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Abstract: The aim of this study was to apply a state-of-the-art quantitative lipidomic profiling
platform to uncover lipid alterations predictive of melanoma progression. Our study included
151 melanoma patients; of these, 83 were without metastasis and 68 with metastases. Plasma samples
were analyzed using a targeted Lipidyzer™ platform, covering 13 lipid classes and over 1100 lipid
species. Following quality control filters, 802 lipid species were included in the subsequent analyses.
Total plasma lipid contents were significantly reduced in patients with metastasis. Specifically, levels
of two out of the thirteen lipid classes (free fatty acids (FFAs) and lactosylceramides (LCERs)) were
significantly decreased in patients with metastasis. Three lipids (CE(12:0), FFA(24:1), and TAG47:2-
FA16:1) were identified as more effective predictors of melanoma metastasis than the well-known
markers LDH and S100B. Furthermore, the predictive value substantially improved upon combining
the lipid markers. We observed an increase in the cumulative levels of five lysophosphatidylcholines
(LPC(16:0); LPC(18:0); LPC(18:1); LPC(18:2); LPC(20:4)), each individually associated with an elevated
risk of lymph node metastasis but not cutaneous or distant metastasis. Additionally, seventeen lipid
molecules were linked to patient survival, four of which (CE(12:0), CE(14:0), CE(15:0), SM(14:0))
overlapped with the lipid panel predicting metastasis. This study represents the first comprehensive
investigation of the plasma lipidome of melanoma patients to date. Our findings suggest that plasma
lipid profiles may serve as important biomarkers for predicting clinical outcomes of melanoma
patients, including the presence of metastasis, and may also serve as indicators of patient survival.

Keywords: melanoma; metastasis; plasma lipid profile; biomarkers; lipidyzer platform

1. Introduction

It is widely accepted that melanoma has the highest mutational burden of all cancer
types [1], leading to distinct metabolic differences between melanoma and normal cells.
These mutations result in alterations in metabolic pathways that enable tumor cells to
survive in a constantly changing environment [2]. The Warburg effect is a metabolic abnor-
mality that has been recognized as one of the oldest features of cancer cells. It is a peculiar
process of energy production in which cancer cells obtain energy in an unusual, inefficient
way. Rather than breaking down glucose molecules by oxidative phosphorylation using
oxygen they ferment without oxygen, similar to yeast cells. This process not only produces
energy but also provides a sufficient carbon source to synthesize the building blocks of
proteins, nucleotides, and lipids [3,4].
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Research on altered lipid metabolism in cancer cells dates back to the 1960s when it
was observed that tumor cells actively synthesize and uptake lipids [5,6]. Subsequently, it
was discovered that a highly expressed gene in breast cancer encodes fatty acid synthase
(FASN), a key enzyme in lipid metabolism [7]. Numerous studies have since confirmed that
alterations in lipid metabolism are important processes in tumor progression, involving not
only tumor cells but also other cell types in the tumor microenvironment, such as stromal
and endothelial cells [8–12].

One of the major differences between normal and tumor cells is that tumor cells are
highly dependent on a constant supply of fatty acids (FAs) and cholesterol, as they need
to synthesize large quantities of membranes for continuous growth, proliferation, and
metastasis [13]. In addition, while tumor cells retain their ability to acquire lipids from the
circulation and adjacent adipose tissue, they also synthesize the majority of their lipids
de novo, as evidenced by the overexpression of necessary enzymes [8]. Alterations in
lipid metabolism and changes in lipid composition can serve as valuable biomarkers in
various cancers, including melanoma [14]. Differences in lipid profiles and variations in
the expression of lipid metabolism-related enzymes between cancerous and noncancerous
tissues have been identified as possible cancer biomarkers [15]. In addition, recent research
has identified specific lipid patterns associated with disease stage, prognosis, or response
to treatment [16,17]. Dei Cas et al., described lipid species alterations characterizing the
signature of melanoma kinase inhibitor resistance in plasma melanoma patients, indicating
the significance of dysregulated lipid metabolism in melanoma patients. Technological
advancements now enable simultaneous quantitative and qualitative characterization of
thousands of lipids, greatly facilitating the study of the relationship between altered lipid
metabolism and pathological processes [17].

In this study, we used a state-of-the-art quantitative lipidomics profiling platform,
Lipidyzer™, which covers over 1100 lipid species across 13 lipid classes. Our objective was
to conduct the most comprehensive investigation to date of the plasma lipidome to uncover
lipid alterations predictive of melanoma progression. Our study involved 151 melanoma
patients, comprising 83 without metastasis and 68 with metastases. Our findings suggest
that plasma lipid alterations may serve as significant biomarkers for predicting clinical
outcomes in melanoma patients, including metastasis, and as indicators of patient survival.

2. Results
2.1. Distribution of Lipid Classes between Melanoma Patients without and with Metastasis

We analyzed peripheral blood plasma samples from 151 melanoma patients using the
Sciex Lipidyzer™ platform. Of these, 83 patients had their primary melanoma removed
at least one month prior to blood sampling and were considered tumor-free. All patients
underwent a negative CT scan at least one month prior to blood sampling, confirming
the absence of metastasis. Sixty-eight patients were diagnosed with melanoma metastasis.
Details of the clinical parameters of the patients and the tumor samples are summarized
in the Section 4 (Table 1). After the implementation of quality control filters, a total of
802 lipid species from 13 lipid classes were detected in the plasma samples and included in
the subsequent analyses. Our initial observation revealed that the total concentration of the
802 lipid species in patients’ samples with metastases was significantly lower compared to
those without metastasis (p ≤ 0.05) (Figure 1A).
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Figure 1. Comparison of lipid species distribution in plasma between metastasis-free and patients
with melanoma metastasis. (A) A quantitative comparison of total lipid content in melanoma patient
plasma revealed 802 lipids across 13 lipid classes, identified in both metastasis-free and metastatic
melanoma patients (p < 0.002). (B) A pie chart illustrates the distribution of lipid classes between
metastasis-free patients and those with melanoma metastasis. (C) Significantly altered lipid classes
(FFA and LCER) were observed in patients with metastatic disease compared to the metastasis-free
group (p < 0.03). * significant p-value (p < 0.05). CE: cholesteryl ester; CER: ceramide; DAG: diacylglyc-
erol; DCER: dihydroceramide; FFA: free fatty acid; HCER: hexosylceramide; LCER: lactosylceramide;
LPC: lysophosphatidylcholine; LPE: lysophosphatidylethanolamine; PC: phosphatidylcholine; PE:
phosphatidylethanolamine; SM: sphingomyelin; TAG: triacylglycerol.

2.2. Association between Lipid Species and the Presence of Metastasis in Melanoma Patients

To investigate the association between lipid species and the presence/absence of
metastatic tumors, a logistic regression model adjusted for gender, age, and type of therapy
was performed. This analysis identified 19 lipid species with significant prognostic value
(Figure 2). We found that patients plasma with a lower level of lipid species (18 different
lipids) and a higher level of the PE(18:0/20:2) lipid molecule were more likely to have
melanoma metastasis (ORs, 95% C.I.s, and p values are displayed in Figure 2).

We applied forward stepwise logistic regression to identify the strongest associations
among the 19 significant lipids with the presence of metastasis. The analysis revealed a
panel of three lipids (CE(12:0), FFA(24:1), and TAG47:2-FA16:1) whose association was
independent of patient age, sex, and therapy. To determine the likelihood of this lipid panel
predicting metastasis, we generated a receiver operating characteristic (ROC) curve. The
area under the curve (AUC) value of the ROC analysis was 0.753 (Figure 3A).

We also examined the potential role of this lipid panel in predicting metastasis by
combining the levels of these three lipids with the plasma levels of serum lactate dehy-
drogenase (LDH) (as recommended by the American Joint Committee on Cancer (AJCC)
revised melanoma staging guidelines) and the calcium-binding acidic cytoplasmic protein
S100B, which is a well-known melanoma marker. The combination of these five markers
resulted in an improved AUC score of 0.811 in the analysis, compared to an AUC of 0.715
for the conventional S100B and LDH model (Figure 3B).
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Figure 2. Association of lipid species with the presence of melanoma metastasis. Binary logistic
regression analysis was used. Odds ratios and confidence intervals are visualized on forest plot. Black
square labeled lipids show negative; red square labeled lipids show positive association with metasta-
sis (indicated by red arrow). OR: odds ratio; C.I.: confidence interval adjusted by sex, age, and therapy;
CE: cholesteryl ester; DAG: diacylglycerol; FFA: free fatty acid; PE: phosphatidylethanolamine; SM:
sphingomyelin; TAG: triacylglycerol.
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Figure 3. Association of three lipid species and melanoma markers with the presence of melanoma
metastases. During this analysis, receiver operating characteristic (ROC) classifier curves were
used. (A) ROC curve analysis of three lipids (CE(12:0), FFA(24:1), and TAD47:2-FA16:1) associated
with metastasis resulting from stepwise logistic regression (blue line), and the red line indicates the
reference line. (B) ROC curve analysis of the three lipids combined with S100B and LDH melanoma
markers associated with metastasis. The blue line represents three metastasis-associated lipids
combined with S100B and LDH melanoma markers, the green line represents S100B and LDH
melanoma markers, and the red line indicates the reference line. CE: cholesteryl ester; FFA: free fatty
acid; TAG: triacylglycerol.

2.3. Lipid Species Associated with the Lymphatic and Hematogenous Pathways of
Melanoma Metastasis

To investigate the association between lipid species and different pathways of melanoma
metastasis, we divided plasma samples derived from patients with metastases into two groups.
The first group included patients with lymph node metastasis (n = 19), while the second group
involved patients with hematogenous metastases (n = 49) classified according to these two
pathways. Figure 4 summarizes the lipid species associated with the two different pathways
of metastasis in melanoma patients. The total amount of LPC and seven different lipids
(including five LPCs: (LPC(16:0), LPC(18:0), LPC(18:1), LPC(18:2), and LPC(20:4)) showed a
negative association with the hematogenous pathway, indicating that reduced levels of these
lipids were associated with distant metastases (Figure 4A).

To provide a quantitative tool for predicting the individual probability of lymphatic
metastasis risk, a different approach was applied using the five LPC lipid species ((LPC(16:0),
LPC(18:0), LPC(18:1), LPC(18:2), and LPC(20:4)) that were associated with the metastatic
pathway (Figure 4A). The combined values of the five lipids were investigated using ROC
analysis, which revealed a plasma concentration cutoff point of 202.46 µmol/L, yielding a
sensitivity of 0.895 and a specificity of 0.510. Samples were stratified based on the cutoff
level, and logistic regression analysis indicated those patients with a summed plasma
concentration of the five lipids > 202.46 µmol/L had a 90.7% higher probability of lym-
phatic metastasis compared to hematogenous metastasis (p = 0.004; odds ratio: 0.093; 95%
confidence interval: 0.018–0.477).
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Figure 4. Association of lipid species with lymphatic and hematogenous pathways of melanoma
metastasis. (A) Binary logistic regression analysis of lipid species in association with the lymphatic
and hematogenous pathways of melanoma metastasis. Odds ratios and confidence intervals are
visualized on forest plot. Black squared lipids show a negative association with the hematogenous
pathway of metastasis. (B) ROC curve analysis of the seven lipids by stepwise regression resulted in
two lipids (LPC(16:0) and LPC(20:4)) that were strongly associated with the hematogenous pathway
of melanoma metastasis. OR: odds ratio; C.I.: confidence interval (adjusted by sex, age, and therapy).
Blue line represents the two lysophosphatidylcholines (LPCs); red line indicates the reference line.

Stepwise regression analysis resulted in a panel of two lipids, LPC(16:0) and LPC(20:4),
which exhibited remarkably predictive capability for the type of metastasis pathway, achiev-
ing an AUC score of 0.841 as determined by ROC analysis. The predictive value of these
two lipids did not increase when they were combined with additional lipids from the LPC
class (Figure 4B).

Additionally, we investigated the variations in the levels of these five LPCs among
patients without metastasis, those with lymph node metastases, and those with distant
metastases. The levels of these lipids were elevated in patients with lymph node metastases
and decreased in patients with distant metastases. The results are summarized in Figure 5.



Int. J. Mol. Sci. 2024, 25, 4251 7 of 15

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW  7  of  16 
 

 

plasma concentration of the five lipids > 202.46 µmol/L had a 90.7% higher probability of 

lymphatic metastasis compared to hematogenous metastasis (p = 0.004; odds ratio: 0.093; 

95% confidence interval: 0.018–0.477). 

Stepwise  regression  analysis  resulted  in  a  panel  of  two  lipids,  LPC(16:0)  and 

LPC(20:4), which exhibited  remarkably predictive capability  for  the  type of metastasis 

pathway, achieving an AUC score of 0.841 as determined by ROC analysis. The predictive 

value of these two lipids did not increase when they were combined with additional lipids 

from the LPC class (Figure 4B). 

Additionally, we investigated the variations in the levels of these five LPCs among 

patients without metastasis, those with lymph node metastases, and those with distant 

metastases.  The  levels  of  these  lipids  were  elevated  in  patients  with  lymph  node 

metastases and decreased in patients with distant metastases. The results are summarized 

in Figure 5. 

 

Figure 5. Plasma lipid concentrations in three different groups of melanoma patients. Quantitative 

difference in five LPCs (LPC(16:0), LPC(18:0), LPC(18:1), LPC(18:2), and LPC(20:4)) associated with 

different types of melanoma metastasis. The results were obtained by the Kruskal‒Wallis test. The 

results of Dunn’s post hoc test are presented above the bar, indicating significance levels (* p < 0.05; 

** p < 0.01). 

2.4. Lipid Species Associated with Melanoma Patient’s Survival 

Despite the small number of deceased patients in our study group (22 patients died 

within 3 years out of the 151 patients at the time of analysis), we also examined the lipid 

fingerprints of both the alive and deceased groups. A decreased level of seventeen lipid 

molecules was associated with patients who died within 3 years after  the diagnosis of 

melanoma metastases  (Figure 6A). Stepwise regression analysis revealed  that one  lipid 

(CE(14:0)) exhibited the highest AUC among all the metastasis-associated lipids (Figure 

6B,  red  line),  even when used  in  combination with other  lipids. The average CE(14:0) 

plasma lipid levels in deceased and surviving patients are depicted in Figure 6C. Based 

on the concentration of the CE(14:0) lipid, a cutoff value of 18.03 µmol/L was determined 

Figure 5. Plasma lipid concentrations in three different groups of melanoma patients. Quantitative
difference in five LPCs (LPC(16:0), LPC(18:0), LPC(18:1), LPC(18:2), and LPC(20:4)) associated with
different types of melanoma metastasis. The results were obtained by the Kruskal–Wallis test. The
results of Dunn’s post hoc test are presented above the bar, indicating significance levels (* p < 0.05;
** p < 0.01).

2.4. Lipid Species Associated with Melanoma Patient’s Survival

Despite the small number of deceased patients in our study group (22 patients died
within 3 years out of the 151 patients at the time of analysis), we also examined the lipid
fingerprints of both the alive and deceased groups. A decreased level of seventeen lipid
molecules was associated with patients who died within 3 years after the diagnosis of
melanoma metastases (Figure 6A). Stepwise regression analysis revealed that one lipid
(CE(14:0)) exhibited the highest AUC among all the metastasis-associated lipids (Figure 6B,
red line), even when used in combination with other lipids. The average CE(14:0) plasma
lipid levels in deceased and surviving patients are depicted in Figure 6C. Based on the
concentration of the CE(14:0) lipid, a cutoff value of 18.03 µmol/L was determined in the
plasma of melanoma patients, with those above this threshold being eleven times more
likely to survive (p = 0.002; OR: 11.487; CI 2.501–52.761).
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Figure 6. Binary logistic regression analysis examining the relationship between lipid species and the
mortality of melanoma patients. (A) Odds ratios and confidence intervals are visualized by forest
plot. Black squares indicate a negative association with patient mortality, while (B) shows ROC curve
analysis of the lipid panel associated with patient mortality. The highest AUC (0.764) was detected
for the CE(14:0) lipid species. (C) Quantitative changes in the CE(14:0) lipid level of deceased (n = 22)
and living (n = 129) patients. Mann–Whitney Wilcoxon test; * p = 0.02. OR: odds ratio; C.I.: confidence
interval; CE: cholesteryl ester; CER: ceramide; FFA: free fatty acid; HCER: hexosylceramide; LCER:
lactosylceramide; PC: phosphatidylcholine; SM: sphingomyelin; TAG: triacylglycerol.

3. Discussion

Dysregulated lipid metabolism is frequently observed in various types of cancer [18].
This phenomenon can be exploited in two ways. One approach is to target the resistant
tumors that most often interfere with the efficacy of therapy through altered lipid pathways.
This applies to both targeted therapy and immunotherapy [19–21]. The other approach is to
consider them as potential biomarkers to improve diagnosis, monitor disease progression,
and predict outcomes [22,23]. In our current study, we aimed to identify lipid markers
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associated with melanoma metastasis, the type of metastatic pathway (lymphogenic or
hematogenous), and patient mortality.

When describing changes in plasma lipids in cancer patients, it is common to focus
on alterations in cholesterol. Notably, cancer patients often exhibit reduced levels of HDL
and an increased risk of metastasis associated with elevated LDL levels [24–27]. Our
data reveal significant reductions in total plasma lipid levels in patients with melanoma
metastases, along with alterations in the percentage distributions within the 13 lipid classes.
Among these lipid classes, we noted significant decreases in free fatty acid and long-chain
ceramide levels in melanoma patients with metastasis. The decrease in FFA levels may
seem surprising, as several studies have reported elevated FFA levels in various cancers,
including prostate, lung, gastric, thyroid, colorectal, and ovarian cancers, as well as B-
cell lymphoma [28,29]. However, breast cancer is associated with decreased levels of
FFAs [30], and based on our data, melanoma appears to fall into this category. The levels of
lactosylceramides were also significantly reduced in the plasma of metastatic patients. This
class of sphingolipids is known to be associated with increased cell survival, proliferation,
adhesion, and invasion, thereby promoting tumor progression [31,32].

Functionally, lipids are involved in several stages of the metastatic cascade. In different
types of cancers, the overexpression of genes related to fatty acid uptake, lipid accumulation,
and other fatty acid metabolism processes has been linked to increased invasiveness,
migratory properties, and the ability of tumor cells to proliferate in distant organs [33–35].
These alterations are associated with metastatic progression and poor prognosis in various
cancer patients [34]. In many cases, plasma lipid levels were inversely related to the
presence of metastasis and a worse prognosis, with only a few exceptions. The most
plausible explanation for this phenomenon is that these lipids accumulate in tumor cells and
support their survival and proliferation, thereby limiting their release into the bloodstream.
Excess cellular cholesterol levels are regulated by the cholesterol-synthesizing enzyme
3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR). They are converted to cholesteryl
esters by the enzyme acetyl-coenzyme A cholesterol acetyltransferase 1 (ACAT1) and
removed from the intracellular spaces by transporters such as ATP-binding cassette A-1
(ABCA1) [36–38].

In a study by Hartmann et al., enzymes responsible for intracellular cholesterol es-
ter accumulation (HMGCR and ACAT1) were overexpressed, and the expression of the
transporter responsible for their release (ABCA1) was downregulated in lung tumors [39].
This supports our findings that reduced plasma levels of various cholesterol esters, such as
CE(12:0), CE(14:0), and CE(15:0), were associated with a higher probability of metastasis
and, not surprisingly, patient mortality. This phenomenon is in line with our observa-
tions on other lipids. Notably, we also observed a significant decrease in the levels of
several TAG lipid species in plasma samples from metastatic melanoma patients, simi-
lar to the reduced serum TAG levels in hepatocellular carcinoma [40,41]. This reduction
may be due to pro-inflammatory cytokines produced by the tumor, such as IL-1, which
delay intestinal absorption and reduce tissue lipid uptake. Interleukin-2, however, can
induce hypocholesterolemia by inhibiting the activity of lecithin-cholesteryl acyltransferase
(LCAT) [42,43].

As tumors can metastasize by intravasation into venous capillaries (hematogenous
pathway) or the lymphatic system (lymphatic pathway), the identification and validation
of markers that influence the intravasation process have important clinical implications
for prognosis and treatment. Lysophosphatidylcholine (LPC) is derived from PCs by phos-
pholipase A2. It is degraded to glycerophosphocholine and free FA (FFA) and catalyzed by
extracellular lysophospholipases A1 and A2 [44]. LPC can modulate ion concentrations,
including Ca2+, Na+, and K+, by binding to G protein-coupled and Toll-like receptors.
Importantly, LPC can induce lymphocyte and macrophage migration, increase the pro-
duction of proinflammatory cytokines, induce oxidative stress, and promote apoptosis,
inflammation, and disease development [45]. It is known that plasma phospholipid and
LPC levels decrease in several cancers, including prostate cancer, acute leukemia, and lung
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cancer, and that this decrease correlates with tumor progression, making it a promising
biomarker [24,46–50]. In our study, we observed that the total number of LPCs was higher in
patients with lymphatic metastases compared to patients without metastasis but the lowest
level was detected in plasma of patients who had distant metastasis. These prominent LPC
species, such as palmitoyl, oleoyl, linoleoyl, and arachidonoyl-lysophosphatidylcholine
(LPC 16:0, 18:1, 18:2, and 20:4), serve as predictive markers for lymph node metastasis
rather than hematogenous metastasis. These LPCs are among the most abundant in human
plasma [51] and all are capable of inducing the expression of COX-2 [52], which is known
to be associated with lymph node metastasis in several cancers [53,54]. This involvement of
lymph nodes can be explained by the fact that while COX-1 maintains a constant expression
as a housekeeping gene, COX-2 is rapidly inducible, tightly regulated, and significantly
upregulated during inflammation [55]. Previous studies have highlighted the reduction in
invasiveness associated with COX2 inhibition, making it a promising target [56–58]. Our
research suggests that the development of lymph node metastasis begins at the level of
fatty acids and is significantly related to the LPCs we have described. Consequently, the
invasiveness of cells can also be modulated by inhibiting LPCs, most likely at a slightly
earlier stage.

In our cohort, several lipid classes were found to be different between deceased and
surviving patients. Reduced CE(14:0) levels were associated with a significantly higher risk
of death. This finding is similar to that of other cholesteryl esters, including CE(12:0) and
CE(15:0), which were also found when comparing metastasis-free and metastatic patients.
In the blood plasma, cholesterol exists in two forms, free cholesterol (Chol) and cholesteryl
esters (CEs). The esterification of Chol to CE occurs in the endoplasmic reticulum of both
intestine and liver cells and is catalyzed by ACAT [59]. These changes in CE levels may
be attributed to alterations in the expression of genes involved in the metabolism of CE.
For example, in colorectal cancer (CRC), Liu et al. reported significantly higher levels
of lysosomal acid lipase (LAL), which is responsible for the hydrolysis of CE in tumor
patients. Conversely, decreased levels of ACAT1, which is responsible for CE synthesis,
were negatively correlated with CRC progression. Lower ACAT1 immuno-histochemical
(IHC) scores were associated with more advanced clinical stages of CRC [60]. Notably,
nearly 80% of advanced cancer patients suffer from a severe wasting syndrome, known
as cancer cachexia. Cachexia is characterized by significant weight loss due to loss of
skeletal muscle and adipose tissue [61], which is also associated with decreased cholesterol
levels [62]. Last but not least, we identified four lipids (CE(12:0), CE(14:0), CE(15:0),
SM(14:0)) that overlapped between the lipid species of patients with and without metastatic
tumors and between deceased and living patients. These overlaps in the lipid patterns
confirm the reliability of our results.

In summary, we have, for the first time, identified numerous lipidomic abnormalities in
the plasma of melanoma patients that have diagnostic and predictive value. We encourage
further research in this field. It is crucial to emphasize that to comprehensively understand
the lipidomic changes associated with tumorigenesis, simultaneous study of lipid patterns
in normal and tumor tissue as well as plasma/serum is essential. This is due to the potential
correlation between a decrease in the amount of a particular lipid in one location and an
increase in the same lipid in another location (e.g., tumor–normal tissue) and vice versa [63].

4. Materials and Methods
4.1. Characteristics of Patients and Melanoma Samples Included in the Study

All tumor samples were handled according to the rules and regulations of the Univer-
sity of Debrecen, Hungary, with the approval of the Ethics Committee of the Hungarian
Scientific Council for Health (TUKEB 17876–2018/EKU and BMEÜ/715-1 /2022/EKU).
One hundred fifty-one melanoma patients were included in this study. Characteristics
of the tumor samples are summarized in Table 1. Eighty-three patients were considered
virtually metastasis-free, having had a negative CT scan at least one month prior to blood
sampling, indicating the absence of metastasis. Additionally, 68 patients already had
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metastatic melanoma at the time of blood sampling. The patients involved 84 males (56%)
and 67 (44%) females, with a median age of 61.91 years (range 29–84 years). Out of the
84 male patients (55.6%), 45 (53.5%) were diagnosed with melanoma metastases (11 had
lymph node metastasis and 34 had distant metastases) and 34.3% of the female patients
(n = 23) developed metastases (8 patients had lymph node metastasis and 15 had distant
metastases) (Table 1). The distant metastases mainly affected the lungs, brain, liver, or
kidneys. Based on the tumor samples, we have categorized two groups according to
the pathway of metastasis: lymphatic and hematogenous. Lymph node metastases were
present in 19; distant and/or cutan metastases were detected in 49 patients at the time of
blood collection. The subtypes of melanoma from patients considered tumor-free at the
time of blood collection were cutaneous (98.7%), and 2 primary tumors were choroidal
melanomas. It is important to note that patients with advanced metastases almost always
exhibit lymph node involvement, making it challenging to entirely separate the two groups
(Table 1).

Table 1. Characteristics of melanoma patients and tumor samples.

Type of Therapy at the Time of Blood Sampling

Number of Patients (%) Metastases Peresent (%) None
(%)

Immuno-Therapy a

(%) Targeted Therapy b (%)

All patients 151 (100) 68 (45.0) 64 (43.4) 64 (43.4) 23 (15.2)
Gender
Female 67 (44.4) 23 (34.3) 31 (46.2) 27 (40.3) 9 (13.4)
Male 84 (55.6) 45 (53.6) 33 (33.3) 37 (44.0) 14 (16.7)
Age (years) (average age: 61.91)
20–50 28 (18.5) 8 (28.6) 14 (50.0) 9 (32.1) 5 (17.9)
≥50 123 (81.5) 60 (48.8) 50 (40.7) 55(44.7) 18 (14.6)
Metastasis
Absent 83 (55.0) 83 (55.0) 53 (63.9) 22 (26.5) 8 (9.6)
Present 68 (45.0) 68 (45.0) 11 (16.2) 42 (61.8) 15 (22.1)
Pathway of metastasis
Lymphatic (only lymph
node) 19 (12.6)

Hematogenous (distant
and/or cutan) 49 (32.5)

Patient’s survival (with a 3-year follow-up period)
Alive 129 (85.4)
Deceased 22 (14.6)

a Immunotherapies: OPDIVO® (nivolumab); OPDIVO® (nivolumab) + YERVOY® (ipilimumab); Keytruda (pem-
brolizumab). b Targeted therapies: TAFINLAR® (dabrafenib)+MEKINIST® (trametinib); Zelboraf (vemurafenib) +
COTELLIC® (cobimetinib).

4.2. Blood Samples

Blood samples were collected at the Department of Dermatology, Faculty of Medicine,
University of Debrecen, Hungary. Blood sampling was performed at least one month after
surgical removal of the primary tumor or while patients had metastatic melanoma. All
blood specimens were processed within one hour postdraw. The blood was collected into
BD Vacutainer® Venous Blood Collection Tubes (cat. no. 367525) containing EDTA. It was
then transferred to 15 mL Falcon tubes and centrifuged at 4 ◦C and 3000 rpm for 10 min.
The supernatant was then carefully placed into 2 mL Eppendorf tubes and centrifuged at
4 ◦C and 16,000 rpm for 10 min. Specimens were shipped to the Institute of Public Health
and Epidemiology on dry ice and were stored at −80 ◦C until use.

4.3. Standards and Extraction of Lipids

Methanol, 2-propanol, dichloromethane, water, and ammonium acetate were pur-
chased from VWR International, LLC (Radnor, Radnor, PA, USA). All of these products
were of HPLC grade. Internal standard (ISTD) kits (containing ISTDs for 13 lipid classes),
pike standards with quality control plasma kits, SelexION tuning kits, and system suitabil-
ity test kits for quantitative lipidomic analysis of human samples were purchased from
AB Sciex Germany GmbH (Darmstadt, Germany). The composition of ISTD standard mix-
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tures containing isotope-labeled lipid molecules was previously described in detail [64,65].
Lipids were extracted from the plasma samples using a modified Bligh-Dyer method [66].

4.4. Lipidomic Analysis and Data Processing

Analyses of lipid samples were carried out using HPLC coupled with electrospray
ionization tandem mass spectrometry (HPLC ESI-MS-MS), as described previously [64].
The Lipidyzer platform consisting of a Nexera X2 HPLC (Shimadzu Germany GmbH,
Duisburg, Germany) and a Sciex QTRAP 5500 system equipped with SelexION technology
(AB Sciex Germany GmbH, Darmstadt, Germany) was used for lipidomic analysis. The
nomenclature of lipids proposed by the Lipid Maps Consortium was used in this study [67].

4.5. Statistical Analysis

The Shapiro–Wilk test was used to evaluate the normality of the data. Binary logistic
regression modeling was used to analyze the association between levels of lipid species and
the prognostic factors (presence/absence of metastasis, death, localization of metastasis)
as dichotomous covariates with adjustment for age, sex, and type of therapy (none, im-
munotherapy, or targeted therapy). Odds ratios (ORs) and 95% confidence intervals (C.I.s)
were calculated. Stepwise regression analysis with a forward selection was performed to
identify lipid panels with a significant association with the presence of prognostic factors,
adjusted for sex, age, and therapy approach. Receiver operating characteristic (ROC) curves
were constructed from the logistic regression model, and the area under the curve (AUC)
was used to assess the classification performance of the model. Using the AUC values, the
Youden statistic was applied to find the cutoff point with the best sensitivity and specificity
values [26]. For statistical calculation, the optimal cutoff point was considered to be the
one with the highest value of the Youden index. The comparison of the lipid levels was
calculated with the Mann–Whitney Wilcoxon test and Kruskal–Wallis tests followed by the
Dunn’s test post hoc method.

Statistical analyses were carried out using IBM SPSS Statistics 26.0 software (IBM
company, Palo Alto, CA, USA) or R 3.6.1 software (R Foundation for Statistical Computing,
Vienna, Austria). p < 0.05 was considered statistically significant.
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