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Abstract: Cardiovascular diseases (CVDs) are the leading cause of death and include several vascular
and cardiac disorders, such as atherosclerosis, coronary artery disease, cardiomyopathies, and heart
failure. Multiple treatment strategies exist for CVDs, but there is a need for regenerative treatment
of damaged heart. Stem cells are a broad variety of cells with a great differentiation potential that
have regenerative and immunomodulatory properties. Multiple studies have evaluated the efficacy
of stem cells in CVDs, such as mesenchymal stem cells and induced pluripotent stem cell-derived
cardiomyocytes. These studies have demonstrated that stem cells can improve the left ventricle
ejection fraction, reduce fibrosis, and decrease infarct size. Other studies have investigated potential
methods to improve the survival, engraftment, and functionality of stem cells in the treatment of
CVDs. The aim of the present review is to summarize the current evidence on the role of stem cells in
the treatment of CVDs, and how to improve their efficacy.

Keywords: cardiovascular diseases; stem cells; mesenchymal stem cells; induced pluripotent
stem cells

1. Introduction

Stem cells are self-renewing cells that can differentiate into other cell subtypes. They
therefore have important potential for regenerative medicine. These cells differ in terms of
differentiation potential, and several subtypes can be distinguished. For instance, pluripo-
tent stem cells have the ability to differentiate towards mesoderm, ectoderm, and endoderm.
Multipotent cells include mesenchymal stem cells (MSCs), which can be found in various
tissues, and can transform into cells from a particular germ layer [1]. The regenerative
properties of stem cells have been investigated in the context of numerous conditions, such
as neurodegenerative diseases [2], osteoarthritis [3], and periodontitis [4]. Along with their
regenerative potential, stem cells have immunomodulatory properties that have beneficial
effects in inflammatory conditions. Cardiovascular diseases (CVDs) represent a major cause
of death. In 2019, there were approximately 19 million CVD-related deaths [5]. Multiple
therapeutics are currently used in clinical practice to reduce the mortality associated with
CVDs, but there is a need for new anti-inflammatory and regenerative agents. The aim
of this review is to present and discuss the current evidence on the role of stem cells in
the treatment of CVDs. We will focus on the use of mesenchymal stem cells (MSCs) and
induced pluripotent stem cells (iPSCs). Currently, iPSCs seem to be the most attractive cells
in the field of cardiac regeneration. However, numerous studies examined the potential
mechanisms to augment the functionality of MSCs; therefore, we will also discuss methods
to further increase their beneficial effects.
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2. Cardiovascular Diseases—Characteristics and Current Treatment Strategies

Cardiovascular diseases represent a broad group of diseases with a significant global
burden. In 2019, there were over 500 million patients with CVDs [5]. This term includes a
group of heart and vascular disorders, including atherosclerosis, coronary artery disease
(CAD), stroke and cerebral hemorrhage, cardiomyopathies, and heart failure (HF). CVDs
frequently coexist and their pathogeneses are related. Major behavioral risk factors for
CVDs include poor diet, physical inactivity, tobacco use, and alcohol consumption. These
factors may cause high blood pressure, hypercholesterolemia, hyperglycemia and obesity,
which are associated with increased risk of heart attack, stroke, and heart failure. In this
article, we will focus on CAD, cardiomyopathy, and HF. These conditions are associated
with heart remodeling and cardiomyocyte death. Regenerative properties of the heart are
limited and involve fibrosis of the area affected by cardiac cells necrosis, a process that aims
to preserve organ integrity [6].

Coronary artery disease is a medical condition associated with atherosclerotic plaque
accumulation on the arterial walls. It leads to decreased blood flow through the arteries,
heart muscle hypoxia and coronary insufficiency [7]. CAD encompasses a variety of clinical
conditions, including asymptomatic atherosclerosis, stable angina, and acute coronary
syndrome (unstable angina (UA), non-ST elevation myocardial infarction (NSTEMI), ST
elevation myocardial infarction (STEMI)). The symptoms of stable angina include chest pain,
especially related with stress or physical exercise, which is radiant to neck, mandible, or
arms. The pain subsides at rest or after nitroglycerin consumption in 1–3 min. Importantly,
stable angina does not lead to the necrosis of the cardiac cells. The unstable angina is a
more severe medical condition. UA is associated with nitroglycerin- resistant chest pain. It
does not deescalate at rest and may occur spontaneously. UA is caused by atherosclerotic
plaque damage, which leads to reduced flow through coronary artery. UA may progress to
NSTEMI and may be a life-threatening condition. NSTEMI and STEMI are associated with
heart muscle cells necrosis. STEMI evolution is more rapid, the clot entirely blocks the blood
flow and immediately after 15–30 min provide to heart muscle cells necrosis. The area of
NSTEMI is generally less expanded, which is linked to developed collateral circulation. The
patients with CAD are classified depending on the symptoms of the disease in four-stage
scale of Canadian Cardiovascular Society (CCS). The symptoms are generally associated
with exercise capacity, where stage I is the gentlest and not- limiting the everyday activity,
and stage IV is linked to symptoms occurrence even at rest [8].

Current strategies of CAD treatment are based on endovascular interventions, coro-
nary artery bypass surgery (CABG) [9], pharmacological and non-pharmacological therapy.
Invasive treatments are more effective, but conservative treatment methods are also ben-
eficial. They slow down the progression of atherosclerosis, relieve the symptoms, and
prevent atherothrombotic events [10]. These methods are based on the combination of anti-
ischemic drugs—primarily beta-blockers or calcium-channel inhibitors—and the ad hoc use
of nitrates. Agents with antiplatelet properties, such as acetylsalicylic acid or clopidogrel,
reduce the risk of major vascular events. Furthermore, hypercholesterolemia treatment
with statins and other lipid-lowering agents reduces the accumulation of atherosclerotic
plaque [11]. Lifestyle modification is crucial to reduce cardiovascular risk factors, including
diet changes, exercise, and smoking cessation.

Cardiomyopathies are relatively rare medical conditions, divided into the main (ge-
netic, mixed, or acquired) and secondary categories, which result in various phenotypes
such as dilated, hypertrophic, and restricted patterns [12]. A diagnosis of dilated car-
diomyopathy (DCM) is made in the case of systolic dysfunction and left ventricle (LV)
dilation in the absence of CAD. Multiple factors may predispose to the occurrence of DCM,
including infections, toxins, and inflammatory and metabolic factors [13]. Hypertrophic
cardiomyopathy (HCM) is the most common hereditary heart disease, characterized by left
ventricular hypertrophy which can lead to heart failure and acute coronary syndromes [14].
HCM primarily may be asymptomatic or cause arrhythmias, fainting or exercise limitation.
First-line pharmacotherapy for patients with HCM are negative inotropic drugs, such as
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β-blockers or non-dihydropyridine calcium-channel blockers [15]. Other treatment meth-
ods involve procedures that reduce the thickness of the septum, such as alcohol ablation
or myectomy [16]. Occasionally, patients may require dual-chamber electrostimulation,
cardioverter–defibrillator implantation, or even heart transplantation. The decision to
implant a cardioverter defibrillator is based on HCM Risk-SCD, which estimates the risk of
sudden cardiac death at 5 years in patients with HCM [17].

Heart failure is a medical condition characterized by symptoms induced by a structural
or functional cardiac defect, confirmed by high natriuretic peptide levels and/or objective
evidence of pulmonary or systemic congestion [18,19]. HF is classified as acute or chronic.
The most common causes include hypertension, CAD, cardiomyopathies, valve defects
and pericardial diseases. In addition, other extracardiac disorders can contribute to the
development of HF, such as diabetes, kidneys failure, infections. Chronic HF is defined
by the left ventricle ejection fraction (LVEF) and classified into three groups: a reduced
ejection fraction (LVEF ≤ 40%); a mildly reduced ejection fraction (LVEF 41–49%); and a
preserved ejection fraction (LVEF ≥ 50%) [20]. Chronic HF major symptoms are dyspnea,
exercise limitation, leg swellings, enlargement of abdominal circumference, etc. Patients
with HF are classified by New York Heart Association (NYHA scale). The scale divides
patients into four groups depending on exercise capacity [21].

Pharmacotherapy of heart failure is based on four main groups of medications. The
first is renin–angiotensin–aldosterone system inhibitors (RAASi), which include ACE-
inhibitors (ACE-I), angiotensin receptor blockers (ARB) and angiotensin receptor/neprilysin
inhibitors (ARNI). Other therapeutics include beta-blockers (BB), mineralocorticoid recep-
tor antagonists (MRAs) and sodium glucose cotransporter-2 inhibitors (SGLT2i) [19]. In HF
exacerbation, especially in volume overload, the patients may require diuretics, oxygen
therapy, and hospitalization. These patients can be treated with cardiac resynchronization
therapy (CRT) or even heart transplantation [22,23]. New treatment strategies include
transthyretin stabilizers, intravenous iron for treatment of deficiency, cardiac myosin ac-
tivators, soluble guanylate cyclase stimulators, and new potassium binders [24]. Despite
significant progress in the identification of innovative pharmaceutical treatments for HF
over the last few decades, the prevention of premature mortality has only modestly im-
proved [25]. Deteriorating environmental factors, poor diet, and an aging population result
in an ever-increasing number of people affected by these diseases. Current treatment meth-
ods do not induce cardiac tissue regeneration and are insufficient in reducing fibrotic tissue.
For this reason, the development of new treatment strategies and their implementation
into daily practice are required as soon as possible. The use of stem cells or heir paracrine
factors could become a novel treatment strategy.

3. Stem Cells—Differentiation Potential, Tissue Sources and Regenerative Properties

Stem cells represent a unique group of cells that exhibit a remarkable ability of self-
renewal and differentiation into diverse cell lineages. They play key roles in neonatal
development and constitute the source of specialized cell types in all tissues and organs [26].
In adulthood, stem cells are a crucial element in processes of restoration and regeneration.
The activation and recruitment of stem cells is an important phase in regenerative processes
after injuries [27].

Stem cells can be divided into several groups by their origin and potential for differen-
tiation. Totipotent stem cells have the greatest differentiation potential, as they can form
embryonic tissues, as well as extra-embryonic yolk sac and placenta [28]. Pluripotent stem
cells can differentiate into cells of all three germ layers and do not form extra-embryonic
structures. They are present at various phases of human growth [29]. Multipotent stem
cells can form all cell types belonging to the same cell lineage [30]. Oligopotent stem cells
differentiate into several cellular subtypes within a specific tissue. Unipotent stem cells
have the narrowest differentiation potential. They can repeatedly divide and form only one
specific cell type [1].
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Depending on their development stage, stem cells can be classified as embryonic stem
cells and adult stem cells. The latter cells can be found in differentiated tissues and their
role is to proliferate and differentiate to renew the specific tissue [31]. Stem cells can be
obtained from different sources, which determine their special characteristics and advan-
tages. Mesenchymal stem cells (MSCs) constitute a vast group of cells which are classified
into several main groups based on their origin. Bone marrow-derived mesenchymal stem
cells (BM-MSCs) have high regenerative and immunomodulatory potential and have been
widely tested in clinical trials, which have shown their safety and efficacy [32]. Adipose
tissue is a rich source of mesenchymal stem cells (AD-MSCs), which can be easily obtained
via subcutaneous lipoaspiration [33]. Mesenchymal fetal stem cells can also be obtained
from placenta, umbilical cord (UC-MSCs), as well as amniotic fluid and amniotic mem-
brane [34]. Dental pulp is a source of MSCs with neurotropic properties, as they originate
from the neural crest [35]. Periosteum and synovial fluid have been identified as sources
of MSCs and their applications could stimulate bone and cartilage regeneration [36,37].
Stem cells are also present in the skin (S-MSCs); these cells stimulate wound healing [38].
Furthermore, it is possible to genetically reprogram somatic cells to achieve stem cell prop-
erties. Such induced pluripotent stem cells (iPSCs) can proliferate and differentiate into
any cell lineage [39].

Stem cells secrete various extracellular vesicles (EVs): apoptotic bodies, microvesicles
and exosomes, which act as paracrine mediators. They may serve as novel therapeutic
agents due to their ability to transport various molecules to specific cells, including med-
ications, therapeutic genes, enzymes, and RNA [40]. Stem cell-derived exosomes may
contain various inflammatory, fibrotic and angiogenic mediators, such as interleukin-6
(IL-6), interleukin-10 (IL-10), transforming growth factor-β1 (TGF-β1), as well as vascular
endothelial growth factor (VEGF) [41]. As the substances they secrete can promote prolifer-
ation, inhibit apoptosis, and reduce oxidative stress, they stimulate cell regeneration and
inhibit inflammatory processes [42]. Novel cell-free therapies based on EVs may bring ma-
jor progress in the treatment and management of various autoimmune and inflammatory
diseases [43]. In the next paragraphs, we will focus on the potential role of various types of
stem cells and their paracrine products in the treatment of CVDs.

4. Stem Cells and Coronary Artery Disease
4.1. Stem Cells and Atherosclerosis—Macrophages

Atherosclerosis is a common inflammatory vascular disease characterized by the
accumulation of lipoproteins, lipids, fibrous elements, and calcifications within the inner
lining of large arteries. Regulating blood lipid levels with the available medications is
inadequate due to the increasing prevalence of atherosclerosis and its associations with
adverse effects. In the context of vascular atherosclerosis, MSCs exhibit antiapoptotic
and anti-inflammatory properties [44]. They have immunomodulatory properties and
regulate the behavior of immune cells, including macrophages, which play an important
role in atherosclerosis. Macrophages are typically divided into two main subtypes: M1
(classically activated) and M2 (alternatively activated) macrophages [45]. However, recent
studies demonstrated that there are more subpopulations of these cells. In atherosclerotic
plaques, pro-inflammatory, foamy anti-inflammatory, as well as resident macrophages were
detected [46].

Studies have demonstrated that MSCs have the ability to regulate the progression
of atherosclerosis by mediating macrophage polarization. Fan et al. demonstrated that
AD-MSCs transplantation decreased the levels of triglycerides (TG), total cholesterol (TC),
and low-density lipoprotein cholesterol (LDL-C) in the serum of rats with atherosclero-
sis [47]. In line with this observation, similar findings were noted in a study conducted
on New Zealand rabbits. Allogeneic AD-MSCs were implanted into rabbits every two
weeks for three months following one month of a high-fat diet. The use of stem cells was
associated with a significant decrease in LDL-C, TC, and TG levels in the third month
compared to the control group. Additionally, ultrasound examinations revealed mitigation
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of atherosclerotic plaque formation in stem cell-treated animals. In the later stages, reduc-
tions in the size of atherosclerotic lesions and inhibition of aortic inflammatory responses
were observed in rabbit aorta sections [48]. The influence of MSCs on lipid levels may
depend on the stimulation of liver functionality. Intriguingly, an appropriate combination
of cytokines can stimulate AD-MSCs to exhibit hepatogenic and angiogenic abilities, which
could mitigate the effects of liver fibrosis [49]. In 2018, Takafuji et al. investigated the
impact of the condition medium (CM) from cultured MSCs on low-density lipoprotein
receptor-knockout (Ldlr−/−) mice fed with a high-fat diet. Stem cells significantly inhibited
atherosclerotic plaque development by reducing the expression of adhesion molecules
and macrophage accumulation in the vessel walls. However, administration of MSC-CM
did not significantly affect the change in serum lipoprotein levels. MSC-CM supernatant
reduced lipopolysaccharide-induced expression of M1 markers by inhibiting both the
mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NFκB) pathways, as
well as increasing the expression of M2 markers through the activation of signal transducer
and activator of transcription 3 (STAT3) pathway [50]. The ability of AD-MSCs to promote
macrophage switch towards the M2 phenotype was confirmed in another in vitro study [48].
Additionally, AD-MSCs have been found to reduce the secretion of tumor necrosis fac-
tor alpha (TNF-α) by the M1 macrophages. These findings imply that AD-MSCs protect
against atherosclerosis by targeting M1 macrophage foam cells, through the regulation of
the NF-κBp65-TNF-α pathway [48,51].

Human amnion MSCs are easily accessible, pose a low risk of tumor formation,
exhibit low immunogenicity, and possess strong paracrine functions. Injection of these
cells into the tail vein of male C57BL/6 apolipoprotein E knockout (apoE-KO) mice fed
with a high-fat diet alleviated the progression of atherosclerosis by reducing macrophage
accumulation and suppressing the inflammatory response in the aortic arteries. Stem
cells were found to regulate the secretion of TNFα and interleukin-10 (IL-10) through the
NF-κB pathway [52]. Gingival MSCs (GMSCs) are another type of stem cells that mediate
macrophage polarization and promote the M2 phenotype, potentially by suppressing
indoleamine 2,3-dioxygenase (IDO) and the CD73 signaling [53]. Moreover, S-MSCs exhibit
functional similarities to BM-MSCs, but they are significantly easier to access. These
skin-derived cells inhibit atherosclerotic plaque development by modulating macrophage
function. Specifically, S-MSCs intravenously administered to apoE-KO mice through the
tail vein were associated with stimulated macrophages releasing prostaglandin E2, thereby
enhancing the release of anti-inflammatory IL-10 while reducing the secretion of TNF-
α [54]. Table 1 summarizes the preclinical models and findings regarding the role of MSCs
in suppressing atherosclerosis progression by regulating macrophage functionality.

Table 1. Summary of selected studies demonstrating beneficial role of various stem cells in animal
models of atherosclerosis by regulating the functionality of macrophages.

Stem Cells Animal Model, Stem
Cell Introduction

Impact of Stem Cells on Macrophage Function in the Context
of Atherosclerosis

References

MSC-CM Ldlr−/− mice, intravenous injection MSC-CM could reduce the formation of atherosclerotic plaque by
suppressing macrophage accumulation in the blood vessel wall.

[50]

AD-MSCs New Zeleand rabbits, intravenous
injection

Administration of AD-MSCs was associated with suppressed plaque
formation and reduced accumulation of the M1 macrophages and
pro-inflammatory mediators.

[48]

Amnion MSCs C57BL/6 apoE-KO mice, intravenous
injection

Stem cells suppressed the progression of atheroclerosis by inhibiting the
accumulation of macrophages.

[52]

GMSCs ApoE−/− mice, intravenous injection GMSCs suppress the progression of atherosclerosis and inhibit the
formation of foam cells; furthermore; they enhance the M2
anti-inflammatory macrophages.

[53]

S-MSCs ApoE−/− mice, intravenous injection Stem cells promoted the anti-inflammatory responses of macrophages. [54]

MSC—mesenchymal stem cell; AD-MSC—adipose-derived mesenchymal stem cell; GMSC—gingival-derived
mesenchymal stem cell; S-MSC—skin-derived mesenchymal stem cell; CM—condition medium; apoE—
apolipoprotein E; Ldlr—low-density lipoprotein receptor.
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4.2. Stem Cells and Atherosclerosis—Endothelial Cells

Apart from macrophages, endothelial cells represent the other highly significant
cellular population in the pathogenesis of atherosclerosis. Due to various factors, such as
disturbed flow, oxLDL, and pro-inflammatory cytokines, endothelial cells cannot maintain
homeostasis, which leads to their dysfunction. Consequently, these cells are activated
and the vessel wall stimulates processes including platelet activation, leukocyte adhesion,
vasoconstriction, and lipid accumulation [55,56].

Multiple studies have demonstrated the efficacy of stem cells in reducing the inflam-
mation in endothelial cells, which translates into relieved atherosclerosis. Specifically,
paracrine products, such as extracellular vesicles, play an important role in this process. For
example, high glucose conditions impair human umbilical vein endothelial cells (HUVECs)
functionality, such as migration and tube disruptions. The condition medium of MSCs
could significantly improve these processes [57]. Furthermore, other studies have focused
on evaluating the RNA molecules that affect endothelial cell functionality. Stem cells secrete
vesicles containing small RNA molecules or can affect the expression of these in endothelial
cells. Interestingly, Xiao et al. performed microRNA (miRNA) sequencing of extracellular
vesicles derived from MSCs. The authors detected over one thousand miRNA molecules,
among which almost four hundred had at least 100 read counts [58]. MiRNAs belong to the
family of non-coding RNA (ncRNA), molecules that regulate gene expression. Specifically,
miRNAs bind to their target mRNA to suppress its expression. Exosomes derived from
AD-MSCs were found to suppress the expression of miR-342-5p, which has been associated
with enhanced apoptosis of HUVECs [59]. Furthermore, using extracellular vesicles, MSCs
can deliver miR-146a to HUVECs, which reduces senescence of the endothelial cells [58].
Importantly, Li et al. examined the effects of MSCs on endothelial cells stimulated with
oxLDL. Stem cells could restore the activity of the Akt/eNOS axis, which was disrupted by
the oxLDL. In animal models, the application of MSCs significantly reduced plaque area
in the aorta [48,60]. Moreover, MSCs secrete exosomes containing long non-coding RNA
(lncRNA) molecules, another members of the ncRNA family. For example, MSCs secrete
fetal-lethal non-coding developmental regulatory RNA (FENDRR). These vesicles enhance
viability of endothelial cells and promote their pro-angiogenic features. Importantly, these
exosomes are associated with significantly reduced plaque area in mice. Mechanistically,
FENDRR could bind to miR-28, and thus upregulate TEA domain transcription factor 1
(TEAD1) [61], a molecule implicated in the mitochondrial biogenesis and endothelial angio-
genesis [62]. MSCs or their secreted factors could modulate other mechanisms associated
with endothelial cells as well. For example, they could suppress platelet activation, which
is implicated in the formation of atherosclerotic plaques [63].

4.3. Myocardial Infarction and Ischemic Heart Disease
4.3.1. Mesenchymal Stem Cells

Ischemic heart disease (IHD) is a clinical syndrome characterized by insufficient
supply of oxygen and nutrients to cardiomyocytes. Atherosclerosis of the coronary arteries
is considered to be the primary cause of IHD, leading to ischemia through the narrowing
of the lumen of the epicardial arteries that supply the heart muscle. IHD has long been
the leading cause of death worldwide, and its significance in public health continues to
grow. Deaths due to IHD can be broadly categorized into sudden cardiac deaths and
deaths resulting from acute myocardial infarction (AMI) [64]. Due to the destruction of
cardiomyocytes in many patients after AMI, there is a reduction in LVEF and the associated
development of ischemic HF. It is important to emphasize that despite the current broad
possibilities in the application of reperfusion therapies such as PCI (percutaneous coronary
interventions), reduced LVEF in the acute phase of MI remains the most crucial independent
prognostic factor for poor outcomes [65]. Due to the limited regenerative capacity of
cardiomyocytes, researchers are closely examining the potential use of stem cells and their
regenerative and anti-inflammatory properties in the therapy of myocardial ischemia.
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The role of MSCs in the regeneration of the myocardium after MI has been a sub-
ject of research and discussion for many years. Potential reparative mechanisms include
stimulating angiogenesis, influencing the microenvironment to promote cardiac tissue
repair, modulating the immune response, reducing inflammation, and decreasing the scar
tissue to potentially enhance the functional recovery of the heart after MI [66]. Preclinical
studies have demonstrated important potential benefits of using stem cells in the therapy of
ischemia and infarction by modulating various pathways and cellular processes. Paracrine
factors secreted by MSCs play a significant role in inducing beneficial effects. For exam-
ple, an MSC-conditioned medium could affect the functionality of cardiac fibroblasts by
increasing the activity of matrix metalloproteinases and suppressing the tissue inhibitor of
matric metalloproteinases, thus affecting the extracellular matrix remodeling [67].

MSCs secrete exosomes that promote the survival of cardiomyocytes. Mechanistically,
cardiomyocytes accumulate MSC-derived extracellular vesicles containing miR-144, an
RNA molecule that targets and inhibits phosphatase and tensin homolog (PTEN), thus
suppressing apoptosis [68]. A similar mechanism has been confirmed in another study,
where BM-MSC-derived exosomes containing miR-29c could reduced infarct scar formation
in vivo. In these experiments, the molecule was also found to target PTEN and suppress
excessive autophagy [69]. Furthermore, the condition medium of stem cells from adipose
tissue contains miR-221/222, a molecule which could suppress the expression of apoptotic
p53-upregulated modulator of apoptosis (PUMA) and fibrotic E26 transcription-specific
1 (ETS-1) through the p38 and NF-κB pathways. Mice treated with a stem cell condition
medium demonstrated improved cardiac parameters (EF, fractional shortening), and re-
duced infarct size [70]. In another study, Zhang and colleagues reported that lncRNA
Mir9-3hg is abundantly expressed in exosomes derived from BM-MSCs. It could bind to
and inhibit PUM2, thus suppressing ferroptosis of cardiomyocytes [71] (Figure 1). Other
molecules detected in MSC-derived exosomes that induce beneficial effects in cardiomy-
ocytes include miR-23a- 3p [72], miR-214 [73], miR-205 [74], and HAD2-AS1 [75].
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In studies incorporating animal models, transplantation of AD-MSCs improved
LVEF in post-MI cardiac failure, in contrast to BM-MSCs or bone marrow mononuclear
cells [76,77]. However, in a study by Rasmussen et al. [76] the authors observed that the
use of AD-MSCs and BM-MSCs did not increase vessel density, which could result from
more advanced age and the burden of coronary artery disease in the donor [78].

Epicardial adipose tissue-derived stem cells (EATDS) are phenotypically the most
closely related to cardiomyocytes, and due to their low immunogenicity, they hold sig-
nificant promise for future allogeneic transplantation. Additionally, they exhibit a higher
cardiomyogenic potential compared to AD-MSCs [79]. In 2022, Thankam et al. showed
that extracellular vesicles secreted by ischemia-stimulated EATDS increase the expression
of primary cardiac cells transcription factors (GATA4, Nkx2.5, IRX4, TBX5) in cardiac
fibroblasts [80]. The cardiomyogenic potential of EATDS has also been presented in animal
studies. Specifically, Özkaynak et al. analyzed the efficacy of EATDS in rabbit MI models.
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In the therapeutic group, each rabbit received one million (10 × 106 in 100 µL) allogeneic
EATDS four weeks after MI induction, administered intramuscularly in the peri-infarct
zone. After a further four weeks, this group demonstrated a reduction in the peri-infarct
necrotic focus, an increase in vascular density, and a clinically significant improvement in
EF [80].

UC-MSCs represent another group of cells with promising regenerative efficacy. These
cells develop from an extra-embryonic mesoderm at early stages of embryogenesis and,
hypothetically, could have greater differentiation potential. In animal MI models, intro-
duction of UC-MSCs was associated with reduced infarct size, fibrosis regression, cardiac
functionality, as well as stimulation of vascular density [81–83]. Apart from cardiomy-
ocytes, umbilical cord-derived cells were found to differentiate towards endothelial cells
and smooth muscle cells, which could therefore translate into their efficacy in animal
infarction models [81]. Despite direct effects of UC-MSCs, their paracrine effects have
also shown promising results. Specifically, beneficial effects were observed in animals
injected with UC-MSC-derived exosomes [84]. Extracellular vesicles could regulate various
mechanisms that ultimately promote cardiac regeneration, such as enhancement of the M2
macrophage polarization [85], as well as modulation of the fibrosis pathways [86]. Inside
the umbilical cord, there is a stromal region known as Wharton’s jelly, which is also a source
of MSCs (WJ-MSCs). These cells share similarities with embryonic stem cells regarding
the expression of stemness markers. In addition, WJ-MSCs express a number of cardiac
transcription factors [87], highlighting their potential regenerative role in cardiac disorders.
In mini swines, an injection of WJ-MSCs into the ischemic region significantly promoted
cardiac functionality (LVEF) and myocardial perfusion [88].

Stem cells have also been investigated in clinical settings (Table 2). Stem cell transplan-
tation can be either autologous or allogeneic. The POSEIDON trial, which evaluated these
two cellular treatment methods in patients with ischemic cardiomyopathy, demonstrated
that both strategies were safe [89]. In a multicentre clinical trial conducted in 2004–2005,
German researchers intravenously administered autologous BM-MSCs to 101 individuals
in the study group 3–7 days after successful reperfusion therapy and stent implantation.
After four months, it was observed that LVEF was significantly higher in the study group
compared to the placebo group. The most significant improvement in the left ventricular
contractility size was noted in individuals with the lowest initial LVEF [90]. However, sev-
eral meta-analyses have demonstrated a broader investigation into the effectiveness of BM-
MSCs in post-MI patients [91,92]. Recently, Hosseinpour et al. published a meta-analysis
of 10 clinical trials investigating the use of BM-MSCs in patients after AMI. The authors
found that MSCs significantly improved LVEF (weighted mean difference WMD = 3.71%,
p < 0.001). Furthermore, their efficacy was greater compared to bone marrow mononuclear
cells. However, the authors did not find significant differences in the other parameters
of left ventricular end-diastolic volume (LVEDV) and left ventricle end-systolic volume
(LVESV). Nevertheless, these observations became significant in a sensitivity analysis,
which only included studies evaluating an introduction of cells within 11 days of AMI [93].
CHART-1 was a prospective, randomized, and one of the largest clinical trials investigat-
ing the safety and efficacy of cardiopoietic stem cells. One hundred and twenty patients
received the cell-based treatment, and one hundred and fifty-one patients were in the sham
cohort. The primary endpoint was an improvement in a composite of several functors,
including mortality, HF worsening, and six-minute walk test results. The primary endpoint
was not achieved in the overall population. However, better outcomes were observed in
a subgroup of patients with an LVEDV of 200–370 mL [94]. Importantly, in the cohort of
patients with advanced left ventricular enlargement, a significant improvement in quality
of life was observed [95]. Additionally, recent clinical trials did not demonstrate the pre-
viously expected improvements after AD-MSCs therapy in patients after MI. Specifically,
a phase II clinical trial (SCIENCE) included 133 patients, of which 90 received cell-based
therapy. A single intramyocardial injection of AD-MSCs did not significantly improve
cardiac functionality, nor mean time to the occurrence of a cardiac adverse event [96].
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Similar observations were also made in a recent Danish trial [97]. In another randomized
clinical trial, an intracoronary application of WJ-MSCs in patients after MI was examined.
Fifty-eight patients received the cellular treatment. Importantly, the allogeneic cellular
treatment promoted cardiac functionality and reduced infarct size. Additionally, WJ-MSCs
affected the LVEDV and LVESV, therefore preventing cardiac remodeling. Importantly,
both cohorts did not differ in terms of major adverse cardiac events [98]. Interestingly, the
beneficial properties of WJ-MSCs could be further augmented by introducing a repeated
dose, as evidenced by Attar et al. [99]. Specifically, the authors observed that repeating the
dose of WJ-MSCs after 10 days was associated with improved cardiac parameters and re-
duced infarct size. Recently, Prat-Vidal and colleagues [100] described the use of WJ-MSCs
supported by decellularized pericardium. Scaffolds represent an important mechanism
in tissue engineering that improves cell survival and retention. The authors report the
application of WJ-MSC-based tissue graft during coronary artery bypass graft (CABG)
procedure, and it was associated with reduced infarct size and changes in ventricular
parameters after three months.

Table 2. Summary of selected clinical trials investigating the role of stem cells in myocardial infarction
or ischemic heart disease.

Stem Cells Number of Patients Efficacy of Cellular Treatment Selected Adverse Events References

Cardiopoietic cells
(conditioned MSCSs)

Cardiopoietic cells = 120 The primary endpoint was
neutral for the whole
population
Significant improvement in
patients with an LVEDV of
200–370 mL

Cardiopoietic cells
Any AE: 20.8%
Any serious AE: 14.1%
Death: 8.3%

[94]

Control = 151 Control
Any AE: 5.3%
Any serious AE: 1.2%
Death: 8.2%

WJ-MSCs WJ-MSCs = 58 Cellular treatment promoted
LVEF increase, together with
LVESV and LVEDV decrease

WJ-MSCs:
Rehospitalization for heart failure:
1.7%
Ectopic tissue formation: 1.7%

[98]

Placebo = 58 Placebo
Rehospitalization for heart failure: 0%
Ectopic tissue formation: 1.7%

WJ-MSCs 70 (single intervention = 20;
repeated intervention = 20;
control group = 25)

LVEF increased, LVESD
decreased

No adverse events were reported. [99]

AD-MSCs
AD-MSCs = 90; LVESV, LVEDV and LVEF did

not change
AD-MSCs
Heart failure worsening: 15.5%
Ventricular tachycardia/fibrillation:
6.6%
Myocardial infarction: 4.4%
PCI or CAGB: 2.2%
Stroke or TIA: 1.1%
Angina worsering: 1.1%
Death: 3.3%

[96]

Placebo = 43 Placebo
Heart failure worsening: 16.3%
Ventricular tachycardia/fibrillation: 0%
Myocardial infarction: 2.3%
PCI or CAGB: 0%
Stroke or TIA: 2.3%
Angina worsering: 2.3%
Death: 4.7%
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Table 2. Cont.

Stem Cells Number of Patients Efficacy of Cellular Treatment Selected Adverse Events References

AD-MSCs
AD-MSCs = 54

LVEF, LVESV and LVEDV
AD-MSCs
Heart failure worsering: 9.3%
Ventricular fibrillation/tachycardia:
1.9%
Myocardial infarction: 3.7%
Atrial fibrillation: 3.7%
Angina worsening: 9.3%
Cancer: 1.9%
Death: 5.6%

[97]

Placebo = 27 Placebo
Heart failure worsering: 7.4%
Ventricular fibrillation/tachycardia:
3.7%
Myocardial infarction: 3.7%
Atrial fibrillation: 3.7%
Angina worsening: 3.7%
Cancer: 0%
Death: 0%

AE—adverse event; AD-MSC—adipose-derived mesenchymal stem cell; MACE—major cardiac adverse event; WJ-
MSCs—Wharton Jelly-derived mesenchymal stem cell; LVESV—left ventricular end-systolic volume; LVEDV—left
ventricular end-diastolic volume.

4.3.2. Induced Pluripotent Stem Cells

Induced pluripotent stem cells were introduced for the first time by Yamanaka
and collaborators, who reprogrammed mouse cells in 2006 [101]. A year after this dis-
covery, two independent teams demonstrated the first generated iPSC lines. This was
achieved by reprogramming fibroblasts into iPSCs using the Oct4/Sox2/Klf4/c-Myc and
the Oct4/Sox2/Nanog/LIN28 factors [102,103]. The following studies have shown that
it is possible to produce iPSCs from fibroblasts without the involvement of c-Myc [104].
They are somatic-derived cells that are reprogramed to enter the undifferentiated phase by
gene transfer using trans-acting factors. Induced stem cells are able to produce cells repre-
senting derivatives from three germ layers [102]. Human iPSCs (hiPSCs) have attracted
great interest in cardiovascular research due to their ability to differentiate into smooth
muscle cells (SMCs), endothelial cells (ECs), and cardiomyocyte lineages [102,105–108].
Specifically, iPSC-derived cardiomyocytes can be differentiated into atrial and ventricular
subtypes [109]. Cardiac differentiation depends on the cellular origin, as iPSCs derived
from certain cells reprogram towards cardiomyocytes more easily [110]. Human iPSC-
derived cardiomyocytes may serve as a novel therapeutic approach to regenerate cardiac
tissues after cardiac impairment. However, the implementation, survival, and engraftment
of human iPSCs are challenges that still need to be investigated.

The administration of iPSCs in animal models of MI has been associated with beneficial
outcomes. For instance, Nelson et al. showed that hiPSCs therapy restored myocardial func-
tion after acute MI and attenuated remodeling progression [111]. As iPSCs can differentiate
towards cardiomyocytes, the use of iPSC-derived cardiomyocytes have been investigated
as well. First, iPSC-cardiomyocyte transplantation is associated with significant cardiac
regeneration after MI in animal studies [112,113]. Compared to MSCs, iPSC-derived cardiac
cells are associated with improved antifibrotic properties [114] and enhanced vasculogene-
sis [115]. The pro-angiogenic abilities may result from an abundant expression of alpha-B
crystallin (CRYAB), which enhances tube formation and migration of endothelial cells [116].
Moreover, in a study by Stępniewski et al., the authors demonstrated that iPSC-derived
cardiomyocytes showed greater efficacy in improving cardiac functionality than AD-MSCs
in murine MI models [117]. Similarly, beneficial effects were observed after the use of iPSC-
cardiomyocyte-derived exosomes, which improved cardiac function and reduced fibrosis by
enhancing autophagy [118]. Furthermore, these structures enhance angiogenesis, as stimu-
lation of endothelial cells with exosomes derived from iPSC-cardiomyocytes stimulates the
expression of pro-angiogenic markers such as VEGF, platelet-derived growth factor (PDGF),
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and fibroblast growth factor 2 (FGF2) [119]. Importantly, the use of iPSCs is associated with
concerns regarding tumorigenesis. Experiments on rats showed that monitoring the LIN28
marker, which indicates undifferentiated iPSCs, may be crucial to evaluate tumorigenic po-
tential. Specifically, transplantation of iPSC-derived cardiomyocytes with a LIN28-positive
fraction greater than 0.33% was associated with tumor formation in rats [120]. One method
that could prevent neoplastic tissue development is to eliminate undifferentiated iPSCs.
Sougawa and collaborators demonstrated that treatment of iPSC-derived cardiomyocytes
with brentuximab vedotin, an agent targeting CD30, could induce apoptosis in residual
undifferentiated iPSCs [121]. Irradiation is another method that has been suggested to
reduce the risk of teratoma formation [122]. These types of treatments aim to increase
the safety of clinical applications of iPSC-derived cardiac cells. However, they may also
interfere with cardiomyocyte functionality. Specifically, radiation was found to significantly
alter the expression of hundreds of genes in iPSC-derived cardiomyocytes [123].

Importantly, iPSC-derived cardiomyocytes demonstrate an immature phenotype, and
studies have been examining potential methods to improve the maturation process. These
techniques incorporate tissue engineering, scaffolds, or microtissues incorporating various
cell types. Firstly, metabolic pathways play key roles in the processes of cardiomyocytes
maturation. Specifically, alteration of the culture medium to include low levels of glucose
and higher concentrations of fatty acid enhanced contraction and caused structural im-
provements of differentiated cardiac cells [124]. This culture modification is associated with
energy balance, which depends on the quality of mitochondria. Importantly, the maturation
of cardiomyocytes may depend on the expression of Sirtuin 3, a mitochondrial deacetylase
that regulates the structure and functionality of these organelles [125]. Furthermore, func-
tionality of iPSC-derived cardiomyocytes may be improved by regulating the mitochondrial
respiratory chain. Specifically, heat shock protein 90 (Hsp90) mediates the expression of
mitochondrial respiratory chain proteins; thus, regulating its expression can alter metabolic
output of cardiomyocytes [126]. Apart from mitochondrial functionality, enhancement of
the sarcomere performance could improve physiological activity of engineered cardiac
tissues. Inducing the expression of α-myosin heavy chain improved contractile function in
iPSC-derived cardiac myocytes [127].

Various signaling pathways have been suggested to affect cardiomyocyte maturity.
Thousands of genes are differently expressed between adult and fetal, as well as in vitro car-
diac samples [128]. Modifying the expression of these genes may impact the phenotype and
functionality of generated cardiomyocytes. Suppression of mammalian target of rapamycin
(mTOR), a member of the phosphoinositide 3-kinase (PI3K) pathway, has been associated
with quiescent state, improved contractility, as well as an upregulation of maturity-related
genes in iPSC-derived cardiomyocytes [129]. Another pathway involved in the matura-
tion process is MAPK. Concomitant inhibition of the MAPK and PI3K pathways was also
associated with improved maturation [128]. In addition, cardiomyocytes depend on ion
channels to be able to exert their functions. Therefore, modulating the expression of ion
channels may enhance the maturity and reduce the risk of arrhythmia. In a study by Zhou
et al., the authors studied the impact of KCNJ2 gene overexpression. KCNJ2 encodes a
potassium channel, and its upregulation stimulated electrophysiological and structural mat-
uration [130]. Another potential mechanism that could be applied to improve iPSC-derived
cardiomyocyte maturity is a formation of microtissues involving various cellular subtypes.
Paracrine products of these cells can increase cardiomyocyte functionality. These microtis-
sues may involve iPSC-derived cardiac cells (endothelial cells, cardiac fibroblasts) [131] and
multilineage cells [132]. The presence of vascular cells offers another important benefit; it
enhances the proliferation of iPSC-derived cardiomyocytes [133]. Furthermore, stimulation
of spheroid aggregation has also been associated with enhanced maturation [134].

Recent studies have been investigating the use of iPSC-derived myocardial tissue
patches, engineered cardiac tissue, or scaffolds. These methods could enhance cellular
engraftment. For example, the use of iPSCs with patches made from decellularized placenta
significantly upregulated genes associated with conductivity, structure, maturation, and
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metabolism. This strategy could significantly improve cardiac function and reduce infarct
size in rats after MI [135]. Moreover, several studies examined the use of such tissues in
larger animals. Human iPSC patches incorporating three types of cardiac cells together with
a fibrin/insulin-like growth factor-1 (IGF-1) patch significantly promoted cellular engraft-
ment and cardiac function in porcine models. Furthermore, this treatment strategy did not
induce cardiac arrhythmias [136]. Gao et al. reported that human cardiac muscle patches
(hCMPs) generated from human iPSCs improved heart function by stimulatory effect on
cell survival and angiogenesis. The hCMP released exosomes promoting cardiomyocyte
survival [137]. In a recent study by Miyagawa et al., the authors studied the efficacy of
iPSC-derived myocardial patches in porcine infarction models. The authors observed that
transplantation of myocardial patches was associated with significant improvements in
cardiac functionality even 12 weeks after the procedure. In addition, iPSC-derived tissue
enhanced vascular density of the infarct zone. However, the authors did not find a signifi-
cant difference regarding the level of interstitial fibrosis. Importantly, the treatment did
not cause lethal arrhythmias nor tumor formation during study period [138]. Additionally,
studies have examined the use of iPSC-derived cardiomyocyte aggregations, known as
cardiac spheroids. For example, transplantation of cardiac spheroids in swine models
improved EF 8 weeks after the procedure and significantly reduced infarct size. However,
it was also associated with the occurrence of tachycardia [139]. Recently, Vo and colleagues
performed a meta-analysis to investigate efficacy and safety of iPSC-derived cardiomy-
ocytes in animal models with IHD. The authors included a total of 51 studies, among which
43 included murine models, while large animals were investigated in 8 studies. The authors
demonstrated that cellular therapy was associated with a significantly greater LVEF and
fractional shortening (FS). However, no significant differences were noted regarding the
mortality and presence of ventricular arrhythmias [140].

As previously mentioned, iPSCs can differentiate towards endothelial cells, which has
been investigated in the context of MI. Precisely, exosomes obtained from iPSC-derived
endothelial cells have been found to suppress cardiomyocyte apoptosis, improve LVEF,
reduce infarct size, and enhance cardiomyocyte contraction in the MI models [141]. Combi-
national transplantation of iPSC-derived endothelial cells and cardiomyocytes in MI animal
models was associated with improved cardiac functionality, smaller infarct area, as well as
greater presences of blood vessels [142].

5. Stem Cells and Dilated Cardiomyopathy

Dilated cardiomyopathy is characterized by ventricular dilation or systolic dysfunction
when there is no sign of CAD which leads to heart failure or the death of patients [13].
Current therapy strategies do not always provide the desired efficacy. Stem cells have
opened remarkable new avenues for tissue regeneration in multiple heart disease. MSCs
may play a therapeutic role in DCM due to their differentiation properties. Preclinical
observations have indicated their role in the treatment of cardiac fibrosis.

Cardiac fibrosis, which results from epithelial-to-mesenchymal transition and myofi-
broblast activity, is involved in the pathogenesis of DCM [143]. Importantly, this process
has been associated with the occurrence of a sudden cardiac death [144]. Stem cells have
strong antifibrotic properties, which could be utilized in the treatment of DCM. A study
by Zhang et al. demonstrated that treatment with UC-MSCs reduced cardiac fibrosis in
DCM rat models. Mechanistically, stem cells were found to suppress the expression of
TGF-β1, type III collagen, and p-ERK1/2 [145]. Additionally, a study by Mao et al. indi-
cated that injection of HuMSCs promoted FS and LVEF. Levels of B-type natriuretic peptide
(BNP) and cTNI were mitigated after administration of HuMSCs. On the other hand, the
expression of the angiogenesis-related factors VEGF, IGF-1, and hepatocyte growth factor
(HGF) was promoted [146]. Moreover, the same MSC subtype has also been found to
suppress the process of endothelial-to-mesenchymal transition [147]. Cardioprotective
features in DCM animal studies were also found in the case of BM-MSCs [148] and AD-
MSCs [149]. Beneficial effects in DCM have also been observed after the administration of
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stem cell-derived exosomes. In mouse models with doxorubicin-induced DCM, exosomes
could significantly improve cardiac functionality (LVEF and LVFS), and inhibited apoptosis
of cardiomyocytes. Intriguingly, these membrane-bound structures were also found to
promote the anti-inflammatory macrophage population through the modulation of the
JAK2/STAT6 axis [150].

These preclinical studies clearly demonstrate the promising efficacy of stem cell or
exosome-based therapies. Consequently, studies have been investigating their use clinically.
Since several smaller clinical trials have been conducted, meta-analyses have analyzed the
role of cellular therapy more broadly. One of such studies published in 2019 included eight
clinical trials. According to this analysis, stem cell-based therapy did not improve mortality,
but was associated with increased LVEF and reduced LVESV and LVEDCS [151].

6. How to Improve the Activity of Stem Cells in Cardiac Diseases?
6.1. Impact of Heart Failure on Stem Cell Functionality

Heart failure can develop as a result of previously described diseases which is as-
sociated with heart remodeling and impaired functionality [152]. Several studies have
evaluated the benefits of stem cells in preclinical animal models and in patients with chronic
HF [153,154]. A recent study by Guo et al. investigated the benefits of administering AD-
MSCs into the pericardial cavity of rats with HF. The authors observed that this procedure
decreased the expression of α-smooth muscle actin (α-SMA) and brain natriuretic peptide
(BNP) while it increased that of C-reactive protein (CRP). Furthermore, intrapericardial
MSC injection was associated with an upregulation of myocardial VEGF and decreased
expression of IL-6 [155].

Interestingly, populations of certain subtypes of stem cells are increased in patients
with HF [156]. However, the state of HF may functionally impair circulating stem cells. In
a study by Fortini et al. [157], the authors collected and isolated MSCs from the adipose
tissue of patients with HF. These cells showed markers of senescence, as the expression of
p16 was significantly elevated in cells derived from HF patients. Moreover, the expression
was further enhanced in cells from patients with more severe HF. The authors also analyzed
expression of members and targets of the Notch signaling. Specifically, Hey 1 and 2
gene expression, as well as Notch1 protein expression were reduced in patients with HF.
Furthermore, the state of HF alters the secretome of MSCs. Specifically, stem cells obtained
from animals with left ventricle dysfunction produced significantly more pro-inflammatory
cytokines, which was associated with reduced regenerative properties [158]. In addition,
HF changes the profile of exosomal miRNAs. In a study by Qiao et al., miR-21-5p was
the most dysregulated molecule, and it was downregulated in the vesicles derived from
HF cardiac stromal cells. These exosomes demonstrated reduced cardioprotective features
compared to the vesicles obtained from healthy hearts [159]. These studies demonstrate
that HF may alter stem cells functionality, which highlights the potential of improving their
efficacy ex vivo.

6.2. Mesenchymal Stem Cells

Stem cell therapy is a promising concept in the treatment of cardiovascular diseases,
but the poor survival of engrafted cells may be associated with their reduced efficacy [160].
The activity and viability of stem cells or their differentiation towards cardiac cells can,
however, be enhanced by pretreatment with natural and pharmacological agents, as well
as genetic transfection to increase the benefits of stem cell therapy. Furthermore, as HF
patients demonstrate functionally altered cells, their stimulation or modification of their
environment could further enhance their activity.

The efficacy of stem cells may depend on adipokines, which are immunomodulatory
peptides secreted by the adipose tissue. Adiponectin is one of the most extensively studied
adipokine with anti-inflammatory properties. It promotes viability and suppresses apop-
tosis of BM-MSCs stimulated with flow shear stress [161]. Inhibition of apoptosis could
be mediated by the AMPK pathway, which is a major downstream signaling molecule
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of adiponectin [162]. Several studies have presented the benefits of adiponectin in the
context of various cardiac disorders. For example, Nakamura et al. evaluated the role of
adiponectin in the treatment of HF and demonstrated that adiponectin stimulates AD-MSCs
to secrete exosomes. Administration of stem cells to adiponectin-knockout animals did
not provide an expected improvement in heart functionality. Conversely, enhancement of
adiponectin levels further improved the beneficial effects of AD-MSCs [163]. In another
study on MI animal models, adiponectin further enhanced the beneficial effects induced
by MSCs, possibly by stimulating AMPK signaling [164]. Transduction of the adiponectin
gene into BM-MSCs could attenuate left ventricular dysfunction and reduce fibrosis in
the hearts of diabetic rats, possibly through the inhibition of tumor growth factor beta
(TGF-β) [165].

Another adipokine that regulates the functionality of stem cells is apelin-13. Pretreat-
ment of BM-MSCs with this peptide promoted mitophagy and, consequently, suppressed
apoptosis, oxidative stress, and mitochondrial dysfunction, which could be dependent on
the activation of AMPK signaling [166]. Moreover, it stimulates MSCs functionality under
hypoxic conditions [167]. In an MI animal model, transplantation of MSCs pretreated with
apelin-13 significantly improved EF and left ventricle fraction shortening, and stimulated
cells were associated with longer survival at ischemic hearts [168]. Interestingly, myocardial
injection of apelin could activate residual cardiac stem cells to decrease infarct size and
improve cardiac function [169].

Some studies have examined the role of C1q and tumor necrosis factor-related protein
9 (CTRP9), an adipokine and a cardiokine [170], on the functionality of stem cells. Li et al.
demonstrated that the addition of CTRP9 into the culture of aged MSCs improved their
proliferation and immunoregulatory properties through the AMPK signaling [171]. In
cardiac tissue, expression of CTRP9 might determine the beneficial outcomes of MSCs,
as delivery of AD-MSCs into CTRP9-knockdown mice was associated with reduced en-
graftment of stem cells into infarct areas [172]. Furthermore, Liu and colleagues recently
demonstrated that CTRP9-281, a C-terminal polypeptide, could promote the secretion of
exosomes containing VEGF, thus enhancing angiogenesis [173]. MiR-34a-5p was identified
as an upstream inhibitor of CTRP9, and downregulation of this miRNA also enhanced the
cardioprotective features of AD-MSCs [174]. Additionally, transplantation of stem cells into
the region of infarction is a common method of stem cell delivery in studies investigating
their efficacy, but intravenous injection has also been examined. The introduction of stem
cells via intravenous delivery has, however, been associated with unfavorable tissue redis-
tribution. Resistin, another adipokine, may be the solution for this obstacle, as it has been
found to promote myocardial homing of AD-MSCs, which could explain its stimulation
of AD-MSC-mediated cardioprotection [175]. Beneficial effects have also been observed
after pretreatment of MSCs with asprosin. This adipokine has been found to stimulate
the ERK1/2 pathway to enhance the expression of antioxidant molecules and to inhibit
apoptosis, which could translate into improved outcomes of pretreated MSC on the animal
model of MI [176].

Another molecule suggested to regulate the activity of stem cells is sirtuin 1 (SIRT1),
an NAD+-dependent deacetylase that regulates the activity of multiple proteins and thus
is involved in metabolic and inflammatory processes [177]. In embryonic stem cells,
suppression of SIRT1 activity and siRNA-mediated silencing promotes cell death, as it
regulates DNA repair proteins [178]. Apart from its role in cellular survival, SIRT1 takes part
in the differentiation of stem cells [179]. The use of SIRT1-knockdown stem cells has been
associated with reduced efficacy in the treatment of HF: compared to wild type cells, hearts
treated with modified stem cells demonstrated reduced EF. Furthermore, heart tissues from
the study group demonstrated lower capillary density and enhanced fibrosis [180]. In
addition, pathological conditions may alter SIRT1 expression; for instance; high glucose
reduces SIRT1 expression in BM-MSCs [181]. Agents that promote SIRT1 activity have been
found to improve the treatment of cardiac conditions. For instance, Chen and collaborators
analyzed heart tissues from rats with diabetes and found reduced protein expression
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of survival markers in this cohort. Transplantation of AD-MSCs could increase their
expression, but the use of cells pretreated with resveratrol, a SIRT1 activator, significantly
promoted the expression of survival proteins [182]. In another study, resveratrol was found
to induce SIRT1 expression in BM-MSCs by suppressing miR-34a. Transplantation of the
pretreated cells into the areas of infarction enhanced the expression of the angiogenesis
markers: VEGF and HIF-1α [181]. Similarly, pretreatment of aged MSCs with SRTT1720,
another SIRT1 activator, significantly improved cardiac function after infarction in animal
models. In addition, it suppressed the apoptosis of MSCs through the upregulation of
antiapoptotic Fas apoptosis inhibitory molecule (FAIM) [183]. Stimulation of AD-MSCs
with melatonin, which also promotes SIRTT1, has been found to reduce apoptosis, improve
functionality, and suppress cardiac fibrosis in animal models of myocardial infarction [184].

Moreover, as activation of SIRT1 has been associated with suppression of the progres-
sion of HF [185], stem cells could be modified to promote the deacetylase in heart tissue.
As previously mentioned, stem cells secrete membrane-bound exosomes, which transport
bioactive cargo, such as ncRNA. Transfection of stem cells with plasmids may lead to
overexpression of particular transcripts in exosomes. For example, exosomes derived from
MSCs transfected with the lncRNA KLF3 antisense RNA 1 (KLF3-AS1) could reduce the
infarct zone in rats after myocardial infarction. Mechanistically, KLF3-AS1 binds to miR-
138-5p, which ultimately upregulates SIRT1 [186]. Therefore, these studies demonstrate an
important role of SIRT1 in the treatment of cardiac diseases. Promotion of SIRT1 enhances
survival of stem cells which, in turn, exert more beneficial effects in injured cardiac tissues.

Several studies have demonstrated the beneficial role of insulin growth factor 1 (IGF-1)
on stem cell functionality in various disease models [187,188]. Conversely, blockade of IGF-
1R suppresses viability and promotes apoptosis of stem cells [189]. Treatment of BM-MSCs
with IGF-1 stimulates their differentiation into cardiomyocyte-like cells [190]. Compared to
stem cells alone and the control group, IGF-1 overexpressing adipose-derived stem cells
significantly increased EF in rats after myocardial infarction. Secretion of IGF-1 enhanced
the PI3K pathway [191], the activation of which has been associated with cardiomyocyte
proliferation, as well as regulation of apoptosis and autophagy [192,193]. Importantly,
stimulation of MSCs with agents that promote autophagy have demonstrated improved
cardioprotective properties [194,195]. For example, stimulation of MSCs with rapamycin
upregulated the autophagy marker LC-3 and improved their viability. Pretreated cells
enhanced the cardiac function of rats after infarction, as demonstrated by echocardiography.
Furthermore, these cells could increase the thickness of the left ventricle and reduce the
post-infarct scar. Additionally, rapamycin enhanced the survival of transplanted cells,
which also significantly promoted the process of angiogenesis in the area of infarction [194].

Peroxisome proliferator-activated receptor (PPAR) β/δ belongs to the family of nu-
clear receptors that mediate metabolic and inflammatory processes [196]. The activity
of PPARβ/δ has been suggested to mediate the immunomodulatory properties of stem
cells [197]. In a model of MI, knockdown of PPARβ/δ or the use of its antagonist suppressed
the ability of MSCs to reduce infarct size, suggesting that PPARβ/δ has a cardioprotec-
tive role. However, it did not alter their secretion of anti-inflammatory cytokines [198].
Conversely, pretreatment of MSCs with PPARβ/δ is associated with greater protection of
cardiac cells from oxidative stress and had better efficacy than unstimulated MSCs in an ex
vivo model of cardiac ischemia-reperfusion injury [199].

Beneficial effects have been observed when MSCs were modified to express integrins,
receptors that regulate adhesion. Specifically, these studies investigated the upregulation
of integrin-linked kinase (ILK), which interacts with integrins and regulates adhesion.
Under hypoxic conditions, overexpression of ILK significantly enhanced MSCs survival
and promoted the activity of the Akt and ERK1/2 pathways. Modified MSCs also demon-
strated improved adhesion capabilities, and their transplantation into an animal model
of MI was associated with reduced fibrosis and infarct size, as well as reduced number of
apoptotic cells [200]. ILK may also modify paracrine features of MSCs, as stimulation of
cardiac fibroblasts with the condition medium from ILK-MSCs was associated with altered
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expression of fibrosis-related genes. Moreover, application of this condition medium into
MI animals significantly improved cardiac function compared to the medium derived
from unmodified MSCs [201]. Other studies have also demonstrated beneficial effects of
ILK-MSCs in animal models of MI [202,203].

Modulation of the expression of cardiac-specific transcription factors is another strat-
egy that could boost the efficacy of stem cell therapy. As previously mentioned, Nkx2.5
is a marker of cardiac progenitors, and Nkx2.5-positive cells may differentiate towards
cardiomyocytes or vascular cells. Various molecules have been shown to regulate the
activity of Nkx2.5 and that there are several synergistic factors, such as GATA4 [204]. Reg-
ulating the expression of Nkx2.5 has been suggested as a promising therapy of MI [205].
Transfection of BM-MSCs with Nkx2.5 or GATA and their co-culture with cardiomyocytes
significantly enhanced differentiation towards cardiac cells. Transplantation of transfected
cells has been shown to potentially enhance cardiac repair in a rabbit [206] and mouse
models [207]. In addition, Nkx2.5-transfected MSCs could be used in the treatment of HF.
In a study by Deng et al., the authors demonstrated that transfected cells were associated
with upregulated cardiac markers, while introduction of modified cells into the rat HF
models significantly improved EF and fractional shortening, as well as reduced myocardial
fibrosis [208].

CVDs are a group of diseases in which inflammation plays a role in the pathogenesis.
Specifically, atherosclerosis and MI are associated with immune cell responses, including
that of T cells [209,210]. Modulation of T cell activity occurs through the programmed
death cell 1 pathway (PD-1/PD-L1), which is used in immunotherapy for the treatment of
malignancies. In patients with MI, the expression of PD-1 in peripheral blood mononuclear
cells (PBMCs) fluctuates in a time-dependent manner, and significantly reduced expression
is observed in patients with a more severe infarction. Furthermore, a different expres-
sion profile of PD-1 is observed in an animal cardiac tissue in infarcted and its adjacent
regions [211]. Injection of AD-MSCs overexpressing Akt and PD-L1 into the infarcted
hearts of rats has been shown to promote the end-systolic pressure–volume relationship
and preload-recruitable stroke work, which are significantly reduced in animals with MI.
The modified stem cells reduced infarct size and promoted CD25+ cells, which play a
cardioprotective role during MI [212,213]. In addition, overexpression of PD-L1 has been
suggested to improve the viability and survival of stem cell-derived cardiomyocytes by
reducing their immunogenicity [214].

The impact of pretreatment of MSCs with classic pharmacological agents has been in-
vestigated. This includes statins, which are widely used to reduce cholesterol concentrations.
Stimulation of stem cells with atorvastatin has been found to promote pro-angiogenic mech-
anisms [215,216]. In addition, pretreatment has been associated with an upregulation of the
CXC chemokine receptor 4 (CXCR4) and improved stem cell cardiac homing in animal MI
models, as well as increased efficacy, reduced inflammation and fibrosis [217]. Atorvastatin
can modulate the secretome of MSCs by changing the cargo of exosomes. Specifically, as
demonstrated by Huang and collaborators, atorvastatin enhances the secretion of lncRNA
H19 in stem cell-derived exosomes, which could be responsible for the beneficial activity
of pretreated stem cells [218]. Several studies have demonstrated the beneficial impact of
H19 on cardiac functionality in various models of cardiac disorders [219–222]. In another
report, stimulation with atorvastatin significantly downregulated six miRNA molecules
and upregulated three miRNAs in exosomes. An upregulated miR-139-3p could stimulate
macrophage polarization towards the M2 anti-inflammatory phenotype, thus improving
their effects in an MI model [223] (Figure 2). These promising preclinical study results
paved the way for a clinical trial; Yang et al. compared the efficacy of intense atorvastatin
therapy combined with mononuclear cell transplantation. The combination cohort achieved
a significantly higher LVEF value compared to the group receiving intense atorvastatin,
suggesting an important synergy between these methods [224]. On the contrary, statins may
also negatively affect the functionality of iPSC-derived cardiomyocytes by reducing their
viability and metabolic activity [225]. Pretreatment of MSCs with various other agents has
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been associated with improved efficacy [226,227]. Overall, pretreatment or transfection of
stem cells with numerous respective agents and genes has been associated with improved
efficacy in the treatment of CVDs (Figure 3; Table 3).
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Table 3. Summary of methods to improve the functionality of mesenchymal stem cells.

Agent/Molecule Mechanisms Mediating the Functionality of Stem Cells References

Adiponectin Stimulation of circulating adiponectin promotes the beneficial effects of MSCs in HF. [163]

Adiponectin further enhanced the beneficial effects of MSCs in the treatment of
animal models with cardiac infarction.

[164]

Adiponectin transduction into BM-MSCs could enhance the positive effects on left
ventricle and fibrosis in diabetic rats.

[165]

Apelin-13 MSCs pretreated with apelin-13 were associated with improved viability and could
further increase cardiac repair after infarction in animal models.

[168]

CTRP9 Injection of AD-MSCs into CTRP9-knockdown mice with myocardial infarction was
associated with reduced engraftment.

[172]

CTRP9-281, a C-terminal polypeptide, stimulates stem cells to produce exosomes with
a pro-angiogenic cargo and further enhances cardioprotection.

[173]

Inhibition of miR-34a-5p, an upstream inhibitor of CTRP9, could further enhance the
cardioprotective role of adipose-derived stem cells.

[174]

Resistin Resistin promotes homing of MSCs towards cardiac tissue and thereby improves their
cardioprotective potential.

[175]

Asprosin Pretreatment of MSCs with asprosin stimulated the ERK1/2 pathway to upregulate
antioxidant molecules and suppress apoptosis, which could translate into elevated
cardioprotection of pretreated stem cells.

[176]

SIRT1 SIRT1-knockdown cells demonstrate reduced efficacy in the treatment of HF. [180]

Pretreatment of stem cells with resveratrol enhanced the expression of survival
proteins in the hearts of rats with diabetes.

[182]

Pretreatment of stem cells with resveratrol promoted the expression of proangiogenic
mediators in hearts after infarction.

[181]

Aged MSCs pretreated with SRT1720, a SIRT1 activator, had significantly enhanced
cardiac function after infarction in animal models.

[183]

Stem cells with melatonin enhances the expression of SIRT1 and stimulates animal
hearts recovery after infarction.

[184]

IGF-1/IGF-1R Stimulation of BM-MSCs with IGF-1 enhances their differentiation into
cardiomyocyte-like cells

[190]

Rapamycin Pretreatment of MSCs with rapamycin enhanced the cardioprotective properties of
these cells, improved their survival, and enhanced angiogenesis at the area of infarct
in the rats model of myocardial infarction.

[194]

PPARβ/δ PPARβ/δ knockdown or the use of its antagonist suppressed the ability of MSCs to
reduce infarct size.

[198]

The use of PPARβ/δ agonist enhances the cardioprotective role of MSCs. [199]

Integrin-linked kinase MSCs overexpressing integrin-linked kinase demonstrated greater viability.
Transplantation of these cells into an animal model of myocardial infarction was
associated with reduced fibrosis and number of apoptotic cells.

[200]

Integrin-linked kinase modifies the paracrine properties of MSCs, as the condition
medium of modified cells could significantly improve cardiac function.

[201]

Atorvastatin Pretreatment of MSCs with atorvastatin upregulated CXCR4 and resulted in
improved cardiac homing of stem cells. Furthermore, the use of pretreated cells could
significantly improve cardiac function and lower fibrosis and inflammation.

[217]

Atorvastatin enhanced the secretion of lncRNA H19 in stem cell-derived exosomes,
which was associated with improved cardiac function.

[218]

Atorvastatin significantly changed the profile of miRNAs secreted by MSCs in
exosomes, which could promote the M2 macrophage polarization.

[223]

HF—heart failure; MSC—mesenchymal stem cells; CTRP9—C1q and tumor necrosis factor-related protein 9;
IGF-1—insulin growth factor 1.
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We have previously mentioned that stimulation of the M2 anti-inflammatory
macrophages could represent a beneficial mechanism in the treatment of atherosclero-
sis and CAD. Studies have demonstrated that macrophage polarization can be mediated by
stem cells. However, Patel et al. report a clinical trial investigating the use of ixmyelocel-T,
a product which contains bone marrow cells, including MSCs and increased number of the
M2 macrophages. Patients with ischemic DCM underwent a transendocardial injection of
the product. Importantly, the treatment composed of cellular combination was associated
with a 37% reduction in cardiac events. Furthermore, the cohort administered with placebo
significantly more often experienced an AE. However, the cellular treatment did not sig-
nificantly improve LVESV, LVEDV, LVEF, as well as NYHA class nor 6 min walking test
results [228].

7. Conclusions and Future Perspectives

To conclude, cellular and exosome therapies represent exciting treatment strategies
for patients following MI, with cardiomyopathy, or HF, to induce cardiac tissue regen-
eration and improve organ functionality. Multiple studies have demonstrated beneficial
outcomes of treatment incorporating MSCs and iPSC-derived cardiomyocytes, as well as
stem cell-derived extracellular vesicles in CVDs. Some of these cells have been examined
clinically, but clinical trials have shown a more modest efficacy of these therapies. Several
factors could be considered to improve the outcomes of clinical trials, such as including
a homogenous study group, administering MSCs with different bioactivity, and delivery
method [229]. Furthermore, the effectiveness of stem cells can be enhanced by improving
their survival, engraftment, cardiac homing, and pro-angiogenic capabilities, as well as
stimulation of cardiomyocyte differentiation. These processes could be achieved by regu-
lating circulating adipokines, pretreatment of stem cells with natural or pharmacological
agents, as well as gene transfection. These modifications may significantly change the
expression profile and secretome of MSCs, thus affecting their immunomodulatory and
regenerative properties.

Currently, iPSCs are considered as highly attractive in the field of cardiac regener-
ation. Several clinical trials are being conducted that aim to investigate the safety and
efficacy of iPSC-derived cardiomyocytes (e.g., NCT05566600 [230], NCT04396899 [231],
NCT04945018 [232]). Numerous studies investigated methods to improve the maturation
of iPSC-derived cardiomyocytes, which may eventually lead to the improved efficacy of car-
diac tissues formed by these cells. Moreover, treatment with iPSC-derived cardiomyocytes
can also be enhanced with the use of natural agents [233]. Importantly, engineered heart
tissues incorporating iPSC-derived cardiomyocyte provide opportunities to study drug
testing and disease mechanisms, which may also translate into improved treatment out-
comes [234]. Recently, Yang and colleagues generated chambered and vascularized cardiac
organoids, which is highly promising for the above-mentioned purposes [235]. Interestingly,
Cai et al. developed a protocol to differentiate iPSCs towards heart valve cells, creating
further opportunities to study valvular heart diseases [236]. Furthermore, iPSC-derived
cardiomyocytes from individuals carrying genetic variants associated with the occurrence
of cardiomyopathy enable studying the importance of these mutations in disease pathogen-
esis [237]. In addition, iPSC-derived cardiac cells can serve as important models to study
the cardiotoxicity of drugs, such as doxorubicin. For example, iPSC-derived cardiomy-
ocytes may be used to study cellular responses to the cardiotoxic drug [238]. Moreover,
as demonstrated by Magdy and collaborators, iPSC-derived cardiomyocytes can undergo
gene editing to study the impact of particular variants on doxorubicin-induced cardiotoxic-
ity [239]. Future studies are required to investigate the beneficial mechanisms induced by
stem cells and how to improve their cardioprotection and regenerative properties.
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