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Abstract: Changes in the components, variety, metabolism, and products of microbiomes, particularly
of the gut microbiome (GM), have been revealed to be closely associated with the onset and progres-
sion of numerous human illnesses, including hematological neoplasms. Among the latter pathologies,
there is acute lymphoblastic leukemia (ALL), the most widespread malignant neoplasm in pediatric
subjects. Accordingly, ALL cases present a typical dysfunctional GM during all its clinical stages
and resulting inflammation, which contributes to its progression, altered response to therapy, and
possible relapses. Children with ALL have GM with characteristic variations in composition, variety,
and functions, and such alterations may influence and predict the complications and prognosis of
ALL after chemotherapy treatment or stem cell hematopoietic transplants. In addition, growing
evidence also reports the ability of GM to influence the formation, growth, and roles of the newborn’s
hematopoietic system through the process of developmental programming during fetal life as well as
its susceptibility to the onset of onco-hematological pathologies, namely ALL. Here, we suggest some
therapeutic strategies that can be applied at two levels of intervention to recover the microbiome and
consequently prevent/delay ALL or arrest its progression.
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1. Introduction

Leukemia represents a typical and heterogeneous group of hematological neoplasms
that have the characteristics of clonal dominance of hematopoietic stem cells arrested in the
development and maturation of multipotent progenitors [1]. This pathological condition is
highly prevalent in children under 15 years of age (accounting for 30% of all cancers), where
it represents the most common form of childhood malignant neoplasm. Precisely, forms
of leukemia in children mainly consist of acute lymphoblastic leukemia (ALL) and acute
myeloid leukemia (AML). Children within the age range of 2–4 years are the most common
ALL cases and show an overall survival (OS) of above 90% [2]. ALL is characterized by a
substantial proliferation of lymphoblasts and declined levels of circulating mature cells,
which are responsible for the development of unfunctional bone marrow and consequent
failure syndrome [3–5]. ALL may be of two forms: the first, with a prevalence of 80% in
children, causing alterations in the B cell lineage, and the second, which is uncommon
and is characterized by affecting T cells. The major ALL complication, which can lead to
mortality, is the involvement of the central nervous system (CNS), with the development
of typical symptoms, including the loss of balance, headache, fainting, nausea, or, more
rarely, swallowing difficulties. The severity of such symptomatology depends on leukemic
infiltration in CNS and consequently in its entity or increasing presence in CNS areas [6–8].
In addition, ALL appears underestimated due to underdiagnoses since it is asymptomatic
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in most cases. Diagnosis of ALL is based on the evaluation of the absolute number of all
the circulating cells and the subsequent histopathological analysis of the marrow tissue.
This last assessment is imperative and confirms the diagnosis thanks to the presence of
25% or more of the lymphoblasts in the bone marrow after the detailed examination of
the composition and structure of the tissue sample and the use of appropriate techniques,
i.e., cytogenetic methodology, and fluorescence in situ hybridization (FISH), for detecting
typical chromosomal defects associated with different disease outcomes [9]. Anemia,
leukopenia, and a low number of platelets explain the typical symptoms of ALL, including
fatigue, weakness, shortness of breath during normal physical activities, light-headedness,
dizziness or faintness, headaches, and a pale complexion, as well as recurrent fevers,
frequent infections, easy bruising, red spots on the skin called petechiae, frequent or severe
nosebleeds, bleeding gums, and, in women, more frequent menstrual periods. Additional
symptoms include weight loss or loss of appetite, swollen glands, bone and joint pain,
difficulty breathing, and an enlarged spleen or liver [10–12].

The ALL pathogenesis is evocated by both inherited and modulable factors, including
genetic/chromosomic alterations and environmental factors. The latter category comprises
alcohol, cigarettes, radiation exposure, chemical compounds, infections, and drugs. Modula-
ble factors during pregnancy can affect the fetus by causing genetic mutations [13]. To date,
however, the deep relationship between these factors and ALL onset, as well as the exact
mechanisms and pathways involved in such complex ALL pathophysiology, are still not
clear [14]. However, in the last few years, research has been focused on microbiomes since,
in adult ALL cases, the microbiome has been demonstrated to be significantly associated
with both onset and progression as well as modulation of the response and side effects of
chemotherapy drugs, infection during treatment, and therapeutic efficacy [15–17]. Such
particular attention is increasing given the growing evidence on the capacity of parents’
microbiomes and particularly of the gut microbiome (GM) to impact the formation, growth,
and functions of a newborn’s hematopoietic system (HS) through fetal developmental
programming as well as the newborn’s susceptibility to developing onco-hematological neo-
plasms [13]. Here, we describe and discuss the literature evidence on the GM role in pediatric
ALL, as well as suggest some therapeutic strategies aimed at recovering microbiomes.

2. Microbiome and ALL

In the last decade, recent evidence has demonstrated that another crucial determinant
(trigger) of the development of several diseases is microbial dysfunction or, more accu-
rately, dysbiosis. Dysbiosis has been shown to impact the development and progression
of numerous human diseases, ranging from immune diseases, cardiovascular diseases,
neurodegenerative diseases, and cancer [18–22]. The very relevant role of microbiota and
microbiome (its genome) has led to their being considered as the second system of control
of the functions of all the organs and tissues of the human body after the brain. Accord-
ingly, the microbiome appears to be the second body of the brain, regulating both human
health and disease. Among human diseases, microbial dysbiosis significantly contributes
to cancer onset and progression [23,24], as evidenced for the first time in 2012 [25]. Re-
search explorations on the association of GM and adult ALL started two years later [26],
and investigations on childhood ALL were described only after 2016 [27]. It is likely that
diverse issues have limited such studies. For instance, contamination of the tissue samples
during the processing phase or during the entire assessment due to the use of contaminated
buffers or other causes and inadequate processing techniques linked to high costs constitute
the most common limitations reported. However, recent progress in omics technologies
and the discounts in costs in such investigations, as well as the use of the appropriate
animal models, such as the Pax5/- and Sca1-ETV6-Runx1 mice model, have facilitated
the growing increase in the number of research studies on microbiomes in both adult and
children leukemia [28,29]. Accordingly, the studies on Pax5/- and Sca1-ETV6-Runx1 mice
have permitted the demonstration, for the first time, of the key role of genetic factors
in contributing to affecting GM and how such variations can impact HS and leukemia
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development. This evidence suggests the consideration of GM analysis as a diagnostic
leukemia tool in the future. In addition, interesting results from epidemiological studies
have led to the supposition that a remarkable trigger of leukemia is infections, impacting
the most common ALL subtypes. Also noteworthy are the results of a study conducted in
2018 on 42 pediatric patients with ALL at different times of therapy, revealing the presence
of microbiomes, which vary depending on the type of cancer. Such findings, confirmed by
another study conducted in 2020, have suggested that the human microbiome could be a
diagnostic tool for specific types of cancer. Below, several concepts are clarified to better
understand the close relationship between the microbiome and ALL in children [30–32].

3. Microbiota, Microbiomes, and Their Modulating Effects on Hematopoiesis in
Health and Disease

Now, research interest in exploring microbiota is rising exponentially because of its
key role in altering numerous mechanisms and processes related to human health and
disease, such as cancer (e.g., ALL). Microbiota represents an important component of our
body, constituted by many microorganisms (i.e., bacteria, viruses, and fungi). Precisely,
microbial cells might be about 3.8 × 1013, with 3000 species. The microbiota, organized in
niches, is localized in many anatomical structures of our body: oral, vagina, skin, and gut.
However, the prevalent region of microbiota is the gut; consequently, here, it is defined as
the gut microbiota (GM; as mentioned above), with 500 species of bacteria, as well as yeasts,
parasites, and viruses. Regarding the bacterial species, the phyla Firmicutes, Bacteroidetes,
and Actinobacteria are the most prevalent in adults [33], with Firmicutes including Clostrid-
ium, Ruminococcus, and Eubacterium. The bacterial species Bacteroidetes and Firmicutes show
a crucial relationship both in health and disease [34].

In newborns, GM takes origin after birth, and the results are composed initially of
native flora and later of transient flora derived by food intake [35]. Consequently, everybody
has a specific and unique GM composition, which, however, changes during the duration
of life, precisely from childhood to adulthood [36]. This results in a typical GM dynamism
and plasticity, modulating the GM functions, as well as those of other tissues, organs,
and systems, such as HS [37]. Therefore, GM influences, through multiple actions and
effects, the functions of other tissues, all of which have a protective nature, contributing
to the homeostasis of the organism. Precisely, GM contributes to protecting, through
the body’s immune responses, the host from pathogens, and it has metabolic activities,
contributes to the synthesis of amino acids, vitamins, and enzymes, and indirectly controls
the proliferation, structure, development, and composition of cells, the immune system,
and the intestine through the development of intestinal villi and intestinal epithelial cells,
contributing to the formation of the epithelial barrier (see Figure 1).

In addition to these functions, GM also modulates the functions of the central nervous
system, in which the metabolites released by the microbiota influence mood, stress regu-
lation, and instinctive behaviors on the cardiovascular and endocrine–metabolic systems;
the cardiovascular system is also modulated by GM through disease risk factors that cause
hyperlipidemia, atherosclerosis, and type 2 diabetes and the digestive system through
the action of microbiota products absorbed from the intestine and transferred to the liver
(see Figure 1) [38]. Thus, GM also impacts the individual’s physical and mental health.
However, even if generally considered beneficial, some GM microbes can cause a potential
danger to the human organism [37]. When the homeostasis of the microbiota is disturbed,
most of it becomes pathogenic, in which remodeling occurs that alters the sophisticated
balance of the microecosystem in the gastrointestinal tract, contributing to a variety of
pathological conditions and negatively affecting the physiological processes of the host [38].
This imbalance, called “microbial dysbiosis”, shows a reduction in microbes favorable to
the health of the host and an excessive presence of pathogenic microbes with deleterious
functions [39]. For example, Bacteroides fragilis and Fusobacterium nucleatum are known to
induce a proinflammatory state in the colon, which could potentially increase oncogenic
proliferation in the mucosal microenvironment [40,41].
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Many risk factors can act on our microbiota; the first is immutable and is genetically
inherited; it cannot be modified; however, other factors can instead be modified, such as
the environment and the way we are born and nourished during the first 1000 days of life,
as well as the programming of the development of all organs, such as HS, during fetal
life, depending on the parents, mother, and father [42]. Malnutrition or overnutrition in
pregnancy is involved in influencing fetal programming, just as other maternal and paternal
factors modulate fetal programming. The components of the intestinal flora are strongly
dependent on the influence of the environment in which we live, such as rural, urban,
industrialized, and non-industrialized areas [43]. Dysbiosis can inhibit the colonization of
beneficial probiotic bacteria, promote the proliferation of harmful enteropathogens, and
alter innate receptors and cytokine signaling, thereby affecting the immune system [44].
Dysbiosis can contribute to and be associated with a myriad of pathological conditions, such
as inflammatory bowel diseases, immune-mediated diseases, and neoplastic conditions,
including hematological malignancies [39].

3.1. The GM’s Close Relationship with Hematopoiesis

Recent evidence reports that GM has a close relationship with hematopoiesis. Ac-
cordingly, the Balmer group first reported in 2014 that the diverse composition of the
microbiota significantly influences both the configuration and quantity of myeloid cell
lineages [45]. This could explain why the microbiota with fewer types of microorganisms
constitutes an unfavorable factor for the success of an allogeneic stem cell transplant, as
highlighted by Taur and collaborators. It has, in fact, been shown that this unfavorable
condition is significantly correlated with an increase in mortality and consequent lower
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survival rates of transplanted patients [46]. Similar results were found in mice treated with
antibiotic therapy [47]. Furthermore, it has been reported in mice that some foods are able
to impact the microbiota and can indirectly modify the function of HS. For example, foods
rich in fiber specifically modify the function of some bacteria in the microbiota, capable
of transforming these foods into short-chain fatty acids (SCFA). Therefore, mice fed a diet
rich in fiber-containing foods were found to have higher levels of myeloid precursors in
the bone marrow [48]. Similarly, high systemic levels of lipopolysaccharides related to
GM dysbiosis have been shown to induce myelosuppressive effects through the chronic
activation of the innate immune Toll-like receptor expressed in hematopoietic stem cells
(HSCs) [49]. These observations suggest that the relationship between alterations in the
microbiota and the onset of numerous immune disorders is linked to the development of
age-related diseases.

As reported above, malnutrition or overnutrition in pregnancy influences the pro-
gramming of fetal development. Furthermore, growing evidence shows the role of environ-
mental experiences in influencing the gut microbiota early in life, underlining a “microbial
programming phenomenon” (widely cited in [50]). In this context, obesity has emerged as
a significant health challenge for both mothers and children. In children, obesity affects
the development of both the microbiota and immune responses. Despite its importance,
it is unclear whether weight during pregnancy, as well as the composition and functional
quality of the maternal microbiota, can mediate adverse effects on offspring. However,
Kozyrskyj and colleagues reviewed literature from human studies and determined that ma-
ternal obesity can modulate both the composition and function of the gut microbiota in the
newborn [51]. The vertical transport of the microbiota and the release or inhibition of the
release of their metabolic products have been hypothesized as possible mechanisms [52].

In the next paragraphs, the GM’s effects on hematopoiesis are better described, as well
as the role of developmental programming of HS.

3.2. Experimental Evidence for the Effects of Microbiota on Hematopoiesis

Research on the topic of GM is still in the primary development phase; however, there
are some encouraging results regarding the relationship between GM and hematopoiesis.
In this context, it has been shown that different GM products affect hematopoiesis, and
the composition of the bone marrow cell pool is significantly correlated with the struc-
ture and heterogeneity of GM [53]. Studies on mice are of substantial help because they
contribute significantly to the identification of the effects of GMOs on HS. Studies on
germ-free mice have highlighted reduced immunological functions. This altered phenotype
has been shown to be associated with increased susceptibility to intestinal and systemic
infections [54]. These results highlight the value of GM functions. As reported above, GMs
can carry out numerous and specific biochemical and molecular reactions and consequently
synthesize a broad spectrum of molecules and metabolites that human cells are unable to
produce. Some GM compounds exert an effect on hematopoietic functions. For example,
SCFAs interact with the immune system through G protein-coupled receptors (GPCRs) ex-
pressed in many immunological cells. In many cases, SCFAs mediate an anti-inflammatory
effect through the inactivation of the NF-kB pathway. From a hematopoietic point of view,
SCFAs promote the generation of specific subsets of T cells [55,56]. In another study on
mice, the impact of the use of fermentable fibers as a dietary supplement on the immune
system was analyzed. The results reported that increasing fiber bioavailability leads to the
expansion of members of the Bacteroidetes phylum. In turn, this results in a significant
local (intestinal) and systemic increase in SCFAs. Enhanced SCFA concentration enhances
the proliferation of dendritic cell precursors in the bone marrow through the activation
of GPR41. An interesting fact is that GM variations are accompanied by alterations in
the lung microbiota, even if they do not cause an increase in SCFA levels, probably due
to the lack of suitable substrates [57]. As mentioned above, antibiotic treatments often
cause severe hematopoietic damage through the suppression of its activities. This con-
dition is not caused by the direct effect of antibiotic drugs. Accordingly, significant data
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were obtained by Josefsdottir and collaborators [58]. They explored the harmful effects
of antibiotics by depleting GM mice through antibiotic treatment. GM depletion in mice
results in the substantial impairment of hematopoietic function, including a reduction
in the number of cells in the blood related to decreased cellularity in the bone marrow.
In the study, they determined that GMO depletion, and not antibiotic treatment, caused
this acquired hematopoietic phenotype. GMO transplantation has indeed been shown to
restore physiological hematopoiesis. They observed that immunological deterioration was
linked to antibiotic-induced GM alterations, causing an immune phenotype identical to
that of Stat-1-deficient mice. This has led to the assumption that the suppression of Stat-1
signaling induced by GM suppression is systemic and not limited to the intestinal area [59].
The global findings mentioned above are far-reaching when considering the plasticity and
variability of GM. The GM is extremely vulnerable to environmental and nutritional factors,
as demonstrated in twin studies [60,61]. Furthermore, GM alterations are correlated with
age, although some specific GM characteristics of centenarians have been related to the
longevity phenotype [61–65]. Taken together, the great connection between microbiota and
hematopoiesis constitutes a significant new factor that is capable of modulating the fate of
individual immuno-biographical traits [62] in health and disease [65].

3.3. Developmental Programming of HS and the Susceptibility of Leukemia

Well-established evidence has recognized that human body systems, such as the ner-
vous, endocrine, immune, and cardiovascular systems, have been programmed during
fetal development [66–75]. The fetal period (and especially the embryonic stages; “critical
windows”) is highly susceptible to many environmental stressors, which can impact life
after birth, the adult period, and its health status [76]. Therefore, it characterizes an essential
period of development, characterized by a high rate of cell proliferation and plasticity in
developing systems. These observations are significantly associated with new concepts on
the high vulnerability of our systems to maternal, environmental, and intrauterine stressors
during their embryonic development [50,66–75]. Harmful developmental conditions can
influence the (epi)genetic and physiological processes of fetal development, thus perma-
nently modifying the construction and functionality of the hypothalamic–pituitary–adrenal
(HPA) axis and offspring systems, predisposing them to the development of disease during
life after birth [50,66–75]. All concepts illustrated imply that the function, fate, and dis-
ease of the HS in postnatal life clearly depend on developmental programming processes.
Endogenous and gestational risk factors have been shown to influence this process, its
mechanisms, and induced effects on the HPA axis, immune, endocrine, and metabolic
systems, inducing developmental programming of HS and outcomes in life after birth [13].
Overall, these concepts have led to interesting evidence on the critical relevance of the
close relationship between the maternal and fetal microenvironment and its significant
contribution to programming on the development of HS and susceptibility to diseases, such
as leukemia [66–77]. Consequently, some studies have reported that prematurity at birth
and intrauterine growth restriction (IUGR) may be major risk factors for HS alterations,
contributing to the increased HS susceptibility to HS diseases, such as leukemia [66–77].

4. Close Relationship between ALL and Microbiota

Recent evidence reports microbiome alterations in children with ALL. They have
been observed in all the steps of ALL management: at both the time of diagnosis, during
treatment, and in contributing to the onset of complications and differences observed after
the completion of therapy (see Figure 2). At the onset of disease, a small variation in the oral
and gut microbiota/microbiome of ALL children patients is already detected [78]. During
the ALL treatment, the administration of chemotherapeutics and antibiotics causes ulterior
alterations in the microbiome by determining an additional reduction in the diversity of
composition and types of the microbiota’s microorganisms. Such results in the dominance
of Enteroccocaceae are predictive of infections. Furthermore, microbiota deterioration, in-
cluding Faecalibacterium depletion, may extend for several years after completion of the
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ALL treatment, inducing potential long-term health effects. Nevertheless, it is not clear
whether the observed alterations represent a fundamental trigger for the development of
ALL or are caused by immunological variations that precede the onset of ALL. Monitoring
large pediatric cohorts could be useful to provide direct evidence on whether genotypes
already determine microbial composition, even without disease onset. Considering all
this together, there is always a clear need for the precise characterization and modulation
of patients’ microbiomes during therapy to better understand the microbial influence on
leukemogenesis, minimize side effects, and improve treatment efficacy [78].
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In the next paragraphs, we stress these concepts to better understand the messages of
such a review.

4.1. Gut Microbiota and Child Susceptibility for ALL Onset

The role of GM is evident from the birth of newborns, and its composition and
passage from mother to child can significantly influence the onset and type of cancer. For
example, children born by a cesarean section show a higher risk of ALL because they
are not influenced by the maternal vaginal microbiota, which may facilitate them in the
formation of the subsequent intestinal microbiota [78]. However, two recent studies have
reported a non-association between the type of delivery and the occurrence of brain cancer
or lymphoma [1,79]. Another study, namely a meta-analysis conducted on 25 studies, 18 of
which met all the inclusion criteria, has evaluated the association between breastfeeding and
the onset of ALL. All subgroup meta-analyses of the 18 studies significantly demonstrated
that 14% to 19% of all cases of childhood leukemia can be prevented by breastfeeding
for 6 months or longer. The reason is related to the immunomodulatory effect of breast
milk, by which specific nutrients, antibodies, or anti-inflammatory factors are supplied
to the baby [80]. Based on such interesting findings, it is suggested that early GM in
newborns significantly depends on and is influenced by the type of delivery, form of feeding,
hospitalization of the newborn, and the use of antibiotics. Overall, these factors mentioned
seem to favor or not the development of an advantageous or useful microbiome in the
newborn, characterized by a relatively greater richness of Bacteroides and Bifidobacterium
and by a lower number of Clostridium difficile or Escherichia coli [81] (see Figure 2).

4.2. Alterations in Microbiome at the Children ALL Diagnosis

As reported above, microbiome alterations can affect both the oral and gut micro-
biomes. The oral mucosa constitutes the first natural protective barrier, and its alterations
can favor the onset of ALL complications and consequent pathologies. Therefore, it is
imperative to know the influence of ALL on the oral mucosa at the time of diagnosis
and during chemotherapy. However, a very limited number of studies have investigated
this aspect. Precisely, one study focused our interest on this issue, reporting that some
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cases of ALL affect the teeth and cause jaw pain, gingival swelling, and loose teeth, which
could be attributed to a compromised microbiome [30,82]. Analysis of oral samples from
newly diagnosed ALL patients, compared with healthy control children, demonstrated
that Firmicutes and Fusobacteria were significantly different. Precisely, ALL patients were
characterized by significantly higher levels of Firmicutes and a reduced presence of Fu-
sobacteria. Among the Firmicutes, Granulicatella and Veillonella were more abundant in ALL
patients [82]. Taken together, ALL patient samples showed reduced microbial variety and
lower abundance compared to controls, demonstrating a dysbiosis capable of increasing
the susceptibility of ALL cases to the risk of infection. Certainly, further studies will have
to confirm this aspect. Investigations of the GM of ALL cases at the time of diagnosis
reported an increased abundance of Faecalibacterium, Bacterioides or Parabacterioides, and
Firmicutes [83,84]. However, diarrhea-causing Clostridium has been observed to be less
abundant in ALL children, whereas Lachnospiraceae, including Roseburia and Blautia, pro-
duce SCFAs with an anti-inflammatory effect [85]. Despite this, some patients with ALL
underwent antibiotic treatment during the initial manifestation of the disease to limit their
increased susceptibility to infections. Consequently, such treatment results in a significant
decrease in microbiome diversity in treated ALL patients [84]. Based on these findings,
Bai and colleagues suggested that Bacteriodales and Enterococcaceae of the Firmicutes phylum
could be used as a promising biomarker for ALL but only in children without antibiotic
treatment [84]. In 2020, Liu and colleagues, on the largest cohort of cases examined so
far, namely 70 patients with newly diagnosed ALL enrolled at the time of diagnosis [83],
did not observe any difference in the alpha diversity of the microbiome and confirmed
an increase in the Bacteroides species; therefore, in beta diversity. Specifically, Bacterioides
uni-formis and Bacteroides fragilis significantly increased in pre-chemotherapy ALL cases
(see Figure 2).

4.3. Alterations in Microbiome during Children ALL Treatment with Chemotherapy

Treatment of ALL with chemotherapy begins immediately after diagnosis and is char-
acterized by three phases over 2–3 years. Such treatment is known to change bacterial
composition and cause a shift in the reduction in white blood cell counts. This leads
to the development of symptoms typical of childhood ALL, including fatigue resulting
from anemia, fever, infections, and even easy bleeding. Therapy begins immediately after
diagnosis, with chemotherapy administered in three phases over 2–3 years. Furthermore,
infections are characteristic. Consequently, a study conducted on 409 patients with newly
diagnosed ALL demonstrated the presence of 1313 infections of microbiological origin dur-
ing therapy [86]. This has led to the hypothesis of the role of the altered gut microbiome on
the significant increase in susceptibility to documented infections. On the other hand, one
study showed that the composition of the microbiome changes when compared before and
after treatment, with a specific reduction in Lachnospiraceae and Roseburia in patients [87,88].
A larger study by Hakim and colleagues of 199 ALL patients conducted during three
different chemotherapy phases showed no significant differences in the average variety of
the microbiome, which showed baseline characteristics; however, after chemotherapy, the
microbial diversity significantly decreased, with a different bacterial composition: Bacteri-
oidetes, Faecalibacterium, Ruminococcaceae, Actinobacteria, and Verrucomicrobia significantly
reduced, while other taxa, Clostridiaceae, Streptococcaceae, Lactobacillaceae, Enterococcaceae,
and Firmicutes, increased [87].

However, a longitudinal observational study conducted by Chua and colleagues an-
alyzed temporal differences in the GM of seven ALL patients before, during, and after
chemotherapy and compared them to controls [88]. They observed that antibiotic treatment
before chemotherapy was not the cause of the observed differences in the large interindivid-
ual variability of ALL patients compared to healthy children in microbiome composition.
However, Bacteroidetes were found to be significantly enhanced before chemotherapy, al-
though their large quantity decreased after therapy. In contrast, Firmicutes and Actinobacteria
increased after chemotherapy to a similar level compared to healthy controls. Five genera
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precisely were found to have a lower abundance after therapy: Bacteroides and Prevotella,
belonging to the phylum Bacteroidetes; Fusobacterium; and Atopobium and Corynebacterium
from Fusobacteria and Actinobacteria, respectively. Furthermore, only Bifidobacterium (Acti-
nobacteria) was significantly higher in post-chemotherapy samples. This commensal occurs
immediately after birth and can utilize human milk oligosaccharides as well as other car-
bon sources. Furthermore, it has a protective role in preventing intestinal inflammation in
newborns as it prevents an increase in Proteobacteria associated with dysbiosis and negative
health outcomes [86,89].

Finally, long-term adult survivors of pediatric ALL who completed therapy for at
least 5 years showed a decrease in microbial diversity compared to healthy controls, with
a notable increase in Actinobacteria and a depletion in Faecalibacterium [88]. Furthermore,
researchers detected increased T-cell activation and chronic inflammation in these in-
dividuals, suggesting a correlation between dysregulated microbial taxa and immune
dysregulation [88]. The increased risk of infection in survivors, a high prevalence of chronic
health conditions, and a high risk of mortality and morbidity have also been studied [90].
Therefore, microbial dysregulation brought about by the effects of chemotherapy and
antibiotics during the treatment of ALL may have long-term effects on the development
of other diseases, such as obesity or diabetes, in adult survivors of pediatric ALL [91,92]
(see Figure 2).

5. Diverse Levels of Strategies to Recovery Microbiome and Prevent ALL Onset
5.1. The First Level of Health-Promoting Strategies

The microbiome is crucial to an individual’s life and, compared to other systems, shows
interindividual variation, particularly in ALL cases. Today, growing evidence suggests that
these differences do not originate in the later stages of an individual’s life cycle but rather
in the early periods. The latter constitute critical windows of rapid growth under strong
epigenetic remodeling and, therefore, show high dynamism and phenotypic plasticity,
during which an organism is predominantly susceptible to environmental conditions,
harmfully influencing the development of tissues, organs, and systems and the tendency to
illnesses later in life or a few years after birth. A clear example is the ALL cases (widely
cited in [50,93]). We have reported here how the HS is evolutionarily programmed, like
other systems, and, therefore, in adulthood or a few years after birth, it is the representation
of evolutionary programming and, in particular, the consequence of numerous evolutionary
programming events. Among these, the (re)programming of the endothelium is included
first, which is the core of the origin, homeostasis, and function of the HS, as well as other
human systems [94–97]. In turn, the (re)programming of the endothelium influences HS and
immune programming with the cooperation of hormonal and metabolic alterations (altered
HPA axis and increased release of cortisol, but also other crucial hormones). Subsequently,
they induce epigenetic and microbial programming in the offspring. The combination of
all these programming conditions makes the HS of the offspring susceptible to assuming
long-term structural and functional alterations, which permanently modulate its functions
and increase the risk of diseases and the speed of aging. However, their prevention, as
well as the prevention of consequent pathologies with long or short onset (i.e., ALL),
may be feasible and consequently represent a certainty and not an illusion. Accordingly,
evidence supports the positive effects of a healthy diet (e.g., Mediterranean), physical
activity, low stress, non-smoking, alcohol, and drug-free use during pregnancy [98–102].
Here, we first suggest recommending such strategies to both parents who wish to have
children before and during pregnancy. McGowan and Matthews, in 2018, supported
such strategies, emphasizing the role of both parents and their lifestyles in developmental
planning. Precisely, they state that parental danger (not only maternal but also paternal)
is linked to stress, and/or their changed clinical status is linked to being affected by
pathologies (e.g., hypertension and type 2 diabetes) or having an unhealthy lifestyle.
The lifestyle (linked to alcohol consumption, the use of drugs, diet, or being a smoker
and sedentary) causes profound biological effects both on fetal development and on the
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subsequent functionality of the HPA axis and specific systems. Furthermore, these effects
appear to be species-, genus-, and age-specific and vary depending on the timing and
duration of exposure, as highlighted by McGowan and Matthews (2018) [74] (see Figure 3).
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5.2. Some Therapeutic Approaches of Second Level

In addition to first-level health promotion strategies, some second-level therapeutic
approaches should be applied during the prenatal and neonatal period or in adult life (see
Figure 3). Among these, importance was given to the pharmacological objectives/targeting
of the pathways involved in endothelium-HS crosstalk, cellular/tissue reprogramming, the
use of miRNAs, the modulation of the microbiota of both parents and newborns through
the innovative method of fecal examinations, and microbiota transplantations (FMTs) [103].
Precisely, FMT is a promising treatment for diseases related to intestinal dysbiosis since
it can help rebalance the composition and function of the intestinal microbiota by trans-
ferring fecal preparations from healthy donors [104]. The effectiveness of the treatment
can be explained by considering, for example, the metabolites derived from the Firmi-
cutes phylum, in particular SCFAs and secondary bile acids, which, with their beneficial
roles such as fortifying the intestinal barrier and alleviating inflammation, promote host
homeostasis [105]. FMT can directly modify the recipient’s GM to normalize composition
and provide therapeutic benefits. FMT was initially applied for the treatment of recur-
rent and refractory Clostridium difficile infections thanks to the decisive consensus of the
US Food and Drug Administration in 2013. Today, its application is not only limited to
gastrointestinal disorders but to other diseases [103]. Accordingly, a recent systematic
review highlighted that FMT can be adopted for the treatment of 85 specific diseases in
clinical settings globally from 2011 to 2021 [106]. Furthermore, a study conducted at the
University of Minnesota, enrolling patients suffering from acute myeloid leukemia and
patients undergoing hematopoietic cell transplantation, experimented with microbiota
transplantation. The enrolled subjects were fragile and could contract a high number of
infections, which is also linked to alterations in the microbiota (dysbiosis) following the
treatment. Although microbiota transplantation does not have a significant effect against
infections, it can still normalize the composition of the microbiota, obtaining therapeutic
benefits by improving the diversity of intestinal microorganisms, increasing the levels of
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some anaerobic commensal bacteria, and reducing the concentration of other species that
could be the cause of some disorders [107].

Although FMT appears to be a generally safe therapeutic method with few adverse
effects, it is nevertheless necessary to monitor clinical efficacy and long-term adverse
events [103]. Consequently, it is imperative to establish regular follow-ups to identify the
periodicity and duration of the FMT treatment and monitor clinical efficacy and long-term
adverse events. Furthermore, further studies are needed to develop personalized FMT
treatments for each individual and their clinical conditions based on different characteristics
of the host and the diseases/conditions to be treated, such as adverse programming of HS
and leukemia.

Another strategy could be the use of serotherapy, which includes three therapeutic
approaches: (i) treatment with molecules capable of selectively killing senescent cells (SC),
i.e., sanolytics; (ii) the use of compounds that have the ability to reduce the proinflam-
matory program of SCs or which modify the senescent phenotype, i.e., mammals; and
(iii) prevention of the accumulation of senescent cells [108–111]. All these measures could
allow (a) a reduction in the effects of adversity on development, (b) favoring well-matched
developmental programming of HS that acts mainly on the endothelium, and (c) the de-
lay/delay onset of leukemia in children and in adulthood. Additionally, the development
of other optional treatments is increasing. The latter has the aim of recovering the dis-
turbed epigenetic profiles linked to altered programming. However, harmful epigenetic
alterations are believed to be potentially reversible; therefore, they could be corrected by
some lifestyle factors such as diet and physical activity as well as by pharmacological
interventions specifically targeting the epigenome [112–115]. If these therapeutic strategies
are established, then such an approach would provide a way to slow the epigenetic clock
and modify epigenetic age dynamics throughout the life course and, therefore, slow and/or
delay age-related changes and processes [93,116,117]. The lack of specific biomarkers to
monitor developmental programming makes it difficult to test and verify the biological
effects of possible interventions and treatments. Goswami’s group suggested telomere
length as an optimal biomarker for developmental programming [118]. Epigenetic indices
of age, such as DNA methylation-based biomarkers, are also now considered another
promising option [119]. These obstacles, as well as the need to identify unknown long-
term outcomes of the interventions and therapeutic approaches described, reflect several
gaps and the need for further studies. Multidisciplinary investigations are particularly
suggested, all being the result of the sophisticated interaction of environmental factors
with its genome, transcriptome, proteome, metabolome, microbiome, epigenome, and
exposome, as highlighted in the description and discussion on HS programming. Further
studies are, therefore, essential for different types of patients with different conditions and
diseases [103].

Diet plays a key role from the first days of life in human health in cellular metabolism, GM
regulation, and immunological processes via epigenomic factors, as mentioned above [120].
Many studies have reported a correlation between habits such as smoking and drinking
alcohol during pregnancy and an increased risk of leukemia, but other dietary factors
also have an important influence [121,122]. Fruit and vegetable intake provides the folic
acid necessary to avoid the risk of leukemia in children, and it has been reported that
maternal fruit and vegetable consumption is inversely related to childhood ALL [123].
In California, according to these premises, a study was conducted to evaluate the link
between the quality of the maternal diet before pregnancy, considering a diet quality
index, and the risk of childhood ALL. On the other hand, maternal malnutrition and low
levels of micronutrients could cause elevated maternal cortisol concentrations, affecting
the development of the fetal immune system and interfering with normal immune cell
proliferation and organogenesis [124]. Studies have reported a correlation between age
and ALL risk. It has been noted by some researchers that a diet that includes fish, seafood,
beans, and beef is related to a low risk of ALL [125]. Instead, the risk of ALL may increase
when mothers consume various foods such as sugars or syrups [126]. Regarding the risk
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of ALL in children, there is a positive association between the risk of this disease and the
consumption of more coffee and/or caffeinated drinks [127,128].

Dietary habits can influence the diversity of GM, and food components can influence
both the microbial population and its metabolic activity. The Mediterranean diet has been
proposed, which includes foods such as vegetables, fiber, omega-3 fatty acids, animal
proteins, and saturated fats but in smaller quantities. Adherence to the Mediterranean diet
leads to an increase in some bacteria such as Bifidobacteria, Lactobacilli, Prevotella, Eubacteria,
and Bacteroides; on the contrary, a diet rich in fat leads to an increase in Bacteroides and
Enterobacteria and a decrease in Bifidobacteria, Lactobacilli, Prevotella, and Eubacteria. Several
studies affirm this diet-dependent change in the microbiota [129]. In a study by De Filippis
and colleagues, in 153 individuals who habitually followed omnivorous, vegetarian, or
vegan diets, it was observed that adherence to this diet was associated with an increase in
the levels of SCFA (short-chain fatty acids) degrading fibers, Prevotella and Firmicutes [130].
In subjects following the Mediterranean diet, the Prevotella–Bacteroides ratio was higher,
indicating that a diet rich in natural fiber and resistant starch has a positive effect on
the bacterial composition of human subjects [131]. A study conducted by Garcia’s group
focused on the eating habits of healthy subjects to test the variability of the microbiota
adhering to the Mediterranean diet. What is observed following a questionnaire to which
volunteer subjects are subjected is that adhering to the Mediterranean diet allows a decrease
in the Firmicutes–Bacteroidetes ratio and a greater presence of Bacteroidetes was associated
with a lower intake of animal proteins. The high consumption of animal proteins, saturated
fats, and sugars influenced the diversity of the intestinal microbiota [132]. To confirm the
observations of the above studies, a preclinical study conducted on mice by Nagpal et al.
analyzed the gut microbiome after adhering to the typical Western diet or the Mediterranean
diet [133]. They found that the microbiome of study participants consuming the typical
Western diet was significantly more diverse than the microbiome of participants consuming
the typical Mediterranean diet. They found that the microbiota of study participants
consuming the Mediterranean diet was significantly more diverse than the microbiota of
participants consuming the Western diet, characterized by lard, beef tallow, butter, eggs,
cholesterol, casein, lactalbumin, dextrin, corn, high fructose syrup, and sucrose. They
also had a higher abundance of Lactobacillus, Clostridium, Faecalibacterium, and Oscillospira
and a lower abundance of Ruminococcus and Coprococcus [133]. Another study states that
diet can alter the composition of the microbiota very quickly, in less than a week, as
demonstrated by 31 subjects in his study, which states that the consumption of certain types
of food produces predictable changes in existing bacterial host genera. This influences
host immune and metabolic parameters, with broad implications for human health [129].
Microbes in the distal intestine, where they are abundant, contribute to host health through
the biosynthesis of essential vitamins and amino acids and the generation of important
metabolic byproducts from food components undigested by the small intestine [134].

Numerous studies have been able to comprehensively investigate the impact of the
food component on the intestinal microbial composition. The effects of dietary protein
on the gut microbiota were first described in 1977. Protein consumption is positively
correlated with overall microbial diversity [135]. Consumption of whey and pea protein
extract leads to an increase in intestinal Bifdobacterium and Lactobacillus, while whey also
reduces the pathogens Bacteroides fragilis and Clostridium perfrigens [136]. Pea protein
has also been associated with increased levels of intestinal SCFAs, which are considered
anti-inflammatory and important for maintaining the mucosal barrier [137]. In contrast,
consumption of animal proteins causes an increase in the number of bile-tolerant anaerobes,
such as Bacteroides, Alistipes, and Bilophila [135]. One study found that subjects following a
high-protein, low-carbohydrate diet had a reduced presence of Roseburia and Eubacterium
rectale in the gut microbiota and a low level of butyrate in the stool [138]. In their study,
De Filippo et al. observed lower fecal SCFAs in Italian subjects consuming a high-protein
diet [139]. It has also been shown that adhering to the Mediterranean diet has positive
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effects on health, with a reduction in inflammatory molecules and, therefore, a protective
role against oncological diseases.

Regarding the panel of markers linked to inflammation, a study was conducted ex-
amining the effects of the Mediterranean diet on the inflammatory profile. A total of
612 non-frail or pre-frail subjects in five European countries (UK, France, Netherlands, Italy,
and Poland) were analyzed before and after a 12-month Mediterranean diet intervention.
After adherence to the diet, a negative correlation was observed between the inflamma-
tory markers CRP, IL-17, and IL-2, with positive levels of the anti-inflammatory cytokine
IL-10. This confirms how diet and, in particular, adherence to the Mediterranean diet can
positively influence health by reducing the risk of chronic inflammatory diseases [140].
In addition to their effects on the composition of the microbiota, prebiotics also produce
significant changes in metabolic and immune markers. Several studies have observed
reductions in the proinflammatory cytokine IL-6, which is associated with the intake of non-
digestible carbohydrates present in whole grains [141]. West et al. noted increased plasma
levels of the anti-inflammatory cytokine IL-10 with the consumption of high-amylose
cornstarch butyrate [142]. Therefore, prebiotics are thought to have a beneficial effect on
the immune and metabolic function of the gut, and this is believed to be due to increased
SCFA production and the strengthening of gastrointestinal tract-associated lymphoid tissue
(GALT) resulting from the fermentation of the fibers [143]. New evidence has reported that
specific nutrients exert different actions on metabolic outcomes, depending on individual
microbial patterns subject to specific individuals or conditions, suggesting the important
role of personalized human nutritional treatment [144]. Another recent therapy is based
on the use of butyrate-producing bacteria, which, as previously mentioned, has a protec-
tive role against ALL diseases. These strains, such as those of Clostridium butyricum and
Butyricicoccus pullicaecorum, are believed to be specific next-generation niche probiotics and
have good bile tolerance, viability, and metabolism and can be genetically manipulated
to increase their ability to produce butyrate [145,146]. For example, heterologous genes
required for butyrate production from acetyl-CoA butyrate can be introduced by inactivat-
ing the gene encoding the conversion of acetyl-CoA to acetate and the gene encoding the
aldehyde/alcohol dehydrogenase for ethanol production or simply by disrupting a CoA
transferase gene, which could be an alternative route for acetate production. Furthermore,
to obtain higher levels of butyrate and, therefore, a greater abundance of butyrate producers
in the intestine, it is possible to carry out a co-culture to obtain an interactive microbial
population composed of more than just microbes.

6. Conclusions

Although studies on GM are growing in number, the correlation between pediatric
cancers, such as ALL and GM, is not yet well recognized. It is complicated to study due
to the relatively small number of patients (cohorts) and difficulties in sample collection.
Additionally, children with ALL receive chemotherapy and radiation therapy as well as
intensive antibiotic prophylaxis to inhibit potential infections. These treatments have a
great effect on the entire body, including the bone marrow, liver, and gastrointestinal
tract, and directly and indirectly affect the GM. Furthermore, no prospective study has
been designed for ALL to date. The relevance of GM is confirmed by numerous studies
regarding the development of the disease, the effectiveness of therapy, the staging, and
the manifestations of side effects. It requires further investigation, but in the future, it may
be possible to identify an individual’s microbiome profile before starting cancer therapy
to predict its effectiveness or choose an appropriate and personalized therapy. GM could
also be used as a biomarker. Whether dysbiosis is a consequence or a cause of neoplasms
remains unanswered. Studies on the microbiome in the pediatric oncology population are
limited, and associations are not yet clear. Further studies with larger cohorts are needed
to help develop more personalized and successful therapy in pediatric oncology. Finally,
further studies are essential to test the long-term effects of the therapeutic strategies that
are suggested to be applied at two levels of intervention (see Figure 4A,B).
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