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Abstract: Oxidative stress and lipid peroxidation play important roles in numerous physiological
and pathological processes, while the bioactive products of lipid peroxidation, lipid hydroperoxides
and reactive aldehydes, act as important mediators of redox signaling in normal and malignant
cells. Many types of cancer, including osteosarcoma, express altered redox signaling pathways. Such
redox signaling pathways protect cancer cells from the cytotoxic effects of oxidative stress, thus
supporting malignant transformation, and eventually from cytotoxic anticancer therapies associated
with oxidative stress. In this review, we aim to explore the status of lipid peroxidation in osteosarcoma
and highlight the involvement of lipid peroxidation products in redox signaling pathways, including
the involvement of lipid peroxidation in osteosarcoma therapies.
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1. Introduction

Osteosarcoma (OS) is the most common primary malignant bone tumor of mesenchy-
mal origin and is relatively rare in the general population. It is common in two age groups:
in children from early childhood to young adults, and later in adults over the age of 50.
OS most commonly occurs in the long bones, but other bones can also be affected [1,2].
The median survival time of patients with OS is 39 months, and the 5-year survival rate
is 58.0% [2]. In children and adolescents, the 5-year survival rate is between 64 and 78%,
depending on the type of OS and age group [3].

Some inherited genetic mutations are associated with an increased risk of developing
OS, e.g., mutations of genes such as tumor suppressor p53 (P53) [4]; retinoblastoma protein
(RB); ATP-dependent DNA helicase Q4 (RECQL4); Bloom syndrome, RecQ Helicase-Like
(BLM); and Werner syndrome, RecQ Helicase-Like (WRN) [5–8]. OS shows a very het-
erogenous appearance and no single gene mutation is responsible for the development of
OS [9,10]. It appears that this broad spectrum of genetic alterations, including gains, losses,
or rearrangements of chromosomal regions, is related to disrupted osteoblastic differentia-
tion [7]. Altered gene expression and changes in signaling pathways may contribute to the
malignant transformation of OS [11]. OS, as well as other carcinomas, manifest different
metabolic phenotypes to sustain growth and survival. Metabolic profile as well as lipid
peroxidation can be impacted, among others, by epigenetic alterations [12–14].

Current OS therapies are based on a basic approach based on chemotherapy, usually
doxorubicin, methotrexate, and cisplatin in combination before or after surgery. Radiother-
apy is also being considered, although OS is quite resistant, while other approaches (such
as adjuvant immunotherapy), although with some good results, are still under trial [15,16].
Treatment of other cancers with radiotherapy can, as a consequence, cause the development
of OS in neighboring tissues [17].

The anticancer effect of chemotherapy and radiotherapy is often based on the induc-
tion of oxidative stress [18] and the formation of reactive oxygen species (ROS), which
subsequently damage the cancer cells [19,20]. However, redox homeostasis in cancer cells
keeps ROS higher than in normal cells, and cancer cells use this excess of ROS to promote
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proliferation, migration, and metastasis [21]. This excess of ROS makes cancer cells more
susceptible to the additional ROS created by chemotherapy and radiotherapy. However,
an adaptive antioxidant system could combat oxidative stress, leading to resistance to
chemotherapy and radiotherapy [22,23].

Although excessive levels of ROS lead to cell death, sublethal levels of ROS will not
have detrimental effects on cells but instead, the cells will survive with affected cellular
proteins, lipids, and DNA. Various redox signaling cascades associated with DNA damage
are then activated, leading to the activation of oncogenes (H-RAS) or the inactivation of
tumor suppressor genes (P53), and thus to the development of cancer [21].

Cancer cells share several properties that help them survive and thrive, and each of
these properties is associated with a change in signaling. Cancer growth is supported
by sustained proliferative signaling and replicative immortality, escape from growth sup-
pressors and resistance to cell death, changes in cell metabolism, increased mutation, the
induction of angiogenesis, the promotion of inflammation and avoidance of destruction by
the immune system, invasion, and the formation of metastases [24,25]. These properties
are explored in [26] with regard to redox signaling. In this review, we aim to examine
the current data on the status of lipid peroxidation in OS, including the involvement of
lipid peroxidation in OS therapy. The involvement of lipid peroxidation products in redox
signaling pathways will be evaluated in relation to the relevant signaling pathways in OS.

2. Osteosarcoma Classification

Research on OS is difficult since it has a complex genome, rather low incidence, and
there are significant biologic differences between the subtypes [27]. OS is the most common
primary malignant tumor of the connective tissue, having a mesodermal origin. In OS,
the tumor cells, originating from bone tissue and only rarely soft tissue, produce bone or
osteoid. Based on histology findings on predominant cells, OS can be subdivided into
osteoblastic, chondroblastic, and fibroblastic types, although these three cell types can be
found in a single tumor. In addition, OS often produces various amounts of cartilage matrix
or fibrous tissue [28]. Based on the place of origin, OS cancers are divided into two main
groups: primary, which can be intramedullary (central) or surface, and secondary tumors.
However, although OS predominantly occurs at the metaphysis and arises from medulla,
it may also arise from the bone surface, cortex, or even in an extraskeletal site. Based on
its anatomical location, OSs are divided into osseous (central, surface, gnathic, multifocal)
and soft tissue (intramuscular and other) OS. The World Health Organization classifies OS
to six subtypes: low-grade central OS, OS not otherwise specified, parosteal, periosteal,
high-grade surface, and secondary OS.

The diagnosis and prognosis of OS are difficult. Gathered information and different
recommendations group OS into scalar systems, whereas histology is most important for
oncologic stage determination and therapy prescription. Thus, several grading systems
are in use, but the most popular is that of a 4-stage grading system based on Broders’
grading adapted for osteosarcoma by the Mayo Clinic group [29]. Namely, in this Broders’
schema, the numeric grade of the tumor varies from one to four and is associated with the
percentage of anaplasia in the tumor (from ≤25% up to 100%). In this schema, the most
important characteristic is the cytologic atypia of tumor cells, and most of the central OS is
assigned a grade of three or four (high grade). OS histologic grade 1 are low-grade central
OS and usually with no anaplasia. In the OS staging schema, the stage also depends on
metastasis findings. Based on current knowledge, almost all conventional OS are high-
grade tumors. On the contrary, almost all surface OS are low-grade tumors, whereas
only some gnathic and periosteal OS are in grade 1, rarely grade 2 or 3. These grades are
important to determine the necessity for surgery and chemotherapy [30].

Poor prognosis and high lethality in patients with osteosarcoma are highly associated
with metastases. The high propensity of cell spreading results in a relatively high likelihood
of the appearance of distant metastases, firstly and most commonly in the lungs and
secondly in the lymphatic system, although almost any organ can be affected, so the
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prognosis for patients with OS is always dismal. Namely, OS cells can locate themselves in
a second tissue. These cells eventually differentiate and form a suitable microenvironment
for the growth of metastatic OS cells, leading to the formation of metastases. These
cells usually differentiate and are not identical to the cells of origin due to specific and
various molecular changes [31]. Scientific efforts led to novel findings and the discovery
of biochemical and molecular markers involved in OS progress and development, which
subsequently improved treatment modalities [5].

Some studies demonstrated that ROS generation is a modulator of bone cell func-
tion, and that the pathophysiology of mineralized tissues that is influenced by oxidative
stress have a great influence on chemotherapy and apoptosis in OS, but can also impact
carcinogenesis [32].

3. Lipid Peroxidation in Osteosarcoma

Redox reprogramming is among the hallmarks of cancer, and plays a crucial role in the
initiation, development, and progression of cancer. Its roles in tumorigenesis and the onset
of metastasis have been covered in recent reviews [22,33,34]. Below, redox reprograming in
cancer in general and in particular in OS is discussed.

Cancer is characterized by an altered antioxidant defense and a deregulated redox
homeostasis, which leads to the excessive formation and accumulation of ROS and con-
sequently to oxidative stress [35]. Increased ROS have been implicated in both tumor
progression and tumor regression. Moderate levels of ROS can reverse or slow the devel-
opment of tumors, while high levels of ROS accelerate carcinogenesis [36–40]. ROS can
have varying effects on macromolecules depending on the site of origin, their reactivity,
and diffusion distance [41]. Polyunsaturated fatty acids (PUFAs) are particularly vulner-
able to ROS-induced damage at the bis-allylic site, which triggers lipid peroxidation [42].
In addition to non-enzymatic oxidation, lipid peroxidation can also occur by enzymatic
oxidation via peroxidases such as phospholipase A2, cyclooxygenase, lipoxygenase, and
cytochrome p450 [42]. The type of lipid peroxidation end products depends on the type
of PUFA oxidized. Enzymatic lipid peroxidation end products of linoleic acid (omega-
6 PUFA) are hydroperoxy octadecadienoates (HPODEs), whereas the enzymatic oxida-
tion of arachidonic acid (omega-6 PUFA) will give rise to prostaglandins, thromboxanes,
leukotrienes, lipoxins, hydroperoxyeicosatetraenoic acid, epoxyeicosatrienoic acid, and
20-hydroxyeicosatetraenoic acid [43]. Moreover, lipid hydroperoxides (LOOH) are formed
in the early stage of ROS-induced lipid peroxidation. Similar to enzymatic lipid peroxi-
dation, the ROS-induced peroxidation of linoleic acid leads to the formation of HPODEs.
Peroxidation of arachidonic acid will give rise to F2-isoprostanes and isofurans, while
peroxidation of docosahexaenoic acid (omega-3 PUFA) generates neuroprostanes [44].
Reactive aldehydes, including 4-hydroxyalkenals, 2-alkenals, ketoaldehydes, and other
similar unsaturated aldehydes, are among the end products of lipid peroxidation. Some
of the well-studied aldehydes derived from lipid peroxidation are 4-hydroxynonenal (4-
HNE), malondialdehyde (MDA), and acrolein, with 4-HNE being the best known due to its
bioactive properties [45–47]. Due to its high reactivity, 4-HNE can interact with different
macromolecules and influence various signaling processes and cellular functions [48–52].
4-HNE, at physiological concentrations, acts as a metabolic regulator, while at higher
exogenously added concentrations, it causes dose- and time-dependent cytostatic or cy-
totoxic effects [53]. Calongi and coworkers demonstrated the cytotoxic effect of 4-HNE
on the human OS cell line (SaOS2), inducing apoptosis, cytostatic effects, and growth
retardation [54]. Our previous work also showed that 4-HNE inhibits cell proliferation
and might be one of the important signaling molecules regulating the growth of human
bone or at least OS cells [53]. We have shown that 4-HNE can have a different effect on
undifferentiated and differentiated human osteosarcoma cells (HOSs). Differentiated HOS
cells exhibited lower levels of c-Myc and glutathione (GSH), a marked increase in C20:3
fatty acids, decreased metabolism of 4-HNE, and an elevated amount of proteins modified
with 4-HNE compared to undifferentiated cells [55]. It is possible that if malignant OS
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cells differentiate in a manner that alters lipid metabolism, 4-HNE could act as a natural
promoter for cell decay [55]. Indeed, the reprogramming of lipid metabolism and the
alteration of the lipidome profile are two of the most important metabolic traits of cancer
cells [56]. Fatty acids are not only the building blocks of membranes but also have an
important signaling function and are vital fuel sources for cellular energy production [57].
The relative amounts of saturated fatty acids compared to unsaturated fatty acids have been
found in cancer tissues and malignant OS cells [55,58]. Tumors have a more active lipid
metabolism and, as recently discovered, in addition to the classical desaturase pathway,
also have an alternative fatty acid desaturation pathway that supports the biosynthesis
of unsaturated fatty acids required for tumor growth [59]. Since cancer cells are exposed
to higher levels of oxidative stress than normal cells [60], one could suspect the greater
sensitivity of cancer cells to lipid peroxidation-induced cell death via ferroptosis, although
this does not seem to be the case.

Patients with primary bone and soft tissue sarcomas exhibit impaired redox homeosta-
sis, as evidenced by the lower levels of antioxidant defenses such as thiols, catalase, and
superoxide, as well as elevated protein carbonyl levels and malondialdehyde in biological
fluids [32]. However, the presence of lipid peroxidation end products in tumor tissue
varies. In some tumor types, the presence of proteins modified with lipid peroxidation
derived reactive aldehydes has been found to correlate with malignancy, whereas in other
tumor types, the presence of modified proteins in tumor tissues decreases [46,61], suggest-
ing cellular mechanisms that are critical for cells to avoid lipid peroxidation-induced cell
death. The cells have developed various detoxification mechanisms that protect them from
lipid peroxidation.

Cellular antioxidant defense mechanisms decrease the level of pro-oxidants, and al-
terations in major antioxidant systems in tumorigenesis have recently been reviewed [35].
Besides antioxidants, cells also own other mechanisms for the removal of lipid peroxi-
dation products. For example, the major route for 4-HNE detoxification occurs through
enzymatic disposal via glutathione-S-transferase (GST), aldehyde dehydrogenase (ALDH),
and alcohol dehydrogenase, with GSTA4 having the highest catalytic activity. Conjugation
of 4-HNE to GSH via GSTA4 produces glutathionyl-HNE [62] that is eliminated from
cells via ATP-dependent RLIP76 export [63,64]. The inability of cells to eliminate lipid
peroxidation products would render them prone to ferroptotic cell death. Ferroptosis is
a novel form of programmed cell death and is marked by lipid peroxidation and iron
overload. This process involves the accumulation of LOOH and is distinct from other forms
of cell death, such as apoptosis and necrosis [65]. Ferroptosis is dependent on iron and
involves an iron-dependent form of lipid peroxidation. Iron plays a crucial role in the Fen-
ton reaction, where it reacts with hydrogen peroxide to produce highly reactive hydroxyl
radicals, initiating lipid peroxidation. In ferroptosis, there is a depletion of GSH, a major
cellular antioxidant that helps protect cells from OS. GSH acts as a cofactor for the enzyme
glutathione peroxidase 4 (GPX4), which normally protects cells from lipid peroxidation
by reducing LOOH to non-toxic lipid alcohols. GPX4 is inhibited in ferroptosis, either
due to decreased availability of its cofactor GSH, or due to direct inhibition by specific
compounds [66]. When GPX4 is unable to perform its function, lipid peroxidation proceeds
unchecked and leads to the accumulation of LOOH in cellular membranes, particularly
phospholipids containing PUFAs. This process disrupts the integrity and fluidity of the
lipid bilayer, compromising cell structure and function [67,68]. Escape from ferroptosis has
recently emerged as a novel hallmark of tumor progression.

Based on the Cancer Genome Atlas sequencing data, a study on the differences in
ferroptosis-related gene expression between lung squamous cell carcinoma (LSCC) and ad-
jacent tissue revealed that progression- and disease-free survival might be predicted by the
high expression of heat shock protein A5 (HSPA5) [69]. Elevated expression was also found
in lung adenocarcinoma patients; however, this did not indicate a better prognosis, while
patients with metastatic LSCC who expressed high levels of HSPA5 had shorter overall and
progression-free survival times [69]. By preventing ferroptosis, a novel oncogene called
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tribbles pseudokinase 3 (TRIB3) increases the aggressiveness of head and neck squamous
cell carcinoma [70].

Max-like protein X (MLX), a member of the Myc-MLX network, is involved in the
lipid metabolism pathway and can cause metabolic reprogramming, and its overexpression
is associated with a poor prognosis in OS patients. The MLX knockdown promotes the
accumulation of intracellular ferrous iron (Fe2+), supporting ferroptosis and affecting OS
growth and metastases [71]. Furthermore, in order to facilitate extracellular cysteine (Cys)
uptake, which is necessary for GSH biosynthesis, MLX regulates the glutamate/cystine
antiporter SLC7A11 [71]. This limits the production of ROS and preserves the redox
equilibrium of OS cells. Another study found elevated Fanconi Anemia Complementation
Group D2 (FANCD2) in OS cells. The same study demonstrated that FANCD2 knockdown
increases the labile iron pool, Fe2+, and lipid peroxidation, and inhibits the JAK2/STAT3
pathway, impairing OS cell viability, invasion, and migration, while this is reversed by
ferroptosis inhibitor Fer-1 [72].

Cancer cells mostly obtain ATP through glycolysis rather than mitochondrial oxida-
tive phosphorylation, and mitochondrial dysfunction plays an important role in cancer
progression. An inhibitor of mitochondrial transcription 1 (IMT1), which is also an inhibitor
of mitochondrial RNA polymerase, was found to promote lipid peroxidation and mito-
chondrial depolarization by affecting mitochondrial function in OS cells [73]. Moreover, it
was found to decrease proliferation and migration in primary and immortalized OS cells
and to induce apoptosis in OS cells without causing cytotoxicity in human osteoblasts or
osteoblastic cells [73]. This could, at least in part, be attributed to the Akt-mammalian
target of rapamycin (mTOR) cascade inhibition by IMT1 [73]. The exposure of human
OS cells MG63 to 4-HNE induces caspase-3 activation and modifies the ratio of Bax/Bcl2
via inactivation of the AKT/mTOR pathway [74]. Similarly, the translocase of inner mito-
chondrial membrane 13 (TIMM13) is elevated in OS tissues and cells [75]. Its depletion
results in oxidative damage, lipid peroxidation, DNA damage, and impaired mitochondrial
function, while its overexpression promotes cell motility and proliferation by raising ATP
levels. In primary OS cells, TIMM13 depletion inhibits Akt-mTOR activation [75]. The
transcription of TIMM13, which is dependent on Homeobox C13, is markedly elevated in
OS tissues and cells, highlighting its importance for OS progression [75]. A recent study
revealed that G protein-coupled estrogen receptor 1 also prevents ferroptosis in non-small
cell lung cancer by activating PI3K/AKT/mTOR signaling, thereby inducing stearoyl CoA
desaturase 1 (SCD1) expression [76]. From all the above, and as ferroptosis is regulated
by mitochondrial iron metabolism, altered mitochondrial function in cancer seems to be
among the mechanisms that protect cells from ferroptosis. A flow chart summarizing the
tumorigenesis-associated signaling pathways that may be regulated by lipid peroxidation
is shown in Figure 1.
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Solid tumors are prone to infiltration by macrophages, which polarize into tumor-
associated macrophages (TAMs) to support tumor progression. TAMs increase the expres-
sion of ceruloplasmin mRNA, which is transferred to tumor cells via extracellular vesicles.
It was shown that this mRNA protects HT1080 fibrosarcoma cells from ferroptosis based
on reduced iron abundance and lipid peroxidation [77]. Furthermore, in OS cell lines and
tissues, miR-144-3p expression is reduced while ZEB1 expression is elevated, and it was
found that miR-144-3p negatively regulates ZEB1 expression [78]. The overexpression of
miR-144-3p has the potential to decrease ZEB1 expression, induce ferroptosis, and inhibit
the growth, migration, and invasion of OS cells. The same study revealed that ZEB1 and
miR-144-3p in exosomes can control OS growth by altering the ferroptosis process [78].
Another micro-RNA, miR-1287-5p is downregulated in human OS, and its overexpression
induces ferroptosis, most likely via the inhibition of GPX4 [79].

Molecular analyses of lipid peroxidation markers could provide critical insights into
OS development and progression and can also serve as prognostic implications for disease
outcomes and survival rates. However, more studies are needed in order to understand the
possible clinical application of these findings and validate their impact on disease risk and
progression [30,80].

4. Lipid Peroxidation-Related Redox Signaling in OS
4.1. Cysteine-Containing Proteins

Cys residues in proteins and peptides are very important for redox signaling, as
the free thiol group is very sensitive to oxidation and can be selectively and reversibly
oxidized. In addition, the oxidation of Cys can act via disulfide bridges as a link between
redox-sensitive proteins, leading to their aggregation and eventual inactivation [26,81].

4.1.1. GCL/GSH/GPX-GST Pathway

GSH is a tripeptide (Glu-Cys-Gly) that is produced in large quantities in the cells
and acts as an antioxidant and regulator of the redox system. The GSH system, which
includes glutamate-cysteine ligase (GCL), glutathione synthetase (GSS), reduced GSH,
oxidized GSH, glutathione peroxidase (GPX), glutathione reductase (GR), nicotinamide
adenine dinucleotide phosphate (NADPH), and GST, is another important regulator of
cellular redox homeostasis [23,35,74,75]. The products of lipid peroxidation such as acrolein
and 4-HNE are able to induce glutamate cysteine ligase (GCL) expression [82,83]. The
α,β-unsaturated 15-deoxy-∆12,14-prostaglandin-J2 (15d-PGJ2) is also able to upregulate
GCLc in MG-63 OS cells [84].

4-HNE interacts with Cys residues on both GCLc and GCLm and could promote or
prevent aggregation and activation of the enzyme depending on the order of the reaction.
However, it can also bind directly to free GCLc and increase its catalytic activity [85]. In
GCLc, Cys553 is activated by 4-HNE, but in the holoenzyme it is masked and 4-HNE cannot
reach it, whereas Cys35 is exposed by GCLm [85,86].

GCL is elevated in many cancers [87] and this contributes to resistance to chemotherapy [88].
The same is true for OS, where an increased expression of GCL is found [84].

Cys for GSH synthesis is imported via the cystine/glutamate antiporter SLC7A11,
which is overexpressed in human cancers [82]. Cancer cells must undergo metabolic re-
programming to provide high levels of glutamine to SLC7A11 to supply sufficient GSH
for its function [89]. The overexpression of GPX4 is found in cancers with poor progno-
sis [90] together with SLC7A11 [91,92]. The same is true for OS, which shows an increased
expression of SLC7A11 [71]. In fact, the overexpression of SLC7A11 may even suppress
ferroptosis and promote cancer growth [89]. The tumor suppressor P53 is often mutated
or inactive in OS, but when active, SLC7A11 expression is downregulated [89,93]. The
influx of Cys into cells could also be prevented by glutaminase inhibitors that block the
conversion of glutamine to glutamate, thereby reducing the available glutamate pool for
SLC7A11 [89,94]. Targeting ferroptosis can help in the treatment of chemotherapy-resistant
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OS [95]. High levels of GPX4, GSH, and SLC7A11 make OS resistant to ferroptosis, so
targeting these factors may help in therapy [93,95].

GPX4 is active against phospholipid hydroperoxides (PLOOHs) and related cytotoxic
compounds and reduces them with the help of GSH [96]. It is the only GPX that can catalyze
the reduction of 7α-cholesterol-hydroperoxide (Chol 7α-OOH) [97]. In drug-resistant OS
cell lines, GPX4 increased significantly in response to cisplatin; these OS cell lines had lower
levels of ROS, lipid peroxides, and MDA compared to the original line [98].

GST protects cells from damage by conjugating xenobiotics, carcinogens, reactive
aldehydes, quinones, epoxides, and hydroperoxides, which are formed as secondary
metabolites of ROS. These include, for example, 4-HNE, acrolein, and 15-deoxy-delta(12,14)-
prostaglandin J2 (15d-PGJ2) [99,100]. The GSTA4-4 isoform has a higher affinity for 4-HNE
than for other substrates [101]. There is no data on the expression of GSTA4-4 in OS.
However, there is a significant correlation between polymorphisms in GSTT1 or GSTM3
and the prognosis in OS. The GSTM1 null genotype is correlated with relapse, while
the GSTM3*B allele is associated with better overall survival. The GSTM3*B/GSTM1 or
GSTM3*B/GSTT1 genotype that is present in metastatic patients at the time of diagnosis is
associated with better survival [102].

4.1.2. Peroxiredoxins and Thioredoxins

Peroxiredoxins (PRDXs) are responsible for maintaining redox homeostasis by de-
grading hydrogen peroxide and lipid peroxides [103]. They are the most abundant an-
tioxidant proteins, containing a Cys residue at the catalytic site [104]. High concentra-
tions of substrates such as LOOH can oxidize and inactivate PRDX3 and PRDX5 in the
mitochondria [105,106]. This process is reversible, and the PRDXs are recycled by TRXR in
an NADPH-dependent reaction or by sulfiredoxin (SRX) [26]. PRDXs act as both tumor
suppressors and promoters, as the disruption of PRDX expression can lead to an increased
incidence of cancer [107,108], but once developed, cancers increase PRDX expression. This
expression contributes to resistance to chemotherapy and radiotherapy [109], so PRDX
inhibitors are explored as therapeutic agents in various cancer models [107]. PRDX6 is
present in various cancers and can reduce H2O2, short-chain hydroperoxides, and PLOOH
in the cell membrane with the help of GSH, thus restoring cancer cell membranes [110].
Various reactive aldehydes have been tested to interfere with its activity: 4-HNE, MDA,
acrolein, and 4-oxononenal (4-ONE), but apart from conformational changes and extensive
cross-linking with multiple modification sites, they were unable, under pathophysiological
concentrations, to interfere with its activity. The active site Cys47 remained protected due
to conformational changes [111,112]. So far, two PRDXs have been described in OS: PRDX2,
which contributes to resistance to chemotherapy, malignancy, and poor prognosis [113],
and PRDX1 with conflicting results [114,115]. Some data suggest that the overexpression of
PRDX1 and SRX1 may protect the liver from CCl4-induced toxicity, and reduce the amount
of 4-HNE [116].

The thioredoxin (TRX) system, which includes TRX, thioredoxin reductase (TRXR),
NADPH, and thioredoxin interacting protein (TXNIP), is another important regulator
of cellular redox homeostasis [35]. TRX maintains the redox environment in cells by
reducing disulfide bonds in proteins (such as PRDX). In its catalytic center, TRX has
a pair of redox-active Cys residues that are oxidized during activity and recycled and
reduced by the reducing enzyme TRX reductase (TRXR) [81]. The expression of TRX and
TRXR is associated with the progression and metastasis of various types of cancer [117].
This is also true for OS, where a high expression of TRX is a factor in metastasis and
a poor prognosis [118]. The oxidation of TRX prevents its binding to apoptosis signal-
regulating kinase 1 (ASK1), and the free protein kinase ASK1 is activated and can induce
apoptosis. This demonstrates the importance of TRX in the regulation of ROS-mediated
apoptosis [81]. Acrolein interacts with the active groups Cys32 and Cys35 of TRX as well
as with Cys59/Cys64 and Cys497 of TRXR and inactivates it, which in the case of TRXR
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is an irreversible reaction [119]. 4-HNE interacts with the residues Cys73 and Cys32 of
TRX [120].

Nucleoredoxin (NRX) belongs to the TRX family, but unlike TRX, it appears to be a
multifunctional enzyme that probably acts as an oxidoreductase. It also contains a pair of
Cys in its catalytic site, Cys205 and Cys208, which are essential for its activity [120,121].
NRX deficiency increases the cellular levels of NADPH and GSH [122]. In this context, a
downregulation of NRX is observed in carcinomas compared to normal tissues [123]. It
is assumed that NRX plays a certain role in cellular differentiation via the Wingless and
Int-1 (WNT) signaling pathways [124]. NRX is important during bone development and for
bone homeostasis and likely acts by inhibiting the WNT signaling pathway [125]. There is
no data on the involvement of NRX in OS or the interaction of lipid peroxidation products
with NRX.

4.1.3. Redox Sensitive Proteins

Several other proteins have Cys in the active site that is regulated by oxidation and
can be modified by lipid peroxidation products and reactive aldehydes. Protein tyrosine
phosphatases (PTPs) are a family of enzymes that catalyze the dephosphorylation of
phosphotyrosine in proteins. The catalytic site of PTPs contains a Cys residue that serves
as a transient receptor for phosphate. In the case of oxidation, the reaction cannot take
place, the enzyme is blocked, and the phosphotyrosines are increased. These reactions
are reversible, and the functions of the PTPs could be restored [81]. One of these PTPs
is the phosphatase and tensin homolog (PTEN). When Cys is oxidized in the catalytic
site, it forms a disulfide bond to protect itself from irreversible oxidation, and with the
help of reducing enzymes such as TRX, disulfide bonds can be reduced [81]. PTP1B
is involved in the regulation of insulin signaling and also contains Cys in the catalytic
site, which is oxidatively regulated [81]. MAP kinase phosphatase (MKP) is involved in
the stress signaling pathway by downregulating c-Jun N-terminal kinase (JNK). When
oxidized, MKP activity is inhibited, and JNK activation is increased. The oxidation of MKP
results in the formation of high molecular weight protein complexes that are degraded
by proteasomes [81]. Essential glycolytic enzymes such as glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) and the cancer cell-specific pyruvate kinase isozyme M2 are
inactivated by the oxidation [126,127] of Cys residues [126,128,129].

In addition, aldehydes derived from lipid peroxidation, such as 4-HNE, can modify a va-
riety of proteins and alter their structure and function due to their high reactivity [48,130–132].
Some modifications of redox-sensitive proteins have biological relevance, as recently re-
viewed [50].

4.2. NADP+/NADPH and NAD+/NADH Redox Systems

The nicotinamide adenine dinucleotide phosphate NADP+/NADPH and the nicoti-
namide adenine dinucleotide NAD+/NADH are crucial for the maintenance of cellular
redox homeostasis and cellular energy metabolism. The NADP+/NADPH system is in-
volved in the maintenance of redox balance, NADPH oxidase (NOX) activity, synthesis
of fatty acids, amino acids, nucleotides, and steroids, while the NAD+/NADH system is
involved in the citric acid cycle, glycolysis, and oxidative phosphorylation. Both coenzymes
are involved in cellular oxidation/reduction reactions, with NAD+/NADH being primarily
responsible for oxidation reactions and NADP+/NADPH for reduction reactions. The
reason for this is the difference in their redox potential; the NADP+/NADPH pair is more
electronegative than the NAD+/NADH pair [133–135]. The amount of NAD+/NADH is
about 10 times higher than the concentration of NADP+/NADPH in the same cells [136].

4.2.1. NADP+/NADPH

To protect themselves from oxidative stress and maintain redox homeostasis, cells
have developed complex enzymatic antioxidant defense systems that depend on the key
molecule NADPH, which provides electrons to recycle PRDX, TRX, and GSH. The main
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source of NADPH in the cell is the pentose phosphate pathway (PPP) [137] with the
rate-limiting enzyme glucose-6-phosphate dehydrogenase (G6PD) [138]. It is also pro-
duced secondarily by malic enzyme (ME), isocitrate dehydrogenase (IDH), nicotinamide
nucleotide transhydrogenase (NNT) [139–144], and NAD+ kinase (NADK) [145].

G6PD is a cytosolic enzyme that catalyzes the reaction between glucose-6-phosphate
and NADP+, during which NADPH is formed. The upregulation of G6PD is found in
various cancers, and its inhibition has a cytotoxic effect on cancer cells [146]. G6PD-deficient
cells exhibit higher levels of the lipid peroxidation product MDA when exposed to oxidizing
agents [147]. OS cells also show increased levels of G6PD [148]. NADP+ is required for the
enzymatic activity of G6PD, whereas NADPH downregulates it. This can be prevented by
an increase in GSSG or a higher consumption of NADPH in cancer cells [143].

ME is an oxidoreductase that converts malate to pyruvate through the formation
of NADPH. Cytosolic ME1 and mitochondrial ME2 appear to be the most important
isoforms. Their overexpression is associated with cancer growth and a poor prognosis.
The silencing of both ME1 and ME2 leads to a reduction in NADPH production, increased
ROS formation, and increased sensitivity to chemotherapy [143,149]. There are two MEs
that are expressed in osteoblasts. ME2 (NADH-dependent) is specifically upregulated
during osteoblast differentiation and its inhibition impairs osteoblast proliferation and
differentiation, whereas ME1 (NADPH-dependent) remains unchanged [150]. ME1 is
upregulated in OS and is a risk factor for OS progression [151].

IDH generates NADPH from NADP+ by catalyzing the oxidative decarboxylation
of isocitrate to α-ketoglutarate (α-KG). There are two forms of the enzyme: IDH1 in the
cytosol and in the peroxisomes, and IDH2 in the mitochondria. IDH1 is overexpressed in
many types of cancer and is closely associated with poor prognosis [143]. The knockdown
of IDH1 leads to a decrease in NADPH and α-KG and an increase in ROS, leading to
cancer cell apoptosis. This also increases the sensitivity of cancer cells to chemotherapy
and radiotherapy. IDH2 is also overexpressed in cancer, lowering ROS and increasing the
growth of cancer cells [152]. IDH1 and IDH2 are frequently mutated in cancer, which alters
their activity so instead of generating NADPH, NADPH is consumed by the reduction of α-
KG to generate 2-HG [153]. 4-HNE is able to decrease the activity of IDH2 in cardiomyocytes
and reduce NADPH production. All these effects can be prevented by the addition of
GSH [154]. Purified IDH is inactivated by MDA and 4-HNE, but at rather high mM
concentrations, whereas LOOH acts at µM concentrations. Binding to IDH is confirmed by
ESI-MS for 14 residues [155]. Since Lys212, His315, and Cys387 are essential for the activity
of IDH2, an interaction with Hys and Cys is to be expected [85,86].

NNT is an enzyme of the inner mitochondrial membrane that uses the energy of the
proton gradient to generate NADPH. This NADPH is then used within the mitochondria
for biosynthesis and to maintain reduced GSH. NNT expression, as analyzed using the
Cancer Genome Atlas cohort and Gene Expression Omnibus datasets, is lower in HCC
patients than in controls [156]. No data are available on NNT expression in OS.

NADK consists of two enzymes: cytosolic NADK1 and mitochondrial NADK2, which
phosphorylate NAD+ and produce NADP+ [145]. In some cancers, NADK contributes
to carcinogenesis, particularly through mutations that can increase its activity and cause
a greater increase in NADPH production, which then serves as an antioxidant defense.
Silencing or overexpressing NADK1 has only a modest effect on ROS levels, but NADK2
may play some role by protecting mitochondria from ROS [145]. There is no data on the
expression of NADK in OS and no data on its interaction with lipid peroxidation products.

Although NADPH is used for reduction reactions, it is also a substrate for the gener-
ation of free radicals by NOX1-5. These enzymes generate small amounts of ROS locally
for redox-sensitive signaling that supports cancer progression, such as the stimulation
of oncogenes (SRC, RAS) or inactivation of tumor suppressors (P53, PTEN) [143,157].
NOX is important for bone homeostasis and differentiation. While NOX4 produces small
amounts of H2O2 for redox signaling and is involved in osteoblast differentiation, NOX1
and NOX2 produce O2− mainly in osteoclasts and probably play a role in bone remod-
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eling and are even involved in OS migration. NOX4 interferes with signaling cascades
such as KEAP/NRF2 or mediates the stability of HIF1 by controlling the activity of prolyl
hydroxylases [158]. NOX2 is overexpressed in several human cancers, including OS, and
is associated with a poor prognosis [159]. In all OS cell lines examined, NOX2 and NOX4
are expressed, whereas NOX1 and NOX3 are hardly or not at all detected. Both NOX2 and
NOX4 silencing lead to a reduction of ROS, reduced viability of OS, and apoptosis [160].
The overexpression of NOX4 decreased five mitochondrial oxidative phosphorylation
(OXPHOS) enzyme complexes and ATP production and increased 4-HNE, MDA, and
the accumulation of iron [161]. The disruption of NOX1 and NOX4 (especially NOX1) in
cardiomyocytes makes them more sensitive to the product of lipid peroxidation, acrolein.
Alkylating agents that act as NOX inhibitors bind to one of the four Cys residues in the
active site of the enzyme [162]. Since 4-HNE and acrolein are also alkylating agents, it is
possible to interfere with NOX activity [163].

NADPH also serves as a cofactor for antioxidant enzymes, some of which have already
been mentioned in the sections above: GR, GPX, TRX, TRXR, etc. [26]. Catalase (CAT)
is the antioxidant enzyme with a heme b in the active site and NADPH as a cofactor
that breaks down H2O2 into O2 and H2O. It can handle high concentrations of H2O2. In
tumors, CAT is often downregulated, and low CAT correlates with high H2O2 production.
There is evidence that CAT is involved in cell signaling, proliferation, differentiation, and
apoptosis. It appears that in some cancer cells, an increased CAT expression is a response
to chemotherapy or radiotherapy and protects them from ROS [164,165]. In several human
cell lines, CAT activity increased in response to the lipid peroxides 13-hydroperoxy-9,11-
octadecadienoic acid (13-HPODE), 13-hydroxy-9,11-octadecadienoic acid (13-HODE), or
H2O2 [166].

There is a new experimental approach in OS therapy using metal nanozymes that
mimic CAT activity and break down H2O2 to O2. The idea behind this is to generate O2 in
the cancer to combat hypoxia of the cancer tissue. Hypoxia leads to the expression of genes
that are involved in the stress response and provide protection to cancer cells. Overcoming
hypoxia could make the cancer more sensitive to anticancer therapy [167].

4.2.2. NAD+/NADH

The NAD+/NADH redox couple is a regulator of cellular energy metabolism, and its
precise balance is necessary for normal physiological functions [168]. De novo synthesis of
NADH begins with the transport of tryptophan (Trp) by the SLC6A19 transporter, followed
by a sequence of enzymatic processes involving indoleamine 2,3-dioxygenase (IDO); tryp-
tophan 2,3-dioxygenase (TDO); arylformamidase; kynurenine 3-monooxygenase, kynureni-
nase, and 3-hydroxyanthranilate 3,4-dioxygenase; ACMS decarboxylase; quinolinate phos-
phoribosyl transferase; and nicotinamide mononucleotide adenylyl transferases [168]. In
the final step, NAD+ synthase uses glutamine and ATP to produce NAD+. The second path-
way of synthesis is via the salvage pathway, in which NADH precursors are recycled [169].

Trp exposure leads to an increase in the lipid peroxidation products 4-HNE and MDA
in tested subjects, in parallel with an increase in kynurenines. The oxidative stress may re-
sult from the generation of quinolinic acid, 3-hydroxykynurenine, and 3-hydroxyanthranilic
acid, all of which are known to have the ability to generate ROS [170].

IDO is a heme oxygenase and the rate-limiting enzyme for NAD+ synthesis [171].
It contains the residues Cys99, Cys126, Cys143, Cys173, and Cys220, which could be
modified by H2O2 blocking its activity. The activity of the enzyme could be rescued by
TRX [172]. Although reactive aldehydes and LOOH could block the activity of the enzyme
by binding to Cys residues, there is no data on this. The only experiment that has been
performed studied the colocalization of 4-HNE and IDO in pre-eclamptic human placenta,
and it was not found [173]. IDO is expressed in most of the OS [174] and acts as an
immunosuppressive enzyme that helps several malignant tumors, including OS, escape
the immune system. A high expression of IDO is associated with a poor prognosis and
metastasis in OS patients [175]. In addition, the expression of IDO and programmed death
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ligand 1 (PD-1) is higher in OS who have received neoadjuvant chemotherapy, suggesting
an adaptive mechanism to therapy [176,177].

TDO is heme dioxygenase and contains conserved His72 at its active site, and muta-
tions can decrease but not prevent its activity. It participates in the initial and rate-limiting
steps of the kynurenine pathway of Trp metabolism. TDO is special because it is reduc-
tively reactivated by an oxidant, H2O2, in the presence of Trp and also possesses CAT-like
activity [171,177]. It is expressed in many tumors and acts as an immunosuppressant,
preventing tumor rejection [33,35]. There is no data on the effects of lipid peroxidation
products on expression and TDO in OS, but in human glioma cell lines, PGE2 can upregu-
late TDO2 [178]. The expression of TDO2 is downregulated by increased HIF1α during
hypoxia, whereas knocking out HIF1α restores the expression of TDO2. In addition, overall
Trp metabolism is downregulated in part by HIF1α during hypoxia [179].

4.3. Redox Sensitive Signaling in OS
4.3.1. KEAP1/NRF2 Signaling Pathway

The main defense mechanism against stress conditions such as oxidative stress and
xenobiotics is the inducible KEAP1/NRF2 (Kelch-like ECH-associated protein 1) pathway,
which tightly regulates redox homeostasis [180–183]. The KEAP1 repressor binds NRF2,
which is then ubiquitinated by the Keap1-Cullin3 E3 ubiquitin ligase and degraded by
proteasomes. Under stress conditions, NRF2 is released from KEAP1 and binds to the
antioxidant response element (ARE) of the target genes, leading to their activation [184–186].

There are many cellular processes that are influenced by NRF2, such as the antioxidant
response, regulation of metabolism, and mitochondrial function. Some of the genes are
responsible for protecting cells from ROS: heme oxygenase 1 (HMOX1), GCLc, GCLm, GSS,
GST, GR, SOD1, CAT, TRX, TXNRD1, SRX, PRDX1, drug transport (MRP gene family),
quinone 1 (NQO1), NAD(P)H dehydrogenase, etc. [185,187–189].

The release of NRF2 from KEAP-1 is mediated by the modification of a specific thiol
group in KEAP-1 by electrophiles. Those electrophiles are reviewed in [190] and include
lipid peroxidation products and other electrophilic products of metabolism.

Current data suggest that Cys151, Cys273, and Cys288 are the functionally important
Keap1 Cys residues. While Cys273 and Cys288 can be important in binding to Nrf2, Cys151
seems to be important in directing NRF2 to ubiquitination and degradation [191]. Cys151
and Cys288 of KEAP-1 are attacked by electrophiles such as 4-HNE and acrolein, but
Cys288 seems to be a specific alkenal stress sensor for 4-HNE and acrolein [192]. Other
electrophiles could also be important in modifications of KEAP-1, such as LOOH 15d-PGJ2
by binding to Cys273 and Cys288 residues [191].

Redox signaling involving lipid peroxidation products is shown in Figure 2.
Mechanisms enabling NRF2 activation are reviewed in [186]. There are several onco-

genes and transcription factors that are involved in NRF2 activation. Those include endoge-
nous oncogenes K-RAS, B-RAF, and MYC [187]; aryl hydrocarbon receptor (AHR) [194];
nuclear factor (NF)-κB; extracellular signal-regulated protein kinases (ERK) [195]; c-jun
JNK [195], PI3K-AKT, and p38 MAPK [196,197]; protein kinase C (PKC) [198], casein kinase
2 (CK2) [199]; and protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) [200].
Some of the transcription factors could directly influence NRF2 expression by binding to
the NRF2 promoter [201]. The NRF2 promotor includes two regions: ARE-like, XRE-like
(for AHR), and it also contains the Nf-κB binding domain, allowing direct activation by
NF-κB [202], MYC, and JUN binding sites [187] while KRAS may bind to the TRE response
element. Besides this, PKC and CK2 may directly prevent the interaction of KEAP1 and
NRF2 by phosphorylating NRF2 [201]. There are also negative regulators of NRF2. Some
of those are peroxisome proliferator-activated receptor gamma (PPARγ) [203] and estrogen
receptor α (ERα) [204], which can bind to NRF2 and suppress NRF2 activity, or p38 and
GSK3 can decrease NRF2 stability by phosphorylation [196].
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Figure 2. Interference of lipid peroxidation products 4-HNE, MDA, acrolein, 4-ONE, LOOH, and
15d-PGJ2 with redox-sensitive stress signals. The occurrence of stress leads to the activation of
redox-sensitive signalling pathways that serve cellular protection. The most important regulatory
mechanisms for protection and adaptation are the NRF2 and HIF1 signalling pathways together with
their target molecules. Green arrows represent signalling pathways induced by the stress response, i.e.,
increased activity or expression of signalling molecules. The red T stands for suppressed signalling
pathways, with the flat top of the T representing inhibited activity or reduced expression of signalling
molecules. Blue arrows indicate the direction of positive regulation between individual signalling
molecules, with double-sided arrows representing bidirectional positive regulation. The red triangles
represent confirmed direct interactions between lipid peroxidation products and signalling molecules
involved in NRF2 and HIF1 signalling pathways. This indicates that lipid peroxidation products
interfere with and modulate cellular stress signalling. The following works form the basis for the
creation of this scheme [35,48,193].

The activation of NRF2 protects cells from carcinogens and mutagens and has pro-
tective roles against tumor initiation [186], but in already established tumors, increased
NRF2 activity is found, enhancing ROS detoxification and protecting tumor cells from
chemotherapeutics, and is associated with a poor prognosis [187,202,205,206].

Low doses of 4-HNE could upregulate NRF2 and consequently upregulate the cellular
antioxidative system by enhancing the expression of GCL and the Xc(-) subunit of SLC7A11
and consequently increasing the GSH level. Those cells then become resistant to cytotoxic
concentrations of either reactive aldehydes or ROS [207].

NRF2 is important in the metabolic reprogramming of cancer cells. NRF2 not only
affects the antioxidant response, but also glycolysis, PPP, amino acid metabolism, and
glutaminolysis, resulting in increased amounts of products directed into the TCA cycle and
the mitochondrial respiratory chain [197].

The glutamine transporter SLC1A5 is activated by NRF2, ensuring glutamine for
cellular processes [208]. Related to this, GLS2 and GPT2 are activated by NRF2, and
they direct glutamine into the production of glutamate, α-ketoglutarate, GSH, etc., to
create building blocks for cancer cells [197]. All enzymes necessary for the production of
GSH—GCLc, GCLm, and GSS are controlled by NRF2 [189].
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Several key enzymes in lipid metabolism are activated by NRF2, including fatty acid
desaturase 1 (FADS1), elongation of very long chain fatty acids protein 7 (ELOVL7), acyl-
CoA thioesterase 7 (ACOT7), acyl-CoA synthetase short-chain family member 2 (ACSS2),
acyl-Coenzyme A dehydrogenase family member 12 (ACAD12), and acyl-Coenzyme A
dehydrogenase family member 10 (ACAD10) [209]. FADS contain conserved His residue in
the active site and this His is important for fatty acid elongation by ELOVL [210]. ACOT7
does not contain any amino acid residue which could be attacked by electrophile [211], but
ACSS2 contains Lys residue at active site.

Damaged proteins are degraded by the 26S proteasome, which consists of a 20S core
and a 19S regulatory subunit. NRF2 regulates the expression of genes in multiple subunits
of the 20S proteasome and the 19S proteasome [212]. Proteasomal inhibitors could be
helpful in treating OS [213].

The inducible form of heme oxygenase HMOX-1 is expressed at a low level under
normal basal conditions and increases under pathological conditions. In tumors, it increases
vascularization, thus promoting tumor growth and their metastatic potential. It acts as an
antioxidant enzyme and conveys an antiapoptotic effect through the p38 MAPK pathway,
the NF-κB/PI3K/AKT pathway, and others [214,215]. It is found to be increased in patients
with OS [216] and an increased expression in OS cells protects them from ferroptosis
and chemotherapy [217]. The inhibition of HMOX-1 causes iron accumulation and the
formation of ROS and LOOH [218]. HMOX-1 lacks Cys residues at its active site, so lipid
peroxidation products probably cannot directly modulate HMOX-1 activity. However, it is
noted that HMOX-1 could be palmitoylated [219].

When compared to adjacent normal tissues, malignant and benign bone tumors
have a significantly lower expression of proapoptotic BAX, caspase-8, caspase-9, and the
detoxification enzyme GPX4. A high expression of BCL-2, which could act as an anti-
apoptotic mediator, was detected in high-grade and metastatic OS, together with the high
transferrin receptor TFR1 [220].

The signal transducer and activator of transcription 3 (STAT3) reacts to stress and is
usually activated in many cancers, leading to cancer progression. It activates the cellular
antioxidative response by upregulating NRF2 and, consequently, GPX4. In OS cell lines
resistant to cisplatin due to chronic exposure, STAT3, NRF2, and GPX4 are significantly
increased. Those cells have lower levels of ROS, lipid peroxides, MDA, and apoptosis
when compared to the original line. The chronic use of cisplatin induces the generation of
drug-resistant OS cells by inhibiting ferroptosis through the STAT3/NRF2/GPX4 signal
transduction pathway [98].

The metastatic potential of OS cells is correlated with aldehyde dehydrogenase 1A1
(ALDH1A1) activity [221] and overexpression is associated with poor cancer prognosis in
some cancers [222] and resistance to doxorubicin and cisplatin therapy in vitro [223]. This
NAD(P)+-dependent enzyme is upregulated in cancer cells by NRF2 [224] and catalyzes
the detoxification of products of lipid peroxidation, which are reactive aldehydes such as
4-HNE, MDA [225], and 4-ONE [226]. Another ALDH isoenzyme, ALDH2 is found to
be reversibly modified by 4-HNE at low concentrations, while irreversibly modified with
high 4-HNE and low 4-ONE concentrations by affecting Cys residue at the enzyme active
site [226]. Although there is no data on ALDH1A1, Cys303 is present in the active site, and
due to a much more open and broader active site than ALDH2 active site there is no steric
disturbance, and the ALDH1A1 active site is accessible to reactive aldehydes [227].

4.3.2. HIF-1α

The cellular response to hypoxia is based on the activation of multiple genes involved
in many biological processes. Among them, hypoxia-inducible factor (HIF) is the main
regulator of the response to hypoxia in both healthy and cancer tissue [228–230].

The HIF family consists of HIF-1α, HIF-2α, HIF-3α, and HIF-1β. The heterodimeric
structure is composed of the O2-sensitive α subunit and β subunit, and the assembly
process activates HIF. In normoxic conditions, the HIF-1α subunit is hydroxylated by HIF
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prolyl-hydroxylases (PHD) and degraded by the ubiquitin-proteasome system. Under
hypoxic conditions, HIF-PHD activity is inhibited, and HIF-1α accumulates in the cell,
leading to its activation. HIF-1α conducts cellular response to hypoxia by regulating genes
containing specific hypoxia response elements (HREs) by binding to them [228,231–233].

Hypoxia-inducible factor is an important modulator of cancer metabolic reprogram-
ming in hypoxic conditions. Cancer cells have a high need for glucose, and different genes
involved in glycolysis are upregulated under HIF-1α transcriptional control: glucose trans-
porters (GLUT1, GLUT3), lactate dehydrogenase (LDH), glycolytic enzymes hexokinase 1
and 2 (HK1, HK2), enolase 1 (ENO1), phosphoglycerate kinase 1 (PGK1), pyruvate kinase
M2 (PKM2), etc. [233–235].

Under normoxic conditions, pyruvate dehydrogenase (PDH) transforms pyruvate
with cofactors NAD+ and coenzyme A into acetyl-CoA and NADH, which may be fur-
ther used in the citric cycle. But in hypoxia, HIF-1α induces pyruvate dehydrogenase
kinase 1 (PDK-1) and PDH is inactivated, leading to pyruvate metabolism by LDH and
the formation of lactate [236]. This shifts metabolism from OXPHOS to anaerobic glycoly-
sis [237]. The produced lactate stabilizes HIF-1α and creates an acidic condition in cancer
cells environment, and promotes cancer invasion and metastasis [233,238].

Products created during the process of glycolysis are used for nucleotide and lipid
synthesis [239]. Cancer cells are in high demand for fatty acids, so HIF-1α upregulates
fatty acid (FA)-binding proteins FABP3 and FABP7, increasing FA transport in cells [240].
FABP7 binds long-chain polyunsaturated FA (PUFA), allowing uptake and intracellular
trafficking [241]. However, in ischemic conditions, those FABPs cause damage due to an
increased transport of FA and consequently the occurrence of lipid peroxidation products
such as 4-HNE [242]. Although there is no data about the interaction between lipid
peroxidation products and FABP3 and FAB7, other FABPs are explored as targets. 4-HNE
binding can have different consequences; so, FABP4 possesses Cys117, which is the target
for 4-HNE, and its binding impairs protein affinity for fatty acids [243], but FABP5 Cys-120
modification by 4-HNE forms a more stable protein [244].

HIF-1α also suppresses mitochondrial FA oxidation by inhibiting medium-chain
Acyl-CoA dehydrogenase (MCAD) and long-chain Acyl-CoA dehydrogenase (LCAD).
This is done by suppressing c-MYC, a transcriptional coactivator of PGC-1β, required for
MCAD and LCAD. HIF-1α also promotes the expression of fatty acid synthase (FASN) to
trigger FA synthesis and stearoyl-CoA desaturase (SCD) to generate unsaturated FA [235].
The inhibition of FA oxidation contributes to redox homeostasis in hypoxia, decreased
ROS production, the suppression of the PTEN pathway, and the promotion of cancer cell
proliferation [245].

Due to their central role in cellular energy metabolism, mitochondria are the main
consumers of oxygen in the cell. Mitochondrial adaptation to hypoxia includes modifica-
tions in the respiratory chain, decreased OXPHOS, the tricarboxylic acid (TCA) cycle, and
β-oxidation. Moreover, mitochondrial TCA cycle intermediates participate in modulating
HIF activity [246].

Complex IV (cytochrome oxidase, COX) is affected in hypoxia by HIF-1α. HIF-1α
induces the expression of COX4I2 and the mitochondrial LON protease, leading to COX4I1
targeting by LON for proteasomal degradation. Due to these processes, COX4I2 replaces
COX4I1 in complex IV, which improves the activity of complex IV and produces less
ROS. Complex I activity is suppressed by HIF-1α through an increased expression of
the mitochondrial NDUFA4L2 encoding NADH dehydrogenase (ubiquinone) 1/subcom-
plex subunit 4-like 2, which suppresses Complex I activity, leading to a decreased ROS
production [228,247].

HIF-1α can be stabilized by ROS generated by the NADPH oxidase system, in
particular NOX. The expression of NOX1 increases the expression of both HIF-1α and
HMOX1 [248]. NOX4 interferes with the signaling cascades of KEAP/NRF2, increasing
free NRF2 [249] or increasing the expression of HIF-1α protein [250]. This pathway seems
bidirectional, as HIF-1α is also able to induce NOX4 [251].
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NRF2-silencing decreased HIF-1α accumulation in hypoxic cancer cells. HIF-1α dys-
regulation in NRF2-silenced cancer cells was associated with short non-coding miRNA
miR-181c elevation. Also, in NRF2-silenced cells, hypoxia is not able to completely re-
store the increased levels of metabolites involved in glycolysis and the activated PPP
pathway [252].

Chronic hypoxia is able to induce HIF-2α through the NRF2 pathway. NRF2-silencing
prevents HIF-2α accumulation, together with the inhibition of cancer migration and
spheroid growth. This process is associated with an increased expression of the short
non-coding miRNA miR-181a-2-3p in NRF2-silenced cells [253].

HMOX1 is also a downstream target of the transcription factor HIF-1α. HMOX1 acts
both downstream and upstream of HIF-1α, and the stabilization of HIF-1α contributes to
protection against ischemic injury [254].

HIF-1α is overexpressed in many carcinomas, including OS. There are several path-
ways through which HIF-1α affects OS progression. In OS tissue, there is the expression
of a high level of HIF-1α together with the chemokine receptor CXCR4. This receptor
contributes to the metastasis of many cancers. Under hypoxic conditions, OS migration
and invasion are enhanced, but blocking HIF-1α or CXCR4 decreases them. By blocking
HIF-1α, the expression of CXCR4 was blocked, showing that hypoxia induced CXCR4
expression through HIF-1α [255].

Mitochondrial NDUFA4L2 protein is upregulated under hypoxic conditions. ND-
UFA4L2 is a component of the electron transport chain complex I and decreases ROS
production. HIF-1α inhibition decreases the NDUFA4L2 protein. The downregulation
of NDUFA4L2 has a direct effect on the apoptosis of OS cells. In OS cells, it promotes
migration, invasion, proliferation, and the epithelial–mesenchymal transition. HIF-2α does
not regulate NDUFA4L2 expression [256].

Potassium inwardly rectifying channel subfamily J member 2 (KCNJ2) is overexpressed
in advanced-stage OS tissues in cells with high metastatic potential and is associated with a
shorter survival rate in patients with OS. KCNJ2-inhibition prevents OS metastasis, whereas
KCNJ2-increase increases it. KCNJ2 binds to HIF-1α and inhibits its ubiquitination, thus
increasing the amount of HIF-1α. On the other hand, HIF-1α binds directly to the KCNJ2
promoter and increases its transcription under hypoxic conditions [257].

The upstream regulation of HIF-1α accumulation is also regulated by transglutam-
inase 2 (TGM2), which creates a status called pseudohypoxia [258]. Enhanced TGM2
expression in metastatic OS contributes to the migratory and invasive properties of OS.
TGMs metabolize glutamine into glutamate and enable substrates for GSH synthesis and
to drive cellular processes [259]. TGM2 is also responsible for the chemoresistance of OS
cells to cisplatin [260].

Microarray data of OS and healthy tissue revealed an increased expression of HIF-1α,
Forkhead box protein O1 (FOXO1), Acylphosphatase 1 (ACYP1), Peptidylprolyl Isomerase
H (PPIH), Peptidylprolyl Isomerase E (PPIE), and Sestrin 1 (SESN1) and a decreased ex-
pression of CYP-related genes (cytochromes p450) in OS tissue. The link between the genes
was tested in OS using HIF-1α silencing and significantly decreased CAT, SOD1, SOD2,
NOX4, SESN3, FOXO1, PRDX1, and GPX1 was found, while significantly increased were
subunits from the P-450 family (Cyp2c38, Cyp2c55, and Cyp2c29), COX2, and arachidonate
12-lipoxygenase, together with an increased ROS production. The overexpression of HIF-1α
increased FOXO1 expression by targeting HRE in the promoter region of FOXO1, and over
FOXO1 are induced SOD2, CAT, and SESN3, resulting in an antioxidative effect and the
inhibition of ROS formation [261]. FOXO factors have been involved in regulating cell cycle
progression and apoptosis, resistance to chemotherapy, and the detoxification of ROS [262],
while 4-HNE was found to activate FOXO in bone cells [263].

LOOH and reactive aldehydes could interfere with HIF-1α signaling pathways. 4-
HNE increased the growth of cancer cells and upregulated the level of HIF-1α through the
inhibition of Sirtuin-3 (SIRT3). SIRT3 is a mitochondrial NAD+-dependent deacetylase and
is reported to destabilize HIF-1α. 4-HNE could inhibit the deacetylase activity of SIRT3
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by binding to its Zn-binding Cys280 residue [264,265]. In ischemic preconditioning of
myocard, HIF-1α decreases tissue damage and prevents lipid peroxidation, as measured
by the accumulation of 4-HNE by the activation of the ALDH2/SIRT3/HIF1α signaling
pathway [266].

5. Lipid Peroxidation in OS Therapy

The relationship between specific drugs with oxidative stress and lipid peroxidation
in the tumor has been established, and its possible application in tumor therapy is the focus
of the research [267]. Cancer cells have altered metabolism and signaling pathways that
make them more susceptible to oxidative stress-induced damage compared to normal cells.
While lipid peroxidation is often associated with cellular damage and disease progression,
certain lipid peroxidation products have shown potential therapeutic applications in cancer
treatment. These lipid peroxidation products can exhibit anticancer effects through various
mechanisms, including the induction of apoptosis, inhibition of cell proliferation, and
modulation of certain signaling pathways (reviewed in [268]). For example, 4-HNE has been
shown to possess anticancer properties by inducing apoptosis, inhibiting cell proliferation,
and modulating signaling pathways involved in cell survival and metastasis. Additionally,
4-HNE can sensitize cancer cells to chemotherapy and radiation therapy. MDA, acrolein,
isoprostanes, and oxidized phospholipids, which are all lipid peroxidation products, have
shown potential anticancer effects by inhibiting cell proliferation and inducing apoptosis
in cancer cells [268]. MDA-based conjugates have been explored as potential targeted drug
delivery systems for cancer therapy. Still, further studies are needed to better understand
their mechanisms of action and evaluate their efficacy and safety in clinical settings.

Since ferroptosis has emerged as a new hallmark of carcinogenesis, researchers are
exploring the potential therapeutic applications of modulating ferroptosis, both to induce
cell death in cancer cells and to prevent cell death in certain pathological conditions.
Preclinical studies have demonstrated that inducing ferroptosis in OS cells can inhibit
tumor growth and promote cell death. Various compounds and approaches targeting
key regulators of ferroptosis pathways, such as GPX4 inhibitors or modulators of iron
metabolism, have shown efficacy in preclinical and clinical models of OS [93] (Table 1).

Certain inorganic compounds, apart from iron, exhibit properties that can modulate
lipid peroxidation, potentially impacting the viability and proliferation of cancer cells. For
example, selenium particles have been found to have antioxidant properties, which can
mitigate oxidative stress-induced damage in cancer cells. However, its effects on osteosar-
coma cells have not yet been validated in clinical trials [269]. Other studies have shown
that black phosphorus nanoparticles (BPNPs) possess intrinsic anticancer activity through
various mechanisms, including the induction of oxidative stress and lipid peroxidation,
selectively targeting cancer cells while sparing normal cells [270]. In osteosarcoma specifi-
cally, exfoliated black phosphorus (2D bP) can disrupt cancer cell metabolism and signaling
pathways, ultimately inhibiting their proliferation and promoting cell death [271].

Pro-oxidative cancer therapies are a class of treatments designed to exploit the in-
creased levels of oxidative stress typically found in cancer cells compared to normal cells.
These therapies work by further increasing the levels of ROS within cancer cells, ultimately
leading to cell death [286]. Some of the pro-oxidative drugs have been investigated in
preclinical studies and clinical trials covering various aspects of oxidative stress and lipid
peroxidation in cancer cells, including osteosarcoma [reviewed in [287]. Pro-oxidative
therapies can also enhance the effectiveness of other cancer treatments. For example, they
can sensitize cancer cells to chemotherapy or radiation therapy, making these treatments
more potent [288].
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Table 1. Drugs targeting OS through the induction of ferroptosis.

Compound OS Cell Lines Signaling Pathways Target Molecule Mechanism of Action References

Sulfasalazine K7M2 Xc
– system SLC7A11

Accumulation of cytsolic and lipid ROS;
inducing ferroptosis and lipid
peroxidation by inhibiting SLC7A11;
decreasing cellular GSH and GPX4 activity

[272]

Tirapazamine HOS, U2OS, 143B SLC7A11/GPX4 SLC7A11

Iron accumulation; increasing intracellular
ROS; inducing ferroptosis under hypoxia
by inhibiting the proliferation and
migration of cells by downregulation of
SLC7A11 and GPX4

[273,274]

Bavachin HOS, MG63 STAT3/p53/SLC7A11 SLC7A11

Inducing ferroptosis by inhibiting STAT3
and enhancing p53, which inactivates
SLC7A11; accumulation of ROS and MDA,
GSH depletion, and the downregulation
of GPX4 expression

[275]

KDM4A 143B, HOS - SLC7A11

GSH depletion, lipid peroxidation;
inhibitingferroptosis by inducing
SLC7A11 transcription by activating
H3K9me3 demethylation

[276,277]

EF24 U2OS, Saos-2 HMOX-1/GPX4 GPX4

Lipid peroxidation, iron accumulation,
and ROS production inducing ferroptosis
by upregulating HMOX1 to suppress
GPX4 expression

[278,279]

DFHHP Saos-2 - GPX4

Boosting the growth suppression of
hypoxic OS by the induction of ferroptosis;
GSH depletion, lipid peroxidation, iron
accumulation, and ROS production

[280,281]

PEITC 143B, HOS, U2OS,
K7M2, MG63 MAPK GPX4

Inducing ferroptosis, apoptosis, and
autophagy; altering iron metabolism,
disturbing the redox balance, and
activating the ROS-related MAPK
signaling pathway; GSH depletion, lipid
peroxidation, iron accumulation, and
ROS production

[282,283]

STAT3
inhibitor MG-63, Saos-2 STAT3/NRF2/GPX4 GPX4

Inhibiting STAT3/Nrf2/GPX4 signaling
pathway; activating ferroptosis in OS cells
and increase sensitivity to cisplatin; lipid
peroxidation, iron accumulation, and
ROS production

[98]

Butyrate MNNG/HOS, U2OS ATF3/SLC7A11 SLC7A11

Upregulating ATF3 expression and
promoting erastin-induced GSH depletion;
lipid ROS accumulation and enhancing
erastin-induced ferroptosis

[284]

Gambogenic
acid 143B, HOS P53/SLC7A11/GPX4 SLC7A11, p53

GSH depletion; p53 signaling pathway
activation; ROS generation; inhibition of
cell proliferation; inducing ferroptosis
and apoptosis

[285]

Many chemotherapeutic drugs exert their anticancer effects through the direct or indi-
rect induction of lipid peroxidation, which plays a significant role in the cytotoxic effects
of certain chemotherapeutic agents. Certain chemotherapy drugs directly generate ROS
within cancer cells. These ROS can overcome the antioxidant defenses of cancer cells, lead-
ing to oxidative stress and subsequent cell death. For example, doxorubicin and cisplatin
are chemotherapy drugs that promote ROS formation as part of their mechanisms of action,
which can induce lipid peroxidation and the formation of lipid peroxidation products, such
as MDA and 4-HNE [276,289]. Many other drugs, like Paclitaxel and Vinblastine, arsenic
trioxide, 5-fluorouracil, and tyrosine kinase inhibitors, such as Vorinostat and Sorafenib, in-
duce oxidative stress by targeting cellular processes that result in ROS production, leading
to the accumulation of ROS in cancer cells (reviewed in [290]). Anticancer drugs may have
intrinsic ROS-generating activity but combining them with additional ROS-inducing agents
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can further increase ROS levels. When ROS-inducing agents are used in combination with
anticancer drugs, they can potentiate the cytotoxic effects of the drugs, leading to enhanced
cell death.

Cancer cells frequently upregulate de novo fatty acid synthesis to fulfill their high de-
mand for lipids, essential for membrane formation, energy storage, and signaling molecules.
Fatty acid synthase (FASN) is a key enzyme involved in de novo fatty acid synthesis. The
inhibitors of FASN, such as cerulenin, orlistat, TVB-2640, and C75, have been developed and
tested in preclinical and clinical studies [291]. Some therapeutic agents, such as Soraphen
A, are oriented towards the inhibition of ACC, an enzyme that catalyzes the carboxylation
of acetyl-CoA to malonyl-CoA, a precursor for fatty acid synthesis [291]. Other compounds
targeting SCD1, CPT1, DGAT, and other key enzymes involved in fatty acid metabolism
also hold promise as a cancer treatment strategy [267].

The specific impact of these drugs on lipid peroxidation and ROS can vary depending
on the context, including the type of cancer being treated and the specific characteristics
of the cancer cells. While most of these treatments are not specifically targeted at lipid
peroxidation products or treatments for OS, their induction of oxidative stress and potential
to induce lipid peroxidation may contribute to their anticancer effects in OS therapy.
However, further research is needed to elucidate the specific mechanisms underlying lipid
peroxidation induced by these drugs in OS cells and their therapeutic implications.

6. Conclusions

The results of many years of research, together with the most recent findings, allow
us to conclude that redox signaling in osteosarcoma, similar to the other types of cancer,
plays a crucial regulatory role in supporting the survival of transformed cells and their
growth. Therefore, further research, in particular focused on the roles of lipid peroxida-
tion, could help not only better understanding but also better prevention and therapies
for osteosarcoma.
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