Figure 1B). Next, we examined the effects of methylmer-
cury on OSGIN1 protein expression. As a result, OSGIN1 protein levels were increased
following methylmercury exposure in a time- (Figure 2A,B) and concentration-dependent
manner (Figure 2C,D). The above results indicate that methylmercury may increase the
expression of OSGIN1 mRNA and protein prior to cell death.
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Figure 1. Effects of methylmercury on OSGINT mRNA expression. C17.2 cells (4 x 10* cells/well)
were seeded onto 24-well plates for 24 h. (A) Cells were exposed for the indicated period to methylmer-
cury chloride (MeHgCl) (6 uM) or (B) exposed to the indicated concentration of MeHgCl for 8 h.
mRNA levels of OSGIN1 and GAPDH were measured, and the relative values normalized to GAPDH
are shown (n = 3). The data are represented as mean + SD. ** p < 0.01.
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Figure 2. Effects of methylmercury on OSGIN1 protein expression. C17.2 cells (4 x 10* cells/well)
were seeded onto 24-well plates for 24 h. (A,B) Cells were exposed for the indicated period to
methylmercury chloride (MeHgCl) (6 uM) or (C,D) exposed to the indicated concentration of MeHgCl
for 8 h. OSGIN1 protein levels were examined by Western blotting (A,C) and quantification of the
band intensity of OSGIN1 [the band intensity of cells exposed to MeHgCl for 8 h (B), 6 uM, (D) was
considered as 100%, normalized to each GAPDH level] shown in (B,D). The data are represented as
mean + SD. **p < 0.01, * p < 0.05.

2.2. Methylmercury Induces OSGIN1 Expression by Promoting Its Transcription

Because an increase in OSGIN1 mRNA levels caused by methylmercury was observed
in Figure 1, we examined the effects of the transcriptional inhibitor actinomycin D (Act.D)
on this increase. As a result, pretreatment with Act.D resulted in almost no increase in
OSGIN1 mRNA levels caused by methylmercury (Figure 3A). Furthermore, under the
same conditions, the increase in OSGIN1 protein levels caused by methylmercury was also
successfully canceled out (Figure 3B,C). These results strongly suggest that methylmercury
induces the expression of OSGIN1 mRNA and protein by promoting their transcription.

2.3. Methylmercury Induces OSGIN1 Expression in C17.2 Cells in an NRF2-Dependent Manner

Until now, nuclear factor erythroid 2-related factor 2 (NRF2) has been reported as a
transcription factor involved in the induction of OSGIN1 expression [26,27], and the partial
binding sequence of NRF2 is located —69 to —58 bp from the transcription start site of the
OSGINT1 gene (Figure 4A). It has also been reported that methylmercury activates NRF2
in various cell types and mice [28-31]. Therefore, to clarify the involvement of NRF2 in
OSGIN1 induction by methylmercury, we transfected C17.2 cells with three types of siRNA
against NRF2 mRNA and examined the effects of methylmercury exposure on OSGIN1
expression. As a result, the NRF2 mRNA levels were decreased in C17.2 cells transfected
with either siRNA, and the increase in OSGIN1 mRNA levels caused by methylmercury
was significantly reduced in these cells (Figure 4B,C). Furthermore, the increase in OSGIN1
protein levels caused by methylmercury was virtually no longer observed in all cells in
which NRF2 expression was suppressed (Figure 4D,E). These findings strongly suggest
that methylmercury induces the expression of OSGIN1 via NRF2.
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Figure 3. Effects of a transcription inhibitor on induction of OSGIN1 expression by methylmer-
cury. C17.2 cells (4 x 10* cells/well) were seeded onto 24-well plates for 23 h. C17.2 cells were
pretreated with 1 uM of actinomycin D (Act. D) for 1 h and exposed to the indicated concentration of
methylmercury chloride (MeHgCl) for 8 h. (A) mRNA levels of OSGIN1 and GAPDH were measured,
and relative values normalized to GAPDH are shown. OSGIN1 protein levels were examined by
Western blotting (B). Quantification of the band intensity of OSGIN1 [the band intensity of control
cells exposed to MeHgCl (6 uM) was considered as 100%, normalized to each GAPDH level] shown
in (C). The data are represented as mean + SD. ** p < 0.01.
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Figure 4. Effects of NRF2 knockdown on the induction of OSGIN1 expression by methylmercury.
(A) C17.2 cells (1.5 x 10% cells/well) were seeded onto 24-well plates for 24 h. C17.2 cells were
transfected with control siRNA or NRF2 siRNA for 24 h. Cells were then exposed to the indicated
concentration of methylmercury chloride (MeHgCl) for 8 h. mRNA levels of NRF2 (B), OSGIN1 (C),
and GAPDH were measured, and relative values normalized to GAPDH are shown. OSGIN1 and
NREF2 protein levels were examined by Western blotting (D). Quantification of the band intensity
of OSGINI [the band intensity of control cells exposed to MeHgCl (6 uM) was considered as 100%,
normalized to each GAPDH level] shown in (E). The data are represented as mean + SD. ** p < 0.01,
*p <0.05.
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2.4. OSGINT1 Is Involved in Apoptosis Caused by Methylmercury

Methylmercury is known to cause neuronal cell death by inducing apoptosis, and it has
been reported that methylmercury also induces apoptosis in C17.2 cells [15,17]. Therefore,
we used two types of siRNA against OSGIN1 mRNA to examine the effects of suppressing
OSGIN1 expression on methylmercury-induced apoptosis in C17.2 cells. In this study, we
evaluated the levels of cleaved caspase-3, which is an activated form of caspase-3 involved
in apoptosis induction. As a result, cleaved caspase-3 appeared following exposure to
4 pM methylmercury, the conditions under which OSGIN1 expression induction was
observed, and further increased when exposed to 6 uM (Figure 5A,B). In addition, the
increase in cleaved caspase-3 levels caused by methylmercury was reduced in both OSGIN1-
knockdown cell preparations (Figure 5A,B). Furthermore, to clarify the involvement of
increased OSGINT1 in apoptosis, C17.2 cells were transfected with an OSGIN1 expression
plasmid. As a result, cleaved caspase-3 levels tended to increase due to the overexpression
of OSGIN1, and a significant increase in cleaved caspase-3 levels due to methylmercury
was observed in these cells compared with control cells (Figure 6A,B). The above results
suggest that methylmercury promotes apoptosis in C17.2 cells through the induction of
OSGINT1 expression.
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Figure 5. Effects of knockdown of OSGIN1 on methylmercury-induced apoptosis. C17.2 cells
(1.5 x 10* cells/well) were seeded onto 24-well plates for 24 h. C17.2 cells were transfected with
control siRNA or OSGIN1 siRNA for 24 h. Cells were then exposed to the indicated concentration
of methylmercury chloride (MeHgCl) for 24 h. OSGIN1 and cleaved caspase-3 protein levels were
examined by Western blotting (A). Quantification of the band intensity of cleaved caspase-3 [the band
intensity of control cells exposed to MeHgCl (6 uM) was considered as 100%, normalized to each
GAPDH level] shown in (B). The data are represented as mean & SD. * p < 0.05.
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Figure 6. Effects of overexpression of OSGIN1 on methylmercury-induced apoptosis. C17.2 cells
(2 x 10* cells /well) were seeded onto 24-well plates for 24 h. C17.2 cells were transfected with empty
vector (Mock) or OSGIN1-expressing plasmid for 24 h. Cells were then exposed to the indicated
concentration of methylmercury chloride (MeHgCl) for 24 h. (A) OSGIN1 and cleaved caspase-3
protein levels were examined by Western blotting. Quantification of the band intensity of cleaved
caspase-3 [the band intensity of control cells exposed to MeHgCl (6 uM) was considered as 100%,
normalized to each GAPDH level] shown in (B). The data are represented as mean + SD. ** p < 0.01,
*p <0.05.

3. Discussion

In this study, we used C17.2 cells, which are mouse brain neural stem cells, and found
that methylmercury induces apoptosis by promoting OSGIN1 transcription through the
activation of the transcription factor NRF2.

It has been reported that doxorubicin, an anticancer drug, activates the tumor sup-
pressor gene p53 and promotes the transcription of OSGIN1 [32], and that oxidative stress
caused by exposure to cigarette smoke and particulate matter 2.5 (PM; 5) increases OSGIN1
expression [33,34]. It is also known that docosahexaenoic acid (DHA) activates NRF2
through ROS production and induces OSGIN1 expression in human breast cancer cell lines
(MCF-7) [35]. In Figure 4, the induction of OSGIN1 expression by methylmercury was
almost entirely canceled out by the suppression of NRF2 expression, suggesting that NRF2
is a major transcription factor involved in promoting OSGIN1 transcription in C17.2 cells.
Methylmercury is known to directly bind to the 151st cysteine residue of Kelch-like ECH-
associated protein 1 (KEAP1) [29], known as a negative regulator of NRF2, and activate it
by suppressing the degradation of NRF2 due to KEAP1. Furthermore, methylmercury is
known to promote ROS production [15,21,36,37], and ROS is also involved in NRF2 activa-
tion by suppressing KEAP1 [38]. Therefore, methylmercury is expected to be involved in
the activation of NRF2 in C17.2 cells through the aforementioned actions.

Overexpression of a human osteosarcoma cell line (U20S) to OSGIN1 was shown to
increase ROS production and promote apoptosis via cytochrome c being released from
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mitochonderia [32]. It has also been reported that DHA induces apoptosis by promoting ROS
production in mitochondria through increased OSGIN1 expression [35,39]. We previously
reported that methylmercury induces apoptosis in C17.2 cells mainly by causing mitochon-
drial damage and ROS generation [15]. Therefore, we examined the effects of OSGIN1
knockdown on methylmercury-induced ROS production. As a result of using three types of
siRNAs against OSGIN1 mRNA, methylmercury-induced ROS production was attenuated
in one type of OSGIN1-knockdown cells, whereas similar results were not obtained in
other cells (Figure S2). This suggests that, at least under the present conditions, OSGIN1
may not be involved in methylmercury-induced ROS production. However, caspase-3
activation by methylmercury was partially suppressed in C17.2 cells in which OSGIN1
expression was suppressed (Figure 5). This suggests that, although OSGINT1 is involved
in the apoptosis-inducing pathway mediated by mitochondrial damage, there may also
be an OSGIN1-independent pathway in C17.2 cells. On the other hand, it has been shown
that the induction of OSGIN1 expression through activation of NRF2 by monomethyl
fumarate attenuates hydrogen peroxide-induced cell death in primary human spinal cord
astrocytes [26]. However, under these conditions, the expression of an OSGIN1-splicing
variant with a molecular weight of 61 kDa, which is larger than the original molecular
weight of 52 kDa, is induced and involved in alleviating cell death caused by hydrogen
peroxide. Although the mechanisms of the conflicting actions on cell death among OSGIN1
of different molecular weights are still unknown, it is thought that methylmercury causes
apoptosis by inducing the expression of 52-kDa OSGIN1, at least in C17.2 cells.

Until now, NRF2 has been widely known as a factor involved in reducing the toxicity
of various chemicals including methylmercury [28,29,40]. However, the results of this study
suggest that it enhances methylmercury toxicity by inducing the expression of OSGINI.
In other words, our results show that, at least in C17.2 cells, both reducing and enhancing
factors for methylmercury toxicity may be present among the downstream factors of NRF2.
Moreover, because methylmercury simultaneously induces the expression of these factors
via NRF2, the extent of caspase-3 activation may not have affected the degree of caspase-3
activation.

We recently found in preliminary experiments that the expression of OSGIN1 protein is
increased in neurons in the cerebrum of male mice exposed to methylmercury. Interestingly,
the results show that an increased expression of OSGIN1 may occur before methylmercury-
induced neuronal damage in a mouse brain. These results suggest that methylmercury
may cause neuronal damage in the brain by inducing OSGIN1 expression not only in C17.2
cells but also in mice. In the future, we plan to use mice to clarify the relationship between
OSGIN1 and neuronal damage in the brain caused by methylmercury.

In this study, we identified OSGIN1 as a novel factor involved in methylmercury-
induced neuronal damage for the first time. However, this study only used C17.2 cells
and did not examine whether OSGINT1 is also involved in methylmercury toxicity in other
cells, such as primary neurons. Furthermore, the mechanisms involved in methylmercury
toxicity due to OSGINT1 are still unknown; thus, these are limitations of our study. In the
future, elucidating the detailed mechanisms involved in methylmercury toxicity mediated
by OSGINT1 in C17.2 cells and primary neurons is expected to lead to the elucidation of the
mechanisms of neuronal damage in the brain caused by methylmercury, as well as to the
development of therapeutic agents.

4. Materials and Methods
4.1. Cell Culture

The v-myc immortalized C17.2 cell lines were derived from cloned mouse cerebellar
neural stem cells [41] and were obtained from the European Collection of Cell Cultures
(ECACCQ). The cells were cultured in Dulbecco’s Modified Eagle Medium (Nissui Pharma-
ceutical, Tokyo, Japan) supplemented with 10% fetal bovine serum (Gibco; Thermo Fisher
Scientific, Waltham, MA, USA) and 2 mM L-glutamine (Nacalai Tesque, Kyoto, Japan) in a
humidified atmosphere of 5% CO, at 37 °C.
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4.2. Quantitative PCR (gPCR)

Total RNA was isolated by ISOGEN II (Nippon Gene, Tokyo, Japan) according to the
manufacturer’s instructions. cDNA was synthesized from total RNA using a PrimeScript RT
reagent kit with oligo dT primer (Takara, Shiga, Japan) according to the manufacturer’s instruc-
tions. JPCR was performed using SYBR Premix Ex Taq (Takara) with a LightCycler 96 System
(Roche Diagnostics, Mannheim, Germany) with the following primers: mouse OSGIN1, F: 5'-
AACTTTGGCATTGTGGAAGG-3/, R: 5'-ACACATTGGGGGTAGGAACA-3"; mouse NRF2, F:
5-CATAGAGCAGGACATGGAGCAAG-3/, R: 5'-CGGTAGTATCAGCCAGCTGCTTG-3'; and
mouse GAPDH, F: 5-CTGCGTCCTGACACAGACTT-3/, R: 5-GGTCACCATGGAGCCTTCAA-
3. The reaction was performed at a final volume of 10 uL containing 5 pL SYBR Premix Ex Tag,
0.2 uL of each primer (10 uM), 1.5 uL. cDNA (5 ng/uL), and Milli-Q water (Merck Millipore,
Billerica, MA, USA). The amplification protocol consisted of 40 cycles of gPCR for denaturation
for 30 s at 95 °C, and annealing/extension for 30 s at 60 °C for each mRNA. The level of each
mRNA was assessed by the relative standard curve method. The data are presented as values
corrected by GAPDH.

4.3. Western Blotting

The cells were harvested in a 2% sodium dodecyl sulfate (SDS) buffer. Lysates were
then incubated at 95 °C for 5 min. The protein concentration of each lysate was examined
using a DC Protein Assay Kit (Bio-Rad, Hercules, CA, USA). Whole cell lysates (approxi-
mately 15 ng) were separated using SDS-polyacrylamide gel electrophoresis and separated
proteins were then transferred to polyvinylidene fluoride membranes (Immobilon P; EMD
Millipore, Burlington, MA, USA). The membrane was blocked for 1 h in 5% skimmed
milk (Fujifilm-Wako, Osaka, Japan). Immunoblotting was conducted using anti-OSGIN1
(1:1000 dilution; 15248-1-AP, Proteintech, Chicago, IL, USA), anti-NRF2 (1:1000 dilution;
16396-1-AP, Proteintech), anti-cleaved caspase-3 (1:1000 dilution; 9661, Cell Signaling Tech-
nologies, Danvers, MA, USA), and anti-GAPDH (1:5000 dilution; 015-25473, Fujifilm-Wako).
Horseradish peroxidase-conjugated anti-rabbit IgG (1:10,000 dilution; 458, Medical & Bio-
logical Laboratories Co., Ltd., Nagoya, Japan) was used as the secondary antibody. Primary
antibodies and secondary antibodies were diluted with Can Get Signal Immunoreaction
Enhancer Solution 1 (Toyobo, Osaka, Japan) and Can Get Signal Immunoreaction Enhancer
Solution 2 (Toyobo), respectively. Protein band images were acquired using a ChemiDoc
Touch Imaging System (Bio-Rad) and analyzed using Image Lab Software (version 5.2.1,
Bio-Rad).

4.4. siRNA Transfection

The cells (1.5 x 10* cells/well) were seeded on a 24-well plate and cultured for
24 h. The indicated siRNA was then transfected with Lipofectamine RNAiMAX trans-
fection reagent (Thermo Fisher Scientific) according to the manufacturer’s instructions.
The cells were cultured for a further 24 h for OSGIN1 or NRF2 knockdown, then ex-
posed to methylmercury at the indicated concentrations. All siRNAs were purchased
from Sigma-Aldrich (St. Louis, MO, USA). Forward sequences of siRNA are as follows:
OSGINT1 siRNA #1 (5-CACUGUGAACCCAACCUCAJdTAT-3"), OSGIN1 siRNA #2 (5'-
GUCAAAGACUGGAUGCGGAJTAT-3'), NRF2 siRNA#1 (5'-GACUCAAAUCCCACCUU
AAdTdT-3), NRF2 siRNA#2 (5-GUGAAAUGCAGAAACACUUdTAT-3'), and NRF2
siRNA#3 (5-GAAACCUCCAUCUACUGAAATAT-3'). Negative control siRNAs were
also obtained from Sigma-Aldrich.

4.5. Plasmid Construction and Transfection

The mouse OSGIN1 gene was amplified by KOD-plus neo (Toyobo, Osaka, Japan) from the
complementary DNA of C17.2 cells using primers [5'-ATCATGACCTCCTGGAGGCACGACTC-
3/ (sense) and 5'-TATCTCGAGTTAAGGTGGCTTCCTGGTCTCCT-3' (antisense)] and inserted
between the EcoRV (New England Biolabs, Beverly, MA, USA) and Xhol (New England Biolabs)
sites of a myc-tag-containing pcDNA5/TO vector (Invitrogen, Carlsbad, CA, USA). C17.2 cells
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were transfected with control vector or OSGIN1-expressing plasmid using PEI Max Reagent
(Polysciences, Warrington, PA, USA) for 24 h, then exposed to methylmercury at the indicated
concentrations.

4.6. Statistical Analysis

Multiple group comparisons were performed using a one-way analysis of variance
followed by a post hoc Dunnett’s multiple comparison test. Unpaired Student’s t-tests were
performed to compare differences between two groups. Statistical analyses were performed
using KaleidaGraph software (v4.1.1; Synergy Software, Eden Prairie, MN, USA), with
statistical significance being set at p < 0.05.
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